LegalizeDAG.cpp revision 3be2e514c9e7b20135be5b9df3e9aa1cb08cb374
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include <map>
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class VISIBILITY_HIDDEN SelectionDAGLegalize {
56  TargetLowering &TLI;
57  SelectionDAG &DAG;
58  CodeGenOpt::Level OptLevel;
59
60  // Libcall insertion helpers.
61
62  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
63  /// legalized.  We use this to ensure that calls are properly serialized
64  /// against each other, including inserted libcalls.
65  SDValue LastCALLSEQ_END;
66
67  /// IsLegalizingCall - This member is used *only* for purposes of providing
68  /// helpful assertions that a libcall isn't created while another call is
69  /// being legalized (which could lead to non-serialized call sequences).
70  bool IsLegalizingCall;
71
72  enum LegalizeAction {
73    Legal,      // The target natively supports this operation.
74    Promote,    // This operation should be executed in a larger type.
75    Expand      // Try to expand this to other ops, otherwise use a libcall.
76  };
77
78  /// ValueTypeActions - This is a bitvector that contains two bits for each
79  /// value type, where the two bits correspond to the LegalizeAction enum.
80  /// This can be queried with "getTypeAction(VT)".
81  TargetLowering::ValueTypeActionImpl ValueTypeActions;
82
83  /// LegalizedNodes - For nodes that are of legal width, and that have more
84  /// than one use, this map indicates what regularized operand to use.  This
85  /// allows us to avoid legalizing the same thing more than once.
86  DenseMap<SDValue, SDValue> LegalizedNodes;
87
88  void AddLegalizedOperand(SDValue From, SDValue To) {
89    LegalizedNodes.insert(std::make_pair(From, To));
90    // If someone requests legalization of the new node, return itself.
91    if (From != To)
92      LegalizedNodes.insert(std::make_pair(To, To));
93  }
94
95public:
96  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
97
98  /// getTypeAction - Return how we should legalize values of this type, either
99  /// it is already legal or we need to expand it into multiple registers of
100  /// smaller integer type, or we need to promote it to a larger type.
101  LegalizeAction getTypeAction(MVT VT) const {
102    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
103  }
104
105  /// isTypeLegal - Return true if this type is legal on this target.
106  ///
107  bool isTypeLegal(MVT VT) const {
108    return getTypeAction(VT) == Legal;
109  }
110
111  void LegalizeDAG();
112
113private:
114  /// LegalizeOp - We know that the specified value has a legal type.
115  /// Recursively ensure that the operands have legal types, then return the
116  /// result.
117  SDValue LegalizeOp(SDValue O);
118
119  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
120  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
121  /// is necessary to spill the vector being inserted into to memory, perform
122  /// the insert there, and then read the result back.
123  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
124                                         SDValue Idx, DebugLoc dl);
125  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
126                                  SDValue Idx, DebugLoc dl);
127
128  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
129  /// performs the same shuffe in terms of order or result bytes, but on a type
130  /// whose vector element type is narrower than the original shuffle type.
131  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132  SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
133                                     SDValue N1, SDValue N2,
134                                     SmallVectorImpl<int> &Mask) const;
135
136  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
137                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
138
139  void LegalizeSetCCOperands(SDValue &LHS, SDValue &RHS, SDValue &CC,
140                             DebugLoc dl);
141  void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
142                             DebugLoc dl);
143  void LegalizeSetCC(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
144                     DebugLoc dl) {
145    LegalizeSetCCOperands(LHS, RHS, CC, dl);
146    LegalizeSetCCCondCode(VT, LHS, RHS, CC, dl);
147  }
148
149  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
150  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
151                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
152                          RTLIB::Libcall Call_PPCF128);
153  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
154                           RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
155                           RTLIB::Libcall Call_I128);
156
157  SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
158  SDValue ExpandBUILD_VECTOR(SDNode *Node);
159  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
160  SDValue ExpandDBG_STOPPOINT(SDNode *Node);
161  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
162                                SmallVectorImpl<SDValue> &Results);
163  SDValue ExpandFCOPYSIGN(SDNode *Node);
164  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
165                               DebugLoc dl);
166  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
167                                DebugLoc dl);
168  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
169                                DebugLoc dl);
170
171  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
172  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
173
174  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
175
176  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
177  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
178};
179}
180
181/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
182/// performs the same shuffe in terms of order or result bytes, but on a type
183/// whose vector element type is narrower than the original shuffle type.
