LegalizeDAG.cpp revision 2d31d14bace4cf225e997c78daefccc52e38186c
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/DebugInfo.h"
15#include "llvm/CodeGen/Analysis.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineJumpTableInfo.h"
19#include "llvm/CodeGen/MachineModuleInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/DerivedTypes.h"
30#include "llvm/Function.h"
31#include "llvm/GlobalVariable.h"
32#include "llvm/LLVMContext.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41using namespace llvm;
42
43//===----------------------------------------------------------------------===//
44/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
45/// hacks on it until the target machine can handle it.  This involves
46/// eliminating value sizes the machine cannot handle (promoting small sizes to
47/// large sizes or splitting up large values into small values) as well as
48/// eliminating operations the machine cannot handle.
49///
50/// This code also does a small amount of optimization and recognition of idioms
51/// as part of its processing.  For example, if a target does not support a
52/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
53/// will attempt merge setcc and brc instructions into brcc's.
54///
55namespace {
56class SelectionDAGLegalize {
57  const TargetMachine &TM;
58  const TargetLowering &TLI;
59  SelectionDAG &DAG;
60  CodeGenOpt::Level OptLevel;
61
62  // Libcall insertion helpers.
63
64  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65  /// legalized.  We use this to ensure that calls are properly serialized
66  /// against each other, including inserted libcalls.
67  SDValue LastCALLSEQ_END;
68
69  /// IsLegalizingCall - This member is used *only* for purposes of providing
70  /// helpful assertions that a libcall isn't created while another call is
71  /// being legalized (which could lead to non-serialized call sequences).
72  bool IsLegalizingCall;
73
74  enum LegalizeAction {
75    Legal,      // The target natively supports this operation.
76    Promote,    // This operation should be executed in a larger type.
77    Expand      // Try to expand this to other ops, otherwise use a libcall.
78  };
79
80  /// ValueTypeActions - This is a bitvector that contains two bits for each
81  /// value type, where the two bits correspond to the LegalizeAction enum.
82  /// This can be queried with "getTypeAction(VT)".
83  TargetLowering::ValueTypeActionImpl ValueTypeActions;
84
85  /// LegalizedNodes - For nodes that are of legal width, and that have more
86  /// than one use, this map indicates what regularized operand to use.  This
87  /// allows us to avoid legalizing the same thing more than once.
88  DenseMap<SDValue, SDValue> LegalizedNodes;
89
90  void AddLegalizedOperand(SDValue From, SDValue To) {
91    LegalizedNodes.insert(std::make_pair(From, To));
92    // If someone requests legalization of the new node, return itself.
93    if (From != To)
94      LegalizedNodes.insert(std::make_pair(To, To));
95  }
96
97public:
98  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
99
100  /// getTypeAction - Return how we should legalize values of this type, either
101  /// it is already legal or we need to expand it into multiple registers of
102  /// smaller integer type, or we need to promote it to a larger type.
103  LegalizeAction getTypeAction(EVT VT) const {
104    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
105  }
106
107  /// isTypeLegal - Return true if this type is legal on this target.
108  ///
109  bool isTypeLegal(EVT VT) const {
110    return getTypeAction(VT) == Legal;
111  }
112
113  void LegalizeDAG();
114
115private:
116  /// LegalizeOp - We know that the specified value has a legal type.
117  /// Recursively ensure that the operands have legal types, then return the
118  /// result.
119  SDValue LegalizeOp(SDValue O);
120
121  SDValue OptimizeFloatStore(StoreSDNode *ST);
122
123  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
124  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
125  /// is necessary to spill the vector being inserted into to memory, perform
126  /// the insert there, and then read the result back.
127  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
128                                         SDValue Idx, DebugLoc dl);
129  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
130                                  SDValue Idx, DebugLoc dl);
131
132  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
133  /// performs the same shuffe in terms of order or result bytes, but on a type
134  /// whose vector element type is narrower than the original shuffle type.
135  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
136  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
137                                     SDValue N1, SDValue N2,
138                                     SmallVectorImpl<int> &Mask) const;
139
140  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
141                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
142
143  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
144                             DebugLoc dl);
145
146  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
147  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
148                                                 SDNode *Node, bool isSigned);
149  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
150                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
151                          RTLIB::Libcall Call_PPCF128);
152  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
153                           RTLIB::Libcall Call_I8,
154                           RTLIB::Libcall Call_I16,
155                           RTLIB::Libcall Call_I32,
156                           RTLIB::Libcall Call_I64,
157                           RTLIB::Libcall Call_I128);
158
159  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
160  SDValue ExpandBUILD_VECTOR(SDNode *Node);
161  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
162  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
163                                SmallVectorImpl<SDValue> &Results);
164  SDValue ExpandFCOPYSIGN(SDNode *Node);
165  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
166                               DebugLoc dl);
167  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
168                                DebugLoc dl);
169  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
170                                DebugLoc dl);
171
172  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
173  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
174
175  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
176  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
177
178  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
179
180  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
182};
183}
184
185/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
186/// performs the same shuffe in terms of order or result bytes, but on a type
187/// whose vector element type is narrower than the original shuffle type.
188/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
189SDValue
190SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
191                                                 SDValue N1, SDValue N2,
192                                             SmallVectorImpl<int> &Mask) const {
193  unsigned NumMaskElts = VT.getVectorNumElements();
194  unsigned NumDestElts = NVT.getVectorNumElements();
195  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
196
197  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
198
199  if (NumEltsGrowth == 1)
200    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
201
202  SmallVector<int, 8> NewMask;
203  for (unsigned i = 0; i != NumMaskElts; ++i) {
204    int Idx = Mask[i];
205    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
206      if (Idx < 0)
207        NewMask.push_back(-1);
208      else
209        NewMask.push_back(Idx * NumEltsGrowth + j);
210    }
211  }
212  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
213  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
214  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
215}
216
217SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
218                                           CodeGenOpt::Level ol)
219  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
220    DAG(dag), OptLevel(ol),
221    ValueTypeActions(TLI.getValueTypeActions()) {
222  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
223         "Too many value types for ValueTypeActions to hold!");
224}
225
226void SelectionDAGLegalize::LegalizeDAG() {
227  LastCALLSEQ_END = DAG.getEntryNode();
228  IsLegalizingCall = false;
229
230  // The legalize process is inherently a bottom-up recursive process (users
231  // legalize their uses before themselves).  Given infinite stack space, we
232  // could just start legalizing on the root and traverse the whole graph.  In
233  // practice however, this causes us to run out of stack space on large basic
234  // blocks.  To avoid this problem, compute an ordering of the nodes where each
235  // node is only legalized after all of its operands are legalized.
236  DAG.AssignTopologicalOrder();
237  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
238       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
239    LegalizeOp(SDValue(I, 0));
240
241  // Finally, it's possible the root changed.  Get the new root.
242  SDValue OldRoot = DAG.getRoot();
243  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
244  DAG.setRoot(LegalizedNodes[OldRoot]);
245
246  LegalizedNodes.clear();
247
248  // Remove dead nodes now.
249  DAG.RemoveDeadNodes();
250}
251
252
253/// FindCallEndFromCallStart - Given a chained node that is part of a call
254/// sequence, find the CALLSEQ_END node that terminates the call sequence.
255static SDNode *FindCallEndFromCallStart(SDNode *Node, int depth = 0) {
256  // Nested CALLSEQ_START/END constructs aren't yet legal,
257  // but we can DTRT and handle them correctly here.
258  if (Node->getOpcode() == ISD::CALLSEQ_START)
259    depth++;
260  else if (Node->getOpcode() == ISD::CALLSEQ_END) {
261    depth--;
262    if (depth == 0)
263      return Node;
264  }
265  if (Node->use_empty())
266    return 0;   // No CallSeqEnd
267
268  // The chain is usually at the end.
269  SDValue TheChain(Node, Node->getNumValues()-1);
270  if (TheChain.getValueType() != MVT::Other) {
271    // Sometimes it's at the beginning.
272    TheChain = SDValue(Node, 0);
273    if (TheChain.getValueType() != MVT::Other) {
274      // Otherwise, hunt for it.
275      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
276        if (Node->getValueType(i) == MVT::Other) {
277          TheChain = SDValue(Node, i);
278          break;
279        }
280
281      // Otherwise, we walked into a node without a chain.
282      if (TheChain.getValueType() != MVT::Other)
283        return 0;
284    }
285  }
286
287  for (SDNode::use_iterator UI = Node->use_begin(),
288       E = Node->use_end(); UI != E; ++UI) {
289
290    // Make sure to only follow users of our token chain.
291    SDNode *User = *UI;
292    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
293      if (User->getOperand(i) == TheChain)
294        if (SDNode *Result = FindCallEndFromCallStart(User, depth))
295          return Result;
296  }
297  return 0;
298}
299
300/// FindCallStartFromCallEnd - Given a chained node that is part of a call
301/// sequence, find the CALLSEQ_START node that initiates the call sequence.
302static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
303  int nested = 0;
304  assert(Node && "Didn't find callseq_start for a call??");
305  while (Node->getOpcode() != ISD::CALLSEQ_START || nested) {
306    Node = Node->getOperand(0).getNode();
307    assert(Node->getOperand(0).getValueType() == MVT::Other &&
308           "Node doesn't have a token chain argument!");
309    switch (Node->getOpcode()) {
310    default:
311      break;
312    case ISD::CALLSEQ_START:
313      if (!nested)
314        return Node;
315      nested--;
316      break;
317    case ISD::CALLSEQ_END:
318      nested++;
319      break;
320    }
321  }
322  return 0;
323}
324
325/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
326/// see if any uses can reach Dest.  If no dest operands can get to dest,
327/// legalize them, legalize ourself, and return false, otherwise, return true.
328///
329/// Keep track of the nodes we fine that actually do lead to Dest in
330/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
331///
332bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
333                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
334  if (N == Dest) return true;  // N certainly leads to Dest :)
335
336  // If we've already processed this node and it does lead to Dest, there is no
337  // need to reprocess it.
338  if (NodesLeadingTo.count(N)) return true;
339
340  // If the first result of this node has been already legalized, then it cannot
341  // reach N.
342  if (LegalizedNodes.count(SDValue(N, 0))) return false;
343
344  // Okay, this node has not already been legalized.  Check and legalize all
345  // operands.  If none lead to Dest, then we can legalize this node.
346  bool OperandsLeadToDest = false;
347  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
348    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
349      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
350                                   NodesLeadingTo);
351
352  if (OperandsLeadToDest) {
353    NodesLeadingTo.insert(N);
354    return true;
355  }
356
357  // Okay, this node looks safe, legalize it and return false.
358  LegalizeOp(SDValue(N, 0));
359  return false;
360}
361
362/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
363/// a load from the constant pool.
364static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
365                                SelectionDAG &DAG, const TargetLowering &TLI) {
366  bool Extend = false;
367  DebugLoc dl = CFP->getDebugLoc();
368
369  // If a FP immediate is precise when represented as a float and if the
370  // target can do an extending load from float to double, we put it into
371  // the constant pool as a float, even if it's is statically typed as a
372  // double.  This shrinks FP constants and canonicalizes them for targets where
373  // an FP extending load is the same cost as a normal load (such as on the x87
374  // fp stack or PPC FP unit).
375  EVT VT = CFP->getValueType(0);
376  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
377  if (!UseCP) {
378    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
379    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
380                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
381  }
382
383  EVT OrigVT = VT;
384  EVT SVT = VT;
385  while (SVT != MVT::f32) {
386    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
387    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
388        // Only do this if the target has a native EXTLOAD instruction from
389        // smaller type.
390        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
391        TLI.ShouldShrinkFPConstant(OrigVT)) {
392      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
393      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
394      VT = SVT;
395      Extend = true;
396    }
397  }
398
399  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
400  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
401  if (Extend)
402    return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, dl,
403                          DAG.getEntryNode(),
404                          CPIdx, MachinePointerInfo::getConstantPool(),
405                          VT, false, false, Alignment);
406  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
407                     MachinePointerInfo::getConstantPool(), false, false,
408                     Alignment);
409}
410
411/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
412static
413SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
414                             const TargetLowering &TLI) {
415  SDValue Chain = ST->getChain();
416  SDValue Ptr = ST->getBasePtr();
417  SDValue Val = ST->getValue();
418  EVT VT = Val.getValueType();
419  int Alignment = ST->getAlignment();
420  DebugLoc dl = ST->getDebugLoc();
421  if (ST->getMemoryVT().isFloatingPoint() ||
422      ST->getMemoryVT().isVector()) {
423    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
424    if (TLI.isTypeLegal(intVT)) {
425      // Expand to a bitconvert of the value to the integer type of the
426      // same size, then a (misaligned) int store.
427      // FIXME: Does not handle truncating floating point stores!
428      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
429      return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
430                          ST->isVolatile(), ST->isNonTemporal(), Alignment);
431    } else {
432      // Do a (aligned) store to a stack slot, then copy from the stack slot
433      // to the final destination using (unaligned) integer loads and stores.
434      EVT StoredVT = ST->getMemoryVT();
435      EVT RegVT =
436        TLI.getRegisterType(*DAG.getContext(),
437                            EVT::getIntegerVT(*DAG.getContext(),
438                                              StoredVT.getSizeInBits()));
439      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
440      unsigned RegBytes = RegVT.getSizeInBits() / 8;
441      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
442
443      // Make sure the stack slot is also aligned for the register type.
444      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
445
446      // Perform the original store, only redirected to the stack slot.
447      SDValue Store = DAG.getTruncStore(Chain, dl,
448                                        Val, StackPtr, MachinePointerInfo(),
449                                        StoredVT, false, false, 0);
450      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
451      SmallVector<SDValue, 8> Stores;
452      unsigned Offset = 0;
453
454      // Do all but one copies using the full register width.
