LegalizeDAG.cpp revision 35a389344d21178ee280c2410401b2060b5b879c
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/Target/TargetSubtarget.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/DerivedTypes.h"
30#include "llvm/Function.h"
31#include "llvm/GlobalVariable.h"
32#include "llvm/LLVMContext.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class SelectionDAGLegalize {
56  TargetLowering &TLI;
57  SelectionDAG &DAG;
58  CodeGenOpt::Level OptLevel;
59
60  // Libcall insertion helpers.
61
62  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
63  /// legalized.  We use this to ensure that calls are properly serialized
64  /// against each other, including inserted libcalls.
65  SDValue LastCALLSEQ_END;
66
67  /// IsLegalizingCall - This member is used *only* for purposes of providing
68  /// helpful assertions that a libcall isn't created while another call is
69  /// being legalized (which could lead to non-serialized call sequences).
70  bool IsLegalizingCall;
71
72  enum LegalizeAction {
73    Legal,      // The target natively supports this operation.
74    Promote,    // This operation should be executed in a larger type.
75    Expand      // Try to expand this to other ops, otherwise use a libcall.
76  };
77
78  /// ValueTypeActions - This is a bitvector that contains two bits for each
79  /// value type, where the two bits correspond to the LegalizeAction enum.
80  /// This can be queried with "getTypeAction(VT)".
81  TargetLowering::ValueTypeActionImpl ValueTypeActions;
82
83  /// LegalizedNodes - For nodes that are of legal width, and that have more
84  /// than one use, this map indicates what regularized operand to use.  This
85  /// allows us to avoid legalizing the same thing more than once.
86  DenseMap<SDValue, SDValue> LegalizedNodes;
87
88  void AddLegalizedOperand(SDValue From, SDValue To) {
89    LegalizedNodes.insert(std::make_pair(From, To));
90    // If someone requests legalization of the new node, return itself.
91    if (From != To)
92      LegalizedNodes.insert(std::make_pair(To, To));
93  }
94
95public:
96  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
97
98  /// getTypeAction - Return how we should legalize values of this type, either
99  /// it is already legal or we need to expand it into multiple registers of
100  /// smaller integer type, or we need to promote it to a larger type.
101  LegalizeAction getTypeAction(EVT VT) const {
102    return
103        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
104  }
105
106  /// isTypeLegal - Return true if this type is legal on this target.
107  ///
108  bool isTypeLegal(EVT VT) const {
109    return getTypeAction(VT) == Legal;
110  }
111
112  void LegalizeDAG();
113
114private:
115  /// LegalizeOp - We know that the specified value has a legal type.
116  /// Recursively ensure that the operands have legal types, then return the
117  /// result.
118  SDValue LegalizeOp(SDValue O);
119
120  SDValue OptimizeFloatStore(StoreSDNode *ST);
121
122  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
123  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
124  /// is necessary to spill the vector being inserted into to memory, perform
125  /// the insert there, and then read the result back.
126  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
127                                         SDValue Idx, DebugLoc dl);
128  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
129                                  SDValue Idx, DebugLoc dl);
130
131  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
132  /// performs the same shuffe in terms of order or result bytes, but on a type
133  /// whose vector element type is narrower than the original shuffle type.
134  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
135  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
136                                     SDValue N1, SDValue N2,
137                                     SmallVectorImpl<int> &Mask) const;
138
139  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
140                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
141
142  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
143                             DebugLoc dl);
144
145  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
146  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
147                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
148                          RTLIB::Libcall Call_PPCF128);
149  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
150                           RTLIB::Libcall Call_I8,
151                           RTLIB::Libcall Call_I16,
152                           RTLIB::Libcall Call_I32,
153                           RTLIB::Libcall Call_I64,
154                           RTLIB::Libcall Call_I128);
155
156  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
157  SDValue ExpandBUILD_VECTOR(SDNode *Node);
158  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
159  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
160                                SmallVectorImpl<SDValue> &Results);
161  SDValue ExpandFCOPYSIGN(SDNode *Node);
162  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
163                               DebugLoc dl);
164  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
165                                DebugLoc dl);
166  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168
169  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
170  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
171
172  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
173  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
174
175  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
176  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
177};
178}
179
180/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
181/// performs the same shuffe in terms of order or result bytes, but on a type
182/// whose vector element type is narrower than the original shuffle type.
183/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
184SDValue
185SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
186                                                 SDValue N1, SDValue N2,
187                                             SmallVectorImpl<int> &Mask) const {
188  unsigned NumMaskElts = VT.getVectorNumElements();
189  unsigned NumDestElts = NVT.getVectorNumElements();
190  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
191
192  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
193
194  if (NumEltsGrowth == 1)
195    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
196
197  SmallVector<int, 8> NewMask;
198  for (unsigned i = 0; i != NumMaskElts; ++i) {
199    int Idx = Mask[i];
200    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
201      if (Idx < 0)
202        NewMask.push_back(-1);
203      else
204        NewMask.push_back(Idx * NumEltsGrowth + j);
205    }
206  }
207  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
208  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
209  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
210}
211
212SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
213                                           CodeGenOpt::Level ol)
214  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
215    ValueTypeActions(TLI.getValueTypeActions()) {
216  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
217         "Too many value types for ValueTypeActions to hold!");
218}
219
220void SelectionDAGLegalize::LegalizeDAG() {
221  LastCALLSEQ_END = DAG.getEntryNode();
222  IsLegalizingCall = false;
223
224  // The legalize process is inherently a bottom-up recursive process (users
225  // legalize their uses before themselves).  Given infinite stack space, we
226  // could just start legalizing on the root and traverse the whole graph.  In
227  // practice however, this causes us to run out of stack space on large basic
228  // blocks.  To avoid this problem, compute an ordering of the nodes where each
229  // node is only legalized after all of its operands are legalized.
230  DAG.AssignTopologicalOrder();
231  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
232       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
233    LegalizeOp(SDValue(I, 0));
234
235  // Finally, it's possible the root changed.  Get the new root.
236  SDValue OldRoot = DAG.getRoot();
237  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
238  DAG.setRoot(LegalizedNodes[OldRoot]);
239
240  LegalizedNodes.clear();
241
242  // Remove dead nodes now.
243  DAG.RemoveDeadNodes();
244}
245
246
247/// FindCallEndFromCallStart - Given a chained node that is part of a call
248/// sequence, find the CALLSEQ_END node that terminates the call sequence.
249static SDNode *FindCallEndFromCallStart(SDNode *Node) {
250  if (Node->getOpcode() == ISD::CALLSEQ_END)
251    return Node;
252  if (Node->use_empty())
253    return 0;   // No CallSeqEnd
254
255  // The chain is usually at the end.
256  SDValue TheChain(Node, Node->getNumValues()-1);
257  if (TheChain.getValueType() != MVT::Other) {
258    // Sometimes it's at the beginning.
259    TheChain = SDValue(Node, 0);
260    if (TheChain.getValueType() != MVT::Other) {
261      // Otherwise, hunt for it.
262      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
263        if (Node->getValueType(i) == MVT::Other) {
264          TheChain = SDValue(Node, i);
265          break;
266        }
267
268      // Otherwise, we walked into a node without a chain.
269      if (TheChain.getValueType() != MVT::Other)
270        return 0;
271    }
272  }
273
274  for (SDNode::use_iterator UI = Node->use_begin(),
275       E = Node->use_end(); UI != E; ++UI) {
276
277    // Make sure to only follow users of our token chain.
278    SDNode *User = *UI;
279    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
280      if (User->getOperand(i) == TheChain)
281        if (SDNode *Result = FindCallEndFromCallStart(User))
282          return Result;
283  }
284  return 0;
285}
286
287/// FindCallStartFromCallEnd - Given a chained node that is part of a call
288/// sequence, find the CALLSEQ_START node that initiates the call sequence.
289static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
290  assert(Node && "Didn't find callseq_start for a call??");
291  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
292
293  assert(Node->getOperand(0).getValueType() == MVT::Other &&
294         "Node doesn't have a token chain argument!");
295  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
296}
297
298/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
299/// see if any uses can reach Dest.  If no dest operands can get to dest,
300/// legalize them, legalize ourself, and return false, otherwise, return true.
301///
302/// Keep track of the nodes we fine that actually do lead to Dest in
303/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
304///
305bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
306                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
307  if (N == Dest) return true;  // N certainly leads to Dest :)
308
309  // If we've already processed this node and it does lead to Dest, there is no
310  // need to reprocess it.
311  if (NodesLeadingTo.count(N)) return true;
312
313  // If the first result of this node has been already legalized, then it cannot
314  // reach N.
315  if (LegalizedNodes.count(SDValue(N, 0))) return false;
316
317  // Okay, this node has not already been legalized.  Check and legalize all
318  // operands.  If none lead to Dest, then we can legalize this node.
319  bool OperandsLeadToDest = false;
320  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
321    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
322      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
323
324  if (OperandsLeadToDest) {
325    NodesLeadingTo.insert(N);
326    return true;
327  }
328
329  // Okay, this node looks safe, legalize it and return false.
330  LegalizeOp(SDValue(N, 0));
331  return false;
332}
333
334/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
335/// a load from the constant pool.
336static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
337                                SelectionDAG &DAG, const TargetLowering &TLI) {
338  bool Extend = false;
339  DebugLoc dl = CFP->getDebugLoc();
340
341  // If a FP immediate is precise when represented as a float and if the
342  // target can do an extending load from float to double, we put it into
343  // the constant pool as a float, even if it's is statically typed as a
344  // double.  This shrinks FP constants and canonicalizes them for targets where
345  // an FP extending load is the same cost as a normal load (such as on the x87
346  // fp stack or PPC FP unit).
347  EVT VT = CFP->getValueType(0);
348  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
349  if (!UseCP) {
350    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
351    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
352                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
353  }
354
355  EVT OrigVT = VT;
356  EVT SVT = VT;
357  while (SVT != MVT::f32) {
358    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
359    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
360        // Only do this if the target has a native EXTLOAD instruction from
361        // smaller type.
362        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
363        TLI.ShouldShrinkFPConstant(OrigVT)) {
364      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
365      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
366      VT = SVT;
367      Extend = true;
368    }
369  }
370
371  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
372  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
373  if (Extend)
374    return DAG.getExtLoad(ISD::EXTLOAD, dl,
375                          OrigVT, DAG.getEntryNode(),
376                          CPIdx, PseudoSourceValue::getConstantPool(),
377                          0, VT, false, false, Alignment);
378  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
379                     PseudoSourceValue::getConstantPool(), 0, false, false,
380                     Alignment);
381}
382
383/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
384static
385SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
386                             const TargetLowering &TLI) {
387  SDValue Chain = ST->getChain();
388  SDValue Ptr = ST->getBasePtr();
389  SDValue Val = ST->getValue();
390  EVT VT = Val.getValueType();
391  int Alignment = ST->getAlignment();
392  int SVOffset = ST->getSrcValueOffset();
393  DebugLoc dl = ST->getDebugLoc();
394  if (ST->getMemoryVT().isFloatingPoint() ||
395      ST->getMemoryVT().isVector()) {
396    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
397    if (TLI.isTypeLegal(intVT)) {
398      // Expand to a bitconvert of the value to the integer type of the
399      // same size, then a (misaligned) int store.
400      // FIXME: Does not handle truncating floating point stores!
401      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
402      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
403                          SVOffset, ST->isVolatile(), ST->isNonTemporal(),
404                          Alignment);
405    } else {
406      // Do a (aligned) store to a stack slot, then copy from the stack slot
407      // to the final destination using (unaligned) integer loads and stores.
408      EVT StoredVT = ST->getMemoryVT();
409      EVT RegVT =
410        TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits()));
411      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
412      unsigned RegBytes = RegVT.getSizeInBits() / 8;
413      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
414
415      // Make sure the stack slot is also aligned for the register type.
416      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
417
418      // Perform the original store, only redirected to the stack slot.
419      SDValue Store = DAG.getTruncStore(Chain, dl,
420                                        Val, StackPtr, NULL, 0, StoredVT,
421                                        false, false, 0);
422      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
423      SmallVector<SDValue, 8> Stores;
424      unsigned Offset = 0;
425
426      // Do all but one copies using the full register width.
