LegalizeDAG.cpp revision 1c3b8d6192c8d27aecfbfed5eb46e2863c595aa4
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalVariable.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/SmallPtrSet.h"
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
43/// hacks on it until the target machine can handle it.  This involves
44/// eliminating value sizes the machine cannot handle (promoting small sizes to
45/// large sizes or splitting up large values into small values) as well as
46/// eliminating operations the machine cannot handle.
47///
48/// This code also does a small amount of optimization and recognition of idioms
49/// as part of its processing.  For example, if a target does not support a
50/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
51/// will attempt merge setcc and brc instructions into brcc's.
52///
53namespace {
54class SelectionDAGLegalize {
55  const TargetMachine &TM;
56  const TargetLowering &TLI;
57  SelectionDAG &DAG;
58  CodeGenOpt::Level OptLevel;
59
60  // Libcall insertion helpers.
61
62  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
63  /// legalized.  We use this to ensure that calls are properly serialized
64  /// against each other, including inserted libcalls.
65  SDValue LastCALLSEQ_END;
66
67  /// IsLegalizingCall - This member is used *only* for purposes of providing
68  /// helpful assertions that a libcall isn't created while another call is
69  /// being legalized (which could lead to non-serialized call sequences).
70  bool IsLegalizingCall;
71
72  enum LegalizeAction {
73    Legal,      // The target natively supports this operation.
74    Promote,    // This operation should be executed in a larger type.
75    Expand      // Try to expand this to other ops, otherwise use a libcall.
76  };
77
78  /// ValueTypeActions - This is a bitvector that contains two bits for each
79  /// value type, where the two bits correspond to the LegalizeAction enum.
80  /// This can be queried with "getTypeAction(VT)".
81  TargetLowering::ValueTypeActionImpl ValueTypeActions;
82
83  /// LegalizedNodes - For nodes that are of legal width, and that have more
84  /// than one use, this map indicates what regularized operand to use.  This
85  /// allows us to avoid legalizing the same thing more than once.
86  DenseMap<SDValue, SDValue> LegalizedNodes;
87
88  void AddLegalizedOperand(SDValue From, SDValue To) {
89    LegalizedNodes.insert(std::make_pair(From, To));
90    // If someone requests legalization of the new node, return itself.
91    if (From != To)
92      LegalizedNodes.insert(std::make_pair(To, To));
93  }
94
95public:
96  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
97
98  /// getTypeAction - Return how we should legalize values of this type, either
99  /// it is already legal or we need to expand it into multiple registers of
100  /// smaller integer type, or we need to promote it to a larger type.
101  LegalizeAction getTypeAction(EVT VT) const {
102    return
103        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
104  }
105
106  /// isTypeLegal - Return true if this type is legal on this target.
107  ///
108  bool isTypeLegal(EVT VT) const {
109    return getTypeAction(VT) == Legal;
110  }
111
112  void LegalizeDAG();
113
114private:
115  /// LegalizeOp - We know that the specified value has a legal type.
116  /// Recursively ensure that the operands have legal types, then return the
117  /// result.
118  SDValue LegalizeOp(SDValue O);
119
120  SDValue OptimizeFloatStore(StoreSDNode *ST);
121
122  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
123  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
124  /// is necessary to spill the vector being inserted into to memory, perform
125  /// the insert there, and then read the result back.
126  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
127                                         SDValue Idx, DebugLoc dl);
128  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
129                                  SDValue Idx, DebugLoc dl);
130
131  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
132  /// performs the same shuffe in terms of order or result bytes, but on a type
133  /// whose vector element type is narrower than the original shuffle type.
134  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
135  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
136                                     SDValue N1, SDValue N2,
137                                     SmallVectorImpl<int> &Mask) const;
138
139  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
140                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
141
142  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
143                             DebugLoc dl);
144
145  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
146  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
147                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
148                          RTLIB::Libcall Call_PPCF128);
149  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
150                           RTLIB::Libcall Call_I8,
151                           RTLIB::Libcall Call_I16,
152                           RTLIB::Libcall Call_I32,
153                           RTLIB::Libcall Call_I64,
154                           RTLIB::Libcall Call_I128);
155
156  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
157  SDValue ExpandBUILD_VECTOR(SDNode *Node);
158  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
159  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
160                                SmallVectorImpl<SDValue> &Results);
161  SDValue ExpandFCOPYSIGN(SDNode *Node);
162  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
163                               DebugLoc dl);
164  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
165                                DebugLoc dl);
166  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168
169  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
170  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
171
172  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
173  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
174
175  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
176  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
177};
178}
179
180/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
181/// performs the same shuffe in terms of order or result bytes, but on a type
182/// whose vector element type is narrower than the original shuffle type.
183/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
184SDValue
185SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
186                                                 SDValue N1, SDValue N2,
187                                             SmallVectorImpl<int> &Mask) const {
188  unsigned NumMaskElts = VT.getVectorNumElements();
189  unsigned NumDestElts = NVT.getVectorNumElements();
190  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
191
192  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
193
194  if (NumEltsGrowth == 1)
195    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
196
197  SmallVector<int, 8> NewMask;
198  for (unsigned i = 0; i != NumMaskElts; ++i) {
199    int Idx = Mask[i];
200    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
201      if (Idx < 0)
202        NewMask.push_back(-1);
203      else
204        NewMask.push_back(Idx * NumEltsGrowth + j);
205    }
206  }
207  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
208  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
209  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
210}
211
212SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
213                                           CodeGenOpt::Level ol)
214  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
215    DAG(dag), OptLevel(ol),
216    ValueTypeActions(TLI.getValueTypeActions()) {
217  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
218         "Too many value types for ValueTypeActions to hold!");
219}
220
221void SelectionDAGLegalize::LegalizeDAG() {
222  LastCALLSEQ_END = DAG.getEntryNode();
223  IsLegalizingCall = false;
224
225  // The legalize process is inherently a bottom-up recursive process (users
226  // legalize their uses before themselves).  Given infinite stack space, we
227  // could just start legalizing on the root and traverse the whole graph.  In
228  // practice however, this causes us to run out of stack space on large basic
229  // blocks.  To avoid this problem, compute an ordering of the nodes where each
230  // node is only legalized after all of its operands are legalized.
231  DAG.AssignTopologicalOrder();
232  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
233       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
234    LegalizeOp(SDValue(I, 0));
235
236  // Finally, it's possible the root changed.  Get the new root.
237  SDValue OldRoot = DAG.getRoot();
238  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
239  DAG.setRoot(LegalizedNodes[OldRoot]);
240
241  LegalizedNodes.clear();
242
243  // Remove dead nodes now.
244  DAG.RemoveDeadNodes();
245}
246
247
248/// FindCallEndFromCallStart - Given a chained node that is part of a call
249/// sequence, find the CALLSEQ_END node that terminates the call sequence.
250static SDNode *FindCallEndFromCallStart(SDNode *Node) {
251  if (Node->getOpcode() == ISD::CALLSEQ_END)
252    return Node;
253  if (Node->use_empty())
254    return 0;   // No CallSeqEnd
255
256  // The chain is usually at the end.
257  SDValue TheChain(Node, Node->getNumValues()-1);
258  if (TheChain.getValueType() != MVT::Other) {
259    // Sometimes it's at the beginning.
260    TheChain = SDValue(Node, 0);
261    if (TheChain.getValueType() != MVT::Other) {
262      // Otherwise, hunt for it.
263      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
264        if (Node->getValueType(i) == MVT::Other) {
265          TheChain = SDValue(Node, i);
266          break;
267        }
268
269      // Otherwise, we walked into a node without a chain.
270      if (TheChain.getValueType() != MVT::Other)
271        return 0;
272    }
273  }
274
275  for (SDNode::use_iterator UI = Node->use_begin(),
276       E = Node->use_end(); UI != E; ++UI) {
277
278    // Make sure to only follow users of our token chain.
279    SDNode *User = *UI;
280    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
281      if (User->getOperand(i) == TheChain)
282        if (SDNode *Result = FindCallEndFromCallStart(User))
283          return Result;
284  }
285  return 0;
286}
287
288/// FindCallStartFromCallEnd - Given a chained node that is part of a call
289/// sequence, find the CALLSEQ_START node that initiates the call sequence.
290static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
291  assert(Node && "Didn't find callseq_start for a call??");
292  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
293
294  assert(Node->getOperand(0).getValueType() == MVT::Other &&
295         "Node doesn't have a token chain argument!");
296  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
297}
298
299/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
300/// see if any uses can reach Dest.  If no dest operands can get to dest,
301/// legalize them, legalize ourself, and return false, otherwise, return true.
302///
303/// Keep track of the nodes we fine that actually do lead to Dest in
304/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
305///
306bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
307                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
308  if (N == Dest) return true;  // N certainly leads to Dest :)
309
310  // If we've already processed this node and it does lead to Dest, there is no
311  // need to reprocess it.
312  if (NodesLeadingTo.count(N)) return true;
313
314  // If the first result of this node has been already legalized, then it cannot
315  // reach N.
316  if (LegalizedNodes.count(SDValue(N, 0))) return false;
317
318  // Okay, this node has not already been legalized.  Check and legalize all
319  // operands.  If none lead to Dest, then we can legalize this node.
320  bool OperandsLeadToDest = false;
321  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
322    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
323      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
324
325  if (OperandsLeadToDest) {
326    NodesLeadingTo.insert(N);
327    return true;
328  }
329
330  // Okay, this node looks safe, legalize it and return false.
331  LegalizeOp(SDValue(N, 0));
332  return false;
333}
334
335/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
336/// a load from the constant pool.
337static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
338                                SelectionDAG &DAG, const TargetLowering &TLI) {
339  bool Extend = false;
340  DebugLoc dl = CFP->getDebugLoc();
341
342  // If a FP immediate is precise when represented as a float and if the
343  // target can do an extending load from float to double, we put it into
344  // the constant pool as a float, even if it's is statically typed as a
345  // double.  This shrinks FP constants and canonicalizes them for targets where
346  // an FP extending load is the same cost as a normal load (such as on the x87
347  // fp stack or PPC FP unit).
348  EVT VT = CFP->getValueType(0);
349  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
350  if (!UseCP) {
351    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
352    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
353                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
354  }
355
356  EVT OrigVT = VT;
357  EVT SVT = VT;
358  while (SVT != MVT::f32) {
359    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
360    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
361        // Only do this if the target has a native EXTLOAD instruction from
362        // smaller type.
363        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
364        TLI.ShouldShrinkFPConstant(OrigVT)) {
365      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
366      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
367      VT = SVT;
368      Extend = true;
369    }
370  }
371
372  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
373  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
374  if (Extend)
375    return DAG.getExtLoad(ISD::EXTLOAD, dl,
376                          OrigVT, DAG.getEntryNode(),
377                          CPIdx, PseudoSourceValue::getConstantPool(),
378                          0, VT, false, false, Alignment);
379  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
380                     PseudoSourceValue::getConstantPool(), 0, false, false,
381                     Alignment);
382}
383
384/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
385static
386SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
387                             const TargetLowering &TLI) {
388  SDValue Chain = ST->getChain();
389  SDValue Ptr = ST->getBasePtr();
390  SDValue Val = ST->getValue();
391  EVT VT = Val.getValueType();
392  int Alignment = ST->getAlignment();
393  int SVOffset = ST->getSrcValueOffset();
394  DebugLoc dl = ST->getDebugLoc();
395  if (ST->getMemoryVT().isFloatingPoint() ||
396      ST->getMemoryVT().isVector()) {
397    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
398    if (TLI.isTypeLegal(intVT)) {
399      // Expand to a bitconvert of the value to the integer type of the
400      // same size, then a (misaligned) int store.
401      // FIXME: Does not handle truncating floating point stores!
402      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
403      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
404                          SVOffset, ST->isVolatile(), ST->isNonTemporal(),
405                          Alignment);
406    } else {
407      // Do a (aligned) store to a stack slot, then copy from the stack slot
408      // to the final destination using (unaligned) integer loads and stores.
409      EVT StoredVT = ST->getMemoryVT();
410      EVT RegVT =
411        TLI.getRegisterType(*DAG.getContext(),
412                            EVT::getIntegerVT(*DAG.getContext(),
413                                              StoredVT.getSizeInBits()));
414      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
415      unsigned RegBytes = RegVT.getSizeInBits() / 8;
416      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
417
418      // Make sure the stack slot is also aligned for the register type.
419      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
420
421      // Perform the original store, only redirected to the stack slot.