455      for (unsigned i = 1; i < NumRegs; i++) {
456        // Load one integer register's worth from the stack slot.
457        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
458                                   MachinePointerInfo(),
459                                   false, false, 0);
460        // Store it to the final location.  Remember the store.
461        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
462                                    ST->getPointerInfo().getWithOffset(Offset),
463                                      ST->isVolatile(), ST->isNonTemporal(),
464                                      MinAlign(ST->getAlignment(), Offset)));
465        // Increment the pointers.
466        Offset += RegBytes;
467        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
468                               Increment);
469        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
470      }
471
472      // The last store may be partial.  Do a truncating store.  On big-endian
473      // machines this requires an extending load from the stack slot to ensure
474      // that the bits are in the right place.
475      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
476                                    8 * (StoredBytes - Offset));
477
478      // Load from the stack slot.
479      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Store, StackPtr,
480                                    MachinePointerInfo(),
481                                    MemVT, false, false, 0);
482
483      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
484                                         ST->getPointerInfo()
485                                           .getWithOffset(Offset),
486                                         MemVT, ST->isVolatile(),
487                                         ST->isNonTemporal(),
488                                         MinAlign(ST->getAlignment(), Offset)));
489      // The order of the stores doesn't matter - say it with a TokenFactor.
490      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
491                         Stores.size());
492    }
493  }
494  assert(ST->getMemoryVT().isInteger() &&
495         !ST->getMemoryVT().isVector() &&
496         "Unaligned store of unknown type.");
497  // Get the half-size VT
498  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
499  int NumBits = NewStoredVT.getSizeInBits();
500  int IncrementSize = NumBits / 8;
501
502  // Divide the stored value in two parts.
503  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
504  SDValue Lo = Val;
505  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
506
507  // Store the two parts
508  SDValue Store1, Store2;
509  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
510                             ST->getPointerInfo(), NewStoredVT,
511                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
512  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
513                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
514  Alignment = MinAlign(Alignment, IncrementSize);
515  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
516                             ST->getPointerInfo().getWithOffset(IncrementSize),
517                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
518                             Alignment);
519
520  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
521}
522
523/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
524static
525SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
526                            const TargetLowering &TLI) {
527  SDValue Chain = LD->getChain();
528  SDValue Ptr = LD->getBasePtr();
529  EVT VT = LD->getValueType(0);
530  EVT LoadedVT = LD->getMemoryVT();
531  DebugLoc dl = LD->getDebugLoc();
532  if (VT.isFloatingPoint() || VT.isVector()) {
533    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
534    if (TLI.isTypeLegal(intVT)) {
535      // Expand to a (misaligned) integer load of the same size,
536      // then bitconvert to floating point or vector.
537      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
538                                    LD->isVolatile(),
539                                    LD->isNonTemporal(), LD->getAlignment());
540      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
541      if (VT.isFloatingPoint() && LoadedVT != VT)
542        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
543
544      SDValue Ops[] = { Result, Chain };
545      return DAG.getMergeValues(Ops, 2, dl);
546    }
547
548    // Copy the value to a (aligned) stack slot using (unaligned) integer
549    // loads and stores, then do a (aligned) load from the stack slot.
550    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
551    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
552    unsigned RegBytes = RegVT.getSizeInBits() / 8;
553    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
554
555    // Make sure the stack slot is also aligned for the register type.
556    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
557
558    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
559    SmallVector<SDValue, 8> Stores;
560    SDValue StackPtr = StackBase;
561    unsigned Offset = 0;
562
563    // Do all but one copies using the full register width.
564    for (unsigned i = 1; i < NumRegs; i++) {
565      // Load one integer register's worth from the original location.
566      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
567                                 LD->getPointerInfo().getWithOffset(Offset),
568                                 LD->isVolatile(), LD->isNonTemporal(),
569                                 MinAlign(LD->getAlignment(), Offset));
570      // Follow the load with a store to the stack slot.  Remember the store.
571      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
572                                    MachinePointerInfo(), false, false, 0));
573      // Increment the pointers.
574      Offset += RegBytes;
575      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
576      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
577                             Increment);
578    }
579
580    // The last copy may be partial.  Do an extending load.
581    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
582                                  8 * (LoadedBytes - Offset));
583    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Chain, Ptr,
584                                  LD->getPointerInfo().getWithOffset(Offset),
585                                  MemVT, LD->isVolatile(),
586                                  LD->isNonTemporal(),
587                                  MinAlign(LD->getAlignment(), Offset));
588    // Follow the load with a store to the stack slot.  Remember the store.
589    // On big-endian machines this requires a truncating store to ensure
590    // that the bits end up in the right place.
591    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
592                                       MachinePointerInfo(), MemVT,
593                                       false, false, 0));
594
595    // The order of the stores doesn't matter - say it with a TokenFactor.
596    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
597                             Stores.size());
598
599    // Finally, perform the original load only redirected to the stack slot.
600    Load = DAG.getExtLoad(LD->getExtensionType(), VT, dl, TF, StackBase,
601                          MachinePointerInfo(), LoadedVT, false, false, 0);
602
603    // Callers expect a MERGE_VALUES node.
604    SDValue Ops[] = { Load, TF };
605    return DAG.getMergeValues(Ops, 2, dl);
606  }
607  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
608         "Unaligned load of unsupported type.");
609
610  // Compute the new VT that is half the size of the old one.  This is an
611  // integer MVT.
612  unsigned NumBits = LoadedVT.getSizeInBits();
613  EVT NewLoadedVT;
614  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
615  NumBits >>= 1;
616
617  unsigned Alignment = LD->getAlignment();
618  unsigned IncrementSize = NumBits / 8;
619  ISD::LoadExtType HiExtType = LD->getExtensionType();
620
621  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
622  if (HiExtType == ISD::NON_EXTLOAD)
623    HiExtType = ISD::ZEXTLOAD;
624
625  // Load the value in two parts
626  SDValue Lo, Hi;
627  if (TLI.isLittleEndian()) {
628    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr, LD->getPointerInfo(),
629                        NewLoadedVT, LD->isVolatile(),
630                        LD->isNonTemporal(), Alignment);
631    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
632                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
633    Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr,
634                        LD->getPointerInfo().getWithOffset(IncrementSize),
635                        NewLoadedVT, LD->isVolatile(),
636                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
637  } else {
638    Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr, LD->getPointerInfo(),
639                        NewLoadedVT, LD->isVolatile(),
640                        LD->isNonTemporal(), Alignment);
641    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
642                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
643    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr,
644                        LD->getPointerInfo().getWithOffset(IncrementSize),
645                        NewLoadedVT, LD->isVolatile(),
646                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
647  }
648
649  // aggregate the two parts
650  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
651  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
652  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
653
654  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
655                             Hi.getValue(1));
656
657  SDValue Ops[] = { Result, TF };
658  return DAG.getMergeValues(Ops, 2, dl);
659}
660
661/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
662/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
663/// is necessary to spill the vector being inserted into to memory, perform
664/// the insert there, and then read the result back.
665SDValue SelectionDAGLegalize::
666PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
667                               DebugLoc dl) {
668  SDValue Tmp1 = Vec;
669  SDValue Tmp2 = Val;
670  SDValue Tmp3 = Idx;
671
672  // If the target doesn't support this, we have to spill the input vector
673  // to a temporary stack slot, update the element, then reload it.  This is
674  // badness.  We could also load the value into a vector register (either
675  // with a "move to register" or "extload into register" instruction, then
676  // permute it into place, if the idx is a constant and if the idx is
677  // supported by the target.
678  EVT VT    = Tmp1.getValueType();
679  EVT EltVT = VT.getVectorElementType();
680  EVT IdxVT = Tmp3.getValueType();
681  EVT PtrVT = TLI.getPointerTy();
682  SDValue StackPtr = DAG.CreateStackTemporary(VT);
683
684  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
685
686  // Store the vector.
687  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
688                            MachinePointerInfo::getFixedStack(SPFI),
689                            false, false, 0);
690
691  // Truncate or zero extend offset to target pointer type.
692  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
693  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
694  // Add the offset to the index.
695  unsigned EltSize = EltVT.getSizeInBits()/8;
696  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
697  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
698  // Store the scalar value.
699  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
700                         false, false, 0);
701  // Load the updated vector.
702  return DAG.getLoad(VT, dl, Ch, StackPtr,
703                     MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
704}
705
706
707SDValue SelectionDAGLegalize::
708ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
709  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
710    // SCALAR_TO_VECTOR requires that the type of the value being inserted
711    // match the element type of the vector being created, except for
712    // integers in which case the inserted value can be over width.
713    EVT EltVT = Vec.getValueType().getVectorElementType();
714    if (Val.getValueType() == EltVT ||
715        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
716      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
717                                  Vec.getValueType(), Val);
718
719      unsigned NumElts = Vec.getValueType().getVectorNumElements();
720      // We generate a shuffle of InVec and ScVec, so the shuffle mask
721      // should be 0,1,2,3,4,5... with the appropriate element replaced with
722      // elt 0 of the RHS.
723      SmallVector<int, 8> ShufOps;
724      for (unsigned i = 0; i != NumElts; ++i)
725        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
726
727      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
728                                  &ShufOps[0]);
729    }
730  }
731  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
732}
733
734SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
735  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
736  // FIXME: We shouldn't do this for TargetConstantFP's.
737  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
738  // to phase ordering between legalized code and the dag combiner.  This
739  // probably means that we need to integrate dag combiner and legalizer
740  // together.
741  // We generally can't do this one for long doubles.
742  SDValue Tmp1 = ST->getChain();
743  SDValue Tmp2 = ST->getBasePtr();
744  SDValue Tmp3;
745  unsigned Alignment = ST->getAlignment();
746  bool isVolatile = ST->isVolatile();
747  bool isNonTemporal = ST->isNonTemporal();
748  DebugLoc dl = ST->getDebugLoc();
749  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
750    if (CFP->getValueType(0) == MVT::f32 &&
751        getTypeAction(MVT::i32) == Legal) {
752      Tmp3 = DAG.getConstant(CFP->getValueAPF().
753                                      bitcastToAPInt().zextOrTrunc(32),
754                              MVT::i32);
755      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
756                          isVolatile, isNonTemporal, Alignment);
757    }
758
759    if (CFP->getValueType(0) == MVT::f64) {
760      // If this target supports 64-bit registers, do a single 64-bit store.
761      if (getTypeAction(MVT::i64) == Legal) {
762        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
763                                  zextOrTrunc(64), MVT::i64);
764        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
765                            isVolatile, isNonTemporal, Alignment);
766      }
767
768      if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
769        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
770        // stores.  If the target supports neither 32- nor 64-bits, this
771        // xform is certainly not worth it.
772        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
773        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
774        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
775        if (TLI.isBigEndian()) std::swap(Lo, Hi);
776
777        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
778                          isNonTemporal, Alignment);
779        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
780                            DAG.getIntPtrConstant(4));
781        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
782                          ST->getPointerInfo().getWithOffset(4),
783                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
784
785        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
786      }
787    }
788  }
789  return SDValue();
790}
791
792/// LegalizeOp - We know that the specified value has a legal type, and
793/// that its operands are legal.  Now ensure that the operation itself
794/// is legal, recursively ensuring that the operands' operations remain
795/// legal.
796SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
797  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
798    return Op;
799
800  SDNode *Node = Op.getNode();
801  DebugLoc dl = Node->getDebugLoc();
802
803  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
804    assert(getTypeAction(Node->getValueType(i)) == Legal &&
805           "Unexpected illegal type!");
806
807  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
808    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
809            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
810           "Unexpected illegal type!");
811
812  // Note that LegalizeOp may be reentered even from single-use nodes, which
813  // means that we always must cache transformed nodes.
814  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
815  if (I != LegalizedNodes.end()) return I->second;
816
817  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
818  SDValue Result = Op;
819  bool isCustom = false;
820
821  // Figure out the correct action; the way to query this varies by opcode
822  TargetLowering::LegalizeAction Action;
823  bool SimpleFinishLegalizing = true;
824  switch (Node->getOpcode()) {
825  case ISD::INTRINSIC_W_CHAIN:
826  case ISD::INTRINSIC_WO_CHAIN:
827  case ISD::INTRINSIC_VOID:
828  case ISD::VAARG:
829  case ISD::STACKSAVE:
830    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
831    break;
832  case ISD::SINT_TO_FP:
833  case ISD::UINT_TO_FP:
834  case ISD::EXTRACT_VECTOR_ELT:
835    Action = TLI.getOperationAction(Node->getOpcode(),
836                                    Node->getOperand(0).getValueType());
837    break;
838  case ISD::FP_ROUND_INREG:
839  case ISD::SIGN_EXTEND_INREG: {
840    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
841    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
842    break;
843  }
844  case ISD::SELECT_CC:
845  case ISD::SETCC:
846  case ISD::BR_CC: {
847    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
848                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
849    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
850    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
851    ISD::CondCode CCCode =
852        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
853    Action = TLI.getCondCodeAction(CCCode, OpVT);
854    if (Action == TargetLowering::Legal) {
855      if (Node->getOpcode() == ISD::SELECT_CC)
856        Action = TLI.getOperationAction(Node->getOpcode(),
857                                        Node->getValueType(0));
858      else
859        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
860    }
861    break;
862  }
863  case ISD::LOAD:
864  case ISD::STORE:
865    // FIXME: Model these properly.  LOAD and STORE are complicated, and
866    // STORE expects the unlegalized operand in some cases.