427      for (unsigned i = 1; i < NumRegs; i++) {
428        // Load one integer register's worth from the stack slot.
429        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0,
430                                   false, false, 0);
431        // Store it to the final location.  Remember the store.
432        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
433                                      ST->getSrcValue(), SVOffset + Offset,
434                                      ST->isVolatile(), ST->isNonTemporal(),
435                                      MinAlign(ST->getAlignment(), Offset)));
436        // Increment the pointers.
437        Offset += RegBytes;
438        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
439                               Increment);
440        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
441      }
442
443      // The last store may be partial.  Do a truncating store.  On big-endian
444      // machines this requires an extending load from the stack slot to ensure
445      // that the bits are in the right place.
446      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
447
448      // Load from the stack slot.
449      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
450                                    NULL, 0, MemVT, false, false, 0);
451
452      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
453                                         ST->getSrcValue(), SVOffset + Offset,
454                                         MemVT, ST->isVolatile(),
455                                         ST->isNonTemporal(),
456                                         MinAlign(ST->getAlignment(), Offset)));
457      // The order of the stores doesn't matter - say it with a TokenFactor.
458      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
459                         Stores.size());
460    }
461  }
462  assert(ST->getMemoryVT().isInteger() &&
463         !ST->getMemoryVT().isVector() &&
464         "Unaligned store of unknown type.");
465  // Get the half-size VT
466  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
467  int NumBits = NewStoredVT.getSizeInBits();
468  int IncrementSize = NumBits / 8;
469
470  // Divide the stored value in two parts.
471  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
472  SDValue Lo = Val;
473  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
474
475  // Store the two parts
476  SDValue Store1, Store2;
477  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
478                             ST->getSrcValue(), SVOffset, NewStoredVT,
479                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
480  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
481                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
482  Alignment = MinAlign(Alignment, IncrementSize);
483  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
484                             ST->getSrcValue(), SVOffset + IncrementSize,
485                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
486                             Alignment);
487
488  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
489}
490
491/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
492static
493SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
494                            const TargetLowering &TLI) {
495  int SVOffset = LD->getSrcValueOffset();
496  SDValue Chain = LD->getChain();
497  SDValue Ptr = LD->getBasePtr();
498  EVT VT = LD->getValueType(0);
499  EVT LoadedVT = LD->getMemoryVT();
500  DebugLoc dl = LD->getDebugLoc();
501  if (VT.isFloatingPoint() || VT.isVector()) {
502    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
503    if (TLI.isTypeLegal(intVT)) {
504      // Expand to a (misaligned) integer load of the same size,
505      // then bitconvert to floating point or vector.
506      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
507                                    SVOffset, LD->isVolatile(),
508                                    LD->isNonTemporal(), LD->getAlignment());
509      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
510      if (VT.isFloatingPoint() && LoadedVT != VT)
511        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
512
513      SDValue Ops[] = { Result, Chain };
514      return DAG.getMergeValues(Ops, 2, dl);
515    } else {
516      // Copy the value to a (aligned) stack slot using (unaligned) integer
517      // loads and stores, then do a (aligned) load from the stack slot.
518      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
519      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
520      unsigned RegBytes = RegVT.getSizeInBits() / 8;
521      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
522
523      // Make sure the stack slot is also aligned for the register type.
524      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
525
526      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
527      SmallVector<SDValue, 8> Stores;
528      SDValue StackPtr = StackBase;
529      unsigned Offset = 0;
530
531      // Do all but one copies using the full register width.
532      for (unsigned i = 1; i < NumRegs; i++) {
533        // Load one integer register's worth from the original location.
534        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
535                                   SVOffset + Offset, LD->isVolatile(),
536                                   LD->isNonTemporal(),
537                                   MinAlign(LD->getAlignment(), Offset));
538        // Follow the load with a store to the stack slot.  Remember the store.
539        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
540                                      NULL, 0, false, false, 0));
541        // Increment the pointers.
542        Offset += RegBytes;
543        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
544        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
545                               Increment);
546      }
547
548      // The last copy may be partial.  Do an extending load.
549      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset));
550      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
551                                    LD->getSrcValue(), SVOffset + Offset,
552                                    MemVT, LD->isVolatile(),
553                                    LD->isNonTemporal(),
554                                    MinAlign(LD->getAlignment(), Offset));
555      // Follow the load with a store to the stack slot.  Remember the store.
556      // On big-endian machines this requires a truncating store to ensure
557      // that the bits end up in the right place.
558      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
559                                         NULL, 0, MemVT, false, false, 0));
560
561      // The order of the stores doesn't matter - say it with a TokenFactor.
562      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
563                               Stores.size());
564
565      // Finally, perform the original load only redirected to the stack slot.
566      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
567                            NULL, 0, LoadedVT, false, false, 0);
568
569      // Callers expect a MERGE_VALUES node.
570      SDValue Ops[] = { Load, TF };
571      return DAG.getMergeValues(Ops, 2, dl);
572    }
573  }
574  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
575         "Unaligned load of unsupported type.");
576
577  // Compute the new VT that is half the size of the old one.  This is an
578  // integer MVT.
579  unsigned NumBits = LoadedVT.getSizeInBits();
580  EVT NewLoadedVT;
581  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
582  NumBits >>= 1;
583
584  unsigned Alignment = LD->getAlignment();
585  unsigned IncrementSize = NumBits / 8;
586  ISD::LoadExtType HiExtType = LD->getExtensionType();
587
588  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
589  if (HiExtType == ISD::NON_EXTLOAD)
590    HiExtType = ISD::ZEXTLOAD;
591
592  // Load the value in two parts
593  SDValue Lo, Hi;
594  if (TLI.isLittleEndian()) {
595    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
596                        SVOffset, NewLoadedVT, LD->isVolatile(),
597                        LD->isNonTemporal(), Alignment);
598    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
599                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
600    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
601                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
602                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
603  } else {
604    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
605                        SVOffset, NewLoadedVT, LD->isVolatile(),
606                        LD->isNonTemporal(), Alignment);
607    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
608                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
609    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
610                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
611                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
612  }
613
614  // aggregate the two parts
615  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
616  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
617  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
618
619  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
620                             Hi.getValue(1));
621
622  SDValue Ops[] = { Result, TF };
623  return DAG.getMergeValues(Ops, 2, dl);
624}
625
626/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
627/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
628/// is necessary to spill the vector being inserted into to memory, perform
629/// the insert there, and then read the result back.
630SDValue SelectionDAGLegalize::
631PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
632                               DebugLoc dl) {
633  SDValue Tmp1 = Vec;
634  SDValue Tmp2 = Val;
635  SDValue Tmp3 = Idx;
636
637  // If the target doesn't support this, we have to spill the input vector
638  // to a temporary stack slot, update the element, then reload it.  This is
639  // badness.  We could also load the value into a vector register (either
640  // with a "move to register" or "extload into register" instruction, then
641  // permute it into place, if the idx is a constant and if the idx is
642  // supported by the target.
643  EVT VT    = Tmp1.getValueType();
644  EVT EltVT = VT.getVectorElementType();
645  EVT IdxVT = Tmp3.getValueType();
646  EVT PtrVT = TLI.getPointerTy();
647  SDValue StackPtr = DAG.CreateStackTemporary(VT);
648
649  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
650
651  // Store the vector.
652  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
653                            PseudoSourceValue::getFixedStack(SPFI), 0,
654                            false, false, 0);
655
656  // Truncate or zero extend offset to target pointer type.
657  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
658  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
659  // Add the offset to the index.
660  unsigned EltSize = EltVT.getSizeInBits()/8;
661  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
662  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
663  // Store the scalar value.
664  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
665                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT,
666                         false, false, 0);
667  // Load the updated vector.
668  return DAG.getLoad(VT, dl, Ch, StackPtr,
669                     PseudoSourceValue::getFixedStack(SPFI), 0,
670                     false, false, 0);
671}
672
673
674SDValue SelectionDAGLegalize::
675ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
676  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
677    // SCALAR_TO_VECTOR requires that the type of the value being inserted
678    // match the element type of the vector being created, except for
679    // integers in which case the inserted value can be over width.
680    EVT EltVT = Vec.getValueType().getVectorElementType();
681    if (Val.getValueType() == EltVT ||
682        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
683      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
684                                  Vec.getValueType(), Val);
685
686      unsigned NumElts = Vec.getValueType().getVectorNumElements();
687      // We generate a shuffle of InVec and ScVec, so the shuffle mask
688      // should be 0,1,2,3,4,5... with the appropriate element replaced with
689      // elt 0 of the RHS.
690      SmallVector<int, 8> ShufOps;
691      for (unsigned i = 0; i != NumElts; ++i)
692        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
693
694      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
695                                  &ShufOps[0]);
696    }
697  }
698  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
699}
700
701SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
702  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
703  // FIXME: We shouldn't do this for TargetConstantFP's.
704  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
705  // to phase ordering between legalized code and the dag combiner.  This
706  // probably means that we need to integrate dag combiner and legalizer
707  // together.
708  // We generally can't do this one for long doubles.
709  SDValue Tmp1 = ST->getChain();
710  SDValue Tmp2 = ST->getBasePtr();
711  SDValue Tmp3;
712  int SVOffset = ST->getSrcValueOffset();
713  unsigned Alignment = ST->getAlignment();
714  bool isVolatile = ST->isVolatile();
715  bool isNonTemporal = ST->isNonTemporal();
716  DebugLoc dl = ST->getDebugLoc();
717  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
718    if (CFP->getValueType(0) == MVT::f32 &&
719        getTypeAction(MVT::i32) == Legal) {
720      Tmp3 = DAG.getConstant(CFP->getValueAPF().
721                                      bitcastToAPInt().zextOrTrunc(32),
722                              MVT::i32);
723      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
724                          SVOffset, isVolatile, isNonTemporal, Alignment);
725    } else if (CFP->getValueType(0) == MVT::f64) {
726      // If this target supports 64-bit registers, do a single 64-bit store.
727      if (getTypeAction(MVT::i64) == Legal) {
728        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
729                                  zextOrTrunc(64), MVT::i64);
730        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
731                            SVOffset, isVolatile, isNonTemporal, Alignment);
732      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
733        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
734        // stores.  If the target supports neither 32- nor 64-bits, this
735        // xform is certainly not worth it.
736        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
737        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
738        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
739        if (TLI.isBigEndian()) std::swap(Lo, Hi);
740
741        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
742                          SVOffset, isVolatile, isNonTemporal, Alignment);
743        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
744                            DAG.getIntPtrConstant(4));
745        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
746                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
747
748        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
749      }
750    }
751  }
752  return SDValue();
753}
754
755/// LegalizeOp - We know that the specified value has a legal type, and
756/// that its operands are legal.  Now ensure that the operation itself
757/// is legal, recursively ensuring that the operands' operations remain
758/// legal.
759SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
760  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
761    return Op;
762
763  SDNode *Node = Op.getNode();
764  DebugLoc dl = Node->getDebugLoc();
765
766  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
767    assert(getTypeAction(Node->getValueType(i)) == Legal &&
768           "Unexpected illegal type!");
769
770  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
771    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
772            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
773           "Unexpected illegal type!");
774
775  // Note that LegalizeOp may be reentered even from single-use nodes, which
776  // means that we always must cache transformed nodes.
777  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
778  if (I != LegalizedNodes.end()) return I->second;
779
780  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
781  SDValue Result = Op;
782  bool isCustom = false;
783
784  // Figure out the correct action; the way to query this varies by opcode
785  TargetLowering::LegalizeAction Action;
786  bool SimpleFinishLegalizing = true;
787  switch (Node->getOpcode()) {
788  case ISD::INTRINSIC_W_CHAIN:
789  case ISD::INTRINSIC_WO_CHAIN:
790  case ISD::INTRINSIC_VOID:
791  case ISD::VAARG:
792  case ISD::STACKSAVE:
793    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
794    break;
795  case ISD::SINT_TO_FP:
796  case ISD::UINT_TO_FP:
797  case ISD::EXTRACT_VECTOR_ELT:
798    Action = TLI.getOperationAction(Node->getOpcode(),
799                                    Node->getOperand(0).getValueType());
800    break;
801  case ISD::FP_ROUND_INREG:
802  case ISD::SIGN_EXTEND_INREG: {
803    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
804    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
805    break;
806  }
807  case ISD::SELECT_CC:
808  case ISD::SETCC:
809  case ISD::BR_CC: {
810    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
811                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
812    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
813    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
814    ISD::CondCode CCCode =
815        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
816    Action = TLI.getCondCodeAction(CCCode, OpVT);
817    if (Action == TargetLowering::Legal) {
818      if (Node->getOpcode() == ISD::SELECT_CC)
819        Action = TLI.getOperationAction(Node->getOpcode(),
820                                        Node->getValueType(0));
821      else
822        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
823    }
824    break;
825  }
826  case ISD::LOAD:
827  case ISD::STORE:
828    // FIXME: Model these properly.  LOAD and STORE are complicated, and
829    // STORE expects the unlegalized operand in some cases.