422      SDValue Store = DAG.getTruncStore(Chain, dl,
423                                        Val, StackPtr, NULL, 0, StoredVT,
424                                        false, false, 0);
425      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
426      SmallVector<SDValue, 8> Stores;
427      unsigned Offset = 0;
428
429      // Do all but one copies using the full register width.
430      for (unsigned i = 1; i < NumRegs; i++) {
431        // Load one integer register's worth from the stack slot.
432        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0,
433                                   false, false, 0);
434        // Store it to the final location.  Remember the store.
435        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
436                                      ST->getSrcValue(), SVOffset + Offset,
437                                      ST->isVolatile(), ST->isNonTemporal(),
438                                      MinAlign(ST->getAlignment(), Offset)));
439        // Increment the pointers.
440        Offset += RegBytes;
441        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
442                               Increment);
443        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
444      }
445
446      // The last store may be partial.  Do a truncating store.  On big-endian
447      // machines this requires an extending load from the stack slot to ensure
448      // that the bits are in the right place.
449      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
450                                    8 * (StoredBytes - Offset));
451
452      // Load from the stack slot.
453      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
454                                    NULL, 0, MemVT, false, false, 0);
455
456      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
457                                         ST->getSrcValue(), SVOffset + Offset,
458                                         MemVT, ST->isVolatile(),
459                                         ST->isNonTemporal(),
460                                         MinAlign(ST->getAlignment(), Offset)));
461      // The order of the stores doesn't matter - say it with a TokenFactor.
462      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
463                         Stores.size());
464    }
465  }
466  assert(ST->getMemoryVT().isInteger() &&
467         !ST->getMemoryVT().isVector() &&
468         "Unaligned store of unknown type.");
469  // Get the half-size VT
470  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
471  int NumBits = NewStoredVT.getSizeInBits();
472  int IncrementSize = NumBits / 8;
473
474  // Divide the stored value in two parts.
475  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
476  SDValue Lo = Val;
477  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
478
479  // Store the two parts
480  SDValue Store1, Store2;
481  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
482                             ST->getSrcValue(), SVOffset, NewStoredVT,
483                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
484  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
485                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
486  Alignment = MinAlign(Alignment, IncrementSize);
487  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
488                             ST->getSrcValue(), SVOffset + IncrementSize,
489                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
490                             Alignment);
491
492  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
493}
494
495/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
496static
497SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
498                            const TargetLowering &TLI) {
499  int SVOffset = LD->getSrcValueOffset();
500  SDValue Chain = LD->getChain();
501  SDValue Ptr = LD->getBasePtr();
502  EVT VT = LD->getValueType(0);
503  EVT LoadedVT = LD->getMemoryVT();
504  DebugLoc dl = LD->getDebugLoc();
505  if (VT.isFloatingPoint() || VT.isVector()) {
506    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
507    if (TLI.isTypeLegal(intVT)) {
508      // Expand to a (misaligned) integer load of the same size,
509      // then bitconvert to floating point or vector.
510      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
511                                    SVOffset, LD->isVolatile(),
512                                    LD->isNonTemporal(), LD->getAlignment());
513      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
514      if (VT.isFloatingPoint() && LoadedVT != VT)
515        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
516
517      SDValue Ops[] = { Result, Chain };
518      return DAG.getMergeValues(Ops, 2, dl);
519    } else {
520      // Copy the value to a (aligned) stack slot using (unaligned) integer
521      // loads and stores, then do a (aligned) load from the stack slot.
522      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
523      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
524      unsigned RegBytes = RegVT.getSizeInBits() / 8;
525      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
526
527      // Make sure the stack slot is also aligned for the register type.
528      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
529
530      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
531      SmallVector<SDValue, 8> Stores;
532      SDValue StackPtr = StackBase;
533      unsigned Offset = 0;
534
535      // Do all but one copies using the full register width.
536      for (unsigned i = 1; i < NumRegs; i++) {
537        // Load one integer register's worth from the original location.
538        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
539                                   SVOffset + Offset, LD->isVolatile(),
540                                   LD->isNonTemporal(),
541                                   MinAlign(LD->getAlignment(), Offset));
542        // Follow the load with a store to the stack slot.  Remember the store.
543        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
544                                      NULL, 0, false, false, 0));
545        // Increment the pointers.
546        Offset += RegBytes;
547        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
548        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
549                               Increment);
550      }
551
552      // The last copy may be partial.  Do an extending load.
553      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
554                                    8 * (LoadedBytes - Offset));
555      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
556                                    LD->getSrcValue(), SVOffset + Offset,
557                                    MemVT, LD->isVolatile(),
558                                    LD->isNonTemporal(),
559                                    MinAlign(LD->getAlignment(), Offset));
560      // Follow the load with a store to the stack slot.  Remember the store.
561      // On big-endian machines this requires a truncating store to ensure
562      // that the bits end up in the right place.
563      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
564                                         NULL, 0, MemVT, false, false, 0));
565
566      // The order of the stores doesn't matter - say it with a TokenFactor.
567      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
568                               Stores.size());
569
570      // Finally, perform the original load only redirected to the stack slot.
571      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
572                            NULL, 0, LoadedVT, false, false, 0);
573
574      // Callers expect a MERGE_VALUES node.
575      SDValue Ops[] = { Load, TF };
576      return DAG.getMergeValues(Ops, 2, dl);
577    }
578  }
579  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
580         "Unaligned load of unsupported type.");
581
582  // Compute the new VT that is half the size of the old one.  This is an
583  // integer MVT.
584  unsigned NumBits = LoadedVT.getSizeInBits();
585  EVT NewLoadedVT;
586  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
587  NumBits >>= 1;
588
589  unsigned Alignment = LD->getAlignment();
590  unsigned IncrementSize = NumBits / 8;
591  ISD::LoadExtType HiExtType = LD->getExtensionType();
592
593  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
594  if (HiExtType == ISD::NON_EXTLOAD)
595    HiExtType = ISD::ZEXTLOAD;
596
597  // Load the value in two parts
598  SDValue Lo, Hi;
599  if (TLI.isLittleEndian()) {
600    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
601                        SVOffset, NewLoadedVT, LD->isVolatile(),
602                        LD->isNonTemporal(), Alignment);
603    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
604                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
605    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
606                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
607                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
608  } else {
609    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
610                        SVOffset, NewLoadedVT, LD->isVolatile(),
611                        LD->isNonTemporal(), Alignment);
612    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
613                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
614    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
615                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
616                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
617  }
618
619  // aggregate the two parts
620  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
621  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
622  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
623
624  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
625                             Hi.getValue(1));
626
627  SDValue Ops[] = { Result, TF };
628  return DAG.getMergeValues(Ops, 2, dl);
629}
630
631/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
632/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
633/// is necessary to spill the vector being inserted into to memory, perform
634/// the insert there, and then read the result back.
635SDValue SelectionDAGLegalize::
636PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
637                               DebugLoc dl) {
638  SDValue Tmp1 = Vec;
639  SDValue Tmp2 = Val;
640  SDValue Tmp3 = Idx;
641
642  // If the target doesn't support this, we have to spill the input vector
643  // to a temporary stack slot, update the element, then reload it.  This is
644  // badness.  We could also load the value into a vector register (either
645  // with a "move to register" or "extload into register" instruction, then
646  // permute it into place, if the idx is a constant and if the idx is
647  // supported by the target.
648  EVT VT    = Tmp1.getValueType();
649  EVT EltVT = VT.getVectorElementType();
650  EVT IdxVT = Tmp3.getValueType();
651  EVT PtrVT = TLI.getPointerTy();
652  SDValue StackPtr = DAG.CreateStackTemporary(VT);
653
654  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
655
656  // Store the vector.
657  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
658                            PseudoSourceValue::getFixedStack(SPFI), 0,
659                            false, false, 0);
660
661  // Truncate or zero extend offset to target pointer type.
662  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
663  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
664  // Add the offset to the index.
665  unsigned EltSize = EltVT.getSizeInBits()/8;
666  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
667  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
668  // Store the scalar value.
669  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
670                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT,
671                         false, false, 0);
672  // Load the updated vector.
673  return DAG.getLoad(VT, dl, Ch, StackPtr,
674                     PseudoSourceValue::getFixedStack(SPFI), 0,
675                     false, false, 0);
676}
677
678
679SDValue SelectionDAGLegalize::
680ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
681  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
682    // SCALAR_TO_VECTOR requires that the type of the value being inserted
683    // match the element type of the vector being created, except for
684    // integers in which case the inserted value can be over width.
685    EVT EltVT = Vec.getValueType().getVectorElementType();
686    if (Val.getValueType() == EltVT ||
687        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
688      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
689                                  Vec.getValueType(), Val);
690
691      unsigned NumElts = Vec.getValueType().getVectorNumElements();
692      // We generate a shuffle of InVec and ScVec, so the shuffle mask
693      // should be 0,1,2,3,4,5... with the appropriate element replaced with
694      // elt 0 of the RHS.
695      SmallVector<int, 8> ShufOps;
696      for (unsigned i = 0; i != NumElts; ++i)
697        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
698
699      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
700                                  &ShufOps[0]);
701    }
702  }
703  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
704}
705
706SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
707  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
708  // FIXME: We shouldn't do this for TargetConstantFP's.
709  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
710  // to phase ordering between legalized code and the dag combiner.  This
711  // probably means that we need to integrate dag combiner and legalizer
712  // together.
713  // We generally can't do this one for long doubles.
714  SDValue Tmp1 = ST->getChain();
715  SDValue Tmp2 = ST->getBasePtr();
716  SDValue Tmp3;
717  int SVOffset = ST->getSrcValueOffset();
718  unsigned Alignment = ST->getAlignment();
719  bool isVolatile = ST->isVolatile();
720  bool isNonTemporal = ST->isNonTemporal();
721  DebugLoc dl = ST->getDebugLoc();
722  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
723    if (CFP->getValueType(0) == MVT::f32 &&
724        getTypeAction(MVT::i32) == Legal) {
725      Tmp3 = DAG.getConstant(CFP->getValueAPF().
726                                      bitcastToAPInt().zextOrTrunc(32),
727                              MVT::i32);
728      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
729                          SVOffset, isVolatile, isNonTemporal, Alignment);
730    } else if (CFP->getValueType(0) == MVT::f64) {
731      // If this target supports 64-bit registers, do a single 64-bit store.
732      if (getTypeAction(MVT::i64) == Legal) {
733        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
734                                  zextOrTrunc(64), MVT::i64);
735        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
736                            SVOffset, isVolatile, isNonTemporal, Alignment);
737      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
738        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
739        // stores.  If the target supports neither 32- nor 64-bits, this
740        // xform is certainly not worth it.
741        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
742        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
743        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
744        if (TLI.isBigEndian()) std::swap(Lo, Hi);
745
746        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
747                          SVOffset, isVolatile, isNonTemporal, Alignment);
748        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
749                            DAG.getIntPtrConstant(4));
750        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
751                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
752
753        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
754      }
755    }
756  }
757  return SDValue();
758}
759
760/// LegalizeOp - We know that the specified value has a legal type, and
761/// that its operands are legal.  Now ensure that the operation itself
762/// is legal, recursively ensuring that the operands' operations remain
763/// legal.
764SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
765  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
766    return Op;
767
768  SDNode *Node = Op.getNode();
769  DebugLoc dl = Node->getDebugLoc();
770
771  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
772    assert(getTypeAction(Node->getValueType(i)) == Legal &&
773           "Unexpected illegal type!");
774
775  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
776    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
777            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
778           "Unexpected illegal type!");
779
780  // Note that LegalizeOp may be reentered even from single-use nodes, which
781  // means that we always must cache transformed nodes.
782  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
783  if (I != LegalizedNodes.end()) return I->second;
784
785  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
786  SDValue Result = Op;
787  bool isCustom = false;
788
789  // Figure out the correct action; the way to query this varies by opcode
790  TargetLowering::LegalizeAction Action;
791  bool SimpleFinishLegalizing = true;
792  switch (Node->getOpcode()) {
793  case ISD::INTRINSIC_W_CHAIN:
794  case ISD::INTRINSIC_WO_CHAIN:
795  case ISD::INTRINSIC_VOID:
796  case ISD::VAARG:
797  case ISD::STACKSAVE:
798    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
799    break;
800  case ISD::SINT_TO_FP:
801  case ISD::UINT_TO_FP:
802  case ISD::EXTRACT_VECTOR_ELT:
803    Action = TLI.getOperationAction(Node->getOpcode(),
804                                    Node->getOperand(0).getValueType());
805    break;
806  case ISD::FP_ROUND_INREG:
807  case ISD::SIGN_EXTEND_INREG: {
808    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
809    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
810    break;
811  }
812  case ISD::SELECT_CC:
813  case ISD::SETCC:
814  case ISD::BR_CC: {
815    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
816                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
817    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
818    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
819    ISD::CondCode CCCode =
820        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
821    Action = TLI.getCondCodeAction(CCCode, OpVT);
822    if (Action == TargetLowering::Legal) {
823      if (Node->getOpcode() == ISD::SELECT_CC)
824        Action = TLI.getOperationAction(Node->getOpcode(),
825                                        Node->getValueType(0));
826      else
827        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
828    }
829    break;
830  }
831  case ISD::LOAD:
832  case ISD::STORE:
833    // FIXME: Model these properly.  LOAD and STORE are complicated, and
834    // STORE expects the unlegalized operand in some cases.