867    SimpleFinishLegalizing = false;
868    break;
869  case ISD::CALLSEQ_START:
870  case ISD::CALLSEQ_END:
871    // FIXME: This shouldn't be necessary.  These nodes have special properties
872    // dealing with the recursive nature of legalization.  Removing this
873    // special case should be done as part of making LegalizeDAG non-recursive.
874    SimpleFinishLegalizing = false;
875    break;
876  case ISD::EXTRACT_ELEMENT:
877  case ISD::FLT_ROUNDS_:
878  case ISD::SADDO:
879  case ISD::SSUBO:
880  case ISD::UADDO:
881  case ISD::USUBO:
882  case ISD::SMULO:
883  case ISD::UMULO:
884  case ISD::FPOWI:
885  case ISD::MERGE_VALUES:
886  case ISD::EH_RETURN:
887  case ISD::FRAME_TO_ARGS_OFFSET:
888  case ISD::EH_SJLJ_SETJMP:
889  case ISD::EH_SJLJ_LONGJMP:
890  case ISD::EH_SJLJ_DISPATCHSETUP:
891    // These operations lie about being legal: when they claim to be legal,
892    // they should actually be expanded.
893    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
894    if (Action == TargetLowering::Legal)
895      Action = TargetLowering::Expand;
896    break;
897  case ISD::TRAMPOLINE:
898  case ISD::FRAMEADDR:
899  case ISD::RETURNADDR:
900    // These operations lie about being legal: when they claim to be legal,
901    // they should actually be custom-lowered.
902    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
903    if (Action == TargetLowering::Legal)
904      Action = TargetLowering::Custom;
905    break;
906  case ISD::BUILD_VECTOR:
907    // A weird case: legalization for BUILD_VECTOR never legalizes the
908    // operands!
909    // FIXME: This really sucks... changing it isn't semantically incorrect,
910    // but it massively pessimizes the code for floating-point BUILD_VECTORs
911    // because ConstantFP operands get legalized into constant pool loads
912    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
913    // though, because BUILD_VECTORS usually get lowered into other nodes
914    // which get legalized properly.
915    SimpleFinishLegalizing = false;
916    break;
917  default:
918    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
919      Action = TargetLowering::Legal;
920    } else {
921      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
922    }
923    break;
924  }
925
926  if (SimpleFinishLegalizing) {
927    SmallVector<SDValue, 8> Ops, ResultVals;
928    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
929      Ops.push_back(LegalizeOp(Node->getOperand(i)));
930    switch (Node->getOpcode()) {
931    default: break;
932    case ISD::BR:
933    case ISD::BRIND:
934    case ISD::BR_JT:
935    case ISD::BR_CC:
936    case ISD::BRCOND:
937      // Branches tweak the chain to include LastCALLSEQ_END
938      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
939                            LastCALLSEQ_END);
940      Ops[0] = LegalizeOp(Ops[0]);
941      LastCALLSEQ_END = DAG.getEntryNode();
942      break;
943    case ISD::SHL:
944    case ISD::SRL:
945    case ISD::SRA:
946    case ISD::ROTL:
947    case ISD::ROTR:
948      // Legalizing shifts/rotates requires adjusting the shift amount
949      // to the appropriate width.
950      if (!Ops[1].getValueType().isVector())
951        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
952      break;
953    case ISD::SRL_PARTS:
954    case ISD::SRA_PARTS:
955    case ISD::SHL_PARTS:
956      // Legalizing shifts/rotates requires adjusting the shift amount
957      // to the appropriate width.
958      if (!Ops[2].getValueType().isVector())
959        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
960      break;
961    }
962
963    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
964                                            Ops.size()), 0);
965    switch (Action) {
966    case TargetLowering::Legal:
967      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
968        ResultVals.push_back(Result.getValue(i));
969      break;
970    case TargetLowering::Custom:
971      // FIXME: The handling for custom lowering with multiple results is
972      // a complete mess.
973      Tmp1 = TLI.LowerOperation(Result, DAG);
974      if (Tmp1.getNode()) {
975        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
976          if (e == 1)
977            ResultVals.push_back(Tmp1);
978          else
979            ResultVals.push_back(Tmp1.getValue(i));
980        }
981        break;
982      }
983
984      // FALL THROUGH
985    case TargetLowering::Expand:
986      ExpandNode(Result.getNode(), ResultVals);
987      break;
988    case TargetLowering::Promote:
989      PromoteNode(Result.getNode(), ResultVals);
990      break;
991    }
992    if (!ResultVals.empty()) {
993      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
994        if (ResultVals[i] != SDValue(Node, i))
995          ResultVals[i] = LegalizeOp(ResultVals[i]);
996        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
997      }
998      return ResultVals[Op.getResNo()];
999    }
1000  }
1001
1002  switch (Node->getOpcode()) {
1003  default:
1004#ifndef NDEBUG
1005    dbgs() << "NODE: ";
1006    Node->dump( &DAG);
1007    dbgs() << "\n";
1008#endif
1009    assert(0 && "Do not know how to legalize this operator!");
1010
1011  case ISD::BUILD_VECTOR:
1012    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
1013    default: assert(0 && "This action is not supported yet!");
1014    case TargetLowering::Custom:
1015      Tmp3 = TLI.LowerOperation(Result, DAG);
1016      if (Tmp3.getNode()) {
1017        Result = Tmp3;
1018        break;
1019      }
1020      // FALLTHROUGH
1021    case TargetLowering::Expand:
1022      Result = ExpandBUILD_VECTOR(Result.getNode());
1023      break;
1024    }
1025    break;
1026  case ISD::CALLSEQ_START: {
1027    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1028
1029    // Recursively Legalize all of the inputs of the call end that do not lead
1030    // to this call start.  This ensures that any libcalls that need be inserted
1031    // are inserted *before* the CALLSEQ_START.
1032    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1033    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1034      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1035                                   NodesLeadingTo);
1036    }
1037
1038    // Now that we have legalized all of the inputs (which may have inserted
1039    // libcalls), create the new CALLSEQ_START node.
1040    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1041
1042    // Merge in the last call to ensure that this call starts after the last
1043    // call ended.
1044    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1045      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1046                         Tmp1, LastCALLSEQ_END);
1047      Tmp1 = LegalizeOp(Tmp1);
1048    }
1049
1050    // Do not try to legalize the target-specific arguments (#1+).
1051    if (Tmp1 != Node->getOperand(0)) {
1052      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1053      Ops[0] = Tmp1;
1054      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1055                                              Ops.size()), Result.getResNo());
1056    }
1057
1058    // Remember that the CALLSEQ_START is legalized.
1059    AddLegalizedOperand(Op.getValue(0), Result);
1060    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1061      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1062
1063    // Now that the callseq_start and all of the non-call nodes above this call
1064    // sequence have been legalized, legalize the call itself.  During this
1065    // process, no libcalls can/will be inserted, guaranteeing that no calls
1066    // can overlap.
1067    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1068    // Note that we are selecting this call!
1069    LastCALLSEQ_END = SDValue(CallEnd, 0);
1070    IsLegalizingCall = true;
1071
1072    // Legalize the call, starting from the CALLSEQ_END.
1073    LegalizeOp(LastCALLSEQ_END);
1074    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1075    return Result;
1076  }
1077  case ISD::CALLSEQ_END:
1078    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1079    // will cause this node to be legalized as well as handling libcalls right.
1080    if (LastCALLSEQ_END.getNode() != Node) {
1081      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1082      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1083      assert(I != LegalizedNodes.end() &&
1084             "Legalizing the call start should have legalized this node!");
1085      return I->second;
1086    }
1087
1088    // Otherwise, the call start has been legalized and everything is going
1089    // according to plan.  Just legalize ourselves normally here.
1090    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1091    // Do not try to legalize the target-specific arguments (#1+), except for
1092    // an optional flag input.
1093    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Glue){
1094      if (Tmp1 != Node->getOperand(0)) {
1095        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1096        Ops[0] = Tmp1;
1097        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1098                                                &Ops[0], Ops.size()),
1099                         Result.getResNo());
1100      }
1101    } else {
1102      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1103      if (Tmp1 != Node->getOperand(0) ||
1104          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1105        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1106        Ops[0] = Tmp1;
1107        Ops.back() = Tmp2;
1108        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1109                                                &Ops[0], Ops.size()),
1110                         Result.getResNo());
1111      }
1112    }
1113    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1114    // This finishes up call legalization.
1115    IsLegalizingCall = false;
1116
1117    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1118    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1119    if (Node->getNumValues() == 2)
1120      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1121    return Result.getValue(Op.getResNo());
1122  case ISD::LOAD: {
1123    LoadSDNode *LD = cast<LoadSDNode>(Node);
1124    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1125    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1126
1127    ISD::LoadExtType ExtType = LD->getExtensionType();
1128    if (ExtType == ISD::NON_EXTLOAD) {
1129      EVT VT = Node->getValueType(0);
1130      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1131                                              Tmp1, Tmp2, LD->getOffset()),
1132                       Result.getResNo());
1133      Tmp3 = Result.getValue(0);
1134      Tmp4 = Result.getValue(1);
1135
1136      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1137      default: assert(0 && "This action is not supported yet!");
1138      case TargetLowering::Legal:
1139        // If this is an unaligned load and the target doesn't support it,
1140        // expand it.
1141        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1142          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1143          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1144          if (LD->getAlignment() < ABIAlignment){
1145            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1146                                         DAG, TLI);
1147            Tmp3 = Result.getOperand(0);
1148            Tmp4 = Result.getOperand(1);
1149            Tmp3 = LegalizeOp(Tmp3);
1150            Tmp4 = LegalizeOp(Tmp4);
1151          }
1152        }
1153        break;
1154      case TargetLowering::Custom:
1155        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1156        if (Tmp1.getNode()) {
1157          Tmp3 = LegalizeOp(Tmp1);
1158          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1159        }
1160        break;
1161      case TargetLowering::Promote: {
1162        // Only promote a load of vector type to another.
1163        assert(VT.isVector() && "Cannot promote this load!");
1164        // Change base type to a different vector type.
1165        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1166
1167        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
1168                           LD->isVolatile(), LD->isNonTemporal(),
1169                           LD->getAlignment());
1170        Tmp3 = LegalizeOp(DAG.getNode(ISD::BITCAST, dl, VT, Tmp1));
1171        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1172        break;
1173      }
1174      }
1175      // Since loads produce two values, make sure to remember that we
1176      // legalized both of them.
1177      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1178      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1179      return Op.getResNo() ? Tmp4 : Tmp3;
1180    }
1181
1182    EVT SrcVT = LD->getMemoryVT();
1183    unsigned SrcWidth = SrcVT.getSizeInBits();
1184    unsigned Alignment = LD->getAlignment();
1185    bool isVolatile = LD->isVolatile();
1186    bool isNonTemporal = LD->isNonTemporal();
1187
1188    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1189        // Some targets pretend to have an i1 loading operation, and actually
1190        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1191        // bits are guaranteed to be zero; it helps the optimizers understand
1192        // that these bits are zero.  It is also useful for EXTLOAD, since it
1193        // tells the optimizers that those bits are undefined.  It would be
1194        // nice to have an effective generic way of getting these benefits...
1195        // Until such a way is found, don't insist on promoting i1 here.
1196        (SrcVT != MVT::i1 ||
1197         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1198      // Promote to a byte-sized load if not loading an integral number of
1199      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1200      unsigned NewWidth = SrcVT.getStoreSizeInBits();
1201      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1202      SDValue Ch;
1203
1204      // The extra bits are guaranteed to be zero, since we stored them that
1205      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1206
1207      ISD::LoadExtType NewExtType =
1208        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1209
1210      Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), dl,
1211                              Tmp1, Tmp2, LD->getPointerInfo(),
1212                              NVT, isVolatile, isNonTemporal, Alignment);
1213
1214      Ch = Result.getValue(1); // The chain.
1215
1216      if (ExtType == ISD::SEXTLOAD)
1217        // Having the top bits zero doesn't help when sign extending.
1218        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1219                             Result.getValueType(),
1220                             Result, DAG.getValueType(SrcVT));
1221      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1222        // All the top bits are guaranteed to be zero - inform the optimizers.
1223        Result = DAG.getNode(ISD::AssertZext, dl,
1224                             Result.getValueType(), Result,
1225                             DAG.getValueType(SrcVT));
1226
1227      Tmp1 = LegalizeOp(Result);
1228      Tmp2 = LegalizeOp(Ch);
1229    } else if (SrcWidth & (SrcWidth - 1)) {
1230      // If not loading a power-of-2 number of bits, expand as two loads.
1231      assert(!SrcVT.isVector() && "Unsupported extload!");
1232      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1233      assert(RoundWidth < SrcWidth);
1234      unsigned ExtraWidth = SrcWidth - RoundWidth;
1235      assert(ExtraWidth < RoundWidth);
1236      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1237             "Load size not an integral number of bytes!");
1238      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1239      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1240      SDValue Lo, Hi, Ch;
1241      unsigned IncrementSize;
1242
1243      if (TLI.isLittleEndian()) {
1244        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1245        // Load the bottom RoundWidth bits.
1246        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), dl,
1247                            Tmp1, Tmp2,
1248                            LD->getPointerInfo(), RoundVT, isVolatile,
1249                            isNonTemporal, Alignment);
1250
1251        // Load the remaining ExtraWidth bits.
1252        IncrementSize = RoundWidth / 8;
1253        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1254                           DAG.getIntPtrConstant(IncrementSize));
1255        Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1256                            LD->getPointerInfo().getWithOffset(IncrementSize),
1257                            ExtraVT, isVolatile, isNonTemporal,
1258                            MinAlign(Alignment, IncrementSize));
1259
1260        // Build a factor node to remember that this load is independent of
1261        // the other one.