830    SimpleFinishLegalizing = false;
831    break;
832  case ISD::CALLSEQ_START:
833  case ISD::CALLSEQ_END:
834    // FIXME: This shouldn't be necessary.  These nodes have special properties
835    // dealing with the recursive nature of legalization.  Removing this
836    // special case should be done as part of making LegalizeDAG non-recursive.
837    SimpleFinishLegalizing = false;
838    break;
839  case ISD::EXTRACT_ELEMENT:
840  case ISD::FLT_ROUNDS_:
841  case ISD::SADDO:
842  case ISD::SSUBO:
843  case ISD::UADDO:
844  case ISD::USUBO:
845  case ISD::SMULO:
846  case ISD::UMULO:
847  case ISD::FPOWI:
848  case ISD::MERGE_VALUES:
849  case ISD::EH_RETURN:
850  case ISD::FRAME_TO_ARGS_OFFSET:
851    // These operations lie about being legal: when they claim to be legal,
852    // they should actually be expanded.
853    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
854    if (Action == TargetLowering::Legal)
855      Action = TargetLowering::Expand;
856    break;
857  case ISD::TRAMPOLINE:
858  case ISD::FRAMEADDR:
859  case ISD::RETURNADDR:
860    // These operations lie about being legal: when they claim to be legal,
861    // they should actually be custom-lowered.
862    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
863    if (Action == TargetLowering::Legal)
864      Action = TargetLowering::Custom;
865    break;
866  case ISD::BUILD_VECTOR:
867    // A weird case: legalization for BUILD_VECTOR never legalizes the
868    // operands!
869    // FIXME: This really sucks... changing it isn't semantically incorrect,
870    // but it massively pessimizes the code for floating-point BUILD_VECTORs
871    // because ConstantFP operands get legalized into constant pool loads
872    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
873    // though, because BUILD_VECTORS usually get lowered into other nodes
874    // which get legalized properly.
875    SimpleFinishLegalizing = false;
876    break;
877  default:
878    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
879      Action = TargetLowering::Legal;
880    } else {
881      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
882    }
883    break;
884  }
885
886  if (SimpleFinishLegalizing) {
887    SmallVector<SDValue, 8> Ops, ResultVals;
888    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
889      Ops.push_back(LegalizeOp(Node->getOperand(i)));
890    switch (Node->getOpcode()) {
891    default: break;
892    case ISD::BR:
893    case ISD::BRIND:
894    case ISD::BR_JT:
895    case ISD::BR_CC:
896    case ISD::BRCOND:
897      // Branches tweak the chain to include LastCALLSEQ_END
898      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
899                            LastCALLSEQ_END);
900      Ops[0] = LegalizeOp(Ops[0]);
901      LastCALLSEQ_END = DAG.getEntryNode();
902      break;
903    case ISD::SHL:
904    case ISD::SRL:
905    case ISD::SRA:
906    case ISD::ROTL:
907    case ISD::ROTR:
908      // Legalizing shifts/rotates requires adjusting the shift amount
909      // to the appropriate width.
910      if (!Ops[1].getValueType().isVector())
911        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
912      break;
913    case ISD::SRL_PARTS:
914    case ISD::SRA_PARTS:
915    case ISD::SHL_PARTS:
916      // Legalizing shifts/rotates requires adjusting the shift amount
917      // to the appropriate width.
918      if (!Ops[2].getValueType().isVector())
919        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
920      break;
921    }
922
923    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
924                                    Ops.size());
925    switch (Action) {
926    case TargetLowering::Legal:
927      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
928        ResultVals.push_back(Result.getValue(i));
929      break;
930    case TargetLowering::Custom:
931      // FIXME: The handling for custom lowering with multiple results is
932      // a complete mess.
933      Tmp1 = TLI.LowerOperation(Result, DAG);
934      if (Tmp1.getNode()) {
935        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
936          if (e == 1)
937            ResultVals.push_back(Tmp1);
938          else
939            ResultVals.push_back(Tmp1.getValue(i));
940        }
941        break;
942      }
943
944      // FALL THROUGH
945    case TargetLowering::Expand:
946      ExpandNode(Result.getNode(), ResultVals);
947      break;
948    case TargetLowering::Promote:
949      PromoteNode(Result.getNode(), ResultVals);
950      break;
951    }
952    if (!ResultVals.empty()) {
953      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
954        if (ResultVals[i] != SDValue(Node, i))
955          ResultVals[i] = LegalizeOp(ResultVals[i]);
956        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
957      }
958      return ResultVals[Op.getResNo()];
959    }
960  }
961
962  switch (Node->getOpcode()) {
963  default:
964#ifndef NDEBUG
965    dbgs() << "NODE: ";
966    Node->dump( &DAG);
967    dbgs() << "\n";
968#endif
969    assert(0 && "Do not know how to legalize this operator!");
970
971  case ISD::BUILD_VECTOR:
972    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
973    default: assert(0 && "This action is not supported yet!");
974    case TargetLowering::Custom:
975      Tmp3 = TLI.LowerOperation(Result, DAG);
976      if (Tmp3.getNode()) {
977        Result = Tmp3;
978        break;
979      }
980      // FALLTHROUGH
981    case TargetLowering::Expand:
982      Result = ExpandBUILD_VECTOR(Result.getNode());
983      break;
984    }
985    break;
986  case ISD::CALLSEQ_START: {
987    SDNode *CallEnd = FindCallEndFromCallStart(Node);
988
989    // Recursively Legalize all of the inputs of the call end that do not lead
990    // to this call start.  This ensures that any libcalls that need be inserted
991    // are inserted *before* the CALLSEQ_START.
992    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
993    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
994      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
995                                   NodesLeadingTo);
996    }
997
998    // Now that we legalized all of the inputs (which may have inserted
999    // libcalls) create the new CALLSEQ_START node.
1000    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1001
1002    // Merge in the last call, to ensure that this call start after the last
1003    // call ended.
1004    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1005      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1006                         Tmp1, LastCALLSEQ_END);
1007      Tmp1 = LegalizeOp(Tmp1);
1008    }
1009
1010    // Do not try to legalize the target-specific arguments (#1+).
1011    if (Tmp1 != Node->getOperand(0)) {
1012      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1013      Ops[0] = Tmp1;
1014      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1015    }
1016
1017    // Remember that the CALLSEQ_START is legalized.
1018    AddLegalizedOperand(Op.getValue(0), Result);
1019    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1020      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1021
1022    // Now that the callseq_start and all of the non-call nodes above this call
1023    // sequence have been legalized, legalize the call itself.  During this
1024    // process, no libcalls can/will be inserted, guaranteeing that no calls
1025    // can overlap.
1026    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1027    // Note that we are selecting this call!
1028    LastCALLSEQ_END = SDValue(CallEnd, 0);
1029    IsLegalizingCall = true;
1030
1031    // Legalize the call, starting from the CALLSEQ_END.
1032    LegalizeOp(LastCALLSEQ_END);
1033    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1034    return Result;
1035  }
1036  case ISD::CALLSEQ_END:
1037    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1038    // will cause this node to be legalized as well as handling libcalls right.
1039    if (LastCALLSEQ_END.getNode() != Node) {
1040      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1041      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1042      assert(I != LegalizedNodes.end() &&
1043             "Legalizing the call start should have legalized this node!");
1044      return I->second;
1045    }
1046
1047    // Otherwise, the call start has been legalized and everything is going
1048    // according to plan.  Just legalize ourselves normally here.
1049    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1050    // Do not try to legalize the target-specific arguments (#1+), except for
1051    // an optional flag input.
1052    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1053      if (Tmp1 != Node->getOperand(0)) {
1054        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1055        Ops[0] = Tmp1;
1056        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1057      }
1058    } else {
1059      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1060      if (Tmp1 != Node->getOperand(0) ||
1061          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1062        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1063        Ops[0] = Tmp1;
1064        Ops.back() = Tmp2;
1065        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1066      }
1067    }
1068    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1069    // This finishes up call legalization.
1070    IsLegalizingCall = false;
1071
1072    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1073    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1074    if (Node->getNumValues() == 2)
1075      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1076    return Result.getValue(Op.getResNo());
1077  case ISD::LOAD: {
1078    LoadSDNode *LD = cast<LoadSDNode>(Node);
1079    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1080    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1081
1082    ISD::LoadExtType ExtType = LD->getExtensionType();
1083    if (ExtType == ISD::NON_EXTLOAD) {
1084      EVT VT = Node->getValueType(0);
1085      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1086      Tmp3 = Result.getValue(0);
1087      Tmp4 = Result.getValue(1);
1088
1089      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1090      default: assert(0 && "This action is not supported yet!");
1091      case TargetLowering::Legal:
1092        // If this is an unaligned load and the target doesn't support it,
1093        // expand it.
1094        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1095          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1096          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1097          if (LD->getAlignment() < ABIAlignment){
1098            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1099                                         DAG, TLI);
1100            Tmp3 = Result.getOperand(0);
1101            Tmp4 = Result.getOperand(1);
1102            Tmp3 = LegalizeOp(Tmp3);
1103            Tmp4 = LegalizeOp(Tmp4);
1104          }
1105        }
1106        break;
1107      case TargetLowering::Custom:
1108        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1109        if (Tmp1.getNode()) {
1110          Tmp3 = LegalizeOp(Tmp1);
1111          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1112        }
1113        break;
1114      case TargetLowering::Promote: {
1115        // Only promote a load of vector type to another.
1116        assert(VT.isVector() && "Cannot promote this load!");
1117        // Change base type to a different vector type.
1118        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1119
1120        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1121                           LD->getSrcValueOffset(),
1122                           LD->isVolatile(), LD->isNonTemporal(),
1123                           LD->getAlignment());
1124        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1125        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1126        break;
1127      }
1128      }
1129      // Since loads produce two values, make sure to remember that we
1130      // legalized both of them.
1131      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1132      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1133      return Op.getResNo() ? Tmp4 : Tmp3;
1134    } else {
1135      EVT SrcVT = LD->getMemoryVT();
1136      unsigned SrcWidth = SrcVT.getSizeInBits();
1137      int SVOffset = LD->getSrcValueOffset();
1138      unsigned Alignment = LD->getAlignment();
1139      bool isVolatile = LD->isVolatile();
1140      bool isNonTemporal = LD->isNonTemporal();
1141
1142      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1143          // Some targets pretend to have an i1 loading operation, and actually
1144          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1145          // bits are guaranteed to be zero; it helps the optimizers understand
1146          // that these bits are zero.  It is also useful for EXTLOAD, since it
1147          // tells the optimizers that those bits are undefined.  It would be
1148          // nice to have an effective generic way of getting these benefits...
1149          // Until such a way is found, don't insist on promoting i1 here.
1150          (SrcVT != MVT::i1 ||
1151           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1152        // Promote to a byte-sized load if not loading an integral number of
1153        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1154        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1155        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1156        SDValue Ch;
1157
1158        // The extra bits are guaranteed to be zero, since we stored them that
1159        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1160
1161        ISD::LoadExtType NewExtType =
1162          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1163
1164        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1165                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1166                                NVT, isVolatile, isNonTemporal, Alignment);
1167
1168        Ch = Result.getValue(1); // The chain.
1169
1170        if (ExtType == ISD::SEXTLOAD)
1171          // Having the top bits zero doesn't help when sign extending.