835    SimpleFinishLegalizing = false;
836    break;
837  case ISD::CALLSEQ_START:
838  case ISD::CALLSEQ_END:
839    // FIXME: This shouldn't be necessary.  These nodes have special properties
840    // dealing with the recursive nature of legalization.  Removing this
841    // special case should be done as part of making LegalizeDAG non-recursive.
842    SimpleFinishLegalizing = false;
843    break;
844  case ISD::EXTRACT_ELEMENT:
845  case ISD::FLT_ROUNDS_:
846  case ISD::SADDO:
847  case ISD::SSUBO:
848  case ISD::UADDO:
849  case ISD::USUBO:
850  case ISD::SMULO:
851  case ISD::UMULO:
852  case ISD::FPOWI:
853  case ISD::MERGE_VALUES:
854  case ISD::EH_RETURN:
855  case ISD::FRAME_TO_ARGS_OFFSET:
856    // These operations lie about being legal: when they claim to be legal,
857    // they should actually be expanded.
858    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
859    if (Action == TargetLowering::Legal)
860      Action = TargetLowering::Expand;
861    break;
862  case ISD::TRAMPOLINE:
863  case ISD::FRAMEADDR:
864  case ISD::RETURNADDR:
865  case ISD::EH_SJLJ_SETJMP:
866  case ISD::EH_SJLJ_LONGJMP:
867    // These operations lie about being legal: when they claim to be legal,
868    // they should actually be custom-lowered.
869    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
870    if (Action == TargetLowering::Legal)
871      Action = TargetLowering::Custom;
872    break;
873  case ISD::BUILD_VECTOR:
874    // A weird case: legalization for BUILD_VECTOR never legalizes the
875    // operands!
876    // FIXME: This really sucks... changing it isn't semantically incorrect,
877    // but it massively pessimizes the code for floating-point BUILD_VECTORs
878    // because ConstantFP operands get legalized into constant pool loads
879    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
880    // though, because BUILD_VECTORS usually get lowered into other nodes
881    // which get legalized properly.
882    SimpleFinishLegalizing = false;
883    break;
884  default:
885    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
886      Action = TargetLowering::Legal;
887    } else {
888      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
889    }
890    break;
891  }
892
893  if (SimpleFinishLegalizing) {
894    SmallVector<SDValue, 8> Ops, ResultVals;
895    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
896      Ops.push_back(LegalizeOp(Node->getOperand(i)));
897    switch (Node->getOpcode()) {
898    default: break;
899    case ISD::BR:
900    case ISD::BRIND:
901    case ISD::BR_JT:
902    case ISD::BR_CC:
903    case ISD::BRCOND:
904      // Branches tweak the chain to include LastCALLSEQ_END
905      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
906                            LastCALLSEQ_END);
907      Ops[0] = LegalizeOp(Ops[0]);
908      LastCALLSEQ_END = DAG.getEntryNode();
909      break;
910    case ISD::SHL:
911    case ISD::SRL:
912    case ISD::SRA:
913    case ISD::ROTL:
914    case ISD::ROTR:
915      // Legalizing shifts/rotates requires adjusting the shift amount
916      // to the appropriate width.
917      if (!Ops[1].getValueType().isVector())
918        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
919      break;
920    case ISD::SRL_PARTS:
921    case ISD::SRA_PARTS:
922    case ISD::SHL_PARTS:
923      // Legalizing shifts/rotates requires adjusting the shift amount
924      // to the appropriate width.
925      if (!Ops[2].getValueType().isVector())
926        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
927      break;
928    }
929
930    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
931                                    Ops.size());
932    switch (Action) {
933    case TargetLowering::Legal:
934      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
935        ResultVals.push_back(Result.getValue(i));
936      break;
937    case TargetLowering::Custom:
938      // FIXME: The handling for custom lowering with multiple results is
939      // a complete mess.
940      Tmp1 = TLI.LowerOperation(Result, DAG);
941      if (Tmp1.getNode()) {
942        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
943          if (e == 1)
944            ResultVals.push_back(Tmp1);
945          else
946            ResultVals.push_back(Tmp1.getValue(i));
947        }
948        break;
949      }
950
951      // FALL THROUGH
952    case TargetLowering::Expand:
953      ExpandNode(Result.getNode(), ResultVals);
954      break;
955    case TargetLowering::Promote:
956      PromoteNode(Result.getNode(), ResultVals);
957      break;
958    }
959    if (!ResultVals.empty()) {
960      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
961        if (ResultVals[i] != SDValue(Node, i))
962          ResultVals[i] = LegalizeOp(ResultVals[i]);
963        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
964      }
965      return ResultVals[Op.getResNo()];
966    }
967  }
968
969  switch (Node->getOpcode()) {
970  default:
971#ifndef NDEBUG
972    dbgs() << "NODE: ";
973    Node->dump( &DAG);
974    dbgs() << "\n";
975#endif
976    assert(0 && "Do not know how to legalize this operator!");
977
978  case ISD::BUILD_VECTOR:
979    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
980    default: assert(0 && "This action is not supported yet!");
981    case TargetLowering::Custom:
982      Tmp3 = TLI.LowerOperation(Result, DAG);
983      if (Tmp3.getNode()) {
984        Result = Tmp3;
985        break;
986      }
987      // FALLTHROUGH
988    case TargetLowering::Expand:
989      Result = ExpandBUILD_VECTOR(Result.getNode());
990      break;
991    }
992    break;
993  case ISD::CALLSEQ_START: {
994    SDNode *CallEnd = FindCallEndFromCallStart(Node);
995
996    // Recursively Legalize all of the inputs of the call end that do not lead
997    // to this call start.  This ensures that any libcalls that need be inserted
998    // are inserted *before* the CALLSEQ_START.
999    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1000    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1001      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1002                                   NodesLeadingTo);
1003    }
1004
1005    // Now that we legalized all of the inputs (which may have inserted
1006    // libcalls) create the new CALLSEQ_START node.
1007    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1008
1009    // Merge in the last call, to ensure that this call start after the last
1010    // call ended.
1011    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1012      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1013                         Tmp1, LastCALLSEQ_END);
1014      Tmp1 = LegalizeOp(Tmp1);
1015    }
1016
1017    // Do not try to legalize the target-specific arguments (#1+).
1018    if (Tmp1 != Node->getOperand(0)) {
1019      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1020      Ops[0] = Tmp1;
1021      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1022    }
1023
1024    // Remember that the CALLSEQ_START is legalized.
1025    AddLegalizedOperand(Op.getValue(0), Result);
1026    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1027      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1028
1029    // Now that the callseq_start and all of the non-call nodes above this call
1030    // sequence have been legalized, legalize the call itself.  During this
1031    // process, no libcalls can/will be inserted, guaranteeing that no calls
1032    // can overlap.
1033    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1034    // Note that we are selecting this call!
1035    LastCALLSEQ_END = SDValue(CallEnd, 0);
1036    IsLegalizingCall = true;
1037
1038    // Legalize the call, starting from the CALLSEQ_END.
1039    LegalizeOp(LastCALLSEQ_END);
1040    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1041    return Result;
1042  }
1043  case ISD::CALLSEQ_END:
1044    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1045    // will cause this node to be legalized as well as handling libcalls right.
1046    if (LastCALLSEQ_END.getNode() != Node) {
1047      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1048      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1049      assert(I != LegalizedNodes.end() &&
1050             "Legalizing the call start should have legalized this node!");
1051      return I->second;
1052    }
1053
1054    // Otherwise, the call start has been legalized and everything is going
1055    // according to plan.  Just legalize ourselves normally here.
1056    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1057    // Do not try to legalize the target-specific arguments (#1+), except for
1058    // an optional flag input.
1059    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1060      if (Tmp1 != Node->getOperand(0)) {
1061        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1062        Ops[0] = Tmp1;
1063        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1064      }
1065    } else {
1066      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1067      if (Tmp1 != Node->getOperand(0) ||
1068          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1069        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1070        Ops[0] = Tmp1;
1071        Ops.back() = Tmp2;
1072        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1073      }
1074    }
1075    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1076    // This finishes up call legalization.
1077    IsLegalizingCall = false;
1078
1079    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1080    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1081    if (Node->getNumValues() == 2)
1082      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1083    return Result.getValue(Op.getResNo());
1084  case ISD::LOAD: {
1085    LoadSDNode *LD = cast<LoadSDNode>(Node);
1086    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1087    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1088
1089    ISD::LoadExtType ExtType = LD->getExtensionType();
1090    if (ExtType == ISD::NON_EXTLOAD) {
1091      EVT VT = Node->getValueType(0);
1092      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1093      Tmp3 = Result.getValue(0);
1094      Tmp4 = Result.getValue(1);
1095
1096      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1097      default: assert(0 && "This action is not supported yet!");
1098      case TargetLowering::Legal:
1099        // If this is an unaligned load and the target doesn't support it,
1100        // expand it.
1101        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1102          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1103          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1104          if (LD->getAlignment() < ABIAlignment){
1105            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1106                                         DAG, TLI);
1107            Tmp3 = Result.getOperand(0);
1108            Tmp4 = Result.getOperand(1);
1109            Tmp3 = LegalizeOp(Tmp3);
1110            Tmp4 = LegalizeOp(Tmp4);
1111          }
1112        }
1113        break;
1114      case TargetLowering::Custom:
1115        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1116        if (Tmp1.getNode()) {
1117          Tmp3 = LegalizeOp(Tmp1);
1118          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1119        }
1120        break;
1121      case TargetLowering::Promote: {
1122        // Only promote a load of vector type to another.
1123        assert(VT.isVector() && "Cannot promote this load!");
1124        // Change base type to a different vector type.
1125        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1126
1127        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1128                           LD->getSrcValueOffset(),
1129                           LD->isVolatile(), LD->isNonTemporal(),
1130                           LD->getAlignment());
1131        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1132        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1133        break;
1134      }
1135      }
1136      // Since loads produce two values, make sure to remember that we
1137      // legalized both of them.
1138      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1139      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1140      return Op.getResNo() ? Tmp4 : Tmp3;
1141    } else {
1142      EVT SrcVT = LD->getMemoryVT();
1143      unsigned SrcWidth = SrcVT.getSizeInBits();
1144      int SVOffset = LD->getSrcValueOffset();
1145      unsigned Alignment = LD->getAlignment();
1146      bool isVolatile = LD->isVolatile();
1147      bool isNonTemporal = LD->isNonTemporal();
1148
1149      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1150          // Some targets pretend to have an i1 loading operation, and actually
1151          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1152          // bits are guaranteed to be zero; it helps the optimizers understand
1153          // that these bits are zero.  It is also useful for EXTLOAD, since it
1154          // tells the optimizers that those bits are undefined.  It would be
1155          // nice to have an effective generic way of getting these benefits...
1156          // Until such a way is found, don't insist on promoting i1 here.
1157          (SrcVT != MVT::i1 ||
1158           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1159        // Promote to a byte-sized load if not loading an integral number of
1160        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1161        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1162        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1163        SDValue Ch;
1164
1165        // The extra bits are guaranteed to be zero, since we stored them that
1166        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1167
1168        ISD::LoadExtType NewExtType =
1169          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1170
1171        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1172                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1173                                NVT, isVolatile, isNonTemporal, Alignment);
1174
1175        Ch = Result.getValue(1); // The chain.
1176
1177        if (ExtType == ISD::SEXTLOAD)
1178          // Having the top bits zero doesn't help when sign extending.
1179          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1180                               Result.getValueType(),
1181                               Result, DAG.getValueType(SrcVT));
1182        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1183          // All the top bits are guaranteed to be zero - inform the optimizers.
1184          Result = DAG.getNode(ISD::AssertZext, dl,
1185                               Result.getValueType(), Result,
1186                               DAG.getValueType(SrcVT));
1187
1188        Tmp1 = LegalizeOp(Result);
1189        Tmp2 = LegalizeOp(Ch);
1190      } else if (SrcWidth & (SrcWidth - 1)) {
1191        // If not loading a power-of-2 number of bits, expand as two loads.
