LegalizeDAG.cpp revision 19dc8c9bcd5007ca61d8b42d363602a24216f0a6
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalVariable.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/SmallPtrSet.h"
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
43/// hacks on it until the target machine can handle it.  This involves
44/// eliminating value sizes the machine cannot handle (promoting small sizes to
45/// large sizes or splitting up large values into small values) as well as
46/// eliminating operations the machine cannot handle.
47///
48/// This code also does a small amount of optimization and recognition of idioms
49/// as part of its processing.  For example, if a target does not support a
50/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
51/// will attempt merge setcc and brc instructions into brcc's.
52///
53namespace {
54class SelectionDAGLegalize {
55  const TargetMachine &TM;
56  const TargetLowering &TLI;
57  SelectionDAG &DAG;
58  CodeGenOpt::Level OptLevel;
59
60  // Libcall insertion helpers.
61
62  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
63  /// legalized.  We use this to ensure that calls are properly serialized
64  /// against each other, including inserted libcalls.
65  SDValue LastCALLSEQ_END;
66
67  /// IsLegalizingCall - This member is used *only* for purposes of providing
68  /// helpful assertions that a libcall isn't created while another call is
69  /// being legalized (which could lead to non-serialized call sequences).
70  bool IsLegalizingCall;
71
72  enum LegalizeAction {
73    Legal,      // The target natively supports this operation.
74    Promote,    // This operation should be executed in a larger type.
75    Expand      // Try to expand this to other ops, otherwise use a libcall.
76  };
77
78  /// ValueTypeActions - This is a bitvector that contains two bits for each
79  /// value type, where the two bits correspond to the LegalizeAction enum.
80  /// This can be queried with "getTypeAction(VT)".
81  TargetLowering::ValueTypeActionImpl ValueTypeActions;
82
83  /// LegalizedNodes - For nodes that are of legal width, and that have more
84  /// than one use, this map indicates what regularized operand to use.  This
85  /// allows us to avoid legalizing the same thing more than once.
86  DenseMap<SDValue, SDValue> LegalizedNodes;
87
88  void AddLegalizedOperand(SDValue From, SDValue To) {
89    LegalizedNodes.insert(std::make_pair(From, To));
90    // If someone requests legalization of the new node, return itself.
91    if (From != To)
92      LegalizedNodes.insert(std::make_pair(To, To));
93  }
94
95public:
96  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
97
98  /// getTypeAction - Return how we should legalize values of this type, either
99  /// it is already legal or we need to expand it into multiple registers of
100  /// smaller integer type, or we need to promote it to a larger type.
101  LegalizeAction getTypeAction(EVT VT) const {
102    return
103        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
104  }
105
106  /// isTypeLegal - Return true if this type is legal on this target.
107  ///
108  bool isTypeLegal(EVT VT) const {
109    return getTypeAction(VT) == Legal;
110  }
111
112  void LegalizeDAG();
113
114private:
115  /// LegalizeOp - We know that the specified value has a legal type.
116  /// Recursively ensure that the operands have legal types, then return the
117  /// result.
118  SDValue LegalizeOp(SDValue O);
119
120  SDValue OptimizeFloatStore(StoreSDNode *ST);
121
122  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
123  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
124  /// is necessary to spill the vector being inserted into to memory, perform
125  /// the insert there, and then read the result back.
126  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
127                                         SDValue Idx, DebugLoc dl);
128  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
129                                  SDValue Idx, DebugLoc dl);
130
131  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
132  /// performs the same shuffe in terms of order or result bytes, but on a type
133  /// whose vector element type is narrower than the original shuffle type.
134  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
135  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
136                                     SDValue N1, SDValue N2,
137                                     SmallVectorImpl<int> &Mask) const;
138
139  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
140                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
141
142  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
143                             DebugLoc dl);
144
145  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
146  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
147                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
148                          RTLIB::Libcall Call_PPCF128);
149  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
150                           RTLIB::Libcall Call_I8,
151                           RTLIB::Libcall Call_I16,
152                           RTLIB::Libcall Call_I32,
153                           RTLIB::Libcall Call_I64,
154                           RTLIB::Libcall Call_I128);
155
156  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
157  SDValue ExpandBUILD_VECTOR(SDNode *Node);
158  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
159  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
160                                SmallVectorImpl<SDValue> &Results);
161  SDValue ExpandFCOPYSIGN(SDNode *Node);
162  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
163                               DebugLoc dl);
164  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
165                                DebugLoc dl);
166  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168
169  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
170  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
171
172  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
173  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
174
175  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
176  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
177};
178}
179
180/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
181/// performs the same shuffe in terms of order or result bytes, but on a type
182/// whose vector element type is narrower than the original shuffle type.
183/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
184SDValue
185SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
186                                                 SDValue N1, SDValue N2,
187                                             SmallVectorImpl<int> &Mask) const {
188  unsigned NumMaskElts = VT.getVectorNumElements();
189  unsigned NumDestElts = NVT.getVectorNumElements();
190  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
191
192  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
193
194  if (NumEltsGrowth == 1)
195    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
196
197  SmallVector<int, 8> NewMask;
198  for (unsigned i = 0; i != NumMaskElts; ++i) {
199    int Idx = Mask[i];
200    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
201      if (Idx < 0)
202        NewMask.push_back(-1);
203      else
204        NewMask.push_back(Idx * NumEltsGrowth + j);
205    }
206  }
207  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
208  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
209  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
210}
211
212SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
213                                           CodeGenOpt::Level ol)
214  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
215    DAG(dag), OptLevel(ol),
216    ValueTypeActions(TLI.getValueTypeActions()) {
217  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
218         "Too many value types for ValueTypeActions to hold!");
219}
220
221void SelectionDAGLegalize::LegalizeDAG() {
222  LastCALLSEQ_END = DAG.getEntryNode();
223  IsLegalizingCall = false;
224
225  // The legalize process is inherently a bottom-up recursive process (users
226  // legalize their uses before themselves).  Given infinite stack space, we
227  // could just start legalizing on the root and traverse the whole graph.  In
228  // practice however, this causes us to run out of stack space on large basic
229  // blocks.  To avoid this problem, compute an ordering of the nodes where each
230  // node is only legalized after all of its operands are legalized.
231  DAG.AssignTopologicalOrder();
232  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
233       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
234    LegalizeOp(SDValue(I, 0));
235
236  // Finally, it's possible the root changed.  Get the new root.
237  SDValue OldRoot = DAG.getRoot();
238  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
239  DAG.setRoot(LegalizedNodes[OldRoot]);
240
241  LegalizedNodes.clear();
242
243  // Remove dead nodes now.
244  DAG.RemoveDeadNodes();
245}
246
247
248/// FindCallEndFromCallStart - Given a chained node that is part of a call
249/// sequence, find the CALLSEQ_END node that terminates the call sequence.
250static SDNode *FindCallEndFromCallStart(SDNode *Node) {
251  if (Node->getOpcode() == ISD::CALLSEQ_END)
252    return Node;
253  if (Node->use_empty())
254    return 0;   // No CallSeqEnd
255
256  // The chain is usually at the end.
257  SDValue TheChain(Node, Node->getNumValues()-1);
258  if (TheChain.getValueType() != MVT::Other) {
259    // Sometimes it's at the beginning.
260    TheChain = SDValue(Node, 0);
261    if (TheChain.getValueType() != MVT::Other) {
262      // Otherwise, hunt for it.
263      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
264        if (Node->getValueType(i) == MVT::Other) {
265          TheChain = SDValue(Node, i);
266          break;
267        }
268
269      // Otherwise, we walked into a node without a chain.
270      if (TheChain.getValueType() != MVT::Other)
271        return 0;
272    }
273  }
274
275  for (SDNode::use_iterator UI = Node->use_begin(),
276       E = Node->use_end(); UI != E; ++UI) {
277
278    // Make sure to only follow users of our token chain.
279    SDNode *User = *UI;
280    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
281      if (User->getOperand(i) == TheChain)
282        if (SDNode *Result = FindCallEndFromCallStart(User))
283          return Result;
284  }
285  return 0;
286}
287
288/// FindCallStartFromCallEnd - Given a chained node that is part of a call
289/// sequence, find the CALLSEQ_START node that initiates the call sequence.
290static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
291  assert(Node && "Didn't find callseq_start for a call??");
292  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
293
294  assert(Node->getOperand(0).getValueType() == MVT::Other &&
295         "Node doesn't have a token chain argument!");
296  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
297}
298
299/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
300/// see if any uses can reach Dest.  If no dest operands can get to dest,
301/// legalize them, legalize ourself, and return false, otherwise, return true.
302///
303/// Keep track of the nodes we fine that actually do lead to Dest in
304/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
305///
306bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
307                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
308  if (N == Dest) return true;  // N certainly leads to Dest :)
309
310  // If we've already processed this node and it does lead to Dest, there is no
311  // need to reprocess it.
312  if (NodesLeadingTo.count(N)) return true;
313
314  // If the first result of this node has been already legalized, then it cannot
315  // reach N.
316  if (LegalizedNodes.count(SDValue(N, 0))) return false;
317
318  // Okay, this node has not already been legalized.  Check and legalize all
319  // operands.  If none lead to Dest, then we can legalize this node.
320  bool OperandsLeadToDest = false;
321  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
322    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
323      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
324
325  if (OperandsLeadToDest) {
326    NodesLeadingTo.insert(N);
327    return true;
328  }
329
330  // Okay, this node looks safe, legalize it and return false.
331  LegalizeOp(SDValue(N, 0));
332  return false;
333}
334
335/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
336/// a load from the constant pool.
337static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
338                                SelectionDAG &DAG, const TargetLowering &TLI) {
339  bool Extend = false;
340  DebugLoc dl = CFP->getDebugLoc();
341
342  // If a FP immediate is precise when represented as a float and if the
343  // target can do an extending load from float to double, we put it into
344  // the constant pool as a float, even if it's is statically typed as a
345  // double.  This shrinks FP constants and canonicalizes them for targets where
346  // an FP extending load is the same cost as a normal load (such as on the x87
347  // fp stack or PPC FP unit).
348  EVT VT = CFP->getValueType(0);
349  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
350  if (!UseCP) {
351    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
352    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
353                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
354  }
355
356  EVT OrigVT = VT;
357  EVT SVT = VT;
358  while (SVT != MVT::f32) {
359    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
360    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
361        // Only do this if the target has a native EXTLOAD instruction from
362        // smaller type.
363        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
364        TLI.ShouldShrinkFPConstant(OrigVT)) {
365      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
366      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
367      VT = SVT;
368      Extend = true;
369    }
370  }
371
372  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
373  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
374  if (Extend)
375    return DAG.getExtLoad(ISD::EXTLOAD, dl,
376                          OrigVT, DAG.getEntryNode(),
377                          CPIdx, PseudoSourceValue::getConstantPool(),
378                          0, VT, false, false, Alignment);
379  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
380                     PseudoSourceValue::getConstantPool(), 0, false, false,
381                     Alignment);
382}
383
384/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
385static
386SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
387                             const TargetLowering &TLI) {
388  SDValue Chain = ST->getChain();
389  SDValue Ptr = ST->getBasePtr();
390  SDValue Val = ST->getValue();
391  EVT VT = Val.getValueType();
392  int Alignment = ST->getAlignment();
393  int SVOffset = ST->getSrcValueOffset();
394  DebugLoc dl = ST->getDebugLoc();
395  if (ST->getMemoryVT().isFloatingPoint() ||
396      ST->getMemoryVT().isVector()) {
397    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
398    if (TLI.isTypeLegal(intVT)) {
399      // Expand to a bitconvert of the value to the integer type of the
400      // same size, then a (misaligned) int store.
401      // FIXME: Does not handle truncating floating point stores!
402      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
403      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
404                          SVOffset, ST->isVolatile(), ST->isNonTemporal(),
405                          Alignment);
406    } else {
407      // Do a (aligned) store to a stack slot, then copy from the stack slot
408      // to the final destination using (unaligned) integer loads and stores.
409      EVT StoredVT = ST->getMemoryVT();
410      EVT RegVT =
411        TLI.getRegisterType(*DAG.getContext(),
412                            EVT::getIntegerVT(*DAG.getContext(),
413                                              StoredVT.getSizeInBits()));
414      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
415      unsigned RegBytes = RegVT.getSizeInBits() / 8;
416      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
417
418      // Make sure the stack slot is also aligned for the register type.