1172          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1173                               Result.getValueType(),
1174                               Result, DAG.getValueType(SrcVT));
1175        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1176          // All the top bits are guaranteed to be zero - inform the optimizers.
1177          Result = DAG.getNode(ISD::AssertZext, dl,
1178                               Result.getValueType(), Result,
1179                               DAG.getValueType(SrcVT));
1180
1181        Tmp1 = LegalizeOp(Result);
1182        Tmp2 = LegalizeOp(Ch);
1183      } else if (SrcWidth & (SrcWidth - 1)) {
1184        // If not loading a power-of-2 number of bits, expand as two loads.
1185        assert(!SrcVT.isVector() && "Unsupported extload!");
1186        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1187        assert(RoundWidth < SrcWidth);
1188        unsigned ExtraWidth = SrcWidth - RoundWidth;
1189        assert(ExtraWidth < RoundWidth);
1190        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1191               "Load size not an integral number of bytes!");
1192        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1193        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1194        SDValue Lo, Hi, Ch;
1195        unsigned IncrementSize;
1196
1197        if (TLI.isLittleEndian()) {
1198          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1199          // Load the bottom RoundWidth bits.
1200          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1201                              Node->getValueType(0), Tmp1, Tmp2,
1202                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1203                              isNonTemporal, Alignment);
1204
1205          // Load the remaining ExtraWidth bits.
1206          IncrementSize = RoundWidth / 8;
1207          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1208                             DAG.getIntPtrConstant(IncrementSize));
1209          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1210                              LD->getSrcValue(), SVOffset + IncrementSize,
1211                              ExtraVT, isVolatile, isNonTemporal,
1212                              MinAlign(Alignment, IncrementSize));
1213
1214          // Build a factor node to remember that this load is independent of the
1215          // other one.
1216          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1217                           Hi.getValue(1));
1218
1219          // Move the top bits to the right place.
1220          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1221                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1222
1223          // Join the hi and lo parts.
1224          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1225        } else {
1226          // Big endian - avoid unaligned loads.
1227          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1228          // Load the top RoundWidth bits.
1229          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1230                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1231                              isNonTemporal, Alignment);
1232
1233          // Load the remaining ExtraWidth bits.
1234          IncrementSize = RoundWidth / 8;
1235          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1236                             DAG.getIntPtrConstant(IncrementSize));
1237          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1238                              Node->getValueType(0), Tmp1, Tmp2,
1239                              LD->getSrcValue(), SVOffset + IncrementSize,
1240                              ExtraVT, isVolatile, isNonTemporal,
1241                              MinAlign(Alignment, IncrementSize));
1242
1243          // Build a factor node to remember that this load is independent of the
1244          // other one.
1245          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1246                           Hi.getValue(1));
1247
1248          // Move the top bits to the right place.
1249          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1250                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1251
1252          // Join the hi and lo parts.
1253          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1254        }
1255
1256        Tmp1 = LegalizeOp(Result);
1257        Tmp2 = LegalizeOp(Ch);
1258      } else {
1259        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1260        default: assert(0 && "This action is not supported yet!");
1261        case TargetLowering::Custom:
1262          isCustom = true;
1263          // FALLTHROUGH
1264        case TargetLowering::Legal:
1265          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1266          Tmp1 = Result.getValue(0);
1267          Tmp2 = Result.getValue(1);
1268
1269          if (isCustom) {
1270            Tmp3 = TLI.LowerOperation(Result, DAG);
1271            if (Tmp3.getNode()) {
1272              Tmp1 = LegalizeOp(Tmp3);
1273              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1274            }
1275          } else {
1276            // If this is an unaligned load and the target doesn't support it,
1277            // expand it.
1278            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1279              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1280              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1281              if (LD->getAlignment() < ABIAlignment){
1282                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1283                                             DAG, TLI);
1284                Tmp1 = Result.getOperand(0);
1285                Tmp2 = Result.getOperand(1);
1286                Tmp1 = LegalizeOp(Tmp1);
1287                Tmp2 = LegalizeOp(Tmp2);
1288              }
1289            }
1290          }
1291          break;
1292        case TargetLowering::Expand:
1293          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1294          // f128 = EXTLOAD {f32,f64} too
1295          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1296                                     Node->getValueType(0) == MVT::f128)) ||
1297              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1298            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1299                                       LD->getSrcValueOffset(),
1300                                       LD->isVolatile(), LD->isNonTemporal(),
1301                                       LD->getAlignment());
1302            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1303                                 Node->getValueType(0), Load);
1304            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1305            Tmp2 = LegalizeOp(Load.getValue(1));
1306            break;
1307          }
1308          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1309          // Turn the unsupported load into an EXTLOAD followed by an explicit
1310          // zero/sign extend inreg.
1311          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1312                                  Tmp1, Tmp2, LD->getSrcValue(),
1313                                  LD->getSrcValueOffset(), SrcVT,
1314                                  LD->isVolatile(), LD->isNonTemporal(),
1315                                  LD->getAlignment());
1316          SDValue ValRes;
1317          if (ExtType == ISD::SEXTLOAD)
1318            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1319                                 Result.getValueType(),
1320                                 Result, DAG.getValueType(SrcVT));
1321          else
1322            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1323          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1324          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1325          break;
1326        }
1327      }
1328
1329      // Since loads produce two values, make sure to remember that we legalized
1330      // both of them.
1331      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1332      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1333      return Op.getResNo() ? Tmp2 : Tmp1;
1334    }
1335  }
1336  case ISD::STORE: {
1337    StoreSDNode *ST = cast<StoreSDNode>(Node);
1338    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1339    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1340    int SVOffset = ST->getSrcValueOffset();
1341    unsigned Alignment = ST->getAlignment();
1342    bool isVolatile = ST->isVolatile();
1343    bool isNonTemporal = ST->isNonTemporal();
1344
1345    if (!ST->isTruncatingStore()) {
1346      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1347        Result = SDValue(OptStore, 0);
1348        break;
1349      }
1350
1351      {
1352        Tmp3 = LegalizeOp(ST->getValue());
1353        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1354                                        ST->getOffset());
1355
1356        EVT VT = Tmp3.getValueType();
1357        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1358        default: assert(0 && "This action is not supported yet!");
1359        case TargetLowering::Legal:
1360          // If this is an unaligned store and the target doesn't support it,
1361          // expand it.
1362          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1363            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1364            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1365            if (ST->getAlignment() < ABIAlignment)
1366              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1367                                            DAG, TLI);
1368          }
1369          break;
1370        case TargetLowering::Custom:
1371          Tmp1 = TLI.LowerOperation(Result, DAG);
1372          if (Tmp1.getNode()) Result = Tmp1;
1373          break;
1374        case TargetLowering::Promote:
1375          assert(VT.isVector() && "Unknown legal promote case!");
1376          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1377                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1378          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1379                                ST->getSrcValue(), SVOffset, isVolatile,
1380                                isNonTemporal, Alignment);
1381          break;
1382        }
1383        break;
1384      }
1385    } else {
1386      Tmp3 = LegalizeOp(ST->getValue());
1387
1388      EVT StVT = ST->getMemoryVT();
1389      unsigned StWidth = StVT.getSizeInBits();
1390
1391      if (StWidth != StVT.getStoreSizeInBits()) {
1392        // Promote to a byte-sized store with upper bits zero if not
1393        // storing an integral number of bytes.  For example, promote
1394        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1395        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits());
1396        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1397        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1398                                   SVOffset, NVT, isVolatile, isNonTemporal,
1399                                   Alignment);
1400      } else if (StWidth & (StWidth - 1)) {
1401        // If not storing a power-of-2 number of bits, expand as two stores.
1402        assert(!StVT.isVector() && "Unsupported truncstore!");
1403        unsigned RoundWidth = 1 << Log2_32(StWidth);
1404        assert(RoundWidth < StWidth);
1405        unsigned ExtraWidth = StWidth - RoundWidth;
1406        assert(ExtraWidth < RoundWidth);
1407        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1408               "Store size not an integral number of bytes!");
1409        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1410        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1411        SDValue Lo, Hi;
1412        unsigned IncrementSize;
1413
1414        if (TLI.isLittleEndian()) {
1415          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1416          // Store the bottom RoundWidth bits.
1417          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1418                                 SVOffset, RoundVT,
1419                                 isVolatile, isNonTemporal, Alignment);
1420
1421          // Store the remaining ExtraWidth bits.
1422          IncrementSize = RoundWidth / 8;
1423          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1424                             DAG.getIntPtrConstant(IncrementSize));
1425          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1426                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1427          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1428                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1429                                 isNonTemporal,
1430                                 MinAlign(Alignment, IncrementSize));
1431        } else {
1432          // Big endian - avoid unaligned stores.
1433          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1434          // Store the top RoundWidth bits.
1435          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1436                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1437          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1438                                 SVOffset, RoundVT, isVolatile, isNonTemporal,
1439                                 Alignment);
1440
1441          // Store the remaining ExtraWidth bits.
1442          IncrementSize = RoundWidth / 8;
1443          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1444                             DAG.getIntPtrConstant(IncrementSize));
1445          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1446                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1447                                 isNonTemporal,
1448                                 MinAlign(Alignment, IncrementSize));
1449        }
1450
1451        // The order of the stores doesn't matter.
1452        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1453      } else {
1454        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1455            Tmp2 != ST->getBasePtr())
1456          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1457                                          ST->getOffset());
1458
1459        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1460        default: assert(0 && "This action is not supported yet!");
1461        case TargetLowering::Legal:
1462          // If this is an unaligned store and the target doesn't support it,
1463          // expand it.
1464          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1465            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1466            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1467            if (ST->getAlignment() < ABIAlignment)
1468              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1469                                            DAG, TLI);
1470          }
1471          break;
1472        case TargetLowering::Custom:
1473          Result = TLI.LowerOperation(Result, DAG);
1474          break;
1475        case Expand:
1476          // TRUNCSTORE:i16 i32 -> STORE i16
1477          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1478          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1479          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1480                                SVOffset, isVolatile, isNonTemporal,
1481                                Alignment);
1482          break;
1483        }
1484      }
1485    }
1486    break;
1487  }
1488  }
1489  assert(Result.getValueType() == Op.getValueType() &&
1490         "Bad legalization!");
1491
1492  // Make sure that the generated code is itself legal.
1493  if (Result != Op)
1494    Result = LegalizeOp(Result);
1495
1496  // Note that LegalizeOp may be reentered even from single-use nodes, which
1497  // means that we always must cache transformed nodes.
1498  AddLegalizedOperand(Op, Result);
1499  return Result;
1500}
1501
1502SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1503  SDValue Vec = Op.getOperand(0);
1504  SDValue Idx = Op.getOperand(1);
1505  DebugLoc dl = Op.getDebugLoc();
1506  // Store the value to a temporary stack slot, then LOAD the returned part.
1507  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1508  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1509                            false, false, 0);
1510
1511  // Add the offset to the index.
1512  unsigned EltSize =
1513      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1514  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1515                    DAG.getConstant(EltSize, Idx.getValueType()));
1516
1517  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1518    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1519  else
1520    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1521
1522  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1523
1524  if (Op.getValueType().isVector())
1525    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0,
1526                       false, false, 0);
1527  else
1528    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1529                          NULL, 0, Vec.getValueType().getVectorElementType(),
1530                          false, false, 0);
1531}
1532
1533SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1534  // We can't handle this case efficiently.  Allocate a sufficiently
1535  // aligned object on the stack, store each element into it, then load
1536  // the result as a vector.
1537  // Create the stack frame object.
1538  EVT VT = Node->getValueType(0);
1539  EVT EltVT = VT.getVectorElementType();
1540  DebugLoc dl = Node->getDebugLoc();
1541  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1542  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1543  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1544
1545  // Emit a store of each element to the stack slot.
1546  SmallVector<SDValue, 8> Stores;
1547  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1548  // Store (in the right endianness) the elements to memory.
1549  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1550    // Ignore undef elements.
1551    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1552
1553    unsigned Offset = TypeByteSize*i;
1554
1555    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1556    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1557
1558    // If the destination vector element type is narrower than the source
1559    // element type, only store the bits necessary.