1262        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1263                         Hi.getValue(1));
1264
1265        // Move the top bits to the right place.
1266        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1267                         DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1268
1269        // Join the hi and lo parts.
1270        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1271      } else {
1272        // Big endian - avoid unaligned loads.
1273        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1274        // Load the top RoundWidth bits.
1275        Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1276                            LD->getPointerInfo(), RoundVT, isVolatile,
1277                            isNonTemporal, Alignment);
1278
1279        // Load the remaining ExtraWidth bits.
1280        IncrementSize = RoundWidth / 8;
1281        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1282                           DAG.getIntPtrConstant(IncrementSize));
1283        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1284                            Node->getValueType(0), dl, Tmp1, Tmp2,
1285                            LD->getPointerInfo().getWithOffset(IncrementSize),
1286                            ExtraVT, isVolatile, isNonTemporal,
1287                            MinAlign(Alignment, IncrementSize));
1288
1289        // Build a factor node to remember that this load is independent of
1290        // the other one.
1291        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1292                         Hi.getValue(1));
1293
1294        // Move the top bits to the right place.
1295        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1296                         DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1297
1298        // Join the hi and lo parts.
1299        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1300      }
1301
1302      Tmp1 = LegalizeOp(Result);
1303      Tmp2 = LegalizeOp(Ch);
1304    } else {
1305      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1306      default: assert(0 && "This action is not supported yet!");
1307      case TargetLowering::Custom:
1308        isCustom = true;
1309        // FALLTHROUGH
1310      case TargetLowering::Legal:
1311        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1312                                                Tmp1, Tmp2, LD->getOffset()),
1313                         Result.getResNo());
1314        Tmp1 = Result.getValue(0);
1315        Tmp2 = Result.getValue(1);
1316
1317        if (isCustom) {
1318          Tmp3 = TLI.LowerOperation(Result, DAG);
1319          if (Tmp3.getNode()) {
1320            Tmp1 = LegalizeOp(Tmp3);
1321            Tmp2 = LegalizeOp(Tmp3.getValue(1));
1322          }
1323        } else {
1324          // If this is an unaligned load and the target doesn't support it,
1325          // expand it.
1326          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1327            const Type *Ty =
1328              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1329            unsigned ABIAlignment =
1330              TLI.getTargetData()->getABITypeAlignment(Ty);
1331            if (LD->getAlignment() < ABIAlignment){
1332              Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1333                                           DAG, TLI);
1334              Tmp1 = Result.getOperand(0);
1335              Tmp2 = Result.getOperand(1);
1336              Tmp1 = LegalizeOp(Tmp1);
1337              Tmp2 = LegalizeOp(Tmp2);
1338            }
1339          }
1340        }
1341        break;
1342      case TargetLowering::Expand:
1343        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && isTypeLegal(SrcVT)) {
1344          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1345                                     LD->getPointerInfo(),
1346                                     LD->isVolatile(), LD->isNonTemporal(),
1347                                     LD->getAlignment());
1348          unsigned ExtendOp;
1349          switch (ExtType) {
1350          case ISD::EXTLOAD:
1351            ExtendOp = (SrcVT.isFloatingPoint() ?
1352                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1353            break;
1354          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1355          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1356          default: llvm_unreachable("Unexpected extend load type!");
1357          }
1358          Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1359          Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1360          Tmp2 = LegalizeOp(Load.getValue(1));
1361          break;
1362        }
1363        // FIXME: This does not work for vectors on most targets.  Sign- and
1364        // zero-extend operations are currently folded into extending loads,
1365        // whether they are legal or not, and then we end up here without any
1366        // support for legalizing them.
1367        assert(ExtType != ISD::EXTLOAD &&
1368               "EXTLOAD should always be supported!");
1369        // Turn the unsupported load into an EXTLOAD followed by an explicit
1370        // zero/sign extend inreg.
1371        Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), dl,
1372                                Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1373                                LD->isVolatile(), LD->isNonTemporal(),
1374                                LD->getAlignment());
1375        SDValue ValRes;
1376        if (ExtType == ISD::SEXTLOAD)
1377          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1378                               Result.getValueType(),
1379                               Result, DAG.getValueType(SrcVT));
1380        else
1381          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1382        Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1383        Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1384        break;
1385      }
1386    }
1387
1388    // Since loads produce two values, make sure to remember that we legalized
1389    // both of them.
1390    AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1391    AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1392    return Op.getResNo() ? Tmp2 : Tmp1;
1393  }
1394  case ISD::STORE: {
1395    StoreSDNode *ST = cast<StoreSDNode>(Node);
1396    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1397    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1398    unsigned Alignment = ST->getAlignment();
1399    bool isVolatile = ST->isVolatile();
1400    bool isNonTemporal = ST->isNonTemporal();
1401
1402    if (!ST->isTruncatingStore()) {
1403      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1404        Result = SDValue(OptStore, 0);
1405        break;
1406      }
1407
1408      {
1409        Tmp3 = LegalizeOp(ST->getValue());
1410        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1411                                                Tmp1, Tmp3, Tmp2,
1412                                                ST->getOffset()),
1413                         Result.getResNo());
1414
1415        EVT VT = Tmp3.getValueType();
1416        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1417        default: assert(0 && "This action is not supported yet!");
1418        case TargetLowering::Legal:
1419          // If this is an unaligned store and the target doesn't support it,
1420          // expand it.
1421          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1422            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1423            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1424            if (ST->getAlignment() < ABIAlignment)
1425              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1426                                            DAG, TLI);
1427          }
1428          break;
1429        case TargetLowering::Custom:
1430          Tmp1 = TLI.LowerOperation(Result, DAG);
1431          if (Tmp1.getNode()) Result = Tmp1;
1432          break;
1433        case TargetLowering::Promote:
1434          assert(VT.isVector() && "Unknown legal promote case!");
1435          Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1436                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1437          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1438                                ST->getPointerInfo(), isVolatile,
1439                                isNonTemporal, Alignment);
1440          break;
1441        }
1442        break;
1443      }
1444    } else {
1445      Tmp3 = LegalizeOp(ST->getValue());
1446
1447      EVT StVT = ST->getMemoryVT();
1448      unsigned StWidth = StVT.getSizeInBits();
1449
1450      if (StWidth != StVT.getStoreSizeInBits()) {
1451        // Promote to a byte-sized store with upper bits zero if not
1452        // storing an integral number of bytes.  For example, promote
1453        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1454        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1455                                    StVT.getStoreSizeInBits());
1456        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1457        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1458                                   NVT, isVolatile, isNonTemporal, Alignment);
1459      } else if (StWidth & (StWidth - 1)) {
1460        // If not storing a power-of-2 number of bits, expand as two stores.
1461        assert(!StVT.isVector() && "Unsupported truncstore!");
1462        unsigned RoundWidth = 1 << Log2_32(StWidth);
1463        assert(RoundWidth < StWidth);
1464        unsigned ExtraWidth = StWidth - RoundWidth;
1465        assert(ExtraWidth < RoundWidth);
1466        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1467               "Store size not an integral number of bytes!");
1468        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1469        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1470        SDValue Lo, Hi;
1471        unsigned IncrementSize;
1472
1473        if (TLI.isLittleEndian()) {
1474          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1475          // Store the bottom RoundWidth bits.
1476          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1477                                 RoundVT,
1478                                 isVolatile, isNonTemporal, Alignment);
1479
1480          // Store the remaining ExtraWidth bits.
1481          IncrementSize = RoundWidth / 8;
1482          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1483                             DAG.getIntPtrConstant(IncrementSize));
1484          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1485                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1486          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1487                             ST->getPointerInfo().getWithOffset(IncrementSize),
1488                                 ExtraVT, isVolatile, isNonTemporal,
1489                                 MinAlign(Alignment, IncrementSize));
1490        } else {
1491          // Big endian - avoid unaligned stores.
1492          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1493          // Store the top RoundWidth bits.
1494          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1495                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1496          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1497                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1498
1499          // Store the remaining ExtraWidth bits.
1500          IncrementSize = RoundWidth / 8;
1501          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1502                             DAG.getIntPtrConstant(IncrementSize));
1503          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1504                              ST->getPointerInfo().getWithOffset(IncrementSize),
1505                                 ExtraVT, isVolatile, isNonTemporal,
1506                                 MinAlign(Alignment, IncrementSize));
1507        }
1508
1509        // The order of the stores doesn't matter.
1510        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1511      } else {
1512        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1513            Tmp2 != ST->getBasePtr())
1514          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1515                                                  Tmp1, Tmp3, Tmp2,
1516                                                  ST->getOffset()),
1517                           Result.getResNo());
1518
1519        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1520        default: assert(0 && "This action is not supported yet!");
1521        case TargetLowering::Legal:
1522          // If this is an unaligned store and the target doesn't support it,
1523          // expand it.
1524          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1525            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1526            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1527            if (ST->getAlignment() < ABIAlignment)
1528              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1529                                            DAG, TLI);
1530          }
1531          break;
1532        case TargetLowering::Custom:
1533          Result = TLI.LowerOperation(Result, DAG);
1534          break;
1535        case Expand:
1536          // TRUNCSTORE:i16 i32 -> STORE i16
1537          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1538          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1539          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1540                                isVolatile, isNonTemporal, Alignment);
1541          break;
1542        }
1543      }
1544    }
1545    break;
1546  }
1547  }
1548  assert(Result.getValueType() == Op.getValueType() &&
1549         "Bad legalization!");
1550
1551  // Make sure that the generated code is itself legal.
1552  if (Result != Op)
1553    Result = LegalizeOp(Result);
1554
1555  // Note that LegalizeOp may be reentered even from single-use nodes, which
1556  // means that we always must cache transformed nodes.
1557  AddLegalizedOperand(Op, Result);
1558  return Result;
1559}
1560
1561SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1562  SDValue Vec = Op.getOperand(0);
1563  SDValue Idx = Op.getOperand(1);
1564  DebugLoc dl = Op.getDebugLoc();
1565  // Store the value to a temporary stack slot, then LOAD the returned part.
1566  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1567  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1568                            MachinePointerInfo(), false, false, 0);
1569
1570  // Add the offset to the index.
1571  unsigned EltSize =
1572      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1573  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1574                    DAG.getConstant(EltSize, Idx.getValueType()));
1575
1576  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1577    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1578  else
1579    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1580
1581  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1582
1583  if (Op.getValueType().isVector())
1584    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1585                       false, false, 0);
1586  return DAG.getExtLoad(ISD::EXTLOAD, Op.getValueType(), dl, Ch, StackPtr,
1587                        MachinePointerInfo(),
1588                        Vec.getValueType().getVectorElementType(),
1589                        false, false, 0);
1590}
1591
1592SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1593  // We can't handle this case efficiently.  Allocate a sufficiently
1594  // aligned object on the stack, store each element into it, then load
1595  // the result as a vector.
1596  // Create the stack frame object.
1597  EVT VT = Node->getValueType(0);
1598  EVT EltVT = VT.getVectorElementType();
1599  DebugLoc dl = Node->getDebugLoc();
1600  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1601  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1602  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1603
1604  // Emit a store of each element to the stack slot.
1605  SmallVector<SDValue, 8> Stores;
1606  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1607  // Store (in the right endianness) the elements to memory.
1608  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1609    // Ignore undef elements.
1610    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1611
1612    unsigned Offset = TypeByteSize*i;
1613
1614    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1615    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1616
1617    // If the destination vector element type is narrower than the source
1618    // element type, only store the bits necessary.
1619    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1620      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1621                                         Node->getOperand(i), Idx,
1622                                         PtrInfo.getWithOffset(Offset),
1623                                         EltVT, false, false, 0));
1624    } else
1625      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1626                                    Node->getOperand(i), Idx,
1627                                    PtrInfo.getWithOffset(Offset),
1628                                    false, false, 0));
1629  }
1630
1631  SDValue StoreChain;
1632  if (!Stores.empty())    // Not all undef elements?
1633    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1634                             &Stores[0], Stores.size());
1635  else
1636    StoreChain = DAG.getEntryNode();
1637
1638  // Result is a load from the stack slot.
1639  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1640}
1641
1642SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1643  DebugLoc dl = Node->getDebugLoc();
1644  SDValue Tmp1 = Node->getOperand(0);
1645  SDValue Tmp2 = Node->getOperand(1);
1646
1647  // Get the sign bit of the RHS.  First obtain a value that has the same
1648  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1649  SDValue SignBit;
1650  EVT FloatVT = Tmp2.getValueType();
1651  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1652  if (isTypeLegal(IVT)) {
1653    // Convert to an integer with the same sign bit.
1654    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1655  } else {
1656    // Store the float to memory, then load the sign part out as an integer.
1657    MVT LoadTy = TLI.getPointerTy();
1658    // First create a temporary that is aligned for both the load and store.
1659    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1660    // Then store the float to it.
1661    SDValue Ch =
1662      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1663                   false, false, 0);
1664    if (TLI.isBigEndian()) {
1665      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1666      // Load out a legal integer with the same sign bit as the float.
1667      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1668                            false, false, 0);
1669    } else { // Little endian
1670      SDValue LoadPtr = StackPtr;
1671      // The float may be wider than the integer we are going to load.  Advance
1672      // the pointer so that the loaded integer will contain the sign bit.
1673      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1674      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1675      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1676                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1677      // Load a legal integer containing the sign bit.
1678      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1679                            false, false, 0);
1680      // Move the sign bit to the top bit of the loaded integer.
1681      unsigned BitShift = LoadTy.getSizeInBits() -
1682        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1683      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1684      if (BitShift)
1685        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1686                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1687    }
1688  }
1689  // Now get the sign bit proper, by seeing whether the value is negative.