419      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
420
421      // Perform the original store, only redirected to the stack slot.
422      SDValue Store = DAG.getTruncStore(Chain, dl,
423                                        Val, StackPtr, NULL, 0, StoredVT,
424                                        false, false, 0);
425      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
426      SmallVector<SDValue, 8> Stores;
427      unsigned Offset = 0;
428
429      // Do all but one copies using the full register width.
430      for (unsigned i = 1; i < NumRegs; i++) {
431        // Load one integer register's worth from the stack slot.
432        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0,
433                                   false, false, 0);
434        // Store it to the final location.  Remember the store.
435        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
436                                      ST->getSrcValue(), SVOffset + Offset,
437                                      ST->isVolatile(), ST->isNonTemporal(),
438                                      MinAlign(ST->getAlignment(), Offset)));
439        // Increment the pointers.
440        Offset += RegBytes;
441        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
442                               Increment);
443        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
444      }
445
446      // The last store may be partial.  Do a truncating store.  On big-endian
447      // machines this requires an extending load from the stack slot to ensure
448      // that the bits are in the right place.
449      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
450                                    8 * (StoredBytes - Offset));
451
452      // Load from the stack slot.
453      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
454                                    NULL, 0, MemVT, false, false, 0);
455
456      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
457                                         ST->getSrcValue(), SVOffset + Offset,
458                                         MemVT, ST->isVolatile(),
459                                         ST->isNonTemporal(),
460                                         MinAlign(ST->getAlignment(), Offset)));
461      // The order of the stores doesn't matter - say it with a TokenFactor.
462      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
463                         Stores.size());
464    }
465  }
466  assert(ST->getMemoryVT().isInteger() &&
467         !ST->getMemoryVT().isVector() &&
468         "Unaligned store of unknown type.");
469  // Get the half-size VT
470  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
471  int NumBits = NewStoredVT.getSizeInBits();
472  int IncrementSize = NumBits / 8;
473
474  // Divide the stored value in two parts.
475  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
476  SDValue Lo = Val;
477  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
478
479  // Store the two parts
480  SDValue Store1, Store2;
481  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
482                             ST->getSrcValue(), SVOffset, NewStoredVT,
483                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
484  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
485                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
486  Alignment = MinAlign(Alignment, IncrementSize);
487  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
488                             ST->getSrcValue(), SVOffset + IncrementSize,
489                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
490                             Alignment);
491
492  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
493}
494
495/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
496static
497SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
498                            const TargetLowering &TLI) {
499  int SVOffset = LD->getSrcValueOffset();
500  SDValue Chain = LD->getChain();
501  SDValue Ptr = LD->getBasePtr();
502  EVT VT = LD->getValueType(0);
503  EVT LoadedVT = LD->getMemoryVT();
504  DebugLoc dl = LD->getDebugLoc();
505  if (VT.isFloatingPoint() || VT.isVector()) {
506    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
507    if (TLI.isTypeLegal(intVT)) {
508      // Expand to a (misaligned) integer load of the same size,
509      // then bitconvert to floating point or vector.
510      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
511                                    SVOffset, LD->isVolatile(),
512                                    LD->isNonTemporal(), LD->getAlignment());
513      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
514      if (VT.isFloatingPoint() && LoadedVT != VT)
515        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
516
517      SDValue Ops[] = { Result, Chain };
518      return DAG.getMergeValues(Ops, 2, dl);
519    } else {
520      // Copy the value to a (aligned) stack slot using (unaligned) integer
521      // loads and stores, then do a (aligned) load from the stack slot.
522      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
523      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
524      unsigned RegBytes = RegVT.getSizeInBits() / 8;
525      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
526
527      // Make sure the stack slot is also aligned for the register type.
528      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
529
530      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
531      SmallVector<SDValue, 8> Stores;
532      SDValue StackPtr = StackBase;
533      unsigned Offset = 0;
534
535      // Do all but one copies using the full register width.
536      for (unsigned i = 1; i < NumRegs; i++) {
537        // Load one integer register's worth from the original location.
538        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
539                                   SVOffset + Offset, LD->isVolatile(),
540                                   LD->isNonTemporal(),
541                                   MinAlign(LD->getAlignment(), Offset));
542        // Follow the load with a store to the stack slot.  Remember the store.
543        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
544                                      NULL, 0, false, false, 0));
545        // Increment the pointers.
546        Offset += RegBytes;
547        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
548        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
549                               Increment);
550      }
551
552      // The last copy may be partial.  Do an extending load.
553      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
554                                    8 * (LoadedBytes - Offset));
555      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
556                                    LD->getSrcValue(), SVOffset + Offset,
557                                    MemVT, LD->isVolatile(),
558                                    LD->isNonTemporal(),
559                                    MinAlign(LD->getAlignment(), Offset));
560      // Follow the load with a store to the stack slot.  Remember the store.
561      // On big-endian machines this requires a truncating store to ensure
562      // that the bits end up in the right place.
563      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
564                                         NULL, 0, MemVT, false, false, 0));
565
566      // The order of the stores doesn't matter - say it with a TokenFactor.
567      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
568                               Stores.size());
569
570      // Finally, perform the original load only redirected to the stack slot.
571      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
572                            NULL, 0, LoadedVT, false, false, 0);
573
574      // Callers expect a MERGE_VALUES node.
575      SDValue Ops[] = { Load, TF };
576      return DAG.getMergeValues(Ops, 2, dl);
577    }
578  }
579  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
580         "Unaligned load of unsupported type.");
581
582  // Compute the new VT that is half the size of the old one.  This is an
583  // integer MVT.
584  unsigned NumBits = LoadedVT.getSizeInBits();
585  EVT NewLoadedVT;
586  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
587  NumBits >>= 1;
588
589  unsigned Alignment = LD->getAlignment();
590  unsigned IncrementSize = NumBits / 8;
591  ISD::LoadExtType HiExtType = LD->getExtensionType();
592
593  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
594  if (HiExtType == ISD::NON_EXTLOAD)
595    HiExtType = ISD::ZEXTLOAD;
596
597  // Load the value in two parts
598  SDValue Lo, Hi;
599  if (TLI.isLittleEndian()) {
600    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
601                        SVOffset, NewLoadedVT, LD->isVolatile(),
602                        LD->isNonTemporal(), Alignment);
603    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
604                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
605    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
606                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
607                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
608  } else {
609    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
610                        SVOffset, NewLoadedVT, LD->isVolatile(),
611                        LD->isNonTemporal(), Alignment);
612    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
613                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
614    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
615                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
616                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
617  }
618
619  // aggregate the two parts
620  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
621  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
622  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
623
624  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
625                             Hi.getValue(1));
626
627  SDValue Ops[] = { Result, TF };
628  return DAG.getMergeValues(Ops, 2, dl);
629}
630
631/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
632/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
633/// is necessary to spill the vector being inserted into to memory, perform
634/// the insert there, and then read the result back.
635SDValue SelectionDAGLegalize::
636PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
637                               DebugLoc dl) {
638  SDValue Tmp1 = Vec;
639  SDValue Tmp2 = Val;
640  SDValue Tmp3 = Idx;
641
642  // If the target doesn't support this, we have to spill the input vector
643  // to a temporary stack slot, update the element, then reload it.  This is
644  // badness.  We could also load the value into a vector register (either
645  // with a "move to register" or "extload into register" instruction, then
646  // permute it into place, if the idx is a constant and if the idx is
647  // supported by the target.
648  EVT VT    = Tmp1.getValueType();
649  EVT EltVT = VT.getVectorElementType();
650  EVT IdxVT = Tmp3.getValueType();
651  EVT PtrVT = TLI.getPointerTy();
652  SDValue StackPtr = DAG.CreateStackTemporary(VT);
653
654  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
655
656  // Store the vector.
657  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
658                            PseudoSourceValue::getFixedStack(SPFI), 0,
659                            false, false, 0);
660
661  // Truncate or zero extend offset to target pointer type.
662  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
663  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
664  // Add the offset to the index.
665  unsigned EltSize = EltVT.getSizeInBits()/8;
666  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
667  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
668  // Store the scalar value.
669  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
670                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT,
671                         false, false, 0);
672  // Load the updated vector.
673  return DAG.getLoad(VT, dl, Ch, StackPtr,
674                     PseudoSourceValue::getFixedStack(SPFI), 0,
675                     false, false, 0);
676}
677
678
679SDValue SelectionDAGLegalize::
680ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
681  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
682    // SCALAR_TO_VECTOR requires that the type of the value being inserted
683    // match the element type of the vector being created, except for
684    // integers in which case the inserted value can be over width.
685    EVT EltVT = Vec.getValueType().getVectorElementType();
686    if (Val.getValueType() == EltVT ||
687        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
688      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
689                                  Vec.getValueType(), Val);
690
691      unsigned NumElts = Vec.getValueType().getVectorNumElements();
692      // We generate a shuffle of InVec and ScVec, so the shuffle mask
693      // should be 0,1,2,3,4,5... with the appropriate element replaced with
694      // elt 0 of the RHS.
695      SmallVector<int, 8> ShufOps;
696      for (unsigned i = 0; i != NumElts; ++i)
697        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
698
699      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
700                                  &ShufOps[0]);
701    }
702  }
703  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
704}
705
706SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
707  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
708  // FIXME: We shouldn't do this for TargetConstantFP's.
709  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
710  // to phase ordering between legalized code and the dag combiner.  This
711  // probably means that we need to integrate dag combiner and legalizer
712  // together.
713  // We generally can't do this one for long doubles.
714  SDValue Tmp1 = ST->getChain();
715  SDValue Tmp2 = ST->getBasePtr();
716  SDValue Tmp3;
717  int SVOffset = ST->getSrcValueOffset();
718  unsigned Alignment = ST->getAlignment();
719  bool isVolatile = ST->isVolatile();
720  bool isNonTemporal = ST->isNonTemporal();
721  DebugLoc dl = ST->getDebugLoc();
722  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
723    if (CFP->getValueType(0) == MVT::f32 &&
724        getTypeAction(MVT::i32) == Legal) {
725      Tmp3 = DAG.getConstant(CFP->getValueAPF().
726                                      bitcastToAPInt().zextOrTrunc(32),
727                              MVT::i32);
728      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
729                          SVOffset, isVolatile, isNonTemporal, Alignment);
730    } else if (CFP->getValueType(0) == MVT::f64) {
731      // If this target supports 64-bit registers, do a single 64-bit store.
732      if (getTypeAction(MVT::i64) == Legal) {
733        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
734                                  zextOrTrunc(64), MVT::i64);
735        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
736                            SVOffset, isVolatile, isNonTemporal, Alignment);
737      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
738        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
739        // stores.  If the target supports neither 32- nor 64-bits, this
740        // xform is certainly not worth it.
741        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
742        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
743        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
744        if (TLI.isBigEndian()) std::swap(Lo, Hi);
745
746        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
747                          SVOffset, isVolatile, isNonTemporal, Alignment);
748        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
749                            DAG.getIntPtrConstant(4));
750        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
751                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
752
753        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
754      }
755    }
756  }
757  return SDValue();
758}
759
760/// LegalizeOp - We know that the specified value has a legal type, and
761/// that its operands are legal.  Now ensure that the operation itself
762/// is legal, recursively ensuring that the operands' operations remain
763/// legal.
764SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
765  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
766    return Op;
767
768  SDNode *Node = Op.getNode();
769  DebugLoc dl = Node->getDebugLoc();
770
771  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
772    assert(getTypeAction(Node->getValueType(i)) == Legal &&
773           "Unexpected illegal type!");
774
775  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
776    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
777            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
778           "Unexpected illegal type!");
779
780  // Note that LegalizeOp may be reentered even from single-use nodes, which
781  // means that we always must cache transformed nodes.