1192        assert(!SrcVT.isVector() && "Unsupported extload!");
1193        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1194        assert(RoundWidth < SrcWidth);
1195        unsigned ExtraWidth = SrcWidth - RoundWidth;
1196        assert(ExtraWidth < RoundWidth);
1197        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1198               "Load size not an integral number of bytes!");
1199        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1200        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1201        SDValue Lo, Hi, Ch;
1202        unsigned IncrementSize;
1203
1204        if (TLI.isLittleEndian()) {
1205          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1206          // Load the bottom RoundWidth bits.
1207          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1208                              Node->getValueType(0), Tmp1, Tmp2,
1209                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1210                              isNonTemporal, Alignment);
1211
1212          // Load the remaining ExtraWidth bits.
1213          IncrementSize = RoundWidth / 8;
1214          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1215                             DAG.getIntPtrConstant(IncrementSize));
1216          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1217                              LD->getSrcValue(), SVOffset + IncrementSize,
1218                              ExtraVT, isVolatile, isNonTemporal,
1219                              MinAlign(Alignment, IncrementSize));
1220
1221          // Build a factor node to remember that this load is independent of the
1222          // other one.
1223          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1224                           Hi.getValue(1));
1225
1226          // Move the top bits to the right place.
1227          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1228                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1229
1230          // Join the hi and lo parts.
1231          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1232        } else {
1233          // Big endian - avoid unaligned loads.
1234          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1235          // Load the top RoundWidth bits.
1236          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1237                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1238                              isNonTemporal, Alignment);
1239
1240          // Load the remaining ExtraWidth bits.
1241          IncrementSize = RoundWidth / 8;
1242          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1243                             DAG.getIntPtrConstant(IncrementSize));
1244          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1245                              Node->getValueType(0), Tmp1, Tmp2,
1246                              LD->getSrcValue(), SVOffset + IncrementSize,
1247                              ExtraVT, isVolatile, isNonTemporal,
1248                              MinAlign(Alignment, IncrementSize));
1249
1250          // Build a factor node to remember that this load is independent of the
1251          // other one.
1252          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1253                           Hi.getValue(1));
1254
1255          // Move the top bits to the right place.
1256          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1257                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1258
1259          // Join the hi and lo parts.
1260          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1261        }
1262
1263        Tmp1 = LegalizeOp(Result);
1264        Tmp2 = LegalizeOp(Ch);
1265      } else {
1266        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1267        default: assert(0 && "This action is not supported yet!");
1268        case TargetLowering::Custom:
1269          isCustom = true;
1270          // FALLTHROUGH
1271        case TargetLowering::Legal:
1272          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1273          Tmp1 = Result.getValue(0);
1274          Tmp2 = Result.getValue(1);
1275
1276          if (isCustom) {
1277            Tmp3 = TLI.LowerOperation(Result, DAG);
1278            if (Tmp3.getNode()) {
1279              Tmp1 = LegalizeOp(Tmp3);
1280              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1281            }
1282          } else {
1283            // If this is an unaligned load and the target doesn't support it,
1284            // expand it.
1285            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1286              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1287              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1288              if (LD->getAlignment() < ABIAlignment){
1289                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1290                                             DAG, TLI);
1291                Tmp1 = Result.getOperand(0);
1292                Tmp2 = Result.getOperand(1);
1293                Tmp1 = LegalizeOp(Tmp1);
1294                Tmp2 = LegalizeOp(Tmp2);
1295              }
1296            }
1297          }
1298          break;
1299        case TargetLowering::Expand:
1300          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1301          // f128 = EXTLOAD {f32,f64} too
1302          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1303                                     Node->getValueType(0) == MVT::f128)) ||
1304              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1305            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1306                                       LD->getSrcValueOffset(),
1307                                       LD->isVolatile(), LD->isNonTemporal(),
1308                                       LD->getAlignment());
1309            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1310                                 Node->getValueType(0), Load);
1311            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1312            Tmp2 = LegalizeOp(Load.getValue(1));
1313            break;
1314          }
1315          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1316          // Turn the unsupported load into an EXTLOAD followed by an explicit
1317          // zero/sign extend inreg.
1318          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1319                                  Tmp1, Tmp2, LD->getSrcValue(),
1320                                  LD->getSrcValueOffset(), SrcVT,
1321                                  LD->isVolatile(), LD->isNonTemporal(),
1322                                  LD->getAlignment());
1323          SDValue ValRes;
1324          if (ExtType == ISD::SEXTLOAD)
1325            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1326                                 Result.getValueType(),
1327                                 Result, DAG.getValueType(SrcVT));
1328          else
1329            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1330          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1331          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1332          break;
1333        }
1334      }
1335
1336      // Since loads produce two values, make sure to remember that we legalized
1337      // both of them.
1338      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1339      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1340      return Op.getResNo() ? Tmp2 : Tmp1;
1341    }
1342  }
1343  case ISD::STORE: {
1344    StoreSDNode *ST = cast<StoreSDNode>(Node);
1345    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1346    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1347    int SVOffset = ST->getSrcValueOffset();
1348    unsigned Alignment = ST->getAlignment();
1349    bool isVolatile = ST->isVolatile();
1350    bool isNonTemporal = ST->isNonTemporal();
1351
1352    if (!ST->isTruncatingStore()) {
1353      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1354        Result = SDValue(OptStore, 0);
1355        break;
1356      }
1357
1358      {
1359        Tmp3 = LegalizeOp(ST->getValue());
1360        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1361                                        ST->getOffset());
1362
1363        EVT VT = Tmp3.getValueType();
1364        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1365        default: assert(0 && "This action is not supported yet!");
1366        case TargetLowering::Legal:
1367          // If this is an unaligned store and the target doesn't support it,
1368          // expand it.
1369          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1370            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1371            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1372            if (ST->getAlignment() < ABIAlignment)
1373              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1374                                            DAG, TLI);
1375          }
1376          break;
1377        case TargetLowering::Custom:
1378          Tmp1 = TLI.LowerOperation(Result, DAG);
1379          if (Tmp1.getNode()) Result = Tmp1;
1380          break;
1381        case TargetLowering::Promote:
1382          assert(VT.isVector() && "Unknown legal promote case!");
1383          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1384                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1385          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1386                                ST->getSrcValue(), SVOffset, isVolatile,
1387                                isNonTemporal, Alignment);
1388          break;
1389        }
1390        break;
1391      }
1392    } else {
1393      Tmp3 = LegalizeOp(ST->getValue());
1394
1395      EVT StVT = ST->getMemoryVT();
1396      unsigned StWidth = StVT.getSizeInBits();
1397
1398      if (StWidth != StVT.getStoreSizeInBits()) {
1399        // Promote to a byte-sized store with upper bits zero if not
1400        // storing an integral number of bytes.  For example, promote
1401        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1402        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1403                                    StVT.getStoreSizeInBits());
1404        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1405        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1406                                   SVOffset, NVT, isVolatile, isNonTemporal,
1407                                   Alignment);
1408      } else if (StWidth & (StWidth - 1)) {
1409        // If not storing a power-of-2 number of bits, expand as two stores.
1410        assert(!StVT.isVector() && "Unsupported truncstore!");
1411        unsigned RoundWidth = 1 << Log2_32(StWidth);
1412        assert(RoundWidth < StWidth);
1413        unsigned ExtraWidth = StWidth - RoundWidth;
1414        assert(ExtraWidth < RoundWidth);
1415        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1416               "Store size not an integral number of bytes!");
1417        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1418        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1419        SDValue Lo, Hi;
1420        unsigned IncrementSize;
1421
1422        if (TLI.isLittleEndian()) {
1423          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1424          // Store the bottom RoundWidth bits.
1425          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1426                                 SVOffset, RoundVT,
1427                                 isVolatile, isNonTemporal, Alignment);
1428
1429          // Store the remaining ExtraWidth bits.
1430          IncrementSize = RoundWidth / 8;
1431          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1432                             DAG.getIntPtrConstant(IncrementSize));
1433          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1434                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1435          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1436                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1437                                 isNonTemporal,
1438                                 MinAlign(Alignment, IncrementSize));
1439        } else {
1440          // Big endian - avoid unaligned stores.
1441          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1442          // Store the top RoundWidth bits.
1443          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1444                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1445          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1446                                 SVOffset, RoundVT, isVolatile, isNonTemporal,
1447                                 Alignment);
1448
1449          // Store the remaining ExtraWidth bits.
1450          IncrementSize = RoundWidth / 8;
1451          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1452                             DAG.getIntPtrConstant(IncrementSize));
1453          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1454                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1455                                 isNonTemporal,
1456                                 MinAlign(Alignment, IncrementSize));
1457        }
1458
1459        // The order of the stores doesn't matter.
1460        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1461      } else {
1462        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1463            Tmp2 != ST->getBasePtr())
1464          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1465                                          ST->getOffset());
1466
1467        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1468        default: assert(0 && "This action is not supported yet!");
1469        case TargetLowering::Legal:
1470          // If this is an unaligned store and the target doesn't support it,
1471          // expand it.
1472          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1473            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1474            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1475            if (ST->getAlignment() < ABIAlignment)
1476              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1477                                            DAG, TLI);
1478          }
1479          break;
1480        case TargetLowering::Custom:
1481          Result = TLI.LowerOperation(Result, DAG);
1482          break;
1483        case Expand:
1484          // TRUNCSTORE:i16 i32 -> STORE i16
1485          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1486          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1487          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1488                                SVOffset, isVolatile, isNonTemporal,
1489                                Alignment);
1490          break;
1491        }
1492      }
1493    }
1494    break;
1495  }
1496  }
1497  assert(Result.getValueType() == Op.getValueType() &&
1498         "Bad legalization!");
1499
1500  // Make sure that the generated code is itself legal.
1501  if (Result != Op)
1502    Result = LegalizeOp(Result);
1503
1504  // Note that LegalizeOp may be reentered even from single-use nodes, which
1505  // means that we always must cache transformed nodes.
1506  AddLegalizedOperand(Op, Result);
1507  return Result;
1508}
1509
1510SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1511  SDValue Vec = Op.getOperand(0);
1512  SDValue Idx = Op.getOperand(1);
1513  DebugLoc dl = Op.getDebugLoc();
1514  // Store the value to a temporary stack slot, then LOAD the returned part.
1515  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1516  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1517                            false, false, 0);
1518
1519  // Add the offset to the index.
1520  unsigned EltSize =
1521      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1522  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1523                    DAG.getConstant(EltSize, Idx.getValueType()));
1524
1525  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1526    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1527  else
1528    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1529
1530  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1531
1532  if (Op.getValueType().isVector())
1533    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0,
1534                       false, false, 0);
1535  else
1536    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1537                          NULL, 0, Vec.getValueType().getVectorElementType(),
1538                          false, false, 0);
1539}
1540
1541SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1542  // We can't handle this case efficiently.  Allocate a sufficiently
1543  // aligned object on the stack, store each element into it, then load
1544  // the result as a vector.
1545  // Create the stack frame object.
1546  EVT VT = Node->getValueType(0);
1547  EVT EltVT = VT.getVectorElementType();
1548  DebugLoc dl = Node->getDebugLoc();
1549  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1550  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1551  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1552
1553  // Emit a store of each element to the stack slot.
1554  SmallVector<SDValue, 8> Stores;
1555  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1556  // Store (in the right endianness) the elements to memory.
1557  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1558    // Ignore undef elements.
1559    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1560
1561    unsigned Offset = TypeByteSize*i;
1562
1563    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1564    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1565
1566    // If the destination vector element type is narrower than the source
1567    // element type, only store the bits necessary.
1568    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1569      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1570                                         Node->getOperand(i), Idx, SV, Offset,
1571                                         EltVT, false, false, 0));
1572    } else
1573      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1574                                    Node->getOperand(i), Idx, SV, Offset,
1575                                    false, false, 0));
1576  }
1577
1578  SDValue StoreChain;
1579  if (!Stores.empty())    // Not all undef elements?
1580    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1581                             &Stores[0], Stores.size());
1582  else
1583    StoreChain = DAG.getEntryNode();
1584
1585  // Result is a load from the stack slot.
1586  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0);
1587}
1588
1589SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1590  DebugLoc dl = Node->getDebugLoc();
1591  SDValue Tmp1 = Node->getOperand(0);
1592  SDValue Tmp2 = Node->getOperand(1);
1593
1594  // Get the sign bit of the RHS.  First obtain a value that has the same
1595  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1596  SDValue SignBit;
1597  EVT FloatVT = Tmp2.getValueType();
1598  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1599  if (isTypeLegal(IVT)) {
1600    // Convert to an integer with the same sign bit.