1690  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1691                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1692                         ISD::SETLT);
1693  // Get the absolute value of the result.
1694  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1695  // Select between the nabs and abs value based on the sign bit of
1696  // the input.
1697  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1698                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1699                     AbsVal);
1700}
1701
1702void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1703                                           SmallVectorImpl<SDValue> &Results) {
1704  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1705  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1706          " not tell us which reg is the stack pointer!");
1707  DebugLoc dl = Node->getDebugLoc();
1708  EVT VT = Node->getValueType(0);
1709  SDValue Tmp1 = SDValue(Node, 0);
1710  SDValue Tmp2 = SDValue(Node, 1);
1711  SDValue Tmp3 = Node->getOperand(2);
1712  SDValue Chain = Tmp1.getOperand(0);
1713
1714  // Chain the dynamic stack allocation so that it doesn't modify the stack
1715  // pointer when other instructions are using the stack.
1716  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1717
1718  SDValue Size  = Tmp2.getOperand(1);
1719  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1720  Chain = SP.getValue(1);
1721  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1722  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1723  if (Align > StackAlign)
1724    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1725                      DAG.getConstant(-(uint64_t)Align, VT));
1726  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1727  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1728
1729  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1730                            DAG.getIntPtrConstant(0, true), SDValue());
1731
1732  Results.push_back(Tmp1);
1733  Results.push_back(Tmp2);
1734}
1735
1736/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1737/// condition code CC on the current target. This routine expands SETCC with
1738/// illegal condition code into AND / OR of multiple SETCC values.
1739void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1740                                                 SDValue &LHS, SDValue &RHS,
1741                                                 SDValue &CC,
1742                                                 DebugLoc dl) {
1743  EVT OpVT = LHS.getValueType();
1744  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1745  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1746  default: assert(0 && "Unknown condition code action!");
1747  case TargetLowering::Legal:
1748    // Nothing to do.
1749    break;
1750  case TargetLowering::Expand: {
1751    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1752    unsigned Opc = 0;
1753    switch (CCCode) {
1754    default: assert(0 && "Don't know how to expand this condition!");
1755    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1756    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1757    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1758    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1759    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1760    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1761    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1762    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1763    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1764    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1765    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1766    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1767    // FIXME: Implement more expansions.
1768    }
1769
1770    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1771    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1772    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1773    RHS = SDValue();
1774    CC  = SDValue();
1775    break;
1776  }
1777  }
1778}
1779
1780/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1781/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1782/// a load from the stack slot to DestVT, extending it if needed.
1783/// The resultant code need not be legal.
1784SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1785                                               EVT SlotVT,
1786                                               EVT DestVT,
1787                                               DebugLoc dl) {
1788  // Create the stack frame object.
1789  unsigned SrcAlign =
1790    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1791                                              getTypeForEVT(*DAG.getContext()));
1792  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1793
1794  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1795  int SPFI = StackPtrFI->getIndex();
1796  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1797
1798  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1799  unsigned SlotSize = SlotVT.getSizeInBits();
1800  unsigned DestSize = DestVT.getSizeInBits();
1801  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1802  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1803
1804  // Emit a store to the stack slot.  Use a truncstore if the input value is
1805  // later than DestVT.
1806  SDValue Store;
1807
1808  if (SrcSize > SlotSize)
1809    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1810                              PtrInfo, SlotVT, false, false, SrcAlign);
1811  else {
1812    assert(SrcSize == SlotSize && "Invalid store");
1813    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1814                         PtrInfo, false, false, SrcAlign);
1815  }
1816
1817  // Result is a load from the stack slot.
1818  if (SlotSize == DestSize)
1819    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1820                       false, false, DestAlign);
1821
1822  assert(SlotSize < DestSize && "Unknown extension!");
1823  return DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl, Store, FIPtr,
1824                        PtrInfo, SlotVT, false, false, DestAlign);
1825}
1826
1827SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1828  DebugLoc dl = Node->getDebugLoc();
1829  // Create a vector sized/aligned stack slot, store the value to element #0,
1830  // then load the whole vector back out.
1831  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1832
1833  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1834  int SPFI = StackPtrFI->getIndex();
1835
1836  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1837                                 StackPtr,
1838                                 MachinePointerInfo::getFixedStack(SPFI),
1839                                 Node->getValueType(0).getVectorElementType(),
1840                                 false, false, 0);
1841  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1842                     MachinePointerInfo::getFixedStack(SPFI),
1843                     false, false, 0);
1844}
1845
1846
1847/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1848/// support the operation, but do support the resultant vector type.
1849SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1850  unsigned NumElems = Node->getNumOperands();
1851  SDValue Value1, Value2;
1852  DebugLoc dl = Node->getDebugLoc();
1853  EVT VT = Node->getValueType(0);
1854  EVT OpVT = Node->getOperand(0).getValueType();
1855  EVT EltVT = VT.getVectorElementType();
1856
1857  // If the only non-undef value is the low element, turn this into a
1858  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1859  bool isOnlyLowElement = true;
1860  bool MoreThanTwoValues = false;
1861  bool isConstant = true;
1862  for (unsigned i = 0; i < NumElems; ++i) {
1863    SDValue V = Node->getOperand(i);
1864    if (V.getOpcode() == ISD::UNDEF)
1865      continue;
1866    if (i > 0)
1867      isOnlyLowElement = false;
1868    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1869      isConstant = false;
1870
1871    if (!Value1.getNode()) {
1872      Value1 = V;
1873    } else if (!Value2.getNode()) {
1874      if (V != Value1)
1875        Value2 = V;
1876    } else if (V != Value1 && V != Value2) {
1877      MoreThanTwoValues = true;
1878    }
1879  }
1880
1881  if (!Value1.getNode())
1882    return DAG.getUNDEF(VT);
1883
1884  if (isOnlyLowElement)
1885    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1886
1887  // If all elements are constants, create a load from the constant pool.
1888  if (isConstant) {
1889    std::vector<Constant*> CV;
1890    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1891      if (ConstantFPSDNode *V =
1892          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1893        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1894      } else if (ConstantSDNode *V =
1895                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1896        if (OpVT==EltVT)
1897          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1898        else {
1899          // If OpVT and EltVT don't match, EltVT is not legal and the
1900          // element values have been promoted/truncated earlier.  Undo this;
1901          // we don't want a v16i8 to become a v16i32 for example.
1902          const ConstantInt *CI = V->getConstantIntValue();
1903          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1904                                        CI->getZExtValue()));
1905        }
1906      } else {
1907        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1908        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1909        CV.push_back(UndefValue::get(OpNTy));
1910      }
1911    }
1912    Constant *CP = ConstantVector::get(CV);
1913    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1914    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1915    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1916                       MachinePointerInfo::getConstantPool(),
1917                       false, false, Alignment);
1918  }
1919
1920  if (!MoreThanTwoValues) {
1921    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1922    for (unsigned i = 0; i < NumElems; ++i) {
1923      SDValue V = Node->getOperand(i);
1924      if (V.getOpcode() == ISD::UNDEF)
1925        continue;
1926      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1927    }
1928    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1929      // Get the splatted value into the low element of a vector register.
1930      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1931      SDValue Vec2;
1932      if (Value2.getNode())
1933        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1934      else
1935        Vec2 = DAG.getUNDEF(VT);
1936
1937      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1938      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1939    }
1940  }
1941
1942  // Otherwise, we can't handle this case efficiently.
1943  return ExpandVectorBuildThroughStack(Node);
1944}
1945
1946// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1947// does not fit into a register, return the lo part and set the hi part to the
1948// by-reg argument.  If it does fit into a single register, return the result
1949// and leave the Hi part unset.
1950SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1951                                            bool isSigned) {
1952  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1953  // The input chain to this libcall is the entry node of the function.
1954  // Legalizing the call will automatically add the previous call to the
1955  // dependence.
1956  SDValue InChain = DAG.getEntryNode();
1957
1958  TargetLowering::ArgListTy Args;
1959  TargetLowering::ArgListEntry Entry;
1960  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1961    EVT ArgVT = Node->getOperand(i).getValueType();
1962    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1963    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1964    Entry.isSExt = isSigned;
1965    Entry.isZExt = !isSigned;
1966    Args.push_back(Entry);
1967  }
1968  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1969                                         TLI.getPointerTy());
1970
1971  // Splice the libcall in wherever FindInputOutputChains tells us to.
1972  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1973
1974  // isTailCall may be true since the callee does not reference caller stack
1975  // frame. Check if it's in the right position.
1976  bool isTailCall = isInTailCallPosition(DAG, Node, TLI);
1977  std::pair<SDValue, SDValue> CallInfo =
1978    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1979                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1980                    /*isReturnValueUsed=*/true,
1981                    Callee, Args, DAG, Node->getDebugLoc());
1982
1983  if (!CallInfo.second.getNode())
1984    // It's a tailcall, return the chain (which is the DAG root).
1985    return DAG.getRoot();
1986
1987  // Legalize the call sequence, starting with the chain.  This will advance
1988  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1989  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1990  LegalizeOp(CallInfo.second);
1991  return CallInfo.first;
1992}
1993
1994// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1995// ExpandLibCall except that the first operand is the in-chain.
1996std::pair<SDValue, SDValue>
1997SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1998                                         SDNode *Node,
1999                                         bool isSigned) {
2000  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
2001  SDValue InChain = Node->getOperand(0);
2002
2003  TargetLowering::ArgListTy Args;
2004  TargetLowering::ArgListEntry Entry;
2005  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2006    EVT ArgVT = Node->getOperand(i).getValueType();
2007    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2008    Entry.Node = Node->getOperand(i);
2009    Entry.Ty = ArgTy;
2010    Entry.isSExt = isSigned;
2011    Entry.isZExt = !isSigned;
2012    Args.push_back(Entry);
2013  }
2014  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2015                                         TLI.getPointerTy());
2016
2017  // Splice the libcall in wherever FindInputOutputChains tells us to.
2018  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2019  std::pair<SDValue, SDValue> CallInfo =
2020    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2021                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2022                    /*isReturnValueUsed=*/true,
2023                    Callee, Args, DAG, Node->getDebugLoc());
2024
2025  // Legalize the call sequence, starting with the chain.  This will advance
2026  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2027  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2028  LegalizeOp(CallInfo.second);
2029  return CallInfo;
2030}
2031
2032SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2033                                              RTLIB::Libcall Call_F32,
2034                                              RTLIB::Libcall Call_F64,
2035                                              RTLIB::Libcall Call_F80,
2036                                              RTLIB::Libcall Call_PPCF128) {
2037  RTLIB::Libcall LC;
2038  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2039  default: assert(0 && "Unexpected request for libcall!");
2040  case MVT::f32: LC = Call_F32; break;
2041  case MVT::f64: LC = Call_F64; break;
2042  case MVT::f80: LC = Call_F80; break;
2043  case MVT::ppcf128: LC = Call_PPCF128; break;
2044  }
2045  return ExpandLibCall(LC, Node, false);
2046}
2047
2048SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2049                                               RTLIB::Libcall Call_I8,
2050                                               RTLIB::Libcall Call_I16,
2051                                               RTLIB::Libcall Call_I32,
2052                                               RTLIB::Libcall Call_I64,
2053                                               RTLIB::Libcall Call_I128) {
2054  RTLIB::Libcall LC;
2055  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2056  default: assert(0 && "Unexpected request for libcall!");
2057  case MVT::i8:   LC = Call_I8; break;
2058  case MVT::i16:  LC = Call_I16; break;
2059  case MVT::i32:  LC = Call_I32; break;
2060  case MVT::i64:  LC = Call_I64; break;
2061  case MVT::i128: LC = Call_I128; break;
2062  }
2063  return ExpandLibCall(LC, Node, isSigned);
2064}
2065
2066/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2067/// INT_TO_FP operation of the specified operand when the target requests that
2068/// we expand it.  At this point, we know that the result and operand types are
2069/// legal for the target.
2070SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2071                                                   SDValue Op0,
2072                                                   EVT DestVT,
2073                                                   DebugLoc dl) {
2074  if (Op0.getValueType() == MVT::i32) {
2075    // simple 32-bit [signed|unsigned] integer to float/double expansion
2076
2077    // Get the stack frame index of a 8 byte buffer.
2078    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2079
2080    // word offset constant for Hi/Lo address computation
2081    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2082    // set up Hi and Lo (into buffer) address based on endian
2083    SDValue Hi = StackSlot;
2084    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2085                             TLI.getPointerTy(), StackSlot, WordOff);
2086    if (TLI.isLittleEndian())
2087      std::swap(Hi, Lo);
2088
2089    // if signed map to unsigned space
2090    SDValue Op0Mapped;
2091    if (isSigned) {
2092      // constant used to invert sign bit (signed to unsigned mapping)
2093      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2094      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2095    } else {
2096      Op0Mapped = Op0;
2097    }
2098    // store the lo of the constructed double - based on integer input
2099    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2100                                  Op0Mapped, Lo, MachinePointerInfo(),
2101                                  false, false, 0);
2102    // initial hi portion of constructed double
2103    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2104    // store the hi of the constructed double - biased exponent
2105    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2106                                  MachinePointerInfo(),
2107                                  false, false, 0);
2108    // load the constructed double
2109    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2110                               MachinePointerInfo(), false, false, 0);
2111    // FP constant to bias correct the final result
2112    SDValue Bias = DAG.getConstantFP(isSigned ?
2113                                     BitsToDouble(0x4330000080000000ULL) :
2114                                     BitsToDouble(0x4330000000000000ULL),
2115                                     MVT::f64);
2116    // subtract the bias
2117    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2118    // final result
2119    SDValue Result;
2120    // handle final rounding
2121    if (DestVT == MVT::f64) {
2122      // do nothing
2123      Result = Sub;
2124    } else if (DestVT.bitsLT(MVT::f64)) {
2125      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2126                           DAG.getIntPtrConstant(0));
2127    } else if (DestVT.bitsGT(MVT::f64)) {
2128      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2129    }
2130    return Result;
2131  }
2132  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2133  // Code below here assumes !isSigned without checking again.