782  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
783  if (I != LegalizedNodes.end()) return I->second;
784
785  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
786  SDValue Result = Op;
787  bool isCustom = false;
788
789  // Figure out the correct action; the way to query this varies by opcode
790  TargetLowering::LegalizeAction Action;
791  bool SimpleFinishLegalizing = true;
792  switch (Node->getOpcode()) {
793  case ISD::INTRINSIC_W_CHAIN:
794  case ISD::INTRINSIC_WO_CHAIN:
795  case ISD::INTRINSIC_VOID:
796  case ISD::VAARG:
797  case ISD::STACKSAVE:
798    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
799    break;
800  case ISD::SINT_TO_FP:
801  case ISD::UINT_TO_FP:
802  case ISD::EXTRACT_VECTOR_ELT:
803    Action = TLI.getOperationAction(Node->getOpcode(),
804                                    Node->getOperand(0).getValueType());
805    break;
806  case ISD::FP_ROUND_INREG:
807  case ISD::SIGN_EXTEND_INREG: {
808    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
809    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
810    break;
811  }
812  case ISD::SELECT_CC:
813  case ISD::SETCC:
814  case ISD::BR_CC: {
815    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
816                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
817    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
818    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
819    ISD::CondCode CCCode =
820        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
821    Action = TLI.getCondCodeAction(CCCode, OpVT);
822    if (Action == TargetLowering::Legal) {
823      if (Node->getOpcode() == ISD::SELECT_CC)
824        Action = TLI.getOperationAction(Node->getOpcode(),
825                                        Node->getValueType(0));
826      else
827        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
828    }
829    break;
830  }
831  case ISD::LOAD:
832  case ISD::STORE:
833    // FIXME: Model these properly.  LOAD and STORE are complicated, and
834    // STORE expects the unlegalized operand in some cases.
835    SimpleFinishLegalizing = false;
836    break;
837  case ISD::CALLSEQ_START:
838  case ISD::CALLSEQ_END:
839    // FIXME: This shouldn't be necessary.  These nodes have special properties
840    // dealing with the recursive nature of legalization.  Removing this
841    // special case should be done as part of making LegalizeDAG non-recursive.
842    SimpleFinishLegalizing = false;
843    break;
844  case ISD::EXTRACT_ELEMENT:
845  case ISD::FLT_ROUNDS_:
846  case ISD::SADDO:
847  case ISD::SSUBO:
848  case ISD::UADDO:
849  case ISD::USUBO:
850  case ISD::SMULO:
851  case ISD::UMULO:
852  case ISD::FPOWI:
853  case ISD::MERGE_VALUES:
854  case ISD::EH_RETURN:
855  case ISD::FRAME_TO_ARGS_OFFSET:
856    // These operations lie about being legal: when they claim to be legal,
857    // they should actually be expanded.
858    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
859    if (Action == TargetLowering::Legal)
860      Action = TargetLowering::Expand;
861    break;
862  case ISD::TRAMPOLINE:
863  case ISD::FRAMEADDR:
864  case ISD::RETURNADDR:
865    // These operations lie about being legal: when they claim to be legal,
866    // they should actually be custom-lowered.
867    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
868    if (Action == TargetLowering::Legal)
869      Action = TargetLowering::Custom;
870    break;
871  case ISD::BUILD_VECTOR:
872    // A weird case: legalization for BUILD_VECTOR never legalizes the
873    // operands!
874    // FIXME: This really sucks... changing it isn't semantically incorrect,
875    // but it massively pessimizes the code for floating-point BUILD_VECTORs
876    // because ConstantFP operands get legalized into constant pool loads
877    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
878    // though, because BUILD_VECTORS usually get lowered into other nodes
879    // which get legalized properly.
880    SimpleFinishLegalizing = false;
881    break;
882  default:
883    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
884      Action = TargetLowering::Legal;
885    } else {
886      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
887    }
888    break;
889  }
890
891  if (SimpleFinishLegalizing) {
892    SmallVector<SDValue, 8> Ops, ResultVals;
893    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
894      Ops.push_back(LegalizeOp(Node->getOperand(i)));
895    switch (Node->getOpcode()) {
896    default: break;
897    case ISD::BR:
898    case ISD::BRIND:
899    case ISD::BR_JT:
900    case ISD::BR_CC:
901    case ISD::BRCOND:
902      // Branches tweak the chain to include LastCALLSEQ_END
903      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
904                            LastCALLSEQ_END);
905      Ops[0] = LegalizeOp(Ops[0]);
906      LastCALLSEQ_END = DAG.getEntryNode();
907      break;
908    case ISD::SHL:
909    case ISD::SRL:
910    case ISD::SRA:
911    case ISD::ROTL:
912    case ISD::ROTR:
913      // Legalizing shifts/rotates requires adjusting the shift amount
914      // to the appropriate width.
915      if (!Ops[1].getValueType().isVector())
916        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
917      break;
918    case ISD::SRL_PARTS:
919    case ISD::SRA_PARTS:
920    case ISD::SHL_PARTS:
921      // Legalizing shifts/rotates requires adjusting the shift amount
922      // to the appropriate width.
923      if (!Ops[2].getValueType().isVector())
924        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
925      break;
926    }
927
928    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
929                                    Ops.size());
930    switch (Action) {
931    case TargetLowering::Legal:
932      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
933        ResultVals.push_back(Result.getValue(i));
934      break;
935    case TargetLowering::Custom:
936      // FIXME: The handling for custom lowering with multiple results is
937      // a complete mess.
938      Tmp1 = TLI.LowerOperation(Result, DAG);
939      if (Tmp1.getNode()) {
940        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
941          if (e == 1)
942            ResultVals.push_back(Tmp1);
943          else
944            ResultVals.push_back(Tmp1.getValue(i));
945        }
946        break;
947      }
948
949      // FALL THROUGH
950    case TargetLowering::Expand:
951      ExpandNode(Result.getNode(), ResultVals);
952      break;
953    case TargetLowering::Promote:
954      PromoteNode(Result.getNode(), ResultVals);
955      break;
956    }
957    if (!ResultVals.empty()) {
958      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
959        if (ResultVals[i] != SDValue(Node, i))
960          ResultVals[i] = LegalizeOp(ResultVals[i]);
961        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
962      }
963      return ResultVals[Op.getResNo()];
964    }
965  }
966
967  switch (Node->getOpcode()) {
968  default:
969#ifndef NDEBUG
970    dbgs() << "NODE: ";
971    Node->dump( &DAG);
972    dbgs() << "\n";
973#endif
974    assert(0 && "Do not know how to legalize this operator!");
975
976  case ISD::BUILD_VECTOR:
977    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
978    default: assert(0 && "This action is not supported yet!");
979    case TargetLowering::Custom:
980      Tmp3 = TLI.LowerOperation(Result, DAG);
981      if (Tmp3.getNode()) {
982        Result = Tmp3;
983        break;
984      }
985      // FALLTHROUGH
986    case TargetLowering::Expand:
987      Result = ExpandBUILD_VECTOR(Result.getNode());
988      break;
989    }
990    break;
991  case ISD::CALLSEQ_START: {
992    SDNode *CallEnd = FindCallEndFromCallStart(Node);
993
994    // Recursively Legalize all of the inputs of the call end that do not lead
995    // to this call start.  This ensures that any libcalls that need be inserted
996    // are inserted *before* the CALLSEQ_START.
997    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
998    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
999      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1000                                   NodesLeadingTo);
1001    }
1002
1003    // Now that we legalized all of the inputs (which may have inserted
1004    // libcalls) create the new CALLSEQ_START node.
1005    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1006
1007    // Merge in the last call, to ensure that this call start after the last
1008    // call ended.
1009    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1010      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1011                         Tmp1, LastCALLSEQ_END);
1012      Tmp1 = LegalizeOp(Tmp1);
1013    }
1014
1015    // Do not try to legalize the target-specific arguments (#1+).
1016    if (Tmp1 != Node->getOperand(0)) {
1017      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1018      Ops[0] = Tmp1;
1019      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1020    }
1021
1022    // Remember that the CALLSEQ_START is legalized.
1023    AddLegalizedOperand(Op.getValue(0), Result);
1024    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1025      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1026
1027    // Now that the callseq_start and all of the non-call nodes above this call
1028    // sequence have been legalized, legalize the call itself.  During this
1029    // process, no libcalls can/will be inserted, guaranteeing that no calls
1030    // can overlap.
1031    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1032    // Note that we are selecting this call!
1033    LastCALLSEQ_END = SDValue(CallEnd, 0);
1034    IsLegalizingCall = true;
1035
1036    // Legalize the call, starting from the CALLSEQ_END.
1037    LegalizeOp(LastCALLSEQ_END);
1038    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1039    return Result;
1040  }
1041  case ISD::CALLSEQ_END:
1042    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1043    // will cause this node to be legalized as well as handling libcalls right.
1044    if (LastCALLSEQ_END.getNode() != Node) {
1045      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1046      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1047      assert(I != LegalizedNodes.end() &&
1048             "Legalizing the call start should have legalized this node!");
1049      return I->second;
1050    }
1051
1052    // Otherwise, the call start has been legalized and everything is going
1053    // according to plan.  Just legalize ourselves normally here.
1054    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1055    // Do not try to legalize the target-specific arguments (#1+), except for
1056    // an optional flag input.
1057    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1058      if (Tmp1 != Node->getOperand(0)) {
1059        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1060        Ops[0] = Tmp1;
1061        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1062      }
1063    } else {
1064      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1065      if (Tmp1 != Node->getOperand(0) ||
1066          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1067        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1068        Ops[0] = Tmp1;
1069        Ops.back() = Tmp2;
1070        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1071      }
1072    }
1073    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1074    // This finishes up call legalization.
1075    IsLegalizingCall = false;
1076
1077    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1078    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1079    if (Node->getNumValues() == 2)
1080      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1081    return Result.getValue(Op.getResNo());
1082  case ISD::LOAD: {
1083    LoadSDNode *LD = cast<LoadSDNode>(Node);
1084    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1085    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1086
1087    ISD::LoadExtType ExtType = LD->getExtensionType();
1088    if (ExtType == ISD::NON_EXTLOAD) {
1089      EVT VT = Node->getValueType(0);
1090      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1091      Tmp3 = Result.getValue(0);
1092      Tmp4 = Result.getValue(1);
1093
1094      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1095      default: assert(0 && "This action is not supported yet!");
1096      case TargetLowering::Legal:
1097        // If this is an unaligned load and the target doesn't support it,
1098        // expand it.
1099        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1100          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1101          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1102          if (LD->getAlignment() < ABIAlignment){
1103            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1104                                         DAG, TLI);
1105            Tmp3 = Result.getOperand(0);
1106            Tmp4 = Result.getOperand(1);
1107            Tmp3 = LegalizeOp(Tmp3);
1108            Tmp4 = LegalizeOp(Tmp4);
1109          }
1110        }
1111        break;
1112      case TargetLowering::Custom:
1113        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1114        if (Tmp1.getNode()) {
1115          Tmp3 = LegalizeOp(Tmp1);
1116          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1117        }
1118        break;
1119      case TargetLowering::Promote: {
1120        // Only promote a load of vector type to another.
1121        assert(VT.isVector() && "Cannot promote this load!");
1122        // Change base type to a different vector type.
1123        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1124
1125        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1126                           LD->getSrcValueOffset(),
1127                           LD->isVolatile(), LD->isNonTemporal(),
1128                           LD->getAlignment());
1129        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1130        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1131        break;
1132      }
1133      }
1134      // Since loads produce two values, make sure to remember that we
1135      // legalized both of them.
1136      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1137      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1138      return Op.getResNo() ? Tmp4 : Tmp3;
1139    } else {
1140      EVT SrcVT = LD->getMemoryVT();
1141      unsigned SrcWidth = SrcVT.getSizeInBits();
1142      int SVOffset = LD->getSrcValueOffset();
1143      unsigned Alignment = LD->getAlignment();
1144      bool isVolatile = LD->isVolatile();
1145      bool isNonTemporal = LD->isNonTemporal();
1146
1147      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1148          // Some targets pretend to have an i1 loading operation, and actually
1149          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1150          // bits are guaranteed to be zero; it helps the optimizers understand
1151          // that these bits are zero.  It is also useful for EXTLOAD, since it
1152          // tells the optimizers that those bits are undefined.  It would be
1153          // nice to have an effective generic way of getting these benefits...
1154          // Until such a way is found, don't insist on promoting i1 here.
1155          (SrcVT != MVT::i1 ||
1156           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1157        // Promote to a byte-sized load if not loading an integral number of
1158        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1159        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1160        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1161        SDValue Ch;
1162
1163        // The extra bits are guaranteed to be zero, since we stored them that
1164        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1165
1166        ISD::LoadExtType NewExtType =
1167          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1168
1169        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1170                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1171                                NVT, isVolatile, isNonTemporal, Alignment);
1172
1173        Ch = Result.getValue(1); // The chain.
1174
1175        if (ExtType == ISD::SEXTLOAD)
1176          // Having the top bits zero doesn't help when sign extending.