1601    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1602  } else {
1603    // Store the float to memory, then load the sign part out as an integer.
1604    MVT LoadTy = TLI.getPointerTy();
1605    // First create a temporary that is aligned for both the load and store.
1606    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1607    // Then store the float to it.
1608    SDValue Ch =
1609      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1610                   false, false, 0);
1611    if (TLI.isBigEndian()) {
1612      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1613      // Load out a legal integer with the same sign bit as the float.
1614      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, NULL, 0, false, false, 0);
1615    } else { // Little endian
1616      SDValue LoadPtr = StackPtr;
1617      // The float may be wider than the integer we are going to load.  Advance
1618      // the pointer so that the loaded integer will contain the sign bit.
1619      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1620      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1621      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1622                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1623      // Load a legal integer containing the sign bit.
1624      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, NULL, 0, false, false, 0);
1625      // Move the sign bit to the top bit of the loaded integer.
1626      unsigned BitShift = LoadTy.getSizeInBits() -
1627        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1628      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1629      if (BitShift)
1630        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1631                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1632    }
1633  }
1634  // Now get the sign bit proper, by seeing whether the value is negative.
1635  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1636                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1637                         ISD::SETLT);
1638  // Get the absolute value of the result.
1639  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1640  // Select between the nabs and abs value based on the sign bit of
1641  // the input.
1642  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1643                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1644                     AbsVal);
1645}
1646
1647void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1648                                           SmallVectorImpl<SDValue> &Results) {
1649  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1650  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1651          " not tell us which reg is the stack pointer!");
1652  DebugLoc dl = Node->getDebugLoc();
1653  EVT VT = Node->getValueType(0);
1654  SDValue Tmp1 = SDValue(Node, 0);
1655  SDValue Tmp2 = SDValue(Node, 1);
1656  SDValue Tmp3 = Node->getOperand(2);
1657  SDValue Chain = Tmp1.getOperand(0);
1658
1659  // Chain the dynamic stack allocation so that it doesn't modify the stack
1660  // pointer when other instructions are using the stack.
1661  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1662
1663  SDValue Size  = Tmp2.getOperand(1);
1664  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1665  Chain = SP.getValue(1);
1666  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1667  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1668  if (Align > StackAlign)
1669    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1670                      DAG.getConstant(-(uint64_t)Align, VT));
1671  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1672  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1673
1674  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1675                            DAG.getIntPtrConstant(0, true), SDValue());
1676
1677  Results.push_back(Tmp1);
1678  Results.push_back(Tmp2);
1679}
1680
1681/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1682/// condition code CC on the current target. This routine expands SETCC with
1683/// illegal condition code into AND / OR of multiple SETCC values.
1684void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1685                                                 SDValue &LHS, SDValue &RHS,
1686                                                 SDValue &CC,
1687                                                 DebugLoc dl) {
1688  EVT OpVT = LHS.getValueType();
1689  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1690  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1691  default: assert(0 && "Unknown condition code action!");
1692  case TargetLowering::Legal:
1693    // Nothing to do.
1694    break;
1695  case TargetLowering::Expand: {
1696    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1697    unsigned Opc = 0;
1698    switch (CCCode) {
1699    default: assert(0 && "Don't know how to expand this condition!");
1700    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1701    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1702    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1703    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1704    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1705    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1706    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1707    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1708    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1709    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1710    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1711    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1712    // FIXME: Implement more expansions.
1713    }
1714
1715    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1716    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1717    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1718    RHS = SDValue();
1719    CC  = SDValue();
1720    break;
1721  }
1722  }
1723}
1724
1725/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1726/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1727/// a load from the stack slot to DestVT, extending it if needed.
1728/// The resultant code need not be legal.
1729SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1730                                               EVT SlotVT,
1731                                               EVT DestVT,
1732                                               DebugLoc dl) {
1733  // Create the stack frame object.
1734  unsigned SrcAlign =
1735    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1736                                              getTypeForEVT(*DAG.getContext()));
1737  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1738
1739  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1740  int SPFI = StackPtrFI->getIndex();
1741  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1742
1743  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1744  unsigned SlotSize = SlotVT.getSizeInBits();
1745  unsigned DestSize = DestVT.getSizeInBits();
1746  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1747  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1748
1749  // Emit a store to the stack slot.  Use a truncstore if the input value is
1750  // later than DestVT.
1751  SDValue Store;
1752
1753  if (SrcSize > SlotSize)
1754    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1755                              SV, 0, SlotVT, false, false, SrcAlign);
1756  else {
1757    assert(SrcSize == SlotSize && "Invalid store");
1758    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1759                         SV, 0, false, false, SrcAlign);
1760  }
1761
1762  // Result is a load from the stack slot.
1763  if (SlotSize == DestSize)
1764    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false,
1765                       DestAlign);
1766
1767  assert(SlotSize < DestSize && "Unknown extension!");
1768  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1769                        false, false, DestAlign);
1770}
1771
1772SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1773  DebugLoc dl = Node->getDebugLoc();
1774  // Create a vector sized/aligned stack slot, store the value to element #0,
1775  // then load the whole vector back out.
1776  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1777
1778  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1779  int SPFI = StackPtrFI->getIndex();
1780
1781  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1782                                 StackPtr,
1783                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1784                                 Node->getValueType(0).getVectorElementType(),
1785                                 false, false, 0);
1786  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1787                     PseudoSourceValue::getFixedStack(SPFI), 0,
1788                     false, false, 0);
1789}
1790
1791
1792/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1793/// support the operation, but do support the resultant vector type.
1794SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1795  unsigned NumElems = Node->getNumOperands();
1796  SDValue Value1, Value2;
1797  DebugLoc dl = Node->getDebugLoc();
1798  EVT VT = Node->getValueType(0);
1799  EVT OpVT = Node->getOperand(0).getValueType();
1800  EVT EltVT = VT.getVectorElementType();
1801
1802  // If the only non-undef value is the low element, turn this into a
1803  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1804  bool isOnlyLowElement = true;
1805  bool MoreThanTwoValues = false;
1806  bool isConstant = true;
1807  for (unsigned i = 0; i < NumElems; ++i) {
1808    SDValue V = Node->getOperand(i);
1809    if (V.getOpcode() == ISD::UNDEF)
1810      continue;
1811    if (i > 0)
1812      isOnlyLowElement = false;
1813    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1814      isConstant = false;
1815
1816    if (!Value1.getNode()) {
1817      Value1 = V;
1818    } else if (!Value2.getNode()) {
1819      if (V != Value1)
1820        Value2 = V;
1821    } else if (V != Value1 && V != Value2) {
1822      MoreThanTwoValues = true;
1823    }
1824  }
1825
1826  if (!Value1.getNode())
1827    return DAG.getUNDEF(VT);
1828
1829  if (isOnlyLowElement)
1830    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1831
1832  // If all elements are constants, create a load from the constant pool.
1833  if (isConstant) {
1834    std::vector<Constant*> CV;
1835    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1836      if (ConstantFPSDNode *V =
1837          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1838        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1839      } else if (ConstantSDNode *V =
1840                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1841        if (OpVT==EltVT)
1842          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1843        else {
1844          // If OpVT and EltVT don't match, EltVT is not legal and the
1845          // element values have been promoted/truncated earlier.  Undo this;
1846          // we don't want a v16i8 to become a v16i32 for example.
1847          const ConstantInt *CI = V->getConstantIntValue();
1848          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1849                                        CI->getZExtValue()));
1850        }
1851      } else {
1852        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1853        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1854        CV.push_back(UndefValue::get(OpNTy));
1855      }
1856    }
1857    Constant *CP = ConstantVector::get(CV);
1858    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1859    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1860    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1861                       PseudoSourceValue::getConstantPool(), 0,
1862                       false, false, Alignment);
1863  }
1864
1865  if (!MoreThanTwoValues) {
1866    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1867    for (unsigned i = 0; i < NumElems; ++i) {
1868      SDValue V = Node->getOperand(i);
1869      if (V.getOpcode() == ISD::UNDEF)
1870        continue;
1871      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1872    }
1873    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1874      // Get the splatted value into the low element of a vector register.
1875      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1876      SDValue Vec2;
1877      if (Value2.getNode())
1878        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1879      else
1880        Vec2 = DAG.getUNDEF(VT);
1881
1882      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1883      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1884    }
1885  }
1886
1887  // Otherwise, we can't handle this case efficiently.
1888  return ExpandVectorBuildThroughStack(Node);
1889}
1890
1891// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1892// does not fit into a register, return the lo part and set the hi part to the
1893// by-reg argument.  If it does fit into a single register, return the result
1894// and leave the Hi part unset.
1895SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1896                                            bool isSigned) {
1897  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1898  // The input chain to this libcall is the entry node of the function.
1899  // Legalizing the call will automatically add the previous call to the
1900  // dependence.
1901  SDValue InChain = DAG.getEntryNode();
1902
1903  TargetLowering::ArgListTy Args;
1904  TargetLowering::ArgListEntry Entry;
1905  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1906    EVT ArgVT = Node->getOperand(i).getValueType();
1907    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1908    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1909    Entry.isSExt = isSigned;
1910    Entry.isZExt = !isSigned;
1911    Args.push_back(Entry);
1912  }
1913  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1914                                         TLI.getPointerTy());
1915
1916  // Splice the libcall in wherever FindInputOutputChains tells us to.
1917  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1918  std::pair<SDValue, SDValue> CallInfo =
1919    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1920                    0, TLI.getLibcallCallingConv(LC), false,
1921                    /*isReturnValueUsed=*/true,
1922                    Callee, Args, DAG, Node->getDebugLoc());
1923
1924  // Legalize the call sequence, starting with the chain.  This will advance
1925  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1926  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1927  LegalizeOp(CallInfo.second);
1928  return CallInfo.first;
1929}
1930
1931SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1932                                              RTLIB::Libcall Call_F32,
1933                                              RTLIB::Libcall Call_F64,
1934                                              RTLIB::Libcall Call_F80,
1935                                              RTLIB::Libcall Call_PPCF128) {
1936  RTLIB::Libcall LC;
1937  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1938  default: assert(0 && "Unexpected request for libcall!");
1939  case MVT::f32: LC = Call_F32; break;
1940  case MVT::f64: LC = Call_F64; break;
1941  case MVT::f80: LC = Call_F80; break;
1942  case MVT::ppcf128: LC = Call_PPCF128; break;
1943  }
1944  return ExpandLibCall(LC, Node, false);
1945}
1946
1947SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1948                                               RTLIB::Libcall Call_I8,
1949                                               RTLIB::Libcall Call_I16,
1950                                               RTLIB::Libcall Call_I32,
1951                                               RTLIB::Libcall Call_I64,
1952                                               RTLIB::Libcall Call_I128) {
1953  RTLIB::Libcall LC;
1954  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1955  default: assert(0 && "Unexpected request for libcall!");
1956  case MVT::i8:   LC = Call_I8; break;
1957  case MVT::i16:  LC = Call_I16; break;
1958  case MVT::i32:  LC = Call_I32; break;
1959  case MVT::i64:  LC = Call_I64; break;
1960  case MVT::i128: LC = Call_I128; break;
1961  }
1962  return ExpandLibCall(LC, Node, isSigned);
1963}
1964
1965/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1966/// INT_TO_FP operation of the specified operand when the target requests that
1967/// we expand it.  At this point, we know that the result and operand types are
1968/// legal for the target.
1969SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1970                                                   SDValue Op0,
1971                                                   EVT DestVT,
1972                                                   DebugLoc dl) {
1973  if (Op0.getValueType() == MVT::i32) {
1974    // simple 32-bit [signed|unsigned] integer to float/double expansion
1975
1976    // Get the stack frame index of a 8 byte buffer.