2134
2135  // Implementation of unsigned i64 to f64 following the algorithm in
2136  // __floatundidf in compiler_rt. This implementation has the advantage
2137  // of performing rounding correctly, both in the default rounding mode
2138  // and in all alternate rounding modes.
2139  // TODO: Generalize this for use with other types.
2140  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2141    SDValue TwoP52 =
2142      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2143    SDValue TwoP84PlusTwoP52 =
2144      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2145    SDValue TwoP84 =
2146      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2147
2148    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2149    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2150                             DAG.getConstant(32, MVT::i64));
2151    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2152    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2153    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2154    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2155    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2156                                TwoP84PlusTwoP52);
2157    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2158  }
2159
2160  // Implementation of unsigned i64 to f32.
2161  // TODO: Generalize this for use with other types.
2162  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2163    // For unsigned conversions, convert them to signed conversions using the
2164    // algorithm from the x86_64 __floatundidf in compiler_rt.
2165    if (!isSigned) {
2166      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2167
2168      SDValue ShiftConst = DAG.getConstant(1, TLI.getShiftAmountTy());
2169      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2170      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2171      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2172      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2173
2174      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2175      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2176
2177      // TODO: This really should be implemented using a branch rather than a
2178      // select.  We happen to get lucky and machinesink does the right
2179      // thing most of the time.  This would be a good candidate for a
2180      //pseudo-op, or, even better, for whole-function isel.
2181      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2182        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2183      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2184    }
2185
2186    // Otherwise, implement the fully general conversion.
2187    EVT SHVT = TLI.getShiftAmountTy();
2188
2189    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2190         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2191    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2192         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2193    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2194         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2195    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2196                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2197    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2198    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2199                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2200                   ISD::SETUGE);
2201    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2202
2203    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2204                             DAG.getConstant(32, SHVT));
2205    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2206    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2207    SDValue TwoP32 =
2208      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2209    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2210    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2211    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2212    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2213    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2214                       DAG.getIntPtrConstant(0));
2215  }
2216
2217  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2218
2219  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2220                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2221                                 ISD::SETLT);
2222  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2223  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2224                                    SignSet, Four, Zero);
2225
2226  // If the sign bit of the integer is set, the large number will be treated
2227  // as a negative number.  To counteract this, the dynamic code adds an
2228  // offset depending on the data type.
2229  uint64_t FF;
2230  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2231  default: assert(0 && "Unsupported integer type!");
2232  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2233  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2234  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2235  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2236  }
2237  if (TLI.isLittleEndian()) FF <<= 32;
2238  Constant *FudgeFactor = ConstantInt::get(
2239                                       Type::getInt64Ty(*DAG.getContext()), FF);
2240
2241  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2242  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2243  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2244  Alignment = std::min(Alignment, 4u);
2245  SDValue FudgeInReg;
2246  if (DestVT == MVT::f32)
2247    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2248                             MachinePointerInfo::getConstantPool(),
2249                             false, false, Alignment);
2250  else {
2251    FudgeInReg =
2252      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl,
2253                                DAG.getEntryNode(), CPIdx,
2254                                MachinePointerInfo::getConstantPool(),
2255                                MVT::f32, false, false, Alignment));
2256  }
2257
2258  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2259}
2260
2261/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2262/// *INT_TO_FP operation of the specified operand when the target requests that
2263/// we promote it.  At this point, we know that the result and operand types are
2264/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2265/// operation that takes a larger input.
2266SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2267                                                    EVT DestVT,
2268                                                    bool isSigned,
2269                                                    DebugLoc dl) {
2270  // First step, figure out the appropriate *INT_TO_FP operation to use.
2271  EVT NewInTy = LegalOp.getValueType();
2272
2273  unsigned OpToUse = 0;
2274
2275  // Scan for the appropriate larger type to use.
2276  while (1) {
2277    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2278    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2279
2280    // If the target supports SINT_TO_FP of this type, use it.
2281    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2282      OpToUse = ISD::SINT_TO_FP;
2283      break;
2284    }
2285    if (isSigned) continue;
2286
2287    // If the target supports UINT_TO_FP of this type, use it.
2288    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2289      OpToUse = ISD::UINT_TO_FP;
2290      break;
2291    }
2292
2293    // Otherwise, try a larger type.
2294  }
2295
2296  // Okay, we found the operation and type to use.  Zero extend our input to the
2297  // desired type then run the operation on it.
2298  return DAG.getNode(OpToUse, dl, DestVT,
2299                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2300                                 dl, NewInTy, LegalOp));
2301}
2302
2303/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2304/// FP_TO_*INT operation of the specified operand when the target requests that
2305/// we promote it.  At this point, we know that the result and operand types are
2306/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2307/// operation that returns a larger result.
2308SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2309                                                    EVT DestVT,
2310                                                    bool isSigned,
2311                                                    DebugLoc dl) {
2312  // First step, figure out the appropriate FP_TO*INT operation to use.
2313  EVT NewOutTy = DestVT;
2314
2315  unsigned OpToUse = 0;
2316
2317  // Scan for the appropriate larger type to use.
2318  while (1) {
2319    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2320    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2321
2322    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2323      OpToUse = ISD::FP_TO_SINT;
2324      break;
2325    }
2326
2327    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2328      OpToUse = ISD::FP_TO_UINT;
2329      break;
2330    }
2331
2332    // Otherwise, try a larger type.
2333  }
2334
2335
2336  // Okay, we found the operation and type to use.
2337  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2338
2339  // Truncate the result of the extended FP_TO_*INT operation to the desired
2340  // size.
2341  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2342}
2343
2344/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2345///
2346SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2347  EVT VT = Op.getValueType();
2348  EVT SHVT = TLI.getShiftAmountTy();
2349  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2350  switch (VT.getSimpleVT().SimpleTy) {
2351  default: assert(0 && "Unhandled Expand type in BSWAP!");
2352  case MVT::i16:
2353    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2354    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2355    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2356  case MVT::i32:
2357    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2358    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2359    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2360    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2361    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2362    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2363    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2364    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2365    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2366  case MVT::i64:
2367    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2368    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2369    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2370    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2371    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2372    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2373    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2374    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2375    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2376    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2377    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2378    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2379    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2380    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2381    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2382    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2383    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2384    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2385    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2386    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2387    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2388  }
2389}
2390
2391/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2392///
2393SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2394                                             DebugLoc dl) {
2395  switch (Opc) {
2396  default: assert(0 && "Cannot expand this yet!");
2397  case ISD::CTPOP: {
2398    static const uint64_t mask[6] = {
2399      0x5555555555555555ULL, 0x3333333333333333ULL,
2400      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2401      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2402    };
2403    EVT VT = Op.getValueType();
2404    EVT ShVT = TLI.getShiftAmountTy();
2405    unsigned len = VT.getSizeInBits();
2406    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2407      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2408      unsigned EltSize = VT.isVector() ?
2409        VT.getVectorElementType().getSizeInBits() : len;
2410      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2411      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2412      Op = DAG.getNode(ISD::ADD, dl, VT,
2413                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2414                       DAG.getNode(ISD::AND, dl, VT,
2415                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2416                                   Tmp2));
2417    }
2418    return Op;
2419  }
2420  case ISD::CTLZ: {
2421    // for now, we do this:
2422    // x = x | (x >> 1);
2423    // x = x | (x >> 2);
2424    // ...
2425    // x = x | (x >>16);
2426    // x = x | (x >>32); // for 64-bit input
2427    // return popcount(~x);
2428    //
2429    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2430    EVT VT = Op.getValueType();
2431    EVT ShVT = TLI.getShiftAmountTy();
2432    unsigned len = VT.getSizeInBits();
2433    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2434      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2435      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2436                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2437    }
2438    Op = DAG.getNOT(dl, Op, VT);
2439    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2440  }
2441  case ISD::CTTZ: {
2442    // for now, we use: { return popcount(~x & (x - 1)); }
2443    // unless the target has ctlz but not ctpop, in which case we use:
2444    // { return 32 - nlz(~x & (x-1)); }
2445    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2446    EVT VT = Op.getValueType();
2447    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2448                               DAG.getNOT(dl, Op, VT),
2449                               DAG.getNode(ISD::SUB, dl, VT, Op,
2450                                           DAG.getConstant(1, VT)));
2451    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2452    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2453        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2454      return DAG.getNode(ISD::SUB, dl, VT,
2455                         DAG.getConstant(VT.getSizeInBits(), VT),
2456                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2457    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2458  }
2459  }
2460}
2461
2462std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2463  unsigned Opc = Node->getOpcode();
2464  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2465  RTLIB::Libcall LC;
2466
2467  switch (Opc) {
2468  default:
2469    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2470    break;
2471  case ISD::ATOMIC_SWAP:
2472    switch (VT.SimpleTy) {
2473    default: llvm_unreachable("Unexpected value type for atomic!");
2474    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2475    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2476    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2477    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2478    }
2479    break;
2480  case ISD::ATOMIC_CMP_SWAP:
2481    switch (VT.SimpleTy) {
2482    default: llvm_unreachable("Unexpected value type for atomic!");
2483    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2484    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2485    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2486    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2487    }
2488    break;
2489  case ISD::ATOMIC_LOAD_ADD:
2490    switch (VT.SimpleTy) {
2491    default: llvm_unreachable("Unexpected value type for atomic!");
2492    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2493    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2494    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2495    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2496    }
2497    break;
2498  case ISD::ATOMIC_LOAD_SUB:
2499    switch (VT.SimpleTy) {
2500    default: llvm_unreachable("Unexpected value type for atomic!");
2501    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2502    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2503    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2504    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2505    }
2506    break;
2507  case ISD::ATOMIC_LOAD_AND:
2508    switch (VT.SimpleTy) {
2509    default: llvm_unreachable("Unexpected value type for atomic!");
2510    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2511    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2512    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2513    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2514    }
2515    break;
2516  case ISD::ATOMIC_LOAD_OR:
2517    switch (VT.SimpleTy) {
2518    default: llvm_unreachable("Unexpected value type for atomic!");
2519    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2520    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2521    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2522    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2523    }
2524    break;
2525  case ISD::ATOMIC_LOAD_XOR:
2526    switch (VT.SimpleTy) {
2527    default: llvm_unreachable("Unexpected value type for atomic!");
2528    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2529    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2530    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2531    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2532    }
2533    break;
2534  case ISD::ATOMIC_LOAD_NAND:
2535    switch (VT.SimpleTy) {
2536    default: llvm_unreachable("Unexpected value type for atomic!");
2537    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2538    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2539    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2540    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2541    }
2542    break;
2543  }
2544
2545  return ExpandChainLibCall(LC, Node, false);
2546}
2547
2548void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2549                                      SmallVectorImpl<SDValue> &Results) {
2550  DebugLoc dl = Node->getDebugLoc();
2551  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2552  switch (Node->getOpcode()) {
2553  case ISD::CTPOP:
2554  case ISD::CTLZ:
2555  case ISD::CTTZ:
2556    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2557    Results.push_back(Tmp1);
2558    break;
2559  case ISD::BSWAP:
2560    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2561    break;
2562  case ISD::FRAMEADDR:
2563  case ISD::RETURNADDR:
2564  case ISD::FRAME_TO_ARGS_OFFSET:
2565    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2566    break;
2567  case ISD::FLT_ROUNDS_:
2568    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2569    break;
2570  case ISD::EH_RETURN:
2571  case ISD::EH_LABEL:
2572  case ISD::PREFETCH:
2573  case ISD::VAEND:
2574  case ISD::EH_SJLJ_LONGJMP:
2575  case ISD::EH_SJLJ_DISPATCHSETUP:
2576    // If the target didn't expand these, there's nothing to do, so just
2577    // preserve the chain and be done.
2578    Results.push_back(Node->getOperand(0));
2579    break;
2580  case ISD::EH_SJLJ_SETJMP:
2581    // If the target didn't expand this, just return 'zero' and preserve the
2582    // chain.
2583    Results.push_back(DAG.getConstant(0, MVT::i32));
2584    Results.push_back(Node->getOperand(0));
2585    break;
2586  case ISD::MEMBARRIER: {
2587    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2588    TargetLowering::ArgListTy Args;
2589    std::pair<SDValue, SDValue> CallResult =
2590      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2591                      false, false, false, false, 0, CallingConv::C,
2592                      /*isTailCall=*/false,
2593                      /*isReturnValueUsed=*/true,
2594                      DAG.getExternalSymbol("__sync_synchronize",
2595                                            TLI.getPointerTy()),
2596                      Args, DAG, dl);
2597    Results.push_back(CallResult.second);
2598    break;
2599  }
2600  // By default, atomic intrinsics are marked Legal and lowered. Targets
2601  // which don't support them directly, however, may want libcalls, in which
2602  // case they mark them Expand, and we get here.