1177          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1178                               Result.getValueType(),
1179                               Result, DAG.getValueType(SrcVT));
1180        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1181          // All the top bits are guaranteed to be zero - inform the optimizers.
1182          Result = DAG.getNode(ISD::AssertZext, dl,
1183                               Result.getValueType(), Result,
1184                               DAG.getValueType(SrcVT));
1185
1186        Tmp1 = LegalizeOp(Result);
1187        Tmp2 = LegalizeOp(Ch);
1188      } else if (SrcWidth & (SrcWidth - 1)) {
1189        // If not loading a power-of-2 number of bits, expand as two loads.
1190        assert(!SrcVT.isVector() && "Unsupported extload!");
1191        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1192        assert(RoundWidth < SrcWidth);
1193        unsigned ExtraWidth = SrcWidth - RoundWidth;
1194        assert(ExtraWidth < RoundWidth);
1195        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1196               "Load size not an integral number of bytes!");
1197        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1198        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1199        SDValue Lo, Hi, Ch;
1200        unsigned IncrementSize;
1201
1202        if (TLI.isLittleEndian()) {
1203          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1204          // Load the bottom RoundWidth bits.
1205          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1206                              Node->getValueType(0), Tmp1, Tmp2,
1207                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1208                              isNonTemporal, Alignment);
1209
1210          // Load the remaining ExtraWidth bits.
1211          IncrementSize = RoundWidth / 8;
1212          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1213                             DAG.getIntPtrConstant(IncrementSize));
1214          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1215                              LD->getSrcValue(), SVOffset + IncrementSize,
1216                              ExtraVT, isVolatile, isNonTemporal,
1217                              MinAlign(Alignment, IncrementSize));
1218
1219          // Build a factor node to remember that this load is independent of the
1220          // other one.
1221          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1222                           Hi.getValue(1));
1223
1224          // Move the top bits to the right place.
1225          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1226                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1227
1228          // Join the hi and lo parts.
1229          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1230        } else {
1231          // Big endian - avoid unaligned loads.
1232          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1233          // Load the top RoundWidth bits.
1234          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1235                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1236                              isNonTemporal, Alignment);
1237
1238          // Load the remaining ExtraWidth bits.
1239          IncrementSize = RoundWidth / 8;
1240          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1241                             DAG.getIntPtrConstant(IncrementSize));
1242          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1243                              Node->getValueType(0), Tmp1, Tmp2,
1244                              LD->getSrcValue(), SVOffset + IncrementSize,
1245                              ExtraVT, isVolatile, isNonTemporal,
1246                              MinAlign(Alignment, IncrementSize));
1247
1248          // Build a factor node to remember that this load is independent of the
1249          // other one.
1250          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1251                           Hi.getValue(1));
1252
1253          // Move the top bits to the right place.
1254          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1255                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1256
1257          // Join the hi and lo parts.
1258          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1259        }
1260
1261        Tmp1 = LegalizeOp(Result);
1262        Tmp2 = LegalizeOp(Ch);
1263      } else {
1264        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1265        default: assert(0 && "This action is not supported yet!");
1266        case TargetLowering::Custom:
1267          isCustom = true;
1268          // FALLTHROUGH
1269        case TargetLowering::Legal:
1270          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1271          Tmp1 = Result.getValue(0);
1272          Tmp2 = Result.getValue(1);
1273
1274          if (isCustom) {
1275            Tmp3 = TLI.LowerOperation(Result, DAG);
1276            if (Tmp3.getNode()) {
1277              Tmp1 = LegalizeOp(Tmp3);
1278              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1279            }
1280          } else {
1281            // If this is an unaligned load and the target doesn't support it,
1282            // expand it.
1283            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1284              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1285              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1286              if (LD->getAlignment() < ABIAlignment){
1287                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1288                                             DAG, TLI);
1289                Tmp1 = Result.getOperand(0);
1290                Tmp2 = Result.getOperand(1);
1291                Tmp1 = LegalizeOp(Tmp1);
1292                Tmp2 = LegalizeOp(Tmp2);
1293              }
1294            }
1295          }
1296          break;
1297        case TargetLowering::Expand:
1298          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1299          // f128 = EXTLOAD {f32,f64} too
1300          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1301                                     Node->getValueType(0) == MVT::f128)) ||
1302              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1303            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1304                                       LD->getSrcValueOffset(),
1305                                       LD->isVolatile(), LD->isNonTemporal(),
1306                                       LD->getAlignment());
1307            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1308                                 Node->getValueType(0), Load);
1309            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1310            Tmp2 = LegalizeOp(Load.getValue(1));
1311            break;
1312          }
1313          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1314          // Turn the unsupported load into an EXTLOAD followed by an explicit
1315          // zero/sign extend inreg.
1316          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1317                                  Tmp1, Tmp2, LD->getSrcValue(),
1318                                  LD->getSrcValueOffset(), SrcVT,
1319                                  LD->isVolatile(), LD->isNonTemporal(),
1320                                  LD->getAlignment());
1321          SDValue ValRes;
1322          if (ExtType == ISD::SEXTLOAD)
1323            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1324                                 Result.getValueType(),
1325                                 Result, DAG.getValueType(SrcVT));
1326          else
1327            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1328          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1329          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1330          break;
1331        }
1332      }
1333
1334      // Since loads produce two values, make sure to remember that we legalized
1335      // both of them.
1336      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1337      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1338      return Op.getResNo() ? Tmp2 : Tmp1;
1339    }
1340  }
1341  case ISD::STORE: {
1342    StoreSDNode *ST = cast<StoreSDNode>(Node);
1343    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1344    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1345    int SVOffset = ST->getSrcValueOffset();
1346    unsigned Alignment = ST->getAlignment();
1347    bool isVolatile = ST->isVolatile();
1348    bool isNonTemporal = ST->isNonTemporal();
1349
1350    if (!ST->isTruncatingStore()) {
1351      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1352        Result = SDValue(OptStore, 0);
1353        break;
1354      }
1355
1356      {
1357        Tmp3 = LegalizeOp(ST->getValue());
1358        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1359                                        ST->getOffset());
1360
1361        EVT VT = Tmp3.getValueType();
1362        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1363        default: assert(0 && "This action is not supported yet!");
1364        case TargetLowering::Legal:
1365          // If this is an unaligned store and the target doesn't support it,
1366          // expand it.
1367          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1368            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1369            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1370            if (ST->getAlignment() < ABIAlignment)
1371              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1372                                            DAG, TLI);
1373          }
1374          break;
1375        case TargetLowering::Custom:
1376          Tmp1 = TLI.LowerOperation(Result, DAG);
1377          if (Tmp1.getNode()) Result = Tmp1;
1378          break;
1379        case TargetLowering::Promote:
1380          assert(VT.isVector() && "Unknown legal promote case!");
1381          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1382                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1383          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1384                                ST->getSrcValue(), SVOffset, isVolatile,
1385                                isNonTemporal, Alignment);
1386          break;
1387        }
1388        break;
1389      }
1390    } else {
1391      Tmp3 = LegalizeOp(ST->getValue());
1392
1393      EVT StVT = ST->getMemoryVT();
1394      unsigned StWidth = StVT.getSizeInBits();
1395
1396      if (StWidth != StVT.getStoreSizeInBits()) {
1397        // Promote to a byte-sized store with upper bits zero if not
1398        // storing an integral number of bytes.  For example, promote
1399        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1400        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1401                                    StVT.getStoreSizeInBits());
1402        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1403        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1404                                   SVOffset, NVT, isVolatile, isNonTemporal,
1405                                   Alignment);
1406      } else if (StWidth & (StWidth - 1)) {
1407        // If not storing a power-of-2 number of bits, expand as two stores.
1408        assert(!StVT.isVector() && "Unsupported truncstore!");
1409        unsigned RoundWidth = 1 << Log2_32(StWidth);
1410        assert(RoundWidth < StWidth);
1411        unsigned ExtraWidth = StWidth - RoundWidth;
1412        assert(ExtraWidth < RoundWidth);
1413        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1414               "Store size not an integral number of bytes!");
1415        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1416        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1417        SDValue Lo, Hi;
1418        unsigned IncrementSize;
1419
1420        if (TLI.isLittleEndian()) {
1421          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1422          // Store the bottom RoundWidth bits.
1423          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1424                                 SVOffset, RoundVT,
1425                                 isVolatile, isNonTemporal, Alignment);
1426
1427          // Store the remaining ExtraWidth bits.
1428          IncrementSize = RoundWidth / 8;
1429          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1430                             DAG.getIntPtrConstant(IncrementSize));
1431          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1432                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1433          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1434                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1435                                 isNonTemporal,
1436                                 MinAlign(Alignment, IncrementSize));
1437        } else {
1438          // Big endian - avoid unaligned stores.
1439          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1440          // Store the top RoundWidth bits.
1441          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1442                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1443          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1444                                 SVOffset, RoundVT, isVolatile, isNonTemporal,
1445                                 Alignment);
1446
1447          // Store the remaining ExtraWidth bits.
1448          IncrementSize = RoundWidth / 8;
1449          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1450                             DAG.getIntPtrConstant(IncrementSize));
1451          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1452                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1453                                 isNonTemporal,
1454                                 MinAlign(Alignment, IncrementSize));
1455        }
1456
1457        // The order of the stores doesn't matter.
1458        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1459      } else {
1460        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1461            Tmp2 != ST->getBasePtr())
1462          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1463                                          ST->getOffset());
1464
1465        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1466        default: assert(0 && "This action is not supported yet!");
1467        case TargetLowering::Legal:
1468          // If this is an unaligned store and the target doesn't support it,
1469          // expand it.
1470          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1471            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1472            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1473            if (ST->getAlignment() < ABIAlignment)
1474              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1475                                            DAG, TLI);
1476          }
1477          break;
1478        case TargetLowering::Custom:
1479          Result = TLI.LowerOperation(Result, DAG);
1480          break;
1481        case Expand:
1482          // TRUNCSTORE:i16 i32 -> STORE i16
1483          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1484          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1485          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1486                                SVOffset, isVolatile, isNonTemporal,
1487                                Alignment);
1488          break;
1489        }
1490      }
1491    }
1492    break;
1493  }
1494  }
1495  assert(Result.getValueType() == Op.getValueType() &&
1496         "Bad legalization!");
1497
1498  // Make sure that the generated code is itself legal.
1499  if (Result != Op)
1500    Result = LegalizeOp(Result);
1501
1502  // Note that LegalizeOp may be reentered even from single-use nodes, which
1503  // means that we always must cache transformed nodes.
1504  AddLegalizedOperand(Op, Result);
1505  return Result;
1506}
1507
1508SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1509  SDValue Vec = Op.getOperand(0);
1510  SDValue Idx = Op.getOperand(1);
1511  DebugLoc dl = Op.getDebugLoc();
1512  // Store the value to a temporary stack slot, then LOAD the returned part.
1513  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1514  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1515                            false, false, 0);
1516
1517  // Add the offset to the index.
1518  unsigned EltSize =
1519      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1520  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1521                    DAG.getConstant(EltSize, Idx.getValueType()));
1522
1523  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1524    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1525  else
1526    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1527
1528  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1529
1530  if (Op.getValueType().isVector())
1531    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0,
1532                       false, false, 0);
1533  else
1534    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1535                          NULL, 0, Vec.getValueType().getVectorElementType(),
1536                          false, false, 0);
1537}
1538
1539SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1540  // We can't handle this case efficiently.  Allocate a sufficiently
1541  // aligned object on the stack, store each element into it, then load
1542  // the result as a vector.
1543  // Create the stack frame object.
1544  EVT VT = Node->getValueType(0);
1545  EVT EltVT = VT.getVectorElementType();
1546  DebugLoc dl = Node->getDebugLoc();
1547  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1548  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1549  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1550
1551  // Emit a store of each element to the stack slot.
1552  SmallVector<SDValue, 8> Stores;
1553  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1554  // Store (in the right endianness) the elements to memory.
1555  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1556    // Ignore undef elements.
1557    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1558
1559    unsigned Offset = TypeByteSize*i;
1560
1561    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1562    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1563
1564    // If the destination vector element type is narrower than the source
1565    // element type, only store the bits necessary.