1977    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1978
1979    // word offset constant for Hi/Lo address computation
1980    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1981    // set up Hi and Lo (into buffer) address based on endian
1982    SDValue Hi = StackSlot;
1983    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1984                             TLI.getPointerTy(), StackSlot, WordOff);
1985    if (TLI.isLittleEndian())
1986      std::swap(Hi, Lo);
1987
1988    // if signed map to unsigned space
1989    SDValue Op0Mapped;
1990    if (isSigned) {
1991      // constant used to invert sign bit (signed to unsigned mapping)
1992      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1993      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1994    } else {
1995      Op0Mapped = Op0;
1996    }
1997    // store the lo of the constructed double - based on integer input
1998    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1999                                  Op0Mapped, Lo, NULL, 0,
2000                                  false, false, 0);
2001    // initial hi portion of constructed double
2002    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2003    // store the hi of the constructed double - biased exponent
2004    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
2005                                false, false, 0);
2006    // load the constructed double
2007    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0,
2008                               false, false, 0);
2009    // FP constant to bias correct the final result
2010    SDValue Bias = DAG.getConstantFP(isSigned ?
2011                                     BitsToDouble(0x4330000080000000ULL) :
2012                                     BitsToDouble(0x4330000000000000ULL),
2013                                     MVT::f64);
2014    // subtract the bias
2015    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2016    // final result
2017    SDValue Result;
2018    // handle final rounding
2019    if (DestVT == MVT::f64) {
2020      // do nothing
2021      Result = Sub;
2022    } else if (DestVT.bitsLT(MVT::f64)) {
2023      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2024                           DAG.getIntPtrConstant(0));
2025    } else if (DestVT.bitsGT(MVT::f64)) {
2026      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2027    }
2028    return Result;
2029  }
2030  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2031  // Code below here assumes !isSigned without checking again.
2032
2033  // Implementation of unsigned i64 to f64 following the algorithm in
2034  // __floatundidf in compiler_rt. This implementation has the advantage
2035  // of performing rounding correctly, both in the default rounding mode
2036  // and in all alternate rounding modes.
2037  // TODO: Generalize this for use with other types.
2038  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2039    SDValue TwoP52 =
2040      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2041    SDValue TwoP84PlusTwoP52 =
2042      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2043    SDValue TwoP84 =
2044      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2045
2046    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2047    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2048                             DAG.getConstant(32, MVT::i64));
2049    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2050    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2051    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2052    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2053    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, TwoP84PlusTwoP52);
2054    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2055  }
2056
2057  // Implementation of unsigned i64 to f32.  This implementation has the
2058  // advantage of performing rounding correctly.
2059  // TODO: Generalize this for use with other types.
2060  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2061    EVT SHVT = TLI.getShiftAmountTy();
2062
2063    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2064         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2065    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2066         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2067    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2068         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2069    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2070                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2071    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2072    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2073                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2074                    ISD::SETUGE);
2075    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2076
2077    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2078                             DAG.getConstant(32, SHVT));
2079    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2080    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2081    SDValue TwoP32 =
2082      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2083    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2084    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2085    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2086    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2087    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2088                       DAG.getIntPtrConstant(0));
2089
2090  }
2091
2092  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2093
2094  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2095                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2096                                 ISD::SETLT);
2097  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2098  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2099                                    SignSet, Four, Zero);
2100
2101  // If the sign bit of the integer is set, the large number will be treated
2102  // as a negative number.  To counteract this, the dynamic code adds an
2103  // offset depending on the data type.
2104  uint64_t FF;
2105  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2106  default: assert(0 && "Unsupported integer type!");
2107  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2108  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2109  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2110  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2111  }
2112  if (TLI.isLittleEndian()) FF <<= 32;
2113  Constant *FudgeFactor = ConstantInt::get(
2114                                       Type::getInt64Ty(*DAG.getContext()), FF);
2115
2116  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2117  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2118  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2119  Alignment = std::min(Alignment, 4u);
2120  SDValue FudgeInReg;
2121  if (DestVT == MVT::f32)
2122    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2123                             PseudoSourceValue::getConstantPool(), 0,
2124                             false, false, Alignment);
2125  else {
2126    FudgeInReg =
2127      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2128                                DAG.getEntryNode(), CPIdx,
2129                                PseudoSourceValue::getConstantPool(), 0,
2130                                MVT::f32, false, false, Alignment));
2131  }
2132
2133  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2134}
2135
2136/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2137/// *INT_TO_FP operation of the specified operand when the target requests that
2138/// we promote it.  At this point, we know that the result and operand types are
2139/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2140/// operation that takes a larger input.
2141SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2142                                                    EVT DestVT,
2143                                                    bool isSigned,
2144                                                    DebugLoc dl) {
2145  // First step, figure out the appropriate *INT_TO_FP operation to use.
2146  EVT NewInTy = LegalOp.getValueType();
2147
2148  unsigned OpToUse = 0;
2149
2150  // Scan for the appropriate larger type to use.
2151  while (1) {
2152    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2153    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2154
2155    // If the target supports SINT_TO_FP of this type, use it.
2156    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2157      OpToUse = ISD::SINT_TO_FP;
2158      break;
2159    }
2160    if (isSigned) continue;
2161
2162    // If the target supports UINT_TO_FP of this type, use it.
2163    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2164      OpToUse = ISD::UINT_TO_FP;
2165      break;
2166    }
2167
2168    // Otherwise, try a larger type.
2169  }
2170
2171  // Okay, we found the operation and type to use.  Zero extend our input to the
2172  // desired type then run the operation on it.
2173  return DAG.getNode(OpToUse, dl, DestVT,
2174                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2175                                 dl, NewInTy, LegalOp));
2176}
2177
2178/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2179/// FP_TO_*INT operation of the specified operand when the target requests that
2180/// we promote it.  At this point, we know that the result and operand types are
2181/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2182/// operation that returns a larger result.
2183SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2184                                                    EVT DestVT,
2185                                                    bool isSigned,
2186                                                    DebugLoc dl) {
2187  // First step, figure out the appropriate FP_TO*INT operation to use.
2188  EVT NewOutTy = DestVT;
2189
2190  unsigned OpToUse = 0;
2191
2192  // Scan for the appropriate larger type to use.
2193  while (1) {
2194    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2195    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2196
2197    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2198      OpToUse = ISD::FP_TO_SINT;
2199      break;
2200    }
2201
2202    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2203      OpToUse = ISD::FP_TO_UINT;
2204      break;
2205    }
2206
2207    // Otherwise, try a larger type.
2208  }
2209
2210
2211  // Okay, we found the operation and type to use.
2212  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2213
2214  // Truncate the result of the extended FP_TO_*INT operation to the desired
2215  // size.
2216  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2217}
2218
2219/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2220///
2221SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2222  EVT VT = Op.getValueType();
2223  EVT SHVT = TLI.getShiftAmountTy();
2224  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2225  switch (VT.getSimpleVT().SimpleTy) {
2226  default: assert(0 && "Unhandled Expand type in BSWAP!");
2227  case MVT::i16:
2228    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2229    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2230    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2231  case MVT::i32:
2232    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2233    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2234    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2235    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2236    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2237    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2238    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2239    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2240    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2241  case MVT::i64:
2242    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2243    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2244    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2245    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2246    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2247    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2248    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2249    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2250    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2251    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2252    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2253    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2254    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2255    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2256    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2257    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2258    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2259    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2260    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2261    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2262    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2263  }
2264}
2265
2266/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2267///
2268SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2269                                             DebugLoc dl) {
2270  switch (Opc) {
2271  default: assert(0 && "Cannot expand this yet!");
2272  case ISD::CTPOP: {
2273    static const uint64_t mask[6] = {
2274      0x5555555555555555ULL, 0x3333333333333333ULL,
2275      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2276      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2277    };
2278    EVT VT = Op.getValueType();
2279    EVT ShVT = TLI.getShiftAmountTy();
2280    unsigned len = VT.getSizeInBits();
2281    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2282      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2283      unsigned EltSize = VT.isVector() ?
2284        VT.getVectorElementType().getSizeInBits() : len;
2285      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2286      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2287      Op = DAG.getNode(ISD::ADD, dl, VT,
2288                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2289                       DAG.getNode(ISD::AND, dl, VT,
2290                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2291                                   Tmp2));
2292    }
2293    return Op;
2294  }
2295  case ISD::CTLZ: {
2296    // for now, we do this:
2297    // x = x | (x >> 1);
2298    // x = x | (x >> 2);
2299    // ...
2300    // x = x | (x >>16);
2301    // x = x | (x >>32); // for 64-bit input
2302    // return popcount(~x);
2303    //
2304    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2305    EVT VT = Op.getValueType();
2306    EVT ShVT = TLI.getShiftAmountTy();
2307    unsigned len = VT.getSizeInBits();
2308    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2309      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2310      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2311                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2312    }
2313    Op = DAG.getNOT(dl, Op, VT);
2314    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2315  }
2316  case ISD::CTTZ: {
2317    // for now, we use: { return popcount(~x & (x - 1)); }
2318    // unless the target has ctlz but not ctpop, in which case we use:
2319    // { return 32 - nlz(~x & (x-1)); }
2320    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2321    EVT VT = Op.getValueType();
2322    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2323                               DAG.getNOT(dl, Op, VT),
2324                               DAG.getNode(ISD::SUB, dl, VT, Op,
2325                                           DAG.getConstant(1, VT)));
2326    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2327    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2328        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2329      return DAG.getNode(ISD::SUB, dl, VT,
2330                         DAG.getConstant(VT.getSizeInBits(), VT),
2331                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2332    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2333  }
2334  }
2335}
2336
2337void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2338                                      SmallVectorImpl<SDValue> &Results) {
2339  DebugLoc dl = Node->getDebugLoc();
2340  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2341  switch (Node->getOpcode()) {
2342  case ISD::CTPOP:
2343  case ISD::CTLZ:
2344  case ISD::CTTZ:
2345    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2346    Results.push_back(Tmp1);
2347    break;
2348  case ISD::BSWAP:
2349    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2350    break;
2351  case ISD::FRAMEADDR:
2352  case ISD::RETURNADDR:
2353  case ISD::FRAME_TO_ARGS_OFFSET:
2354    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2355    break;
2356  case ISD::FLT_ROUNDS_:
2357    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2358    break;
2359  case ISD::EH_RETURN:
2360  case ISD::EH_LABEL:
2361  case ISD::PREFETCH:
2362  case ISD::VAEND:
2363    Results.push_back(Node->getOperand(0));
2364    break;
2365  case ISD::MEMBARRIER: {
2366    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2367    TargetLowering::ArgListTy Args;
2368    std::pair<SDValue, SDValue> CallResult =
2369      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2370                      false, false, false, false, 0, CallingConv::C, false,
2371                      /*isReturnValueUsed=*/true,
2372                      DAG.getExternalSymbol("__sync_synchronize",
2373                                            TLI.getPointerTy()),
2374                      Args, DAG, dl);
2375    Results.push_back(CallResult.second);
2376    break;
2377  }
2378  // By default, atomic intrinsics are marked Legal and lowered. Targets
2379  // which don't support them directly, however, may want libcalls, in which
2380  // case they mark them Expand, and we get here.
2381  // FIXME: Unimplemented for now. Add libcalls.
2382  case ISD::ATOMIC_SWAP:
2383  case ISD::ATOMIC_LOAD_ADD:
2384  case ISD::ATOMIC_LOAD_SUB:
2385  case ISD::ATOMIC_LOAD_AND:
2386  case ISD::ATOMIC_LOAD_OR:
2387  case ISD::ATOMIC_LOAD_XOR:
2388  case ISD::ATOMIC_LOAD_NAND:
2389  case ISD::ATOMIC_LOAD_MIN:
2390  case ISD::ATOMIC_LOAD_MAX:
2391  case ISD::ATOMIC_LOAD_UMIN:
2392  case ISD::ATOMIC_LOAD_UMAX:
2393  case ISD::ATOMIC_CMP_SWAP: {
2394    assert (0 && "atomic intrinsic not lowered!");
2395    Results.push_back(Node->getOperand(0));
2396    break;
2397  }
2398  case ISD::DYNAMIC_STACKALLOC:
2399    ExpandDYNAMIC_STACKALLOC(Node, Results);
2400    break;
2401  case ISD::MERGE_VALUES:
2402    for (unsigned i = 0; i < Node->getNumValues(); i++)
2403      Results.push_back(Node->getOperand(i));
2404    break;
2405  case ISD::UNDEF: {
2406    EVT VT = Node->getValueType(0);
2407    if (VT.isInteger())
2408      Results.push_back(DAG.getConstant(0, VT));
2409    else {
2410      assert(VT.isFloatingPoint() && "Unknown value type!");
2411      Results.push_back(DAG.getConstantFP(0, VT));
2412    }
2413    break;
2414  }
2415  case ISD::TRAP: {
2416    // If this operation is not supported, lower it to 'abort()' call
2417    TargetLowering::ArgListTy Args;
2418    std::pair<SDValue, SDValue> CallResult =
2419      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2420                      false, false, false, false, 0, CallingConv::C, false,
2421                      /*isReturnValueUsed=*/true,
2422                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2423                      Args, DAG, dl);
2424    Results.push_back(CallResult.second);
2425    break;
2426  }
2427  case ISD::FP_ROUND:
2428  case ISD::BIT_CONVERT:
2429    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2430                            Node->getValueType(0), dl);
2431    Results.push_back(Tmp1);
2432    break;
2433  case ISD::FP_EXTEND:
2434    Tmp1 = EmitStackConvert(Node->getOperand(0),
2435                            Node->getOperand(0).getValueType(),
2436                            Node->getValueType(0), dl);
2437    Results.push_back(Tmp1);
2438    break;
2439  case ISD::SIGN_EXTEND_INREG: {
2440    // NOTE: we could fall back on load/store here too for targets without
2441    // SAR.  However, it is doubtful that any exist.