1560    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1561      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1562                                         Node->getOperand(i), Idx, SV, Offset,
1563                                         EltVT, false, false, 0));
1564    } else
1565      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1566                                    Node->getOperand(i), Idx, SV, Offset,
1567                                    false, false, 0));
1568  }
1569
1570  SDValue StoreChain;
1571  if (!Stores.empty())    // Not all undef elements?
1572    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1573                             &Stores[0], Stores.size());
1574  else
1575    StoreChain = DAG.getEntryNode();
1576
1577  // Result is a load from the stack slot.
1578  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0);
1579}
1580
1581SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1582  DebugLoc dl = Node->getDebugLoc();
1583  SDValue Tmp1 = Node->getOperand(0);
1584  SDValue Tmp2 = Node->getOperand(1);
1585
1586  // Get the sign bit of the RHS.  First obtain a value that has the same
1587  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1588  SDValue SignBit;
1589  EVT FloatVT = Tmp2.getValueType();
1590  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1591  if (isTypeLegal(IVT)) {
1592    // Convert to an integer with the same sign bit.
1593    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1594  } else {
1595    // Store the float to memory, then load the sign part out as an integer.
1596    MVT LoadTy = TLI.getPointerTy();
1597    // First create a temporary that is aligned for both the load and store.
1598    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1599    // Then store the float to it.
1600    SDValue Ch =
1601      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1602                   false, false, 0);
1603    if (TLI.isBigEndian()) {
1604      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1605      // Load out a legal integer with the same sign bit as the float.
1606      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, NULL, 0, false, false, 0);
1607    } else { // Little endian
1608      SDValue LoadPtr = StackPtr;
1609      // The float may be wider than the integer we are going to load.  Advance
1610      // the pointer so that the loaded integer will contain the sign bit.
1611      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1612      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1613      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1614                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1615      // Load a legal integer containing the sign bit.
1616      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, NULL, 0, false, false, 0);
1617      // Move the sign bit to the top bit of the loaded integer.
1618      unsigned BitShift = LoadTy.getSizeInBits() -
1619        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1620      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1621      if (BitShift)
1622        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1623                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1624    }
1625  }
1626  // Now get the sign bit proper, by seeing whether the value is negative.
1627  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1628                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1629                         ISD::SETLT);
1630  // Get the absolute value of the result.
1631  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1632  // Select between the nabs and abs value based on the sign bit of
1633  // the input.
1634  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1635                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1636                     AbsVal);
1637}
1638
1639void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1640                                           SmallVectorImpl<SDValue> &Results) {
1641  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1642  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1643          " not tell us which reg is the stack pointer!");
1644  DebugLoc dl = Node->getDebugLoc();
1645  EVT VT = Node->getValueType(0);
1646  SDValue Tmp1 = SDValue(Node, 0);
1647  SDValue Tmp2 = SDValue(Node, 1);
1648  SDValue Tmp3 = Node->getOperand(2);
1649  SDValue Chain = Tmp1.getOperand(0);
1650
1651  // Chain the dynamic stack allocation so that it doesn't modify the stack
1652  // pointer when other instructions are using the stack.
1653  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1654
1655  SDValue Size  = Tmp2.getOperand(1);
1656  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1657  Chain = SP.getValue(1);
1658  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1659  unsigned StackAlign =
1660    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1661  if (Align > StackAlign)
1662    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1663                      DAG.getConstant(-(uint64_t)Align, VT));
1664  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1665  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1666
1667  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1668                            DAG.getIntPtrConstant(0, true), SDValue());
1669
1670  Results.push_back(Tmp1);
1671  Results.push_back(Tmp2);
1672}
1673
1674/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1675/// condition code CC on the current target. This routine expands SETCC with
1676/// illegal condition code into AND / OR of multiple SETCC values.
1677void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1678                                                 SDValue &LHS, SDValue &RHS,
1679                                                 SDValue &CC,
1680                                                 DebugLoc dl) {
1681  EVT OpVT = LHS.getValueType();
1682  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1683  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1684  default: assert(0 && "Unknown condition code action!");
1685  case TargetLowering::Legal:
1686    // Nothing to do.
1687    break;
1688  case TargetLowering::Expand: {
1689    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1690    unsigned Opc = 0;
1691    switch (CCCode) {
1692    default: assert(0 && "Don't know how to expand this condition!");
1693    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1694    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1695    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1696    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1697    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1698    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1699    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1700    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1701    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1702    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1703    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1704    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1705    // FIXME: Implement more expansions.
1706    }
1707
1708    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1709    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1710    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1711    RHS = SDValue();
1712    CC  = SDValue();
1713    break;
1714  }
1715  }
1716}
1717
1718/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1719/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1720/// a load from the stack slot to DestVT, extending it if needed.
1721/// The resultant code need not be legal.
1722SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1723                                               EVT SlotVT,
1724                                               EVT DestVT,
1725                                               DebugLoc dl) {
1726  // Create the stack frame object.
1727  unsigned SrcAlign =
1728    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1729                                              getTypeForEVT(*DAG.getContext()));
1730  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1731
1732  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1733  int SPFI = StackPtrFI->getIndex();
1734  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1735
1736  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1737  unsigned SlotSize = SlotVT.getSizeInBits();
1738  unsigned DestSize = DestVT.getSizeInBits();
1739  unsigned DestAlign =
1740    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext()));
1741
1742  // Emit a store to the stack slot.  Use a truncstore if the input value is
1743  // later than DestVT.
1744  SDValue Store;
1745
1746  if (SrcSize > SlotSize)
1747    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1748                              SV, 0, SlotVT, false, false, SrcAlign);
1749  else {
1750    assert(SrcSize == SlotSize && "Invalid store");
1751    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1752                         SV, 0, false, false, SrcAlign);
1753  }
1754
1755  // Result is a load from the stack slot.
1756  if (SlotSize == DestSize)
1757    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false,
1758                       DestAlign);
1759
1760  assert(SlotSize < DestSize && "Unknown extension!");
1761  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1762                        false, false, DestAlign);
1763}
1764
1765SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1766  DebugLoc dl = Node->getDebugLoc();
1767  // Create a vector sized/aligned stack slot, store the value to element #0,
1768  // then load the whole vector back out.
1769  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1770
1771  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1772  int SPFI = StackPtrFI->getIndex();
1773
1774  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1775                                 StackPtr,
1776                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1777                                 Node->getValueType(0).getVectorElementType(),
1778                                 false, false, 0);
1779  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1780                     PseudoSourceValue::getFixedStack(SPFI), 0,
1781                     false, false, 0);
1782}
1783
1784
1785/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1786/// support the operation, but do support the resultant vector type.
1787SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1788  unsigned NumElems = Node->getNumOperands();
1789  SDValue Value1, Value2;
1790  DebugLoc dl = Node->getDebugLoc();
1791  EVT VT = Node->getValueType(0);
1792  EVT OpVT = Node->getOperand(0).getValueType();
1793  EVT EltVT = VT.getVectorElementType();
1794
1795  // If the only non-undef value is the low element, turn this into a
1796  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1797  bool isOnlyLowElement = true;
1798  bool MoreThanTwoValues = false;
1799  bool isConstant = true;
1800  for (unsigned i = 0; i < NumElems; ++i) {
1801    SDValue V = Node->getOperand(i);
1802    if (V.getOpcode() == ISD::UNDEF)
1803      continue;
1804    if (i > 0)
1805      isOnlyLowElement = false;
1806    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1807      isConstant = false;
1808
1809    if (!Value1.getNode()) {
1810      Value1 = V;
1811    } else if (!Value2.getNode()) {
1812      if (V != Value1)
1813        Value2 = V;
1814    } else if (V != Value1 && V != Value2) {
1815      MoreThanTwoValues = true;
1816    }
1817  }
1818
1819  if (!Value1.getNode())
1820    return DAG.getUNDEF(VT);
1821
1822  if (isOnlyLowElement)
1823    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1824
1825  // If all elements are constants, create a load from the constant pool.
1826  if (isConstant) {
1827    std::vector<Constant*> CV;
1828    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1829      if (ConstantFPSDNode *V =
1830          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1831        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1832      } else if (ConstantSDNode *V =
1833                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1834        if (OpVT==EltVT)
1835          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1836        else {
1837          // If OpVT and EltVT don't match, EltVT is not legal and the
1838          // element values have been promoted/truncated earlier.  Undo this;
1839          // we don't want a v16i8 to become a v16i32 for example.
1840          const ConstantInt *CI = V->getConstantIntValue();
1841          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1842                                        CI->getZExtValue()));
1843        }
1844      } else {
1845        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1846        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1847        CV.push_back(UndefValue::get(OpNTy));
1848      }
1849    }
1850    Constant *CP = ConstantVector::get(CV);
1851    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1852    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1853    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1854                       PseudoSourceValue::getConstantPool(), 0,
1855                       false, false, Alignment);
1856  }
1857
1858  if (!MoreThanTwoValues) {
1859    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1860    for (unsigned i = 0; i < NumElems; ++i) {
1861      SDValue V = Node->getOperand(i);
1862      if (V.getOpcode() == ISD::UNDEF)
1863        continue;
1864      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1865    }
1866    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1867      // Get the splatted value into the low element of a vector register.
1868      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1869      SDValue Vec2;
1870      if (Value2.getNode())
1871        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1872      else
1873        Vec2 = DAG.getUNDEF(VT);
1874
1875      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1876      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1877    }
1878  }
1879
1880  // Otherwise, we can't handle this case efficiently.
1881  return ExpandVectorBuildThroughStack(Node);
1882}
1883
1884// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1885// does not fit into a register, return the lo part and set the hi part to the
1886// by-reg argument.  If it does fit into a single register, return the result
1887// and leave the Hi part unset.
1888SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1889                                            bool isSigned) {
1890  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1891  // The input chain to this libcall is the entry node of the function.
1892  // Legalizing the call will automatically add the previous call to the
1893  // dependence.
1894  SDValue InChain = DAG.getEntryNode();
1895
1896  TargetLowering::ArgListTy Args;
1897  TargetLowering::ArgListEntry Entry;
1898  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1899    EVT ArgVT = Node->getOperand(i).getValueType();
1900    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1901    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1902    Entry.isSExt = isSigned;
1903    Entry.isZExt = !isSigned;
1904    Args.push_back(Entry);
1905  }
1906  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1907                                         TLI.getPointerTy());
1908
1909  // Splice the libcall in wherever FindInputOutputChains tells us to.
1910  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1911  std::pair<SDValue, SDValue> CallInfo =
1912    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1913                    0, TLI.getLibcallCallingConv(LC), false,
1914                    /*isReturnValueUsed=*/true,
1915                    Callee, Args, DAG, Node->getDebugLoc());
1916
1917  // Legalize the call sequence, starting with the chain.  This will advance
1918  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1919  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1920  LegalizeOp(CallInfo.second);
1921  return CallInfo.first;
1922}
1923
1924SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1925                                              RTLIB::Libcall Call_F32,
1926                                              RTLIB::Libcall Call_F64,
1927                                              RTLIB::Libcall Call_F80,
1928                                              RTLIB::Libcall Call_PPCF128) {
1929  RTLIB::Libcall LC;
1930  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1931  default: assert(0 && "Unexpected request for libcall!");
1932  case MVT::f32: LC = Call_F32; break;
1933  case MVT::f64: LC = Call_F64; break;
1934  case MVT::f80: LC = Call_F80; break;
1935  case MVT::ppcf128: LC = Call_PPCF128; break;
1936  }
1937  return ExpandLibCall(LC, Node, false);
1938}
1939
1940SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1941                                               RTLIB::Libcall Call_I8,
1942                                               RTLIB::Libcall Call_I16,
1943                                               RTLIB::Libcall Call_I32,
1944                                               RTLIB::Libcall Call_I64,
1945                                               RTLIB::Libcall Call_I128) {
1946  RTLIB::Libcall LC;
1947  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1948  default: assert(0 && "Unexpected request for libcall!");
1949  case MVT::i8:   LC = Call_I8; break;
1950  case MVT::i16:  LC = Call_I16; break;
1951  case MVT::i32:  LC = Call_I32; break;
1952  case MVT::i64:  LC = Call_I64; break;
1953  case MVT::i128: LC = Call_I128; break;
1954  }
1955  return ExpandLibCall(LC, Node, isSigned);
1956}
1957
1958/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1959/// INT_TO_FP operation of the specified operand when the target requests that
1960/// we expand it.  At this point, we know that the result and operand types are
1961/// legal for the target.