1566    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1567      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1568                                         Node->getOperand(i), Idx, SV, Offset,
1569                                         EltVT, false, false, 0));
1570    } else
1571      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1572                                    Node->getOperand(i), Idx, SV, Offset,
1573                                    false, false, 0));
1574  }
1575
1576  SDValue StoreChain;
1577  if (!Stores.empty())    // Not all undef elements?
1578    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1579                             &Stores[0], Stores.size());
1580  else
1581    StoreChain = DAG.getEntryNode();
1582
1583  // Result is a load from the stack slot.
1584  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0);
1585}
1586
1587SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1588  DebugLoc dl = Node->getDebugLoc();
1589  SDValue Tmp1 = Node->getOperand(0);
1590  SDValue Tmp2 = Node->getOperand(1);
1591
1592  // Get the sign bit of the RHS.  First obtain a value that has the same
1593  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1594  SDValue SignBit;
1595  EVT FloatVT = Tmp2.getValueType();
1596  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1597  if (isTypeLegal(IVT)) {
1598    // Convert to an integer with the same sign bit.
1599    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1600  } else {
1601    // Store the float to memory, then load the sign part out as an integer.
1602    MVT LoadTy = TLI.getPointerTy();
1603    // First create a temporary that is aligned for both the load and store.
1604    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1605    // Then store the float to it.
1606    SDValue Ch =
1607      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1608                   false, false, 0);
1609    if (TLI.isBigEndian()) {
1610      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1611      // Load out a legal integer with the same sign bit as the float.
1612      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, NULL, 0, false, false, 0);
1613    } else { // Little endian
1614      SDValue LoadPtr = StackPtr;
1615      // The float may be wider than the integer we are going to load.  Advance
1616      // the pointer so that the loaded integer will contain the sign bit.
1617      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1618      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1619      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1620                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1621      // Load a legal integer containing the sign bit.
1622      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, NULL, 0, false, false, 0);
1623      // Move the sign bit to the top bit of the loaded integer.
1624      unsigned BitShift = LoadTy.getSizeInBits() -
1625        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1626      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1627      if (BitShift)
1628        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1629                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1630    }
1631  }
1632  // Now get the sign bit proper, by seeing whether the value is negative.
1633  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1634                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1635                         ISD::SETLT);
1636  // Get the absolute value of the result.
1637  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1638  // Select between the nabs and abs value based on the sign bit of
1639  // the input.
1640  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1641                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1642                     AbsVal);
1643}
1644
1645void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1646                                           SmallVectorImpl<SDValue> &Results) {
1647  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1648  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1649          " not tell us which reg is the stack pointer!");
1650  DebugLoc dl = Node->getDebugLoc();
1651  EVT VT = Node->getValueType(0);
1652  SDValue Tmp1 = SDValue(Node, 0);
1653  SDValue Tmp2 = SDValue(Node, 1);
1654  SDValue Tmp3 = Node->getOperand(2);
1655  SDValue Chain = Tmp1.getOperand(0);
1656
1657  // Chain the dynamic stack allocation so that it doesn't modify the stack
1658  // pointer when other instructions are using the stack.
1659  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1660
1661  SDValue Size  = Tmp2.getOperand(1);
1662  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1663  Chain = SP.getValue(1);
1664  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1665  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1666  if (Align > StackAlign)
1667    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1668                      DAG.getConstant(-(uint64_t)Align, VT));
1669  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1670  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1671
1672  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1673                            DAG.getIntPtrConstant(0, true), SDValue());
1674
1675  Results.push_back(Tmp1);
1676  Results.push_back(Tmp2);
1677}
1678
1679/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1680/// condition code CC on the current target. This routine expands SETCC with
1681/// illegal condition code into AND / OR of multiple SETCC values.
1682void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1683                                                 SDValue &LHS, SDValue &RHS,
1684                                                 SDValue &CC,
1685                                                 DebugLoc dl) {
1686  EVT OpVT = LHS.getValueType();
1687  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1688  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1689  default: assert(0 && "Unknown condition code action!");
1690  case TargetLowering::Legal:
1691    // Nothing to do.
1692    break;
1693  case TargetLowering::Expand: {
1694    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1695    unsigned Opc = 0;
1696    switch (CCCode) {
1697    default: assert(0 && "Don't know how to expand this condition!");
1698    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1699    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1700    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1701    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1702    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1703    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1704    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1705    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1706    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1707    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1708    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1709    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1710    // FIXME: Implement more expansions.
1711    }
1712
1713    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1714    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1715    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1716    RHS = SDValue();
1717    CC  = SDValue();
1718    break;
1719  }
1720  }
1721}
1722
1723/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1724/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1725/// a load from the stack slot to DestVT, extending it if needed.
1726/// The resultant code need not be legal.
1727SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1728                                               EVT SlotVT,
1729                                               EVT DestVT,
1730                                               DebugLoc dl) {
1731  // Create the stack frame object.
1732  unsigned SrcAlign =
1733    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1734                                              getTypeForEVT(*DAG.getContext()));
1735  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1736
1737  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1738  int SPFI = StackPtrFI->getIndex();
1739  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1740
1741  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1742  unsigned SlotSize = SlotVT.getSizeInBits();
1743  unsigned DestSize = DestVT.getSizeInBits();
1744  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1745  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1746
1747  // Emit a store to the stack slot.  Use a truncstore if the input value is
1748  // later than DestVT.
1749  SDValue Store;
1750
1751  if (SrcSize > SlotSize)
1752    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1753                              SV, 0, SlotVT, false, false, SrcAlign);
1754  else {
1755    assert(SrcSize == SlotSize && "Invalid store");
1756    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1757                         SV, 0, false, false, SrcAlign);
1758  }
1759
1760  // Result is a load from the stack slot.
1761  if (SlotSize == DestSize)
1762    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false,
1763                       DestAlign);
1764
1765  assert(SlotSize < DestSize && "Unknown extension!");
1766  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1767                        false, false, DestAlign);
1768}
1769
1770SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1771  DebugLoc dl = Node->getDebugLoc();
1772  // Create a vector sized/aligned stack slot, store the value to element #0,
1773  // then load the whole vector back out.
1774  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1775
1776  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1777  int SPFI = StackPtrFI->getIndex();
1778
1779  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1780                                 StackPtr,
1781                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1782                                 Node->getValueType(0).getVectorElementType(),
1783                                 false, false, 0);
1784  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1785                     PseudoSourceValue::getFixedStack(SPFI), 0,
1786                     false, false, 0);
1787}
1788
1789
1790/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1791/// support the operation, but do support the resultant vector type.
1792SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1793  unsigned NumElems = Node->getNumOperands();
1794  SDValue Value1, Value2;
1795  DebugLoc dl = Node->getDebugLoc();
1796  EVT VT = Node->getValueType(0);
1797  EVT OpVT = Node->getOperand(0).getValueType();
1798  EVT EltVT = VT.getVectorElementType();
1799
1800  // If the only non-undef value is the low element, turn this into a
1801  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1802  bool isOnlyLowElement = true;
1803  bool MoreThanTwoValues = false;
1804  bool isConstant = true;
1805  for (unsigned i = 0; i < NumElems; ++i) {
1806    SDValue V = Node->getOperand(i);
1807    if (V.getOpcode() == ISD::UNDEF)
1808      continue;
1809    if (i > 0)
1810      isOnlyLowElement = false;
1811    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1812      isConstant = false;
1813
1814    if (!Value1.getNode()) {
1815      Value1 = V;
1816    } else if (!Value2.getNode()) {
1817      if (V != Value1)
1818        Value2 = V;
1819    } else if (V != Value1 && V != Value2) {
1820      MoreThanTwoValues = true;
1821    }
1822  }
1823
1824  if (!Value1.getNode())
1825    return DAG.getUNDEF(VT);
1826
1827  if (isOnlyLowElement)
1828    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1829
1830  // If all elements are constants, create a load from the constant pool.
1831  if (isConstant) {
1832    std::vector<Constant*> CV;
1833    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1834      if (ConstantFPSDNode *V =
1835          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1836        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1837      } else if (ConstantSDNode *V =
1838                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1839        if (OpVT==EltVT)
1840          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1841        else {
1842          // If OpVT and EltVT don't match, EltVT is not legal and the
1843          // element values have been promoted/truncated earlier.  Undo this;
1844          // we don't want a v16i8 to become a v16i32 for example.
1845          const ConstantInt *CI = V->getConstantIntValue();
1846          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1847                                        CI->getZExtValue()));
1848        }
1849      } else {
1850        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1851        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1852        CV.push_back(UndefValue::get(OpNTy));
1853      }
1854    }
1855    Constant *CP = ConstantVector::get(CV);
1856    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1857    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1858    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1859                       PseudoSourceValue::getConstantPool(), 0,
1860                       false, false, Alignment);
1861  }
1862
1863  if (!MoreThanTwoValues) {
1864    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1865    for (unsigned i = 0; i < NumElems; ++i) {
1866      SDValue V = Node->getOperand(i);
1867      if (V.getOpcode() == ISD::UNDEF)
1868        continue;
1869      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1870    }
1871    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1872      // Get the splatted value into the low element of a vector register.
1873      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1874      SDValue Vec2;
1875      if (Value2.getNode())
1876        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1877      else
1878        Vec2 = DAG.getUNDEF(VT);
1879
1880      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1881      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1882    }
1883  }
1884
1885  // Otherwise, we can't handle this case efficiently.
1886  return ExpandVectorBuildThroughStack(Node);
1887}
1888
1889// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1890// does not fit into a register, return the lo part and set the hi part to the
1891// by-reg argument.  If it does fit into a single register, return the result
1892// and leave the Hi part unset.
1893SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1894                                            bool isSigned) {
1895  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1896  // The input chain to this libcall is the entry node of the function.
1897  // Legalizing the call will automatically add the previous call to the
1898  // dependence.
1899  SDValue InChain = DAG.getEntryNode();
1900
1901  TargetLowering::ArgListTy Args;
1902  TargetLowering::ArgListEntry Entry;
1903  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1904    EVT ArgVT = Node->getOperand(i).getValueType();
1905    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1906    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1907    Entry.isSExt = isSigned;
1908    Entry.isZExt = !isSigned;
1909    Args.push_back(Entry);
1910  }
1911  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1912                                         TLI.getPointerTy());
1913
1914  // Splice the libcall in wherever FindInputOutputChains tells us to.
1915  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1916  std::pair<SDValue, SDValue> CallInfo =
1917    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1918                    0, TLI.getLibcallCallingConv(LC), false,
1919                    /*isReturnValueUsed=*/true,
1920                    Callee, Args, DAG, Node->getDebugLoc());
1921
1922  // Legalize the call sequence, starting with the chain.  This will advance
1923  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1924  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1925  LegalizeOp(CallInfo.second);
1926  return CallInfo.first;
1927}
1928
1929SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1930                                              RTLIB::Libcall Call_F32,
1931                                              RTLIB::Libcall Call_F64,
1932                                              RTLIB::Libcall Call_F80,
1933                                              RTLIB::Libcall Call_PPCF128) {
1934  RTLIB::Libcall LC;
1935  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1936  default: assert(0 && "Unexpected request for libcall!");
1937  case MVT::f32: LC = Call_F32; break;
1938  case MVT::f64: LC = Call_F64; break;
1939  case MVT::f80: LC = Call_F80; break;
1940  case MVT::ppcf128: LC = Call_PPCF128; break;
1941  }
1942  return ExpandLibCall(LC, Node, false);
1943}
1944
1945SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1946                                               RTLIB::Libcall Call_I8,
1947                                               RTLIB::Libcall Call_I16,
1948                                               RTLIB::Libcall Call_I32,
1949                                               RTLIB::Libcall Call_I64,
1950                                               RTLIB::Libcall Call_I128) {
1951  RTLIB::Libcall LC;
1952  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1953  default: assert(0 && "Unexpected request for libcall!");
1954  case MVT::i8:   LC = Call_I8; break;
1955  case MVT::i16:  LC = Call_I16; break;
1956  case MVT::i32:  LC = Call_I32; break;
1957  case MVT::i64:  LC = Call_I64; break;
1958  case MVT::i128: LC = Call_I128; break;
1959  }
1960  return ExpandLibCall(LC, Node, isSigned);
1961}
1962
1963/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1964/// INT_TO_FP operation of the specified operand when the target requests that
1965/// we expand it.  At this point, we know that the result and operand types are
1966/// legal for the target.