2603  case ISD::ATOMIC_SWAP:
2604  case ISD::ATOMIC_LOAD_ADD:
2605  case ISD::ATOMIC_LOAD_SUB:
2606  case ISD::ATOMIC_LOAD_AND:
2607  case ISD::ATOMIC_LOAD_OR:
2608  case ISD::ATOMIC_LOAD_XOR:
2609  case ISD::ATOMIC_LOAD_NAND:
2610  case ISD::ATOMIC_LOAD_MIN:
2611  case ISD::ATOMIC_LOAD_MAX:
2612  case ISD::ATOMIC_LOAD_UMIN:
2613  case ISD::ATOMIC_LOAD_UMAX:
2614  case ISD::ATOMIC_CMP_SWAP: {
2615    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2616    Results.push_back(Tmp.first);
2617    Results.push_back(Tmp.second);
2618    break;
2619  }
2620  case ISD::DYNAMIC_STACKALLOC:
2621    ExpandDYNAMIC_STACKALLOC(Node, Results);
2622    break;
2623  case ISD::MERGE_VALUES:
2624    for (unsigned i = 0; i < Node->getNumValues(); i++)
2625      Results.push_back(Node->getOperand(i));
2626    break;
2627  case ISD::UNDEF: {
2628    EVT VT = Node->getValueType(0);
2629    if (VT.isInteger())
2630      Results.push_back(DAG.getConstant(0, VT));
2631    else {
2632      assert(VT.isFloatingPoint() && "Unknown value type!");
2633      Results.push_back(DAG.getConstantFP(0, VT));
2634    }
2635    break;
2636  }
2637  case ISD::TRAP: {
2638    // If this operation is not supported, lower it to 'abort()' call
2639    TargetLowering::ArgListTy Args;
2640    std::pair<SDValue, SDValue> CallResult =
2641      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2642                      false, false, false, false, 0, CallingConv::C,
2643                      /*isTailCall=*/false,
2644                      /*isReturnValueUsed=*/true,
2645                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2646                      Args, DAG, dl);
2647    Results.push_back(CallResult.second);
2648    break;
2649  }
2650  case ISD::FP_ROUND:
2651  case ISD::BITCAST:
2652    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2653                            Node->getValueType(0), dl);
2654    Results.push_back(Tmp1);
2655    break;
2656  case ISD::FP_EXTEND:
2657    Tmp1 = EmitStackConvert(Node->getOperand(0),
2658                            Node->getOperand(0).getValueType(),
2659                            Node->getValueType(0), dl);
2660    Results.push_back(Tmp1);
2661    break;
2662  case ISD::SIGN_EXTEND_INREG: {
2663    // NOTE: we could fall back on load/store here too for targets without
2664    // SAR.  However, it is doubtful that any exist.
2665    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2666    EVT VT = Node->getValueType(0);
2667    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2668    if (VT.isVector())
2669      ShiftAmountTy = VT;
2670    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2671                        ExtraVT.getScalarType().getSizeInBits();
2672    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2673    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2674                       Node->getOperand(0), ShiftCst);
2675    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2676    Results.push_back(Tmp1);
2677    break;
2678  }
2679  case ISD::FP_ROUND_INREG: {
2680    // The only way we can lower this is to turn it into a TRUNCSTORE,
2681    // EXTLOAD pair, targetting a temporary location (a stack slot).
2682
2683    // NOTE: there is a choice here between constantly creating new stack
2684    // slots and always reusing the same one.  We currently always create
2685    // new ones, as reuse may inhibit scheduling.
2686    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2687    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2688                            Node->getValueType(0), dl);
2689    Results.push_back(Tmp1);
2690    break;
2691  }
2692  case ISD::SINT_TO_FP:
2693  case ISD::UINT_TO_FP:
2694    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2695                                Node->getOperand(0), Node->getValueType(0), dl);
2696    Results.push_back(Tmp1);
2697    break;
2698  case ISD::FP_TO_UINT: {
2699    SDValue True, False;
2700    EVT VT =  Node->getOperand(0).getValueType();
2701    EVT NVT = Node->getValueType(0);
2702    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2703    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2704    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2705    Tmp1 = DAG.getConstantFP(apf, VT);
2706    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2707                        Node->getOperand(0),
2708                        Tmp1, ISD::SETLT);
2709    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2710    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2711                        DAG.getNode(ISD::FSUB, dl, VT,
2712                                    Node->getOperand(0), Tmp1));
2713    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2714                        DAG.getConstant(x, NVT));
2715    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2716    Results.push_back(Tmp1);
2717    break;
2718  }
2719  case ISD::VAARG: {
2720    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2721    EVT VT = Node->getValueType(0);
2722    Tmp1 = Node->getOperand(0);
2723    Tmp2 = Node->getOperand(1);
2724    unsigned Align = Node->getConstantOperandVal(3);
2725
2726    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2727                                     MachinePointerInfo(V), false, false, 0);
2728    SDValue VAList = VAListLoad;
2729
2730    if (Align > TLI.getMinStackArgumentAlignment()) {
2731      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2732
2733      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2734                           DAG.getConstant(Align - 1,
2735                                           TLI.getPointerTy()));
2736
2737      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2738                           DAG.getConstant(-(int64_t)Align,
2739                                           TLI.getPointerTy()));
2740    }
2741
2742    // Increment the pointer, VAList, to the next vaarg
2743    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2744                       DAG.getConstant(TLI.getTargetData()->
2745                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2746                                       TLI.getPointerTy()));
2747    // Store the incremented VAList to the legalized pointer
2748    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2749                        MachinePointerInfo(V), false, false, 0);
2750    // Load the actual argument out of the pointer VAList
2751    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2752                                  false, false, 0));
2753    Results.push_back(Results[0].getValue(1));
2754    break;
2755  }
2756  case ISD::VACOPY: {
2757    // This defaults to loading a pointer from the input and storing it to the
2758    // output, returning the chain.
2759    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2760    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2761    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2762                       Node->getOperand(2), MachinePointerInfo(VS),
2763                       false, false, 0);
2764    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2765                        MachinePointerInfo(VD), false, false, 0);
2766    Results.push_back(Tmp1);
2767    break;
2768  }
2769  case ISD::EXTRACT_VECTOR_ELT:
2770    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2771      // This must be an access of the only element.  Return it.
2772      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2773                         Node->getOperand(0));
2774    else
2775      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2776    Results.push_back(Tmp1);
2777    break;
2778  case ISD::EXTRACT_SUBVECTOR:
2779    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2780    break;
2781  case ISD::CONCAT_VECTORS: {
2782    Results.push_back(ExpandVectorBuildThroughStack(Node));
2783    break;
2784  }
2785  case ISD::SCALAR_TO_VECTOR:
2786    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2787    break;
2788  case ISD::INSERT_VECTOR_ELT:
2789    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2790                                              Node->getOperand(1),
2791                                              Node->getOperand(2), dl));
2792    break;
2793  case ISD::VECTOR_SHUFFLE: {
2794    SmallVector<int, 8> Mask;
2795    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2796
2797    EVT VT = Node->getValueType(0);
2798    EVT EltVT = VT.getVectorElementType();
2799    if (getTypeAction(EltVT) == Promote)
2800      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2801    unsigned NumElems = VT.getVectorNumElements();
2802    SmallVector<SDValue, 8> Ops;
2803    for (unsigned i = 0; i != NumElems; ++i) {
2804      if (Mask[i] < 0) {
2805        Ops.push_back(DAG.getUNDEF(EltVT));
2806        continue;
2807      }
2808      unsigned Idx = Mask[i];
2809      if (Idx < NumElems)
2810        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2811                                  Node->getOperand(0),
2812                                  DAG.getIntPtrConstant(Idx)));
2813      else
2814        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2815                                  Node->getOperand(1),
2816                                  DAG.getIntPtrConstant(Idx - NumElems)));
2817    }
2818    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2819    Results.push_back(Tmp1);
2820    break;
2821  }
2822  case ISD::EXTRACT_ELEMENT: {
2823    EVT OpTy = Node->getOperand(0).getValueType();
2824    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2825      // 1 -> Hi
2826      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2827                         DAG.getConstant(OpTy.getSizeInBits()/2,
2828                                         TLI.getShiftAmountTy()));
2829      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2830    } else {
2831      // 0 -> Lo
2832      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2833                         Node->getOperand(0));
2834    }
2835    Results.push_back(Tmp1);
2836    break;
2837  }
2838  case ISD::STACKSAVE:
2839    // Expand to CopyFromReg if the target set
2840    // StackPointerRegisterToSaveRestore.
2841    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2842      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2843                                           Node->getValueType(0)));
2844      Results.push_back(Results[0].getValue(1));
2845    } else {
2846      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2847      Results.push_back(Node->getOperand(0));
2848    }
2849    break;
2850  case ISD::STACKRESTORE:
2851    // Expand to CopyToReg if the target set
2852    // StackPointerRegisterToSaveRestore.
2853    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2854      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2855                                         Node->getOperand(1)));
2856    } else {
2857      Results.push_back(Node->getOperand(0));
2858    }
2859    break;
2860  case ISD::FCOPYSIGN:
2861    Results.push_back(ExpandFCOPYSIGN(Node));
2862    break;
2863  case ISD::FNEG:
2864    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2865    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2866    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2867                       Node->getOperand(0));
2868    Results.push_back(Tmp1);
2869    break;
2870  case ISD::FABS: {
2871    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2872    EVT VT = Node->getValueType(0);
2873    Tmp1 = Node->getOperand(0);
2874    Tmp2 = DAG.getConstantFP(0.0, VT);
2875    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2876                        Tmp1, Tmp2, ISD::SETUGT);
2877    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2878    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2879    Results.push_back(Tmp1);
2880    break;
2881  }
2882  case ISD::FSQRT:
2883    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2884                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2885    break;
2886  case ISD::FSIN:
2887    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2888                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2889    break;
2890  case ISD::FCOS:
2891    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2892                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2893    break;
2894  case ISD::FLOG:
2895    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2896                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2897    break;
2898  case ISD::FLOG2:
2899    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2900                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2901    break;
2902  case ISD::FLOG10:
2903    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2904                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2905    break;
2906  case ISD::FEXP:
2907    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2908                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2909    break;
2910  case ISD::FEXP2:
2911    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2912                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2913    break;
2914  case ISD::FTRUNC:
2915    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2916                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2917    break;
2918  case ISD::FFLOOR:
2919    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2920                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2921    break;
2922  case ISD::FCEIL:
2923    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2924                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2925    break;
2926  case ISD::FRINT:
2927    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2928                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2929    break;
2930  case ISD::FNEARBYINT:
2931    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2932                                      RTLIB::NEARBYINT_F64,
2933                                      RTLIB::NEARBYINT_F80,
2934                                      RTLIB::NEARBYINT_PPCF128));
2935    break;
2936  case ISD::FPOWI:
2937    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2938                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2939    break;
2940  case ISD::FPOW:
2941    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2942                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2943    break;
2944  case ISD::FDIV:
2945    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2946                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2947    break;
2948  case ISD::FREM:
2949    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2950                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2951    break;
2952  case ISD::FP16_TO_FP32:
2953    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2954    break;
2955  case ISD::FP32_TO_FP16:
2956    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2957    break;
2958  case ISD::ConstantFP: {
2959    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2960    // Check to see if this FP immediate is already legal.
2961    // If this is a legal constant, turn it into a TargetConstantFP node.
2962    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2963      Results.push_back(SDValue(Node, 0));
2964    else
2965      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2966    break;
2967  }
2968  case ISD::EHSELECTION: {
2969    unsigned Reg = TLI.getExceptionSelectorRegister();
2970    assert(Reg && "Can't expand to unknown register!");
2971    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2972                                         Node->getValueType(0)));
2973    Results.push_back(Results[0].getValue(1));
2974    break;
2975  }
2976  case ISD::EXCEPTIONADDR: {
2977    unsigned Reg = TLI.getExceptionAddressRegister();
2978    assert(Reg && "Can't expand to unknown register!");
2979    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2980                                         Node->getValueType(0)));
2981    Results.push_back(Results[0].getValue(1));
2982    break;
2983  }
2984  case ISD::SUB: {
2985    EVT VT = Node->getValueType(0);
2986    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2987           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2988           "Don't know how to expand this subtraction!");
2989    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2990               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2991    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2992    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2993    break;
2994  }
2995  case ISD::UREM:
2996  case ISD::SREM: {
2997    EVT VT = Node->getValueType(0);
2998    SDVTList VTs = DAG.getVTList(VT, VT);
2999    bool isSigned = Node->getOpcode() == ISD::SREM;
3000    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3001    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3002    Tmp2 = Node->getOperand(0);
3003    Tmp3 = Node->getOperand(1);
3004    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3005      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3006    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3007      // X % Y -> X-X/Y*Y
3008      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3009      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3010      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3011    } else if (isSigned) {
3012      Tmp1 = ExpandIntLibCall(Node, true,
3013                              RTLIB::SREM_I8,
3014                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3015                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3016    } else {
3017      Tmp1 = ExpandIntLibCall(Node, false,
3018                              RTLIB::UREM_I8,
3019                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3020                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3021    }
3022    Results.push_back(Tmp1);
3023    break;
3024  }
3025  case ISD::UDIV:
3026  case ISD::SDIV: {
3027    bool isSigned = Node->getOpcode() == ISD::SDIV;
3028    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3029    EVT VT = Node->getValueType(0);
3030    SDVTList VTs = DAG.getVTList(VT, VT);
3031    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
3032      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3033                         Node->getOperand(1));
3034    else if (isSigned)
3035      Tmp1 = ExpandIntLibCall(Node, true,
3036                              RTLIB::SDIV_I8,
3037                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3038                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3039    else
3040      Tmp1 = ExpandIntLibCall(Node, false,
3041                              RTLIB::UDIV_I8,
3042                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3043                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3044    Results.push_back(Tmp1);
3045    break;
3046  }
3047  case ISD::MULHU:
3048  case ISD::MULHS: {
3049    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3050                                                              ISD::SMUL_LOHI;
3051    EVT VT = Node->getValueType(0);
3052    SDVTList VTs = DAG.getVTList(VT, VT);
3053    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3054           "If this wasn't legal, it shouldn't have been created!");
3055    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3056                       Node->getOperand(1));
3057    Results.push_back(Tmp1.getValue(1));
3058    break;
3059  }
3060  case ISD::MUL: {
3061    EVT VT = Node->getValueType(0);
3062    SDVTList VTs = DAG.getVTList(VT, VT);
3063    // See if multiply or divide can be lowered using two-result operations.