1962SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1963                                                   SDValue Op0,
1964                                                   EVT DestVT,
1965                                                   DebugLoc dl) {
1966  if (Op0.getValueType() == MVT::i32) {
1967    // simple 32-bit [signed|unsigned] integer to float/double expansion
1968
1969    // Get the stack frame index of a 8 byte buffer.
1970    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1971
1972    // word offset constant for Hi/Lo address computation
1973    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1974    // set up Hi and Lo (into buffer) address based on endian
1975    SDValue Hi = StackSlot;
1976    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1977                             TLI.getPointerTy(), StackSlot, WordOff);
1978    if (TLI.isLittleEndian())
1979      std::swap(Hi, Lo);
1980
1981    // if signed map to unsigned space
1982    SDValue Op0Mapped;
1983    if (isSigned) {
1984      // constant used to invert sign bit (signed to unsigned mapping)
1985      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1986      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1987    } else {
1988      Op0Mapped = Op0;
1989    }
1990    // store the lo of the constructed double - based on integer input
1991    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1992                                  Op0Mapped, Lo, NULL, 0,
1993                                  false, false, 0);
1994    // initial hi portion of constructed double
1995    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1996    // store the hi of the constructed double - biased exponent
1997    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
1998                                false, false, 0);
1999    // load the constructed double
2000    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0,
2001                               false, false, 0);
2002    // FP constant to bias correct the final result
2003    SDValue Bias = DAG.getConstantFP(isSigned ?
2004                                     BitsToDouble(0x4330000080000000ULL) :
2005                                     BitsToDouble(0x4330000000000000ULL),
2006                                     MVT::f64);
2007    // subtract the bias
2008    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2009    // final result
2010    SDValue Result;
2011    // handle final rounding
2012    if (DestVT == MVT::f64) {
2013      // do nothing
2014      Result = Sub;
2015    } else if (DestVT.bitsLT(MVT::f64)) {
2016      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2017                           DAG.getIntPtrConstant(0));
2018    } else if (DestVT.bitsGT(MVT::f64)) {
2019      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2020    }
2021    return Result;
2022  }
2023  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2024
2025  // Implementation of unsigned i64 to f64 following the algorithm in
2026  // __floatundidf in compiler_rt. This implementation has the advantage
2027  // of performing rounding correctly, both in the default rounding mode
2028  // and in all alternate rounding modes.
2029  // TODO: Generalize this for use with other types.
2030  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2031    SDValue TwoP52 =
2032      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2033    SDValue TwoP84PlusTwoP52 =
2034      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2035    SDValue TwoP84 =
2036      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2037
2038    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2039    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2040                             DAG.getConstant(32, MVT::i64));
2041    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2042    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2043    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2044    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2045    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, TwoP84PlusTwoP52);
2046    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2047  }
2048
2049  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2050
2051  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2052                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2053                                 ISD::SETLT);
2054  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2055  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2056                                    SignSet, Four, Zero);
2057
2058  // If the sign bit of the integer is set, the large number will be treated
2059  // as a negative number.  To counteract this, the dynamic code adds an
2060  // offset depending on the data type.
2061  uint64_t FF;
2062  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2063  default: assert(0 && "Unsupported integer type!");
2064  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2065  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2066  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2067  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2068  }
2069  if (TLI.isLittleEndian()) FF <<= 32;
2070  Constant *FudgeFactor = ConstantInt::get(
2071                                       Type::getInt64Ty(*DAG.getContext()), FF);
2072
2073  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2074  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2075  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2076  Alignment = std::min(Alignment, 4u);
2077  SDValue FudgeInReg;
2078  if (DestVT == MVT::f32)
2079    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2080                             PseudoSourceValue::getConstantPool(), 0,
2081                             false, false, Alignment);
2082  else {
2083    FudgeInReg =
2084      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2085                                DAG.getEntryNode(), CPIdx,
2086                                PseudoSourceValue::getConstantPool(), 0,
2087                                MVT::f32, false, false, Alignment));
2088  }
2089
2090  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2091}
2092
2093/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2094/// *INT_TO_FP operation of the specified operand when the target requests that
2095/// we promote it.  At this point, we know that the result and operand types are
2096/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2097/// operation that takes a larger input.
2098SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2099                                                    EVT DestVT,
2100                                                    bool isSigned,
2101                                                    DebugLoc dl) {
2102  // First step, figure out the appropriate *INT_TO_FP operation to use.
2103  EVT NewInTy = LegalOp.getValueType();
2104
2105  unsigned OpToUse = 0;
2106
2107  // Scan for the appropriate larger type to use.
2108  while (1) {
2109    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2110    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2111
2112    // If the target supports SINT_TO_FP of this type, use it.
2113    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2114      OpToUse = ISD::SINT_TO_FP;
2115      break;
2116    }
2117    if (isSigned) continue;
2118
2119    // If the target supports UINT_TO_FP of this type, use it.
2120    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2121      OpToUse = ISD::UINT_TO_FP;
2122      break;
2123    }
2124
2125    // Otherwise, try a larger type.
2126  }
2127
2128  // Okay, we found the operation and type to use.  Zero extend our input to the
2129  // desired type then run the operation on it.
2130  return DAG.getNode(OpToUse, dl, DestVT,
2131                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2132                                 dl, NewInTy, LegalOp));
2133}
2134
2135/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2136/// FP_TO_*INT operation of the specified operand when the target requests that
2137/// we promote it.  At this point, we know that the result and operand types are
2138/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2139/// operation that returns a larger result.
2140SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2141                                                    EVT DestVT,
2142                                                    bool isSigned,
2143                                                    DebugLoc dl) {
2144  // First step, figure out the appropriate FP_TO*INT operation to use.
2145  EVT NewOutTy = DestVT;
2146
2147  unsigned OpToUse = 0;
2148
2149  // Scan for the appropriate larger type to use.
2150  while (1) {
2151    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2152    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2153
2154    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2155      OpToUse = ISD::FP_TO_SINT;
2156      break;
2157    }
2158
2159    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2160      OpToUse = ISD::FP_TO_UINT;
2161      break;
2162    }
2163
2164    // Otherwise, try a larger type.
2165  }
2166
2167
2168  // Okay, we found the operation and type to use.
2169  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2170
2171  // Truncate the result of the extended FP_TO_*INT operation to the desired
2172  // size.
2173  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2174}
2175
2176/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2177///
2178SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2179  EVT VT = Op.getValueType();
2180  EVT SHVT = TLI.getShiftAmountTy();
2181  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2182  switch (VT.getSimpleVT().SimpleTy) {
2183  default: assert(0 && "Unhandled Expand type in BSWAP!");
2184  case MVT::i16:
2185    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2186    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2187    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2188  case MVT::i32:
2189    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2190    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2191    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2192    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2193    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2194    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2195    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2196    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2197    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2198  case MVT::i64:
2199    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2200    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2201    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2202    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2203    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2204    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2205    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2206    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2207    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2208    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2209    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2210    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2211    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2212    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2213    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2214    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2215    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2216    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2217    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2218    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2219    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2220  }
2221}
2222
2223/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2224///
2225SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2226                                             DebugLoc dl) {
2227  switch (Opc) {
2228  default: assert(0 && "Cannot expand this yet!");
2229  case ISD::CTPOP: {
2230    static const uint64_t mask[6] = {
2231      0x5555555555555555ULL, 0x3333333333333333ULL,
2232      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2233      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2234    };
2235    EVT VT = Op.getValueType();
2236    EVT ShVT = TLI.getShiftAmountTy();
2237    unsigned len = VT.getSizeInBits();
2238    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2239      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2240      unsigned EltSize = VT.isVector() ?
2241        VT.getVectorElementType().getSizeInBits() : len;
2242      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2243      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2244      Op = DAG.getNode(ISD::ADD, dl, VT,
2245                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2246                       DAG.getNode(ISD::AND, dl, VT,
2247                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2248                                   Tmp2));
2249    }
2250    return Op;
2251  }
2252  case ISD::CTLZ: {
2253    // for now, we do this:
2254    // x = x | (x >> 1);
2255    // x = x | (x >> 2);
2256    // ...
2257    // x = x | (x >>16);
2258    // x = x | (x >>32); // for 64-bit input
2259    // return popcount(~x);
2260    //
2261    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2262    EVT VT = Op.getValueType();
2263    EVT ShVT = TLI.getShiftAmountTy();
2264    unsigned len = VT.getSizeInBits();
2265    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2266      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2267      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2268                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2269    }
2270    Op = DAG.getNOT(dl, Op, VT);
2271    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2272  }
2273  case ISD::CTTZ: {
2274    // for now, we use: { return popcount(~x & (x - 1)); }
2275    // unless the target has ctlz but not ctpop, in which case we use:
2276    // { return 32 - nlz(~x & (x-1)); }
2277    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2278    EVT VT = Op.getValueType();
2279    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2280                               DAG.getNOT(dl, Op, VT),
2281                               DAG.getNode(ISD::SUB, dl, VT, Op,
2282                                           DAG.getConstant(1, VT)));
2283    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2284    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2285        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2286      return DAG.getNode(ISD::SUB, dl, VT,
2287                         DAG.getConstant(VT.getSizeInBits(), VT),
2288                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2289    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2290  }
2291  }
2292}
2293
2294void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2295                                      SmallVectorImpl<SDValue> &Results) {
2296  DebugLoc dl = Node->getDebugLoc();
2297  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2298  switch (Node->getOpcode()) {
2299  case ISD::CTPOP:
2300  case ISD::CTLZ:
2301  case ISD::CTTZ:
2302    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2303    Results.push_back(Tmp1);
2304    break;
2305  case ISD::BSWAP:
2306    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2307    break;
2308  case ISD::FRAMEADDR:
2309  case ISD::RETURNADDR:
2310  case ISD::FRAME_TO_ARGS_OFFSET:
2311    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2312    break;
2313  case ISD::FLT_ROUNDS_:
2314    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2315    break;
2316  case ISD::EH_RETURN:
2317  case ISD::EH_LABEL:
2318  case ISD::PREFETCH:
2319  case ISD::MEMBARRIER:
2320  case ISD::VAEND:
2321    Results.push_back(Node->getOperand(0));
2322    break;
2323  case ISD::DYNAMIC_STACKALLOC:
2324    ExpandDYNAMIC_STACKALLOC(Node, Results);
2325    break;
2326  case ISD::MERGE_VALUES:
2327    for (unsigned i = 0; i < Node->getNumValues(); i++)
2328      Results.push_back(Node->getOperand(i));
2329    break;
2330  case ISD::UNDEF: {
2331    EVT VT = Node->getValueType(0);
2332    if (VT.isInteger())
2333      Results.push_back(DAG.getConstant(0, VT));
2334    else {
2335      assert(VT.isFloatingPoint() && "Unknown value type!");
2336      Results.push_back(DAG.getConstantFP(0, VT));
2337    }
2338    break;
2339  }
2340  case ISD::TRAP: {
2341    // If this operation is not supported, lower it to 'abort()' call
2342    TargetLowering::ArgListTy Args;
2343    std::pair<SDValue, SDValue> CallResult =
2344      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2345                      false, false, false, false, 0, CallingConv::C, false,
2346                      /*isReturnValueUsed=*/true,
2347                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2348                      Args, DAG, dl);
2349    Results.push_back(CallResult.second);
2350    break;
2351  }
2352  case ISD::FP_ROUND:
2353  case ISD::BIT_CONVERT:
2354    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2355                            Node->getValueType(0), dl);
2356    Results.push_back(Tmp1);
2357    break;
2358  case ISD::FP_EXTEND:
2359    Tmp1 = EmitStackConvert(Node->getOperand(0),
2360                            Node->getOperand(0).getValueType(),
2361                            Node->getValueType(0), dl);
2362    Results.push_back(Tmp1);
2363    break;
2364  case ISD::SIGN_EXTEND_INREG: {
2365    // NOTE: we could fall back on load/store here too for targets without
2366    // SAR.  However, it is doubtful that any exist.