1967SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1968                                                   SDValue Op0,
1969                                                   EVT DestVT,
1970                                                   DebugLoc dl) {
1971  if (Op0.getValueType() == MVT::i32) {
1972    // simple 32-bit [signed|unsigned] integer to float/double expansion
1973
1974    // Get the stack frame index of a 8 byte buffer.
1975    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1976
1977    // word offset constant for Hi/Lo address computation
1978    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1979    // set up Hi and Lo (into buffer) address based on endian
1980    SDValue Hi = StackSlot;
1981    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1982                             TLI.getPointerTy(), StackSlot, WordOff);
1983    if (TLI.isLittleEndian())
1984      std::swap(Hi, Lo);
1985
1986    // if signed map to unsigned space
1987    SDValue Op0Mapped;
1988    if (isSigned) {
1989      // constant used to invert sign bit (signed to unsigned mapping)
1990      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1991      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1992    } else {
1993      Op0Mapped = Op0;
1994    }
1995    // store the lo of the constructed double - based on integer input
1996    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1997                                  Op0Mapped, Lo, NULL, 0,
1998                                  false, false, 0);
1999    // initial hi portion of constructed double
2000    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2001    // store the hi of the constructed double - biased exponent
2002    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
2003                                false, false, 0);
2004    // load the constructed double
2005    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0,
2006                               false, false, 0);
2007    // FP constant to bias correct the final result
2008    SDValue Bias = DAG.getConstantFP(isSigned ?
2009                                     BitsToDouble(0x4330000080000000ULL) :
2010                                     BitsToDouble(0x4330000000000000ULL),
2011                                     MVT::f64);
2012    // subtract the bias
2013    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2014    // final result
2015    SDValue Result;
2016    // handle final rounding
2017    if (DestVT == MVT::f64) {
2018      // do nothing
2019      Result = Sub;
2020    } else if (DestVT.bitsLT(MVT::f64)) {
2021      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2022                           DAG.getIntPtrConstant(0));
2023    } else if (DestVT.bitsGT(MVT::f64)) {
2024      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2025    }
2026    return Result;
2027  }
2028  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2029  // Code below here assumes !isSigned without checking again.
2030
2031  // Implementation of unsigned i64 to f64 following the algorithm in
2032  // __floatundidf in compiler_rt. This implementation has the advantage
2033  // of performing rounding correctly, both in the default rounding mode
2034  // and in all alternate rounding modes.
2035  // TODO: Generalize this for use with other types.
2036  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2037    SDValue TwoP52 =
2038      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2039    SDValue TwoP84PlusTwoP52 =
2040      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2041    SDValue TwoP84 =
2042      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2043
2044    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2045    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2046                             DAG.getConstant(32, MVT::i64));
2047    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2048    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2049    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2050    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2051    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, TwoP84PlusTwoP52);
2052    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2053  }
2054
2055  // Implementation of unsigned i64 to f32.  This implementation has the
2056  // advantage of performing rounding correctly.
2057  // TODO: Generalize this for use with other types.
2058  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2059    EVT SHVT = TLI.getShiftAmountTy();
2060
2061    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2062         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2063    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2064         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2065    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2066         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2067    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2068                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2069    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2070    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2071                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2072                    ISD::SETUGE);
2073    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2074
2075    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2076                             DAG.getConstant(32, SHVT));
2077    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2078    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2079    SDValue TwoP32 =
2080      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2081    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2082    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2083    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2084    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2085    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2086                       DAG.getIntPtrConstant(0));
2087
2088  }
2089
2090  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2091
2092  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2093                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2094                                 ISD::SETLT);
2095  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2096  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2097                                    SignSet, Four, Zero);
2098
2099  // If the sign bit of the integer is set, the large number will be treated
2100  // as a negative number.  To counteract this, the dynamic code adds an
2101  // offset depending on the data type.
2102  uint64_t FF;
2103  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2104  default: assert(0 && "Unsupported integer type!");
2105  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2106  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2107  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2108  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2109  }
2110  if (TLI.isLittleEndian()) FF <<= 32;
2111  Constant *FudgeFactor = ConstantInt::get(
2112                                       Type::getInt64Ty(*DAG.getContext()), FF);
2113
2114  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2115  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2116  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2117  Alignment = std::min(Alignment, 4u);
2118  SDValue FudgeInReg;
2119  if (DestVT == MVT::f32)
2120    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2121                             PseudoSourceValue::getConstantPool(), 0,
2122                             false, false, Alignment);
2123  else {
2124    FudgeInReg =
2125      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2126                                DAG.getEntryNode(), CPIdx,
2127                                PseudoSourceValue::getConstantPool(), 0,
2128                                MVT::f32, false, false, Alignment));
2129  }
2130
2131  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2132}
2133
2134/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2135/// *INT_TO_FP operation of the specified operand when the target requests that
2136/// we promote it.  At this point, we know that the result and operand types are
2137/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2138/// operation that takes a larger input.
2139SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2140                                                    EVT DestVT,
2141                                                    bool isSigned,
2142                                                    DebugLoc dl) {
2143  // First step, figure out the appropriate *INT_TO_FP operation to use.
2144  EVT NewInTy = LegalOp.getValueType();
2145
2146  unsigned OpToUse = 0;
2147
2148  // Scan for the appropriate larger type to use.
2149  while (1) {
2150    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2151    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2152
2153    // If the target supports SINT_TO_FP of this type, use it.
2154    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2155      OpToUse = ISD::SINT_TO_FP;
2156      break;
2157    }
2158    if (isSigned) continue;
2159
2160    // If the target supports UINT_TO_FP of this type, use it.
2161    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2162      OpToUse = ISD::UINT_TO_FP;
2163      break;
2164    }
2165
2166    // Otherwise, try a larger type.
2167  }
2168
2169  // Okay, we found the operation and type to use.  Zero extend our input to the
2170  // desired type then run the operation on it.
2171  return DAG.getNode(OpToUse, dl, DestVT,
2172                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2173                                 dl, NewInTy, LegalOp));
2174}
2175
2176/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2177/// FP_TO_*INT operation of the specified operand when the target requests that
2178/// we promote it.  At this point, we know that the result and operand types are
2179/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2180/// operation that returns a larger result.
2181SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2182                                                    EVT DestVT,
2183                                                    bool isSigned,
2184                                                    DebugLoc dl) {
2185  // First step, figure out the appropriate FP_TO*INT operation to use.
2186  EVT NewOutTy = DestVT;
2187
2188  unsigned OpToUse = 0;
2189
2190  // Scan for the appropriate larger type to use.
2191  while (1) {
2192    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2193    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2194
2195    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2196      OpToUse = ISD::FP_TO_SINT;
2197      break;
2198    }
2199
2200    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2201      OpToUse = ISD::FP_TO_UINT;
2202      break;
2203    }
2204
2205    // Otherwise, try a larger type.
2206  }
2207
2208
2209  // Okay, we found the operation and type to use.
2210  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2211
2212  // Truncate the result of the extended FP_TO_*INT operation to the desired
2213  // size.
2214  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2215}
2216
2217/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2218///
2219SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2220  EVT VT = Op.getValueType();
2221  EVT SHVT = TLI.getShiftAmountTy();
2222  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2223  switch (VT.getSimpleVT().SimpleTy) {
2224  default: assert(0 && "Unhandled Expand type in BSWAP!");
2225  case MVT::i16:
2226    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2227    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2228    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2229  case MVT::i32:
2230    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2231    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2232    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2233    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2234    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2235    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2236    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2237    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2238    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2239  case MVT::i64:
2240    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2241    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2242    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2243    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2244    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2245    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2246    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2247    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2248    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2249    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2250    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2251    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2252    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2253    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2254    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2255    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2256    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2257    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2258    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2259    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2260    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2261  }
2262}
2263
2264/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2265///
2266SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2267                                             DebugLoc dl) {
2268  switch (Opc) {
2269  default: assert(0 && "Cannot expand this yet!");
2270  case ISD::CTPOP: {
2271    static const uint64_t mask[6] = {
2272      0x5555555555555555ULL, 0x3333333333333333ULL,
2273      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2274      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2275    };
2276    EVT VT = Op.getValueType();
2277    EVT ShVT = TLI.getShiftAmountTy();
2278    unsigned len = VT.getSizeInBits();
2279    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2280      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2281      unsigned EltSize = VT.isVector() ?
2282        VT.getVectorElementType().getSizeInBits() : len;
2283      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2284      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2285      Op = DAG.getNode(ISD::ADD, dl, VT,
2286                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2287                       DAG.getNode(ISD::AND, dl, VT,
2288                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2289                                   Tmp2));
2290    }
2291    return Op;
2292  }
2293  case ISD::CTLZ: {
2294    // for now, we do this:
2295    // x = x | (x >> 1);
2296    // x = x | (x >> 2);
2297    // ...
2298    // x = x | (x >>16);
2299    // x = x | (x >>32); // for 64-bit input
2300    // return popcount(~x);
2301    //
2302    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2303    EVT VT = Op.getValueType();
2304    EVT ShVT = TLI.getShiftAmountTy();
2305    unsigned len = VT.getSizeInBits();
2306    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2307      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2308      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2309                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2310    }
2311    Op = DAG.getNOT(dl, Op, VT);
2312    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2313  }
2314  case ISD::CTTZ: {
2315    // for now, we use: { return popcount(~x & (x - 1)); }
2316    // unless the target has ctlz but not ctpop, in which case we use:
2317    // { return 32 - nlz(~x & (x-1)); }
2318    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2319    EVT VT = Op.getValueType();
2320    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2321                               DAG.getNOT(dl, Op, VT),
2322                               DAG.getNode(ISD::SUB, dl, VT, Op,
2323                                           DAG.getConstant(1, VT)));
2324    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2325    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2326        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2327      return DAG.getNode(ISD::SUB, dl, VT,
2328                         DAG.getConstant(VT.getSizeInBits(), VT),
2329                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2330    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2331  }
2332  }
2333}
2334
2335void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2336                                      SmallVectorImpl<SDValue> &Results) {
2337  DebugLoc dl = Node->getDebugLoc();
2338  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2339  switch (Node->getOpcode()) {
2340  case ISD::CTPOP:
2341  case ISD::CTLZ:
2342  case ISD::CTTZ:
2343    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2344    Results.push_back(Tmp1);
2345    break;
2346  case ISD::BSWAP:
2347    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2348    break;
2349  case ISD::FRAMEADDR:
2350  case ISD::RETURNADDR:
2351  case ISD::FRAME_TO_ARGS_OFFSET:
2352    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2353    break;
2354  case ISD::FLT_ROUNDS_:
2355    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2356    break;
2357  case ISD::EH_RETURN:
2358  case ISD::EH_LABEL:
2359  case ISD::PREFETCH:
2360  case ISD::MEMBARRIER:
2361  case ISD::VAEND:
2362    Results.push_back(Node->getOperand(0));
2363    break;
2364  case ISD::DYNAMIC_STACKALLOC:
2365    ExpandDYNAMIC_STACKALLOC(Node, Results);
2366    break;
2367  case ISD::MERGE_VALUES:
2368    for (unsigned i = 0; i < Node->getNumValues(); i++)
2369      Results.push_back(Node->getOperand(i));
2370    break;
2371  case ISD::UNDEF: {
2372    EVT VT = Node->getValueType(0);
2373    if (VT.isInteger())
2374      Results.push_back(DAG.getConstant(0, VT));
2375    else {
2376      assert(VT.isFloatingPoint() && "Unknown value type!");
2377      Results.push_back(DAG.getConstantFP(0, VT));
2378    }
2379    break;
2380  }
2381  case ISD::TRAP: {
2382    // If this operation is not supported, lower it to 'abort()' call
2383    TargetLowering::ArgListTy Args;
2384    std::pair<SDValue, SDValue> CallResult =
2385      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2386                      false, false, false, false, 0, CallingConv::C, false,
2387                      /*isReturnValueUsed=*/true,
2388                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2389                      Args, DAG, dl);
2390    Results.push_back(CallResult.second);
2391    break;
2392  }
2393  case ISD::FP_ROUND:
2394  case ISD::BIT_CONVERT:
2395    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2396                            Node->getValueType(0), dl);
2397    Results.push_back(Tmp1);
2398    break;
2399  case ISD::FP_EXTEND:
2400    Tmp1 = EmitStackConvert(Node->getOperand(0),
2401                            Node->getOperand(0).getValueType(),
2402                            Node->getValueType(0), dl);
2403    Results.push_back(Tmp1);
2404    break;
2405  case ISD::SIGN_EXTEND_INREG: {
2406    // NOTE: we could fall back on load/store here too for targets without
2407    // SAR.  However, it is doubtful that any exist.