2442    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2443    EVT VT = Node->getValueType(0);
2444    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2445    if (VT.isVector())
2446      ShiftAmountTy = VT;
2447    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2448                        ExtraVT.getScalarType().getSizeInBits();
2449    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2450    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2451                       Node->getOperand(0), ShiftCst);
2452    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2453    Results.push_back(Tmp1);
2454    break;
2455  }
2456  case ISD::FP_ROUND_INREG: {
2457    // The only way we can lower this is to turn it into a TRUNCSTORE,
2458    // EXTLOAD pair, targetting a temporary location (a stack slot).
2459
2460    // NOTE: there is a choice here between constantly creating new stack
2461    // slots and always reusing the same one.  We currently always create
2462    // new ones, as reuse may inhibit scheduling.
2463    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2464    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2465                            Node->getValueType(0), dl);
2466    Results.push_back(Tmp1);
2467    break;
2468  }
2469  case ISD::SINT_TO_FP:
2470  case ISD::UINT_TO_FP:
2471    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2472                                Node->getOperand(0), Node->getValueType(0), dl);
2473    Results.push_back(Tmp1);
2474    break;
2475  case ISD::FP_TO_UINT: {
2476    SDValue True, False;
2477    EVT VT =  Node->getOperand(0).getValueType();
2478    EVT NVT = Node->getValueType(0);
2479    const uint64_t zero[] = {0, 0};
2480    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2481    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2482    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2483    Tmp1 = DAG.getConstantFP(apf, VT);
2484    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2485                        Node->getOperand(0),
2486                        Tmp1, ISD::SETLT);
2487    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2488    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2489                        DAG.getNode(ISD::FSUB, dl, VT,
2490                                    Node->getOperand(0), Tmp1));
2491    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2492                        DAG.getConstant(x, NVT));
2493    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2494    Results.push_back(Tmp1);
2495    break;
2496  }
2497  case ISD::VAARG: {
2498    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2499    EVT VT = Node->getValueType(0);
2500    Tmp1 = Node->getOperand(0);
2501    Tmp2 = Node->getOperand(1);
2502    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0,
2503                                 false, false, 0);
2504    // Increment the pointer, VAList, to the next vaarg
2505    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2506                       DAG.getConstant(TLI.getTargetData()->
2507                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2508                                       TLI.getPointerTy()));
2509    // Store the incremented VAList to the legalized pointer
2510    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0,
2511                        false, false, 0);
2512    // Load the actual argument out of the pointer VAList
2513    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0,
2514                                  false, false, 0));
2515    Results.push_back(Results[0].getValue(1));
2516    break;
2517  }
2518  case ISD::VACOPY: {
2519    // This defaults to loading a pointer from the input and storing it to the
2520    // output, returning the chain.
2521    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2522    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2523    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2524                       Node->getOperand(2), VS, 0, false, false, 0);
2525    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0,
2526                        false, false, 0);
2527    Results.push_back(Tmp1);
2528    break;
2529  }
2530  case ISD::EXTRACT_VECTOR_ELT:
2531    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2532      // This must be an access of the only element.  Return it.
2533      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2534                         Node->getOperand(0));
2535    else
2536      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2537    Results.push_back(Tmp1);
2538    break;
2539  case ISD::EXTRACT_SUBVECTOR:
2540    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2541    break;
2542  case ISD::CONCAT_VECTORS: {
2543    Results.push_back(ExpandVectorBuildThroughStack(Node));
2544    break;
2545  }
2546  case ISD::SCALAR_TO_VECTOR:
2547    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2548    break;
2549  case ISD::INSERT_VECTOR_ELT:
2550    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2551                                              Node->getOperand(1),
2552                                              Node->getOperand(2), dl));
2553    break;
2554  case ISD::VECTOR_SHUFFLE: {
2555    SmallVector<int, 8> Mask;
2556    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2557
2558    EVT VT = Node->getValueType(0);
2559    EVT EltVT = VT.getVectorElementType();
2560    if (getTypeAction(EltVT) == Promote)
2561      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2562    unsigned NumElems = VT.getVectorNumElements();
2563    SmallVector<SDValue, 8> Ops;
2564    for (unsigned i = 0; i != NumElems; ++i) {
2565      if (Mask[i] < 0) {
2566        Ops.push_back(DAG.getUNDEF(EltVT));
2567        continue;
2568      }
2569      unsigned Idx = Mask[i];
2570      if (Idx < NumElems)
2571        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2572                                  Node->getOperand(0),
2573                                  DAG.getIntPtrConstant(Idx)));
2574      else
2575        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2576                                  Node->getOperand(1),
2577                                  DAG.getIntPtrConstant(Idx - NumElems)));
2578    }
2579    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2580    Results.push_back(Tmp1);
2581    break;
2582  }
2583  case ISD::EXTRACT_ELEMENT: {
2584    EVT OpTy = Node->getOperand(0).getValueType();
2585    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2586      // 1 -> Hi
2587      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2588                         DAG.getConstant(OpTy.getSizeInBits()/2,
2589                                         TLI.getShiftAmountTy()));
2590      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2591    } else {
2592      // 0 -> Lo
2593      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2594                         Node->getOperand(0));
2595    }
2596    Results.push_back(Tmp1);
2597    break;
2598  }
2599  case ISD::STACKSAVE:
2600    // Expand to CopyFromReg if the target set
2601    // StackPointerRegisterToSaveRestore.
2602    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2603      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2604                                           Node->getValueType(0)));
2605      Results.push_back(Results[0].getValue(1));
2606    } else {
2607      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2608      Results.push_back(Node->getOperand(0));
2609    }
2610    break;
2611  case ISD::STACKRESTORE:
2612    // Expand to CopyToReg if the target set
2613    // StackPointerRegisterToSaveRestore.
2614    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2615      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2616                                         Node->getOperand(1)));
2617    } else {
2618      Results.push_back(Node->getOperand(0));
2619    }
2620    break;
2621  case ISD::FCOPYSIGN:
2622    Results.push_back(ExpandFCOPYSIGN(Node));
2623    break;
2624  case ISD::FNEG:
2625    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2626    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2627    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2628                       Node->getOperand(0));
2629    Results.push_back(Tmp1);
2630    break;
2631  case ISD::FABS: {
2632    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2633    EVT VT = Node->getValueType(0);
2634    Tmp1 = Node->getOperand(0);
2635    Tmp2 = DAG.getConstantFP(0.0, VT);
2636    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2637                        Tmp1, Tmp2, ISD::SETUGT);
2638    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2639    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2640    Results.push_back(Tmp1);
2641    break;
2642  }
2643  case ISD::FSQRT:
2644    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2645                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2646    break;
2647  case ISD::FSIN:
2648    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2649                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2650    break;
2651  case ISD::FCOS:
2652    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2653                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2654    break;
2655  case ISD::FLOG:
2656    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2657                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2658    break;
2659  case ISD::FLOG2:
2660    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2661                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2662    break;
2663  case ISD::FLOG10:
2664    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2665                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2666    break;
2667  case ISD::FEXP:
2668    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2669                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2670    break;
2671  case ISD::FEXP2:
2672    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2673                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2674    break;
2675  case ISD::FTRUNC:
2676    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2677                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2678    break;
2679  case ISD::FFLOOR:
2680    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2681                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2682    break;
2683  case ISD::FCEIL:
2684    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2685                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2686    break;
2687  case ISD::FRINT:
2688    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2689                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2690    break;
2691  case ISD::FNEARBYINT:
2692    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2693                                      RTLIB::NEARBYINT_F64,
2694                                      RTLIB::NEARBYINT_F80,
2695                                      RTLIB::NEARBYINT_PPCF128));
2696    break;
2697  case ISD::FPOWI:
2698    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2699                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2700    break;
2701  case ISD::FPOW:
2702    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2703                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2704    break;
2705  case ISD::FDIV:
2706    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2707                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2708    break;
2709  case ISD::FREM:
2710    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2711                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2712    break;
2713  case ISD::FP16_TO_FP32:
2714    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2715    break;
2716  case ISD::FP32_TO_FP16:
2717    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2718    break;
2719  case ISD::ConstantFP: {
2720    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2721    // Check to see if this FP immediate is already legal.
2722    // If this is a legal constant, turn it into a TargetConstantFP node.
2723    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2724      Results.push_back(SDValue(Node, 0));
2725    else
2726      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2727    break;
2728  }
2729  case ISD::EHSELECTION: {
2730    unsigned Reg = TLI.getExceptionSelectorRegister();
2731    assert(Reg && "Can't expand to unknown register!");
2732    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2733                                         Node->getValueType(0)));
2734    Results.push_back(Results[0].getValue(1));
2735    break;
2736  }
2737  case ISD::EXCEPTIONADDR: {
2738    unsigned Reg = TLI.getExceptionAddressRegister();
2739    assert(Reg && "Can't expand to unknown register!");
2740    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2741                                         Node->getValueType(0)));
2742    Results.push_back(Results[0].getValue(1));
2743    break;
2744  }
2745  case ISD::SUB: {
2746    EVT VT = Node->getValueType(0);
2747    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2748           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2749           "Don't know how to expand this subtraction!");
2750    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2751               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2752    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2753    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2754    break;
2755  }
2756  case ISD::UREM:
2757  case ISD::SREM: {
2758    EVT VT = Node->getValueType(0);
2759    SDVTList VTs = DAG.getVTList(VT, VT);
2760    bool isSigned = Node->getOpcode() == ISD::SREM;
2761    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2762    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2763    Tmp2 = Node->getOperand(0);
2764    Tmp3 = Node->getOperand(1);
2765    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2766      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2767    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2768      // X % Y -> X-X/Y*Y
2769      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2770      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2771      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2772    } else if (isSigned) {
2773      Tmp1 = ExpandIntLibCall(Node, true,
2774                              RTLIB::SREM_I8,
2775                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2776                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2777    } else {
2778      Tmp1 = ExpandIntLibCall(Node, false,
2779                              RTLIB::UREM_I8,
2780                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2781                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2782    }
2783    Results.push_back(Tmp1);
2784    break;
2785  }
2786  case ISD::UDIV:
2787  case ISD::SDIV: {
2788    bool isSigned = Node->getOpcode() == ISD::SDIV;
2789    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2790    EVT VT = Node->getValueType(0);
2791    SDVTList VTs = DAG.getVTList(VT, VT);
2792    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2793      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2794                         Node->getOperand(1));
2795    else if (isSigned)
2796      Tmp1 = ExpandIntLibCall(Node, true,
2797                              RTLIB::SDIV_I8,
2798                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2799                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2800    else
2801      Tmp1 = ExpandIntLibCall(Node, false,
2802                              RTLIB::UDIV_I8,
2803                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2804                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2805    Results.push_back(Tmp1);
2806    break;
2807  }
2808  case ISD::MULHU:
2809  case ISD::MULHS: {
2810    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2811                                                              ISD::SMUL_LOHI;
2812    EVT VT = Node->getValueType(0);
2813    SDVTList VTs = DAG.getVTList(VT, VT);
2814    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2815           "If this wasn't legal, it shouldn't have been created!");
2816    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2817                       Node->getOperand(1));
2818    Results.push_back(Tmp1.getValue(1));
2819    break;
2820  }
2821  case ISD::MUL: {
2822    EVT VT = Node->getValueType(0);
2823    SDVTList VTs = DAG.getVTList(VT, VT);
2824    // See if multiply or divide can be lowered using two-result operations.
2825    // We just need the low half of the multiply; try both the signed
2826    // and unsigned forms. If the target supports both SMUL_LOHI and
2827    // UMUL_LOHI, form a preference by checking which forms of plain
2828    // MULH it supports.