2367    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2368    EVT VT = Node->getValueType(0);
2369    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2370    if (VT.isVector())
2371      ShiftAmountTy = VT;
2372    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2373                        ExtraVT.getScalarType().getSizeInBits();
2374    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2375    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2376                       Node->getOperand(0), ShiftCst);
2377    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2378    Results.push_back(Tmp1);
2379    break;
2380  }
2381  case ISD::FP_ROUND_INREG: {
2382    // The only way we can lower this is to turn it into a TRUNCSTORE,
2383    // EXTLOAD pair, targetting a temporary location (a stack slot).
2384
2385    // NOTE: there is a choice here between constantly creating new stack
2386    // slots and always reusing the same one.  We currently always create
2387    // new ones, as reuse may inhibit scheduling.
2388    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2389    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2390                            Node->getValueType(0), dl);
2391    Results.push_back(Tmp1);
2392    break;
2393  }
2394  case ISD::SINT_TO_FP:
2395  case ISD::UINT_TO_FP:
2396    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2397                                Node->getOperand(0), Node->getValueType(0), dl);
2398    Results.push_back(Tmp1);
2399    break;
2400  case ISD::FP_TO_UINT: {
2401    SDValue True, False;
2402    EVT VT =  Node->getOperand(0).getValueType();
2403    EVT NVT = Node->getValueType(0);
2404    const uint64_t zero[] = {0, 0};
2405    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2406    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2407    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2408    Tmp1 = DAG.getConstantFP(apf, VT);
2409    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2410                        Node->getOperand(0),
2411                        Tmp1, ISD::SETLT);
2412    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2413    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2414                        DAG.getNode(ISD::FSUB, dl, VT,
2415                                    Node->getOperand(0), Tmp1));
2416    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2417                        DAG.getConstant(x, NVT));
2418    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2419    Results.push_back(Tmp1);
2420    break;
2421  }
2422  case ISD::VAARG: {
2423    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2424    EVT VT = Node->getValueType(0);
2425    Tmp1 = Node->getOperand(0);
2426    Tmp2 = Node->getOperand(1);
2427    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0,
2428                                 false, false, 0);
2429    // Increment the pointer, VAList, to the next vaarg
2430    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2431                       DAG.getConstant(TLI.getTargetData()->
2432                                       getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2433                                       TLI.getPointerTy()));
2434    // Store the incremented VAList to the legalized pointer
2435    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0,
2436                        false, false, 0);
2437    // Load the actual argument out of the pointer VAList
2438    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0,
2439                                  false, false, 0));
2440    Results.push_back(Results[0].getValue(1));
2441    break;
2442  }
2443  case ISD::VACOPY: {
2444    // This defaults to loading a pointer from the input and storing it to the
2445    // output, returning the chain.
2446    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2447    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2448    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2449                       Node->getOperand(2), VS, 0, false, false, 0);
2450    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0,
2451                        false, false, 0);
2452    Results.push_back(Tmp1);
2453    break;
2454  }
2455  case ISD::EXTRACT_VECTOR_ELT:
2456    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2457      // This must be an access of the only element.  Return it.
2458      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2459                         Node->getOperand(0));
2460    else
2461      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2462    Results.push_back(Tmp1);
2463    break;
2464  case ISD::EXTRACT_SUBVECTOR:
2465    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2466    break;
2467  case ISD::CONCAT_VECTORS: {
2468    Results.push_back(ExpandVectorBuildThroughStack(Node));
2469    break;
2470  }
2471  case ISD::SCALAR_TO_VECTOR:
2472    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2473    break;
2474  case ISD::INSERT_VECTOR_ELT:
2475    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2476                                              Node->getOperand(1),
2477                                              Node->getOperand(2), dl));
2478    break;
2479  case ISD::VECTOR_SHUFFLE: {
2480    SmallVector<int, 8> Mask;
2481    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2482
2483    EVT VT = Node->getValueType(0);
2484    EVT EltVT = VT.getVectorElementType();
2485    unsigned NumElems = VT.getVectorNumElements();
2486    SmallVector<SDValue, 8> Ops;
2487    for (unsigned i = 0; i != NumElems; ++i) {
2488      if (Mask[i] < 0) {
2489        Ops.push_back(DAG.getUNDEF(EltVT));
2490        continue;
2491      }
2492      unsigned Idx = Mask[i];
2493      if (Idx < NumElems)
2494        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2495                                  Node->getOperand(0),
2496                                  DAG.getIntPtrConstant(Idx)));
2497      else
2498        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2499                                  Node->getOperand(1),
2500                                  DAG.getIntPtrConstant(Idx - NumElems)));
2501    }
2502    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2503    Results.push_back(Tmp1);
2504    break;
2505  }
2506  case ISD::EXTRACT_ELEMENT: {
2507    EVT OpTy = Node->getOperand(0).getValueType();
2508    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2509      // 1 -> Hi
2510      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2511                         DAG.getConstant(OpTy.getSizeInBits()/2,
2512                                         TLI.getShiftAmountTy()));
2513      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2514    } else {
2515      // 0 -> Lo
2516      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2517                         Node->getOperand(0));
2518    }
2519    Results.push_back(Tmp1);
2520    break;
2521  }
2522  case ISD::STACKSAVE:
2523    // Expand to CopyFromReg if the target set
2524    // StackPointerRegisterToSaveRestore.
2525    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2526      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2527                                           Node->getValueType(0)));
2528      Results.push_back(Results[0].getValue(1));
2529    } else {
2530      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2531      Results.push_back(Node->getOperand(0));
2532    }
2533    break;
2534  case ISD::STACKRESTORE:
2535    // Expand to CopyToReg if the target set
2536    // StackPointerRegisterToSaveRestore.
2537    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2538      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2539                                         Node->getOperand(1)));
2540    } else {
2541      Results.push_back(Node->getOperand(0));
2542    }
2543    break;
2544  case ISD::FCOPYSIGN:
2545    Results.push_back(ExpandFCOPYSIGN(Node));
2546    break;
2547  case ISD::FNEG:
2548    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2549    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2550    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2551                       Node->getOperand(0));
2552    Results.push_back(Tmp1);
2553    break;
2554  case ISD::FABS: {
2555    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2556    EVT VT = Node->getValueType(0);
2557    Tmp1 = Node->getOperand(0);
2558    Tmp2 = DAG.getConstantFP(0.0, VT);
2559    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2560                        Tmp1, Tmp2, ISD::SETUGT);
2561    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2562    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2563    Results.push_back(Tmp1);
2564    break;
2565  }
2566  case ISD::FSQRT:
2567    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2568                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2569    break;
2570  case ISD::FSIN:
2571    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2572                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2573    break;
2574  case ISD::FCOS:
2575    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2576                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2577    break;
2578  case ISD::FLOG:
2579    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2580                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2581    break;
2582  case ISD::FLOG2:
2583    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2584                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2585    break;
2586  case ISD::FLOG10:
2587    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2588                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2589    break;
2590  case ISD::FEXP:
2591    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2592                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2593    break;
2594  case ISD::FEXP2:
2595    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2596                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2597    break;
2598  case ISD::FTRUNC:
2599    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2600                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2601    break;
2602  case ISD::FFLOOR:
2603    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2604                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2605    break;
2606  case ISD::FCEIL:
2607    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2608                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2609    break;
2610  case ISD::FRINT:
2611    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2612                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2613    break;
2614  case ISD::FNEARBYINT:
2615    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2616                                      RTLIB::NEARBYINT_F64,
2617                                      RTLIB::NEARBYINT_F80,
2618                                      RTLIB::NEARBYINT_PPCF128));
2619    break;
2620  case ISD::FPOWI:
2621    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2622                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2623    break;
2624  case ISD::FPOW:
2625    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2626                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2627    break;
2628  case ISD::FDIV:
2629    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2630                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2631    break;
2632  case ISD::FREM:
2633    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2634                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2635    break;
2636  case ISD::FP16_TO_FP32:
2637    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2638    break;
2639  case ISD::FP32_TO_FP16:
2640    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2641    break;
2642  case ISD::ConstantFP: {
2643    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2644    // Check to see if this FP immediate is already legal.
2645    // If this is a legal constant, turn it into a TargetConstantFP node.
2646    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2647      Results.push_back(SDValue(Node, 0));
2648    else
2649      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2650    break;
2651  }
2652  case ISD::EHSELECTION: {
2653    unsigned Reg = TLI.getExceptionSelectorRegister();
2654    assert(Reg && "Can't expand to unknown register!");
2655    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2656                                         Node->getValueType(0)));
2657    Results.push_back(Results[0].getValue(1));
2658    break;
2659  }
2660  case ISD::EXCEPTIONADDR: {
2661    unsigned Reg = TLI.getExceptionAddressRegister();
2662    assert(Reg && "Can't expand to unknown register!");
2663    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2664                                         Node->getValueType(0)));
2665    Results.push_back(Results[0].getValue(1));
2666    break;
2667  }
2668  case ISD::SUB: {
2669    EVT VT = Node->getValueType(0);
2670    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2671           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2672           "Don't know how to expand this subtraction!");
2673    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2674               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2675    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2676    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2677    break;
2678  }
2679  case ISD::UREM:
2680  case ISD::SREM: {
2681    EVT VT = Node->getValueType(0);
2682    SDVTList VTs = DAG.getVTList(VT, VT);
2683    bool isSigned = Node->getOpcode() == ISD::SREM;
2684    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2685    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2686    Tmp2 = Node->getOperand(0);
2687    Tmp3 = Node->getOperand(1);
2688    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2689      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2690    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2691      // X % Y -> X-X/Y*Y
2692      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2693      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2694      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2695    } else if (isSigned) {
2696      Tmp1 = ExpandIntLibCall(Node, true,
2697                              RTLIB::SREM_I8,
2698                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2699                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2700    } else {
2701      Tmp1 = ExpandIntLibCall(Node, false,
2702                              RTLIB::UREM_I8,
2703                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2704                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2705    }
2706    Results.push_back(Tmp1);
2707    break;
2708  }
2709  case ISD::UDIV:
2710  case ISD::SDIV: {
2711    bool isSigned = Node->getOpcode() == ISD::SDIV;
2712    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2713    EVT VT = Node->getValueType(0);
2714    SDVTList VTs = DAG.getVTList(VT, VT);
2715    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2716      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2717                         Node->getOperand(1));
2718    else if (isSigned)
2719      Tmp1 = ExpandIntLibCall(Node, true,
2720                              RTLIB::SDIV_I8,
2721                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2722                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2723    else
2724      Tmp1 = ExpandIntLibCall(Node, false,
2725                              RTLIB::UDIV_I8,
2726                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2727                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2728    Results.push_back(Tmp1);
2729    break;
2730  }
2731  case ISD::MULHU:
2732  case ISD::MULHS: {
2733    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2734                                                              ISD::SMUL_LOHI;
2735    EVT VT = Node->getValueType(0);
2736    SDVTList VTs = DAG.getVTList(VT, VT);
2737    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2738           "If this wasn't legal, it shouldn't have been created!");
2739    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2740                       Node->getOperand(1));
2741    Results.push_back(Tmp1.getValue(1));
2742    break;
2743  }
2744  case ISD::MUL: {
2745    EVT VT = Node->getValueType(0);
2746    SDVTList VTs = DAG.getVTList(VT, VT);
2747    // See if multiply or divide can be lowered using two-result operations.
2748    // We just need the low half of the multiply; try both the signed
2749    // and unsigned forms. If the target supports both SMUL_LOHI and
2750    // UMUL_LOHI, form a preference by checking which forms of plain
2751    // MULH it supports.