2408    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2409    EVT VT = Node->getValueType(0);
2410    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2411    if (VT.isVector())
2412      ShiftAmountTy = VT;
2413    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2414                        ExtraVT.getScalarType().getSizeInBits();
2415    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2416    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2417                       Node->getOperand(0), ShiftCst);
2418    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2419    Results.push_back(Tmp1);
2420    break;
2421  }
2422  case ISD::FP_ROUND_INREG: {
2423    // The only way we can lower this is to turn it into a TRUNCSTORE,
2424    // EXTLOAD pair, targetting a temporary location (a stack slot).
2425
2426    // NOTE: there is a choice here between constantly creating new stack
2427    // slots and always reusing the same one.  We currently always create
2428    // new ones, as reuse may inhibit scheduling.
2429    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2430    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2431                            Node->getValueType(0), dl);
2432    Results.push_back(Tmp1);
2433    break;
2434  }
2435  case ISD::SINT_TO_FP:
2436  case ISD::UINT_TO_FP:
2437    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2438                                Node->getOperand(0), Node->getValueType(0), dl);
2439    Results.push_back(Tmp1);
2440    break;
2441  case ISD::FP_TO_UINT: {
2442    SDValue True, False;
2443    EVT VT =  Node->getOperand(0).getValueType();
2444    EVT NVT = Node->getValueType(0);
2445    const uint64_t zero[] = {0, 0};
2446    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2447    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2448    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2449    Tmp1 = DAG.getConstantFP(apf, VT);
2450    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2451                        Node->getOperand(0),
2452                        Tmp1, ISD::SETLT);
2453    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2454    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2455                        DAG.getNode(ISD::FSUB, dl, VT,
2456                                    Node->getOperand(0), Tmp1));
2457    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2458                        DAG.getConstant(x, NVT));
2459    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2460    Results.push_back(Tmp1);
2461    break;
2462  }
2463  case ISD::VAARG: {
2464    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2465    EVT VT = Node->getValueType(0);
2466    Tmp1 = Node->getOperand(0);
2467    Tmp2 = Node->getOperand(1);
2468    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0,
2469                                 false, false, 0);
2470    // Increment the pointer, VAList, to the next vaarg
2471    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2472                       DAG.getConstant(TLI.getTargetData()->
2473                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2474                                       TLI.getPointerTy()));
2475    // Store the incremented VAList to the legalized pointer
2476    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0,
2477                        false, false, 0);
2478    // Load the actual argument out of the pointer VAList
2479    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0,
2480                                  false, false, 0));
2481    Results.push_back(Results[0].getValue(1));
2482    break;
2483  }
2484  case ISD::VACOPY: {
2485    // This defaults to loading a pointer from the input and storing it to the
2486    // output, returning the chain.
2487    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2488    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2489    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2490                       Node->getOperand(2), VS, 0, false, false, 0);
2491    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0,
2492                        false, false, 0);
2493    Results.push_back(Tmp1);
2494    break;
2495  }
2496  case ISD::EXTRACT_VECTOR_ELT:
2497    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2498      // This must be an access of the only element.  Return it.
2499      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2500                         Node->getOperand(0));
2501    else
2502      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2503    Results.push_back(Tmp1);
2504    break;
2505  case ISD::EXTRACT_SUBVECTOR:
2506    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2507    break;
2508  case ISD::CONCAT_VECTORS: {
2509    Results.push_back(ExpandVectorBuildThroughStack(Node));
2510    break;
2511  }
2512  case ISD::SCALAR_TO_VECTOR:
2513    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2514    break;
2515  case ISD::INSERT_VECTOR_ELT:
2516    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2517                                              Node->getOperand(1),
2518                                              Node->getOperand(2), dl));
2519    break;
2520  case ISD::VECTOR_SHUFFLE: {
2521    SmallVector<int, 8> Mask;
2522    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2523
2524    EVT VT = Node->getValueType(0);
2525    EVT EltVT = VT.getVectorElementType();
2526    unsigned NumElems = VT.getVectorNumElements();
2527    SmallVector<SDValue, 8> Ops;
2528    for (unsigned i = 0; i != NumElems; ++i) {
2529      if (Mask[i] < 0) {
2530        Ops.push_back(DAG.getUNDEF(EltVT));
2531        continue;
2532      }
2533      unsigned Idx = Mask[i];
2534      if (Idx < NumElems)
2535        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2536                                  Node->getOperand(0),
2537                                  DAG.getIntPtrConstant(Idx)));
2538      else
2539        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2540                                  Node->getOperand(1),
2541                                  DAG.getIntPtrConstant(Idx - NumElems)));
2542    }
2543    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2544    Results.push_back(Tmp1);
2545    break;
2546  }
2547  case ISD::EXTRACT_ELEMENT: {
2548    EVT OpTy = Node->getOperand(0).getValueType();
2549    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2550      // 1 -> Hi
2551      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2552                         DAG.getConstant(OpTy.getSizeInBits()/2,
2553                                         TLI.getShiftAmountTy()));
2554      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2555    } else {
2556      // 0 -> Lo
2557      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2558                         Node->getOperand(0));
2559    }
2560    Results.push_back(Tmp1);
2561    break;
2562  }
2563  case ISD::STACKSAVE:
2564    // Expand to CopyFromReg if the target set
2565    // StackPointerRegisterToSaveRestore.
2566    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2567      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2568                                           Node->getValueType(0)));
2569      Results.push_back(Results[0].getValue(1));
2570    } else {
2571      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2572      Results.push_back(Node->getOperand(0));
2573    }
2574    break;
2575  case ISD::STACKRESTORE:
2576    // Expand to CopyToReg if the target set
2577    // StackPointerRegisterToSaveRestore.
2578    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2579      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2580                                         Node->getOperand(1)));
2581    } else {
2582      Results.push_back(Node->getOperand(0));
2583    }
2584    break;
2585  case ISD::FCOPYSIGN:
2586    Results.push_back(ExpandFCOPYSIGN(Node));
2587    break;
2588  case ISD::FNEG:
2589    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2590    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2591    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2592                       Node->getOperand(0));
2593    Results.push_back(Tmp1);
2594    break;
2595  case ISD::FABS: {
2596    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2597    EVT VT = Node->getValueType(0);
2598    Tmp1 = Node->getOperand(0);
2599    Tmp2 = DAG.getConstantFP(0.0, VT);
2600    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2601                        Tmp1, Tmp2, ISD::SETUGT);
2602    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2603    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2604    Results.push_back(Tmp1);
2605    break;
2606  }
2607  case ISD::FSQRT:
2608    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2609                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2610    break;
2611  case ISD::FSIN:
2612    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2613                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2614    break;
2615  case ISD::FCOS:
2616    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2617                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2618    break;
2619  case ISD::FLOG:
2620    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2621                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2622    break;
2623  case ISD::FLOG2:
2624    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2625                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2626    break;
2627  case ISD::FLOG10:
2628    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2629                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2630    break;
2631  case ISD::FEXP:
2632    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2633                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2634    break;
2635  case ISD::FEXP2:
2636    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2637                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2638    break;
2639  case ISD::FTRUNC:
2640    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2641                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2642    break;
2643  case ISD::FFLOOR:
2644    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2645                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2646    break;
2647  case ISD::FCEIL:
2648    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2649                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2650    break;
2651  case ISD::FRINT:
2652    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2653                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2654    break;
2655  case ISD::FNEARBYINT:
2656    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2657                                      RTLIB::NEARBYINT_F64,
2658                                      RTLIB::NEARBYINT_F80,
2659                                      RTLIB::NEARBYINT_PPCF128));
2660    break;
2661  case ISD::FPOWI:
2662    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2663                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2664    break;
2665  case ISD::FPOW:
2666    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2667                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2668    break;
2669  case ISD::FDIV:
2670    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2671                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2672    break;
2673  case ISD::FREM:
2674    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2675                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2676    break;
2677  case ISD::FP16_TO_FP32:
2678    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2679    break;
2680  case ISD::FP32_TO_FP16:
2681    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2682    break;
2683  case ISD::ConstantFP: {
2684    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2685    // Check to see if this FP immediate is already legal.
2686    // If this is a legal constant, turn it into a TargetConstantFP node.
2687    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2688      Results.push_back(SDValue(Node, 0));
2689    else
2690      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2691    break;
2692  }
2693  case ISD::EHSELECTION: {
2694    unsigned Reg = TLI.getExceptionSelectorRegister();
2695    assert(Reg && "Can't expand to unknown register!");
2696    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2697                                         Node->getValueType(0)));
2698    Results.push_back(Results[0].getValue(1));
2699    break;
2700  }
2701  case ISD::EXCEPTIONADDR: {
2702    unsigned Reg = TLI.getExceptionAddressRegister();
2703    assert(Reg && "Can't expand to unknown register!");
2704    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2705                                         Node->getValueType(0)));
2706    Results.push_back(Results[0].getValue(1));
2707    break;
2708  }
2709  case ISD::SUB: {
2710    EVT VT = Node->getValueType(0);
2711    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2712           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2713           "Don't know how to expand this subtraction!");
2714    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2715               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2716    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2717    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2718    break;
2719  }
2720  case ISD::UREM:
2721  case ISD::SREM: {
2722    EVT VT = Node->getValueType(0);
2723    SDVTList VTs = DAG.getVTList(VT, VT);
2724    bool isSigned = Node->getOpcode() == ISD::SREM;
2725    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2726    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2727    Tmp2 = Node->getOperand(0);
2728    Tmp3 = Node->getOperand(1);
2729    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2730      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2731    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2732      // X % Y -> X-X/Y*Y
2733      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2734      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2735      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2736    } else if (isSigned) {
2737      Tmp1 = ExpandIntLibCall(Node, true,
2738                              RTLIB::SREM_I8,
2739                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2740                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2741    } else {
2742      Tmp1 = ExpandIntLibCall(Node, false,
2743                              RTLIB::UREM_I8,
2744                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2745                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2746    }
2747    Results.push_back(Tmp1);
2748    break;
2749  }
2750  case ISD::UDIV:
2751  case ISD::SDIV: {
2752    bool isSigned = Node->getOpcode() == ISD::SDIV;
2753    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2754    EVT VT = Node->getValueType(0);
2755    SDVTList VTs = DAG.getVTList(VT, VT);
2756    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2757      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2758                         Node->getOperand(1));
2759    else if (isSigned)
2760      Tmp1 = ExpandIntLibCall(Node, true,
2761                              RTLIB::SDIV_I8,
2762                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2763                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2764    else
2765      Tmp1 = ExpandIntLibCall(Node, false,
2766                              RTLIB::UDIV_I8,
2767                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2768                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2769    Results.push_back(Tmp1);
2770    break;
2771  }
2772  case ISD::MULHU:
2773  case ISD::MULHS: {
2774    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2775                                                              ISD::SMUL_LOHI;
2776    EVT VT = Node->getValueType(0);
2777    SDVTList VTs = DAG.getVTList(VT, VT);
2778    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2779           "If this wasn't legal, it shouldn't have been created!");
2780    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2781                       Node->getOperand(1));
2782    Results.push_back(Tmp1.getValue(1));
2783    break;
2784  }
2785  case ISD::MUL: {
2786    EVT VT = Node->getValueType(0);
2787    SDVTList VTs = DAG.getVTList(VT, VT);
2788    // See if multiply or divide can be lowered using two-result operations.
2789    // We just need the low half of the multiply; try both the signed
2790    // and unsigned forms. If the target supports both SMUL_LOHI and
2791    // UMUL_LOHI, form a preference by checking which forms of plain
2792    // MULH it supports.