3064    // We just need the low half of the multiply; try both the signed
3065    // and unsigned forms. If the target supports both SMUL_LOHI and
3066    // UMUL_LOHI, form a preference by checking which forms of plain
3067    // MULH it supports.
3068    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3069    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3070    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3071    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3072    unsigned OpToUse = 0;
3073    if (HasSMUL_LOHI && !HasMULHS) {
3074      OpToUse = ISD::SMUL_LOHI;
3075    } else if (HasUMUL_LOHI && !HasMULHU) {
3076      OpToUse = ISD::UMUL_LOHI;
3077    } else if (HasSMUL_LOHI) {
3078      OpToUse = ISD::SMUL_LOHI;
3079    } else if (HasUMUL_LOHI) {
3080      OpToUse = ISD::UMUL_LOHI;
3081    }
3082    if (OpToUse) {
3083      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3084                                    Node->getOperand(1)));
3085      break;
3086    }
3087    Tmp1 = ExpandIntLibCall(Node, false,
3088                            RTLIB::MUL_I8,
3089                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3090                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3091    Results.push_back(Tmp1);
3092    break;
3093  }
3094  case ISD::SADDO:
3095  case ISD::SSUBO: {
3096    SDValue LHS = Node->getOperand(0);
3097    SDValue RHS = Node->getOperand(1);
3098    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3099                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3100                              LHS, RHS);
3101    Results.push_back(Sum);
3102    EVT OType = Node->getValueType(1);
3103
3104    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3105
3106    //   LHSSign -> LHS >= 0
3107    //   RHSSign -> RHS >= 0
3108    //   SumSign -> Sum >= 0
3109    //
3110    //   Add:
3111    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3112    //   Sub:
3113    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3114    //
3115    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3116    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3117    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3118                                      Node->getOpcode() == ISD::SADDO ?
3119                                      ISD::SETEQ : ISD::SETNE);
3120
3121    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3122    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3123
3124    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3125    Results.push_back(Cmp);
3126    break;
3127  }
3128  case ISD::UADDO:
3129  case ISD::USUBO: {
3130    SDValue LHS = Node->getOperand(0);
3131    SDValue RHS = Node->getOperand(1);
3132    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3133                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3134                              LHS, RHS);
3135    Results.push_back(Sum);
3136    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3137                                   Node->getOpcode () == ISD::UADDO ?
3138                                   ISD::SETULT : ISD::SETUGT));
3139    break;
3140  }
3141  case ISD::UMULO:
3142  case ISD::SMULO: {
3143    EVT VT = Node->getValueType(0);
3144    SDValue LHS = Node->getOperand(0);
3145    SDValue RHS = Node->getOperand(1);
3146    SDValue BottomHalf;
3147    SDValue TopHalf;
3148    static const unsigned Ops[2][3] =
3149        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3150          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3151    bool isSigned = Node->getOpcode() == ISD::SMULO;
3152    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3153      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3154      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3155    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3156      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3157                               RHS);
3158      TopHalf = BottomHalf.getValue(1);
3159    } else {
3160      // FIXME: We should be able to fall back to a libcall with an illegal
3161      // type in some cases.
3162      // Also, we can fall back to a division in some cases, but that's a big
3163      // performance hit in the general case.
3164      assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3165                                               VT.getSizeInBits() * 2)) &&
3166             "Don't know how to expand this operation yet!");
3167      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3168      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3169      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3170      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3171      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3172                               DAG.getIntPtrConstant(0));
3173      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3174                            DAG.getIntPtrConstant(1));
3175    }
3176    if (isSigned) {
3177      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
3178      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3179      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3180                             ISD::SETNE);
3181    } else {
3182      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3183                             DAG.getConstant(0, VT), ISD::SETNE);
3184    }
3185    Results.push_back(BottomHalf);
3186    Results.push_back(TopHalf);
3187    break;
3188  }
3189  case ISD::BUILD_PAIR: {
3190    EVT PairTy = Node->getValueType(0);
3191    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3192    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3193    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3194                       DAG.getConstant(PairTy.getSizeInBits()/2,
3195                                       TLI.getShiftAmountTy()));
3196    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3197    break;
3198  }
3199  case ISD::SELECT:
3200    Tmp1 = Node->getOperand(0);
3201    Tmp2 = Node->getOperand(1);
3202    Tmp3 = Node->getOperand(2);
3203    if (Tmp1.getOpcode() == ISD::SETCC) {
3204      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3205                             Tmp2, Tmp3,
3206                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3207    } else {
3208      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3209                             DAG.getConstant(0, Tmp1.getValueType()),
3210                             Tmp2, Tmp3, ISD::SETNE);
3211    }
3212    Results.push_back(Tmp1);
3213    break;
3214  case ISD::BR_JT: {
3215    SDValue Chain = Node->getOperand(0);
3216    SDValue Table = Node->getOperand(1);
3217    SDValue Index = Node->getOperand(2);
3218
3219    EVT PTy = TLI.getPointerTy();
3220
3221    const TargetData &TD = *TLI.getTargetData();
3222    unsigned EntrySize =
3223      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3224
3225    Index = DAG.getNode(ISD::MUL, dl, PTy,
3226                        Index, DAG.getConstant(EntrySize, PTy));
3227    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3228
3229    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3230    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, PTy, dl, Chain, Addr,
3231                                MachinePointerInfo::getJumpTable(), MemVT,
3232                                false, false, 0);
3233    Addr = LD;
3234    if (TM.getRelocationModel() == Reloc::PIC_) {
3235      // For PIC, the sequence is:
3236      // BRIND(load(Jumptable + index) + RelocBase)
3237      // RelocBase can be JumpTable, GOT or some sort of global base.
3238      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3239                          TLI.getPICJumpTableRelocBase(Table, DAG));
3240    }
3241    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3242    Results.push_back(Tmp1);
3243    break;
3244  }
3245  case ISD::BRCOND:
3246    // Expand brcond's setcc into its constituent parts and create a BR_CC
3247    // Node.
3248    Tmp1 = Node->getOperand(0);
3249    Tmp2 = Node->getOperand(1);
3250    if (Tmp2.getOpcode() == ISD::SETCC) {
3251      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3252                         Tmp1, Tmp2.getOperand(2),
3253                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3254                         Node->getOperand(2));
3255    } else {
3256      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3257                         DAG.getCondCode(ISD::SETNE), Tmp2,
3258                         DAG.getConstant(0, Tmp2.getValueType()),
3259                         Node->getOperand(2));
3260    }
3261    Results.push_back(Tmp1);
3262    break;
3263  case ISD::SETCC: {
3264    Tmp1 = Node->getOperand(0);
3265    Tmp2 = Node->getOperand(1);
3266    Tmp3 = Node->getOperand(2);
3267    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3268
3269    // If we expanded the SETCC into an AND/OR, return the new node
3270    if (Tmp2.getNode() == 0) {
3271      Results.push_back(Tmp1);
3272      break;
3273    }
3274
3275    // Otherwise, SETCC for the given comparison type must be completely
3276    // illegal; expand it into a SELECT_CC.
3277    EVT VT = Node->getValueType(0);
3278    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3279                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3280    Results.push_back(Tmp1);
3281    break;
3282  }
3283  case ISD::SELECT_CC: {
3284    Tmp1 = Node->getOperand(0);   // LHS
3285    Tmp2 = Node->getOperand(1);   // RHS
3286    Tmp3 = Node->getOperand(2);   // True
3287    Tmp4 = Node->getOperand(3);   // False
3288    SDValue CC = Node->getOperand(4);
3289
3290    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3291                          Tmp1, Tmp2, CC, dl);
3292
3293    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3294    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3295    CC = DAG.getCondCode(ISD::SETNE);
3296    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3297                       Tmp3, Tmp4, CC);
3298    Results.push_back(Tmp1);
3299    break;
3300  }
3301  case ISD::BR_CC: {
3302    Tmp1 = Node->getOperand(0);              // Chain
3303    Tmp2 = Node->getOperand(2);              // LHS
3304    Tmp3 = Node->getOperand(3);              // RHS
3305    Tmp4 = Node->getOperand(1);              // CC
3306
3307    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3308                          Tmp2, Tmp3, Tmp4, dl);
3309    LastCALLSEQ_END = DAG.getEntryNode();
3310
3311    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3312    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3313    Tmp4 = DAG.getCondCode(ISD::SETNE);
3314    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3315                       Tmp3, Node->getOperand(4));
3316    Results.push_back(Tmp1);
3317    break;
3318  }
3319  case ISD::GLOBAL_OFFSET_TABLE:
3320  case ISD::GlobalAddress:
3321  case ISD::GlobalTLSAddress:
3322  case ISD::ExternalSymbol:
3323  case ISD::ConstantPool:
3324  case ISD::JumpTable:
3325  case ISD::INTRINSIC_W_CHAIN:
3326  case ISD::INTRINSIC_WO_CHAIN:
3327  case ISD::INTRINSIC_VOID:
3328    // FIXME: Custom lowering for these operations shouldn't return null!
3329    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3330      Results.push_back(SDValue(Node, i));
3331    break;
3332  }
3333}
3334void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3335                                       SmallVectorImpl<SDValue> &Results) {
3336  EVT OVT = Node->getValueType(0);
3337  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3338      Node->getOpcode() == ISD::SINT_TO_FP ||
3339      Node->getOpcode() == ISD::SETCC) {
3340    OVT = Node->getOperand(0).getValueType();
3341  }
3342  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3343  DebugLoc dl = Node->getDebugLoc();
3344  SDValue Tmp1, Tmp2, Tmp3;
3345  switch (Node->getOpcode()) {
3346  case ISD::CTTZ:
3347  case ISD::CTLZ:
3348  case ISD::CTPOP:
3349    // Zero extend the argument.
3350    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3351    // Perform the larger operation.
3352    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3353    if (Node->getOpcode() == ISD::CTTZ) {
3354      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3355      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3356                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3357                          ISD::SETEQ);
3358      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3359                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3360    } else if (Node->getOpcode() == ISD::CTLZ) {
3361      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3362      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3363                          DAG.getConstant(NVT.getSizeInBits() -
3364                                          OVT.getSizeInBits(), NVT));
3365    }
3366    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3367    break;
3368  case ISD::BSWAP: {
3369    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3370    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3371    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3372    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3373                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3374    Results.push_back(Tmp1);
3375    break;
3376  }
3377  case ISD::FP_TO_UINT:
3378  case ISD::FP_TO_SINT:
3379    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3380                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3381    Results.push_back(Tmp1);
3382    break;
3383  case ISD::UINT_TO_FP:
3384  case ISD::SINT_TO_FP:
3385    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3386                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3387    Results.push_back(Tmp1);
3388    break;
3389  case ISD::AND:
3390  case ISD::OR:
3391  case ISD::XOR: {
3392    unsigned ExtOp, TruncOp;
3393    if (OVT.isVector()) {
3394      ExtOp   = ISD::BITCAST;
3395      TruncOp = ISD::BITCAST;
3396    } else {
3397      assert(OVT.isInteger() && "Cannot promote logic operation");
3398      ExtOp   = ISD::ANY_EXTEND;
3399      TruncOp = ISD::TRUNCATE;
3400    }
3401    // Promote each of the values to the new type.
3402    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3403    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3404    // Perform the larger operation, then convert back
3405    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3406    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3407    break;
3408  }
3409  case ISD::SELECT: {
3410    unsigned ExtOp, TruncOp;
3411    if (Node->getValueType(0).isVector()) {
3412      ExtOp   = ISD::BITCAST;
3413      TruncOp = ISD::BITCAST;
3414    } else if (Node->getValueType(0).isInteger()) {
3415      ExtOp   = ISD::ANY_EXTEND;
3416      TruncOp = ISD::TRUNCATE;
3417    } else {
3418      ExtOp   = ISD::FP_EXTEND;
3419      TruncOp = ISD::FP_ROUND;
3420    }
3421    Tmp1 = Node->getOperand(0);
3422    // Promote each of the values to the new type.
3423    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3424    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3425    // Perform the larger operation, then round down.
3426    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3427    if (TruncOp != ISD::FP_ROUND)
3428      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3429    else
3430      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3431                         DAG.getIntPtrConstant(0));
3432    Results.push_back(Tmp1);
3433    break;
3434  }
3435  case ISD::VECTOR_SHUFFLE: {
3436    SmallVector<int, 8> Mask;
3437    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3438
3439    // Cast the two input vectors.
3440    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3441    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3442
3443    // Convert the shuffle mask to the right # elements.
3444    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3445    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3446    Results.push_back(Tmp1);
3447    break;
3448  }
3449  case ISD::SETCC: {
3450    unsigned ExtOp = ISD::FP_EXTEND;
3451    if (NVT.isInteger()) {
3452      ISD::CondCode CCCode =
3453        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3454      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3455    }
3456    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3457    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3458    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3459                                  Tmp1, Tmp2, Node->getOperand(2)));
3460    break;
3461  }
3462  }
3463}
3464
3465// SelectionDAG::Legalize - This is the entry point for the file.
3466//
3467void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3468  /// run - This is the main entry point to this class.
3469  ///
3470  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3471}
3472
3473