2829    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2830    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2831    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2832    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2833    unsigned OpToUse = 0;
2834    if (HasSMUL_LOHI && !HasMULHS) {
2835      OpToUse = ISD::SMUL_LOHI;
2836    } else if (HasUMUL_LOHI && !HasMULHU) {
2837      OpToUse = ISD::UMUL_LOHI;
2838    } else if (HasSMUL_LOHI) {
2839      OpToUse = ISD::SMUL_LOHI;
2840    } else if (HasUMUL_LOHI) {
2841      OpToUse = ISD::UMUL_LOHI;
2842    }
2843    if (OpToUse) {
2844      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2845                                    Node->getOperand(1)));
2846      break;
2847    }
2848    Tmp1 = ExpandIntLibCall(Node, false,
2849                            RTLIB::MUL_I8,
2850                            RTLIB::MUL_I16, RTLIB::MUL_I32,
2851                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2852    Results.push_back(Tmp1);
2853    break;
2854  }
2855  case ISD::SADDO:
2856  case ISD::SSUBO: {
2857    SDValue LHS = Node->getOperand(0);
2858    SDValue RHS = Node->getOperand(1);
2859    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2860                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2861                              LHS, RHS);
2862    Results.push_back(Sum);
2863    EVT OType = Node->getValueType(1);
2864
2865    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2866
2867    //   LHSSign -> LHS >= 0
2868    //   RHSSign -> RHS >= 0
2869    //   SumSign -> Sum >= 0
2870    //
2871    //   Add:
2872    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2873    //   Sub:
2874    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2875    //
2876    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2877    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2878    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2879                                      Node->getOpcode() == ISD::SADDO ?
2880                                      ISD::SETEQ : ISD::SETNE);
2881
2882    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2883    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2884
2885    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2886    Results.push_back(Cmp);
2887    break;
2888  }
2889  case ISD::UADDO:
2890  case ISD::USUBO: {
2891    SDValue LHS = Node->getOperand(0);
2892    SDValue RHS = Node->getOperand(1);
2893    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2894                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2895                              LHS, RHS);
2896    Results.push_back(Sum);
2897    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2898                                   Node->getOpcode () == ISD::UADDO ?
2899                                   ISD::SETULT : ISD::SETUGT));
2900    break;
2901  }
2902  case ISD::UMULO:
2903  case ISD::SMULO: {
2904    EVT VT = Node->getValueType(0);
2905    SDValue LHS = Node->getOperand(0);
2906    SDValue RHS = Node->getOperand(1);
2907    SDValue BottomHalf;
2908    SDValue TopHalf;
2909    static const unsigned Ops[2][3] =
2910        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2911          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2912    bool isSigned = Node->getOpcode() == ISD::SMULO;
2913    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2914      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2915      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2916    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2917      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2918                               RHS);
2919      TopHalf = BottomHalf.getValue(1);
2920    } else {
2921      // FIXME: We should be able to fall back to a libcall with an illegal
2922      // type in some cases.
2923      // Also, we can fall back to a division in some cases, but that's a big
2924      // performance hit in the general case.
2925      assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
2926                                               VT.getSizeInBits() * 2)) &&
2927             "Don't know how to expand this operation yet!");
2928      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2929      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2930      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2931      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2932      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2933                               DAG.getIntPtrConstant(0));
2934      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2935                            DAG.getIntPtrConstant(1));
2936    }
2937    if (isSigned) {
2938      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2939      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2940      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2941                             ISD::SETNE);
2942    } else {
2943      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2944                             DAG.getConstant(0, VT), ISD::SETNE);
2945    }
2946    Results.push_back(BottomHalf);
2947    Results.push_back(TopHalf);
2948    break;
2949  }
2950  case ISD::BUILD_PAIR: {
2951    EVT PairTy = Node->getValueType(0);
2952    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2953    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2954    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2955                       DAG.getConstant(PairTy.getSizeInBits()/2,
2956                                       TLI.getShiftAmountTy()));
2957    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2958    break;
2959  }
2960  case ISD::SELECT:
2961    Tmp1 = Node->getOperand(0);
2962    Tmp2 = Node->getOperand(1);
2963    Tmp3 = Node->getOperand(2);
2964    if (Tmp1.getOpcode() == ISD::SETCC) {
2965      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2966                             Tmp2, Tmp3,
2967                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2968    } else {
2969      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2970                             DAG.getConstant(0, Tmp1.getValueType()),
2971                             Tmp2, Tmp3, ISD::SETNE);
2972    }
2973    Results.push_back(Tmp1);
2974    break;
2975  case ISD::BR_JT: {
2976    SDValue Chain = Node->getOperand(0);
2977    SDValue Table = Node->getOperand(1);
2978    SDValue Index = Node->getOperand(2);
2979
2980    EVT PTy = TLI.getPointerTy();
2981
2982    const TargetData &TD = *TLI.getTargetData();
2983    unsigned EntrySize =
2984      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
2985
2986    Index = DAG.getNode(ISD::MUL, dl, PTy,
2987                        Index, DAG.getConstant(EntrySize, PTy));
2988    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2989
2990    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2991    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2992                                PseudoSourceValue::getJumpTable(), 0, MemVT,
2993                                false, false, 0);
2994    Addr = LD;
2995    if (TM.getRelocationModel() == Reloc::PIC_) {
2996      // For PIC, the sequence is:
2997      // BRIND(load(Jumptable + index) + RelocBase)
2998      // RelocBase can be JumpTable, GOT or some sort of global base.
2999      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3000                          TLI.getPICJumpTableRelocBase(Table, DAG));
3001    }
3002    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3003    Results.push_back(Tmp1);
3004    break;
3005  }
3006  case ISD::BRCOND:
3007    // Expand brcond's setcc into its constituent parts and create a BR_CC
3008    // Node.
3009    Tmp1 = Node->getOperand(0);
3010    Tmp2 = Node->getOperand(1);
3011    if (Tmp2.getOpcode() == ISD::SETCC) {
3012      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3013                         Tmp1, Tmp2.getOperand(2),
3014                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3015                         Node->getOperand(2));
3016    } else {
3017      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3018                         DAG.getCondCode(ISD::SETNE), Tmp2,
3019                         DAG.getConstant(0, Tmp2.getValueType()),
3020                         Node->getOperand(2));
3021    }
3022    Results.push_back(Tmp1);
3023    break;
3024  case ISD::SETCC: {
3025    Tmp1 = Node->getOperand(0);
3026    Tmp2 = Node->getOperand(1);
3027    Tmp3 = Node->getOperand(2);
3028    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3029
3030    // If we expanded the SETCC into an AND/OR, return the new node
3031    if (Tmp2.getNode() == 0) {
3032      Results.push_back(Tmp1);
3033      break;
3034    }
3035
3036    // Otherwise, SETCC for the given comparison type must be completely
3037    // illegal; expand it into a SELECT_CC.
3038    EVT VT = Node->getValueType(0);
3039    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3040                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3041    Results.push_back(Tmp1);
3042    break;
3043  }
3044  case ISD::SELECT_CC: {
3045    Tmp1 = Node->getOperand(0);   // LHS
3046    Tmp2 = Node->getOperand(1);   // RHS
3047    Tmp3 = Node->getOperand(2);   // True
3048    Tmp4 = Node->getOperand(3);   // False
3049    SDValue CC = Node->getOperand(4);
3050
3051    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3052                          Tmp1, Tmp2, CC, dl);
3053
3054    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3055    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3056    CC = DAG.getCondCode(ISD::SETNE);
3057    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3058                       Tmp3, Tmp4, CC);
3059    Results.push_back(Tmp1);
3060    break;
3061  }
3062  case ISD::BR_CC: {
3063    Tmp1 = Node->getOperand(0);              // Chain
3064    Tmp2 = Node->getOperand(2);              // LHS
3065    Tmp3 = Node->getOperand(3);              // RHS
3066    Tmp4 = Node->getOperand(1);              // CC
3067
3068    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3069                          Tmp2, Tmp3, Tmp4, dl);
3070    LastCALLSEQ_END = DAG.getEntryNode();
3071
3072    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3073    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3074    Tmp4 = DAG.getCondCode(ISD::SETNE);
3075    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3076                       Tmp3, Node->getOperand(4));
3077    Results.push_back(Tmp1);
3078    break;
3079  }
3080  case ISD::GLOBAL_OFFSET_TABLE:
3081  case ISD::GlobalAddress:
3082  case ISD::GlobalTLSAddress:
3083  case ISD::ExternalSymbol:
3084  case ISD::ConstantPool:
3085  case ISD::JumpTable:
3086  case ISD::INTRINSIC_W_CHAIN:
3087  case ISD::INTRINSIC_WO_CHAIN:
3088  case ISD::INTRINSIC_VOID:
3089    // FIXME: Custom lowering for these operations shouldn't return null!
3090    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3091      Results.push_back(SDValue(Node, i));
3092    break;
3093  }
3094}
3095void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3096                                       SmallVectorImpl<SDValue> &Results) {
3097  EVT OVT = Node->getValueType(0);
3098  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3099      Node->getOpcode() == ISD::SINT_TO_FP ||
3100      Node->getOpcode() == ISD::SETCC) {
3101    OVT = Node->getOperand(0).getValueType();
3102  }
3103  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3104  DebugLoc dl = Node->getDebugLoc();
3105  SDValue Tmp1, Tmp2, Tmp3;
3106  switch (Node->getOpcode()) {
3107  case ISD::CTTZ:
3108  case ISD::CTLZ:
3109  case ISD::CTPOP:
3110    // Zero extend the argument.
3111    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3112    // Perform the larger operation.
3113    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3114    if (Node->getOpcode() == ISD::CTTZ) {
3115      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3116      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3117                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3118                          ISD::SETEQ);
3119      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3120                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3121    } else if (Node->getOpcode() == ISD::CTLZ) {
3122      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3123      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3124                          DAG.getConstant(NVT.getSizeInBits() -
3125                                          OVT.getSizeInBits(), NVT));
3126    }
3127    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3128    break;
3129  case ISD::BSWAP: {
3130    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3131    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3132    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3133    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3134                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3135    Results.push_back(Tmp1);
3136    break;
3137  }
3138  case ISD::FP_TO_UINT:
3139  case ISD::FP_TO_SINT:
3140    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3141                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3142    Results.push_back(Tmp1);
3143    break;
3144  case ISD::UINT_TO_FP:
3145  case ISD::SINT_TO_FP:
3146    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3147                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3148    Results.push_back(Tmp1);
3149    break;
3150  case ISD::AND:
3151  case ISD::OR:
3152  case ISD::XOR: {
3153    unsigned ExtOp, TruncOp;
3154    if (OVT.isVector()) {
3155      ExtOp   = ISD::BIT_CONVERT;
3156      TruncOp = ISD::BIT_CONVERT;
3157    } else {
3158      assert(OVT.isInteger() && "Cannot promote logic operation");
3159      ExtOp   = ISD::ANY_EXTEND;
3160      TruncOp = ISD::TRUNCATE;
3161    }
3162    // Promote each of the values to the new type.
3163    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3164    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3165    // Perform the larger operation, then convert back
3166    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3167    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3168    break;
3169  }
3170  case ISD::SELECT: {
3171    unsigned ExtOp, TruncOp;
3172    if (Node->getValueType(0).isVector()) {
3173      ExtOp   = ISD::BIT_CONVERT;
3174      TruncOp = ISD::BIT_CONVERT;
3175    } else if (Node->getValueType(0).isInteger()) {
3176      ExtOp   = ISD::ANY_EXTEND;
3177      TruncOp = ISD::TRUNCATE;
3178    } else {
3179      ExtOp   = ISD::FP_EXTEND;
3180      TruncOp = ISD::FP_ROUND;
3181    }
3182    Tmp1 = Node->getOperand(0);
3183    // Promote each of the values to the new type.
3184    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3185    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3186    // Perform the larger operation, then round down.
3187    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3188    if (TruncOp != ISD::FP_ROUND)
3189      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3190    else
3191      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3192                         DAG.getIntPtrConstant(0));
3193    Results.push_back(Tmp1);
3194    break;
3195  }
3196  case ISD::VECTOR_SHUFFLE: {
3197    SmallVector<int, 8> Mask;
3198    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3199
3200    // Cast the two input vectors.
3201    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3202    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3203
3204    // Convert the shuffle mask to the right # elements.
3205    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3206    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3207    Results.push_back(Tmp1);
3208    break;
3209  }
3210  case ISD::SETCC: {
3211    unsigned ExtOp = ISD::FP_EXTEND;
3212    if (NVT.isInteger()) {
3213      ISD::CondCode CCCode =
3214        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3215      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3216    }
3217    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3218    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3219    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3220                                  Tmp1, Tmp2, Node->getOperand(2)));
3221    break;
3222  }
3223  }
3224}
3225
3226// SelectionDAG::Legalize - This is the entry point for the file.
3227//
3228void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3229  /// run - This is the main entry point to this class.
3230  ///
3231  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3232}
3233
3234