2793    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2794    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2795    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2796    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2797    unsigned OpToUse = 0;
2798    if (HasSMUL_LOHI && !HasMULHS) {
2799      OpToUse = ISD::SMUL_LOHI;
2800    } else if (HasUMUL_LOHI && !HasMULHU) {
2801      OpToUse = ISD::UMUL_LOHI;
2802    } else if (HasSMUL_LOHI) {
2803      OpToUse = ISD::SMUL_LOHI;
2804    } else if (HasUMUL_LOHI) {
2805      OpToUse = ISD::UMUL_LOHI;
2806    }
2807    if (OpToUse) {
2808      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2809                                    Node->getOperand(1)));
2810      break;
2811    }
2812    Tmp1 = ExpandIntLibCall(Node, false,
2813                            RTLIB::MUL_I8,
2814                            RTLIB::MUL_I16, RTLIB::MUL_I32,
2815                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2816    Results.push_back(Tmp1);
2817    break;
2818  }
2819  case ISD::SADDO:
2820  case ISD::SSUBO: {
2821    SDValue LHS = Node->getOperand(0);
2822    SDValue RHS = Node->getOperand(1);
2823    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2824                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2825                              LHS, RHS);
2826    Results.push_back(Sum);
2827    EVT OType = Node->getValueType(1);
2828
2829    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2830
2831    //   LHSSign -> LHS >= 0
2832    //   RHSSign -> RHS >= 0
2833    //   SumSign -> Sum >= 0
2834    //
2835    //   Add:
2836    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2837    //   Sub:
2838    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2839    //
2840    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2841    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2842    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2843                                      Node->getOpcode() == ISD::SADDO ?
2844                                      ISD::SETEQ : ISD::SETNE);
2845
2846    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2847    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2848
2849    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2850    Results.push_back(Cmp);
2851    break;
2852  }
2853  case ISD::UADDO:
2854  case ISD::USUBO: {
2855    SDValue LHS = Node->getOperand(0);
2856    SDValue RHS = Node->getOperand(1);
2857    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2858                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2859                              LHS, RHS);
2860    Results.push_back(Sum);
2861    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2862                                   Node->getOpcode () == ISD::UADDO ?
2863                                   ISD::SETULT : ISD::SETUGT));
2864    break;
2865  }
2866  case ISD::UMULO:
2867  case ISD::SMULO: {
2868    EVT VT = Node->getValueType(0);
2869    SDValue LHS = Node->getOperand(0);
2870    SDValue RHS = Node->getOperand(1);
2871    SDValue BottomHalf;
2872    SDValue TopHalf;
2873    static const unsigned Ops[2][3] =
2874        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2875          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2876    bool isSigned = Node->getOpcode() == ISD::SMULO;
2877    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2878      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2879      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2880    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2881      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2882                               RHS);
2883      TopHalf = BottomHalf.getValue(1);
2884    } else {
2885      // FIXME: We should be able to fall back to a libcall with an illegal
2886      // type in some cases.
2887      // Also, we can fall back to a division in some cases, but that's a big
2888      // performance hit in the general case.
2889      assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
2890                                               VT.getSizeInBits() * 2)) &&
2891             "Don't know how to expand this operation yet!");
2892      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2893      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2894      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2895      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2896      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2897                               DAG.getIntPtrConstant(0));
2898      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2899                            DAG.getIntPtrConstant(1));
2900    }
2901    if (isSigned) {
2902      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2903      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2904      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2905                             ISD::SETNE);
2906    } else {
2907      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2908                             DAG.getConstant(0, VT), ISD::SETNE);
2909    }
2910    Results.push_back(BottomHalf);
2911    Results.push_back(TopHalf);
2912    break;
2913  }
2914  case ISD::BUILD_PAIR: {
2915    EVT PairTy = Node->getValueType(0);
2916    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2917    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2918    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2919                       DAG.getConstant(PairTy.getSizeInBits()/2,
2920                                       TLI.getShiftAmountTy()));
2921    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2922    break;
2923  }
2924  case ISD::SELECT:
2925    Tmp1 = Node->getOperand(0);
2926    Tmp2 = Node->getOperand(1);
2927    Tmp3 = Node->getOperand(2);
2928    if (Tmp1.getOpcode() == ISD::SETCC) {
2929      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2930                             Tmp2, Tmp3,
2931                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2932    } else {
2933      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2934                             DAG.getConstant(0, Tmp1.getValueType()),
2935                             Tmp2, Tmp3, ISD::SETNE);
2936    }
2937    Results.push_back(Tmp1);
2938    break;
2939  case ISD::BR_JT: {
2940    SDValue Chain = Node->getOperand(0);
2941    SDValue Table = Node->getOperand(1);
2942    SDValue Index = Node->getOperand(2);
2943
2944    EVT PTy = TLI.getPointerTy();
2945
2946    const TargetData &TD = *TLI.getTargetData();
2947    unsigned EntrySize =
2948      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
2949
2950    Index = DAG.getNode(ISD::MUL, dl, PTy,
2951                        Index, DAG.getConstant(EntrySize, PTy));
2952    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2953
2954    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2955    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2956                                PseudoSourceValue::getJumpTable(), 0, MemVT,
2957                                false, false, 0);
2958    Addr = LD;
2959    if (TM.getRelocationModel() == Reloc::PIC_) {
2960      // For PIC, the sequence is:
2961      // BRIND(load(Jumptable + index) + RelocBase)
2962      // RelocBase can be JumpTable, GOT or some sort of global base.
2963      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2964                          TLI.getPICJumpTableRelocBase(Table, DAG));
2965    }
2966    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2967    Results.push_back(Tmp1);
2968    break;
2969  }
2970  case ISD::BRCOND:
2971    // Expand brcond's setcc into its constituent parts and create a BR_CC
2972    // Node.
2973    Tmp1 = Node->getOperand(0);
2974    Tmp2 = Node->getOperand(1);
2975    if (Tmp2.getOpcode() == ISD::SETCC) {
2976      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2977                         Tmp1, Tmp2.getOperand(2),
2978                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2979                         Node->getOperand(2));
2980    } else {
2981      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2982                         DAG.getCondCode(ISD::SETNE), Tmp2,
2983                         DAG.getConstant(0, Tmp2.getValueType()),
2984                         Node->getOperand(2));
2985    }
2986    Results.push_back(Tmp1);
2987    break;
2988  case ISD::SETCC: {
2989    Tmp1 = Node->getOperand(0);
2990    Tmp2 = Node->getOperand(1);
2991    Tmp3 = Node->getOperand(2);
2992    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2993
2994    // If we expanded the SETCC into an AND/OR, return the new node
2995    if (Tmp2.getNode() == 0) {
2996      Results.push_back(Tmp1);
2997      break;
2998    }
2999
3000    // Otherwise, SETCC for the given comparison type must be completely
3001    // illegal; expand it into a SELECT_CC.
3002    EVT VT = Node->getValueType(0);
3003    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3004                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3005    Results.push_back(Tmp1);
3006    break;
3007  }
3008  case ISD::SELECT_CC: {
3009    Tmp1 = Node->getOperand(0);   // LHS
3010    Tmp2 = Node->getOperand(1);   // RHS
3011    Tmp3 = Node->getOperand(2);   // True
3012    Tmp4 = Node->getOperand(3);   // False
3013    SDValue CC = Node->getOperand(4);
3014
3015    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3016                          Tmp1, Tmp2, CC, dl);
3017
3018    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3019    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3020    CC = DAG.getCondCode(ISD::SETNE);
3021    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3022                       Tmp3, Tmp4, CC);
3023    Results.push_back(Tmp1);
3024    break;
3025  }
3026  case ISD::BR_CC: {
3027    Tmp1 = Node->getOperand(0);              // Chain
3028    Tmp2 = Node->getOperand(2);              // LHS
3029    Tmp3 = Node->getOperand(3);              // RHS
3030    Tmp4 = Node->getOperand(1);              // CC
3031
3032    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3033                          Tmp2, Tmp3, Tmp4, dl);
3034    LastCALLSEQ_END = DAG.getEntryNode();
3035
3036    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3037    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3038    Tmp4 = DAG.getCondCode(ISD::SETNE);
3039    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3040                       Tmp3, Node->getOperand(4));
3041    Results.push_back(Tmp1);
3042    break;
3043  }
3044  case ISD::GLOBAL_OFFSET_TABLE:
3045  case ISD::GlobalAddress:
3046  case ISD::GlobalTLSAddress:
3047  case ISD::ExternalSymbol:
3048  case ISD::ConstantPool:
3049  case ISD::JumpTable:
3050  case ISD::INTRINSIC_W_CHAIN:
3051  case ISD::INTRINSIC_WO_CHAIN:
3052  case ISD::INTRINSIC_VOID:
3053    // FIXME: Custom lowering for these operations shouldn't return null!
3054    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3055      Results.push_back(SDValue(Node, i));
3056    break;
3057  }
3058}
3059void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3060                                       SmallVectorImpl<SDValue> &Results) {
3061  EVT OVT = Node->getValueType(0);
3062  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3063      Node->getOpcode() == ISD::SINT_TO_FP ||
3064      Node->getOpcode() == ISD::SETCC) {
3065    OVT = Node->getOperand(0).getValueType();
3066  }
3067  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3068  DebugLoc dl = Node->getDebugLoc();
3069  SDValue Tmp1, Tmp2, Tmp3;
3070  switch (Node->getOpcode()) {
3071  case ISD::CTTZ:
3072  case ISD::CTLZ:
3073  case ISD::CTPOP:
3074    // Zero extend the argument.
3075    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3076    // Perform the larger operation.
3077    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3078    if (Node->getOpcode() == ISD::CTTZ) {
3079      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3080      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3081                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3082                          ISD::SETEQ);
3083      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3084                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3085    } else if (Node->getOpcode() == ISD::CTLZ) {
3086      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3087      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3088                          DAG.getConstant(NVT.getSizeInBits() -
3089                                          OVT.getSizeInBits(), NVT));
3090    }
3091    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3092    break;
3093  case ISD::BSWAP: {
3094    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3095    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3096    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3097    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3098                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3099    Results.push_back(Tmp1);
3100    break;
3101  }
3102  case ISD::FP_TO_UINT:
3103  case ISD::FP_TO_SINT:
3104    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3105                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3106    Results.push_back(Tmp1);
3107    break;
3108  case ISD::UINT_TO_FP:
3109  case ISD::SINT_TO_FP:
3110    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3111                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3112    Results.push_back(Tmp1);
3113    break;
3114  case ISD::AND:
3115  case ISD::OR:
3116  case ISD::XOR: {
3117    unsigned ExtOp, TruncOp;
3118    if (OVT.isVector()) {
3119      ExtOp   = ISD::BIT_CONVERT;
3120      TruncOp = ISD::BIT_CONVERT;
3121    } else {
3122      assert(OVT.isInteger() && "Cannot promote logic operation");
3123      ExtOp   = ISD::ANY_EXTEND;
3124      TruncOp = ISD::TRUNCATE;
3125    }
3126    // Promote each of the values to the new type.
3127    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3128    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3129    // Perform the larger operation, then convert back
3130    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3131    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3132    break;
3133  }
3134  case ISD::SELECT: {
3135    unsigned ExtOp, TruncOp;
3136    if (Node->getValueType(0).isVector()) {
3137      ExtOp   = ISD::BIT_CONVERT;
3138      TruncOp = ISD::BIT_CONVERT;
3139    } else if (Node->getValueType(0).isInteger()) {
3140      ExtOp   = ISD::ANY_EXTEND;
3141      TruncOp = ISD::TRUNCATE;
3142    } else {
3143      ExtOp   = ISD::FP_EXTEND;
3144      TruncOp = ISD::FP_ROUND;
3145    }
3146    Tmp1 = Node->getOperand(0);
3147    // Promote each of the values to the new type.
3148    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3149    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3150    // Perform the larger operation, then round down.
3151    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3152    if (TruncOp != ISD::FP_ROUND)
3153      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3154    else
3155      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3156                         DAG.getIntPtrConstant(0));
3157    Results.push_back(Tmp1);
3158    break;
3159  }
3160  case ISD::VECTOR_SHUFFLE: {
3161    SmallVector<int, 8> Mask;
3162    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3163
3164    // Cast the two input vectors.
3165    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3166    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3167
3168    // Convert the shuffle mask to the right # elements.
3169    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3170    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3171    Results.push_back(Tmp1);
3172    break;
3173  }
3174  case ISD::SETCC: {
3175    unsigned ExtOp = ISD::FP_EXTEND;
3176    if (NVT.isInteger()) {
3177      ISD::CondCode CCCode =
3178        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3179      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3180    }
3181    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3182    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3183    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3184                                  Tmp1, Tmp2, Node->getOperand(2)));
3185    break;
3186  }
3187  }
3188}
3189
3190// SelectionDAG::Legalize - This is the entry point for the file.
3191//
3192void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3193  /// run - This is the main entry point to this class.
3194  ///
3195  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3196}
3197
3198