2752    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2753    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2754    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2755    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2756    unsigned OpToUse = 0;
2757    if (HasSMUL_LOHI && !HasMULHS) {
2758      OpToUse = ISD::SMUL_LOHI;
2759    } else if (HasUMUL_LOHI && !HasMULHU) {
2760      OpToUse = ISD::UMUL_LOHI;
2761    } else if (HasSMUL_LOHI) {
2762      OpToUse = ISD::SMUL_LOHI;
2763    } else if (HasUMUL_LOHI) {
2764      OpToUse = ISD::UMUL_LOHI;
2765    }
2766    if (OpToUse) {
2767      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2768                                    Node->getOperand(1)));
2769      break;
2770    }
2771    Tmp1 = ExpandIntLibCall(Node, false,
2772                            RTLIB::MUL_I8,
2773                            RTLIB::MUL_I16, RTLIB::MUL_I32,
2774                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2775    Results.push_back(Tmp1);
2776    break;
2777  }
2778  case ISD::SADDO:
2779  case ISD::SSUBO: {
2780    SDValue LHS = Node->getOperand(0);
2781    SDValue RHS = Node->getOperand(1);
2782    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2783                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2784                              LHS, RHS);
2785    Results.push_back(Sum);
2786    EVT OType = Node->getValueType(1);
2787
2788    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2789
2790    //   LHSSign -> LHS >= 0
2791    //   RHSSign -> RHS >= 0
2792    //   SumSign -> Sum >= 0
2793    //
2794    //   Add:
2795    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2796    //   Sub:
2797    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2798    //
2799    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2800    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2801    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2802                                      Node->getOpcode() == ISD::SADDO ?
2803                                      ISD::SETEQ : ISD::SETNE);
2804
2805    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2806    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2807
2808    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2809    Results.push_back(Cmp);
2810    break;
2811  }
2812  case ISD::UADDO:
2813  case ISD::USUBO: {
2814    SDValue LHS = Node->getOperand(0);
2815    SDValue RHS = Node->getOperand(1);
2816    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2817                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2818                              LHS, RHS);
2819    Results.push_back(Sum);
2820    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2821                                   Node->getOpcode () == ISD::UADDO ?
2822                                   ISD::SETULT : ISD::SETUGT));
2823    break;
2824  }
2825  case ISD::UMULO:
2826  case ISD::SMULO: {
2827    EVT VT = Node->getValueType(0);
2828    SDValue LHS = Node->getOperand(0);
2829    SDValue RHS = Node->getOperand(1);
2830    SDValue BottomHalf;
2831    SDValue TopHalf;
2832    static const unsigned Ops[2][3] =
2833        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2834          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2835    bool isSigned = Node->getOpcode() == ISD::SMULO;
2836    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2837      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2838      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2839    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2840      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2841                               RHS);
2842      TopHalf = BottomHalf.getValue(1);
2843    } else {
2844      // FIXME: We should be able to fall back to a libcall with an illegal
2845      // type in some cases.
2846      // Also, we can fall back to a division in some cases, but that's a big
2847      // performance hit in the general case.
2848      assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
2849                                               VT.getSizeInBits() * 2)) &&
2850             "Don't know how to expand this operation yet!");
2851      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2852      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2853      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2854      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2855      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2856                               DAG.getIntPtrConstant(0));
2857      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2858                            DAG.getIntPtrConstant(1));
2859    }
2860    if (isSigned) {
2861      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2862      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2863      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2864                             ISD::SETNE);
2865    } else {
2866      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2867                             DAG.getConstant(0, VT), ISD::SETNE);
2868    }
2869    Results.push_back(BottomHalf);
2870    Results.push_back(TopHalf);
2871    break;
2872  }
2873  case ISD::BUILD_PAIR: {
2874    EVT PairTy = Node->getValueType(0);
2875    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2876    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2877    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2878                       DAG.getConstant(PairTy.getSizeInBits()/2,
2879                                       TLI.getShiftAmountTy()));
2880    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2881    break;
2882  }
2883  case ISD::SELECT:
2884    Tmp1 = Node->getOperand(0);
2885    Tmp2 = Node->getOperand(1);
2886    Tmp3 = Node->getOperand(2);
2887    if (Tmp1.getOpcode() == ISD::SETCC) {
2888      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2889                             Tmp2, Tmp3,
2890                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2891    } else {
2892      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2893                             DAG.getConstant(0, Tmp1.getValueType()),
2894                             Tmp2, Tmp3, ISD::SETNE);
2895    }
2896    Results.push_back(Tmp1);
2897    break;
2898  case ISD::BR_JT: {
2899    SDValue Chain = Node->getOperand(0);
2900    SDValue Table = Node->getOperand(1);
2901    SDValue Index = Node->getOperand(2);
2902
2903    EVT PTy = TLI.getPointerTy();
2904
2905    const TargetData &TD = *TLI.getTargetData();
2906    unsigned EntrySize =
2907      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
2908
2909    Index = DAG.getNode(ISD::MUL, dl, PTy,
2910                        Index, DAG.getConstant(EntrySize, PTy));
2911    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2912
2913    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2914    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2915                                PseudoSourceValue::getJumpTable(), 0, MemVT,
2916                                false, false, 0);
2917    Addr = LD;
2918    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2919      // For PIC, the sequence is:
2920      // BRIND(load(Jumptable + index) + RelocBase)
2921      // RelocBase can be JumpTable, GOT or some sort of global base.
2922      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2923                          TLI.getPICJumpTableRelocBase(Table, DAG));
2924    }
2925    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2926    Results.push_back(Tmp1);
2927    break;
2928  }
2929  case ISD::BRCOND:
2930    // Expand brcond's setcc into its constituent parts and create a BR_CC
2931    // Node.
2932    Tmp1 = Node->getOperand(0);
2933    Tmp2 = Node->getOperand(1);
2934    if (Tmp2.getOpcode() == ISD::SETCC) {
2935      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2936                         Tmp1, Tmp2.getOperand(2),
2937                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2938                         Node->getOperand(2));
2939    } else {
2940      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2941                         DAG.getCondCode(ISD::SETNE), Tmp2,
2942                         DAG.getConstant(0, Tmp2.getValueType()),
2943                         Node->getOperand(2));
2944    }
2945    Results.push_back(Tmp1);
2946    break;
2947  case ISD::SETCC: {
2948    Tmp1 = Node->getOperand(0);
2949    Tmp2 = Node->getOperand(1);
2950    Tmp3 = Node->getOperand(2);
2951    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2952
2953    // If we expanded the SETCC into an AND/OR, return the new node
2954    if (Tmp2.getNode() == 0) {
2955      Results.push_back(Tmp1);
2956      break;
2957    }
2958
2959    // Otherwise, SETCC for the given comparison type must be completely
2960    // illegal; expand it into a SELECT_CC.
2961    EVT VT = Node->getValueType(0);
2962    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2963                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2964    Results.push_back(Tmp1);
2965    break;
2966  }
2967  case ISD::SELECT_CC: {
2968    Tmp1 = Node->getOperand(0);   // LHS
2969    Tmp2 = Node->getOperand(1);   // RHS
2970    Tmp3 = Node->getOperand(2);   // True
2971    Tmp4 = Node->getOperand(3);   // False
2972    SDValue CC = Node->getOperand(4);
2973
2974    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2975                          Tmp1, Tmp2, CC, dl);
2976
2977    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2978    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2979    CC = DAG.getCondCode(ISD::SETNE);
2980    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2981                       Tmp3, Tmp4, CC);
2982    Results.push_back(Tmp1);
2983    break;
2984  }
2985  case ISD::BR_CC: {
2986    Tmp1 = Node->getOperand(0);              // Chain
2987    Tmp2 = Node->getOperand(2);              // LHS
2988    Tmp3 = Node->getOperand(3);              // RHS
2989    Tmp4 = Node->getOperand(1);              // CC
2990
2991    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2992                          Tmp2, Tmp3, Tmp4, dl);
2993    LastCALLSEQ_END = DAG.getEntryNode();
2994
2995    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2996    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2997    Tmp4 = DAG.getCondCode(ISD::SETNE);
2998    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2999                       Tmp3, Node->getOperand(4));
3000    Results.push_back(Tmp1);
3001    break;
3002  }
3003  case ISD::GLOBAL_OFFSET_TABLE:
3004  case ISD::GlobalAddress:
3005  case ISD::GlobalTLSAddress:
3006  case ISD::ExternalSymbol:
3007  case ISD::ConstantPool:
3008  case ISD::JumpTable:
3009  case ISD::INTRINSIC_W_CHAIN:
3010  case ISD::INTRINSIC_WO_CHAIN:
3011  case ISD::INTRINSIC_VOID:
3012    // FIXME: Custom lowering for these operations shouldn't return null!
3013    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3014      Results.push_back(SDValue(Node, i));
3015    break;
3016  }
3017}
3018void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3019                                       SmallVectorImpl<SDValue> &Results) {
3020  EVT OVT = Node->getValueType(0);
3021  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3022      Node->getOpcode() == ISD::SINT_TO_FP ||
3023      Node->getOpcode() == ISD::SETCC) {
3024    OVT = Node->getOperand(0).getValueType();
3025  }
3026  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3027  DebugLoc dl = Node->getDebugLoc();
3028  SDValue Tmp1, Tmp2, Tmp3;
3029  switch (Node->getOpcode()) {
3030  case ISD::CTTZ:
3031  case ISD::CTLZ:
3032  case ISD::CTPOP:
3033    // Zero extend the argument.
3034    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3035    // Perform the larger operation.
3036    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3037    if (Node->getOpcode() == ISD::CTTZ) {
3038      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3039      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3040                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3041                          ISD::SETEQ);
3042      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3043                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3044    } else if (Node->getOpcode() == ISD::CTLZ) {
3045      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3046      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3047                          DAG.getConstant(NVT.getSizeInBits() -
3048                                          OVT.getSizeInBits(), NVT));
3049    }
3050    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3051    break;
3052  case ISD::BSWAP: {
3053    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3054    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3055    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3056    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3057                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3058    Results.push_back(Tmp1);
3059    break;
3060  }
3061  case ISD::FP_TO_UINT:
3062  case ISD::FP_TO_SINT:
3063    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3064                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3065    Results.push_back(Tmp1);
3066    break;
3067  case ISD::UINT_TO_FP:
3068  case ISD::SINT_TO_FP:
3069    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3070                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3071    Results.push_back(Tmp1);
3072    break;
3073  case ISD::AND:
3074  case ISD::OR:
3075  case ISD::XOR: {
3076    unsigned ExtOp, TruncOp;
3077    if (OVT.isVector()) {
3078      ExtOp   = ISD::BIT_CONVERT;
3079      TruncOp = ISD::BIT_CONVERT;
3080    } else {
3081      assert(OVT.isInteger() && "Cannot promote logic operation");
3082      ExtOp   = ISD::ANY_EXTEND;
3083      TruncOp = ISD::TRUNCATE;
3084    }
3085    // Promote each of the values to the new type.
3086    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3087    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3088    // Perform the larger operation, then convert back
3089    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3090    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3091    break;
3092  }
3093  case ISD::SELECT: {
3094    unsigned ExtOp, TruncOp;
3095    if (Node->getValueType(0).isVector()) {
3096      ExtOp   = ISD::BIT_CONVERT;
3097      TruncOp = ISD::BIT_CONVERT;
3098    } else if (Node->getValueType(0).isInteger()) {
3099      ExtOp   = ISD::ANY_EXTEND;
3100      TruncOp = ISD::TRUNCATE;
3101    } else {
3102      ExtOp   = ISD::FP_EXTEND;
3103      TruncOp = ISD::FP_ROUND;
3104    }
3105    Tmp1 = Node->getOperand(0);
3106    // Promote each of the values to the new type.
3107    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3108    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3109    // Perform the larger operation, then round down.
3110    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3111    if (TruncOp != ISD::FP_ROUND)
3112      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3113    else
3114      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3115                         DAG.getIntPtrConstant(0));
3116    Results.push_back(Tmp1);
3117    break;
3118  }
3119  case ISD::VECTOR_SHUFFLE: {
3120    SmallVector<int, 8> Mask;
3121    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3122
3123    // Cast the two input vectors.
3124    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3125    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3126
3127    // Convert the shuffle mask to the right # elements.
3128    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3129    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3130    Results.push_back(Tmp1);
3131    break;
3132  }
3133  case ISD::SETCC: {
3134    unsigned ExtOp = ISD::FP_EXTEND;
3135    if (NVT.isInteger()) {
3136      ISD::CondCode CCCode =
3137        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3138      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3139    }
3140    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3141    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3142    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3143                                  Tmp1, Tmp2, Node->getOperand(2)));
3144    break;
3145  }
3146  }
3147}
3148
3149// SelectionDAG::Legalize - This is the entry point for the file.
3150//
3151void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3152  /// run - This is the main entry point to this class.
3153  ///
3154  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3155}
3156
3157