184/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
185SDValue
186SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT,  DebugLoc dl,
187                                                 SDValue N1, SDValue N2,
188                                             SmallVectorImpl<int> &Mask) const {
189  MVT EltVT = NVT.getVectorElementType();
190  unsigned NumMaskElts = VT.getVectorNumElements();
191  unsigned NumDestElts = NVT.getVectorNumElements();
192  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
193
194  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
195
196  if (NumEltsGrowth == 1)
197    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
198
199  SmallVector<int, 8> NewMask;
200  for (unsigned i = 0; i != NumMaskElts; ++i) {
201    int Idx = Mask[i];
202    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
203      if (Idx < 0)
204        NewMask.push_back(-1);
205      else
206        NewMask.push_back(Idx * NumEltsGrowth + j);
207    }
208  }
209  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
210  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
211  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
212}
213
214SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
215                                           CodeGenOpt::Level ol)
216  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
217    ValueTypeActions(TLI.getValueTypeActions()) {
218  assert(MVT::LAST_VALUETYPE <= 32 &&
219         "Too many value types for ValueTypeActions to hold!");
220}
221
222void SelectionDAGLegalize::LegalizeDAG() {
223  LastCALLSEQ_END = DAG.getEntryNode();
224  IsLegalizingCall = false;
225
226  // The legalize process is inherently a bottom-up recursive process (users
227  // legalize their uses before themselves).  Given infinite stack space, we
228  // could just start legalizing on the root and traverse the whole graph.  In
229  // practice however, this causes us to run out of stack space on large basic
230  // blocks.  To avoid this problem, compute an ordering of the nodes where each
231  // node is only legalized after all of its operands are legalized.
232  DAG.AssignTopologicalOrder();
233  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
234       E = prior(DAG.allnodes_end()); I != next(E); ++I)
235    LegalizeOp(SDValue(I, 0));
236
237  // Finally, it's possible the root changed.  Get the new root.
238  SDValue OldRoot = DAG.getRoot();
239  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
240  DAG.setRoot(LegalizedNodes[OldRoot]);
241
242  LegalizedNodes.clear();
243
244  // Remove dead nodes now.
245  DAG.RemoveDeadNodes();
246}
247
248
249/// FindCallEndFromCallStart - Given a chained node that is part of a call
250/// sequence, find the CALLSEQ_END node that terminates the call sequence.
251static SDNode *FindCallEndFromCallStart(SDNode *Node) {
252  if (Node->getOpcode() == ISD::CALLSEQ_END)
253    return Node;
254  if (Node->use_empty())
255    return 0;   // No CallSeqEnd
256
257  // The chain is usually at the end.
258  SDValue TheChain(Node, Node->getNumValues()-1);
259  if (TheChain.getValueType() != MVT::Other) {
260    // Sometimes it's at the beginning.
261    TheChain = SDValue(Node, 0);
262    if (TheChain.getValueType() != MVT::Other) {
263      // Otherwise, hunt for it.
264      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
265        if (Node->getValueType(i) == MVT::Other) {
266          TheChain = SDValue(Node, i);
267          break;
268        }
269
270      // Otherwise, we walked into a node without a chain.
271      if (TheChain.getValueType() != MVT::Other)
272        return 0;
273    }
274  }
275
276  for (SDNode::use_iterator UI = Node->use_begin(),
277       E = Node->use_end(); UI != E; ++UI) {
278
279    // Make sure to only follow users of our token chain.
280    SDNode *User = *UI;
281    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
282      if (User->getOperand(i) == TheChain)
283        if (SDNode *Result = FindCallEndFromCallStart(User))
284          return Result;
285  }
286  return 0;
287}
288
289/// FindCallStartFromCallEnd - Given a chained node that is part of a call
290/// sequence, find the CALLSEQ_START node that initiates the call sequence.
291static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
292  assert(Node && "Didn't find callseq_start for a call??");
293  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
294
295  assert(Node->getOperand(0).getValueType() == MVT::Other &&
296         "Node doesn't have a token chain argument!");
297  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
298}
299
300/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
301/// see if any uses can reach Dest.  If no dest operands can get to dest,
302/// legalize them, legalize ourself, and return false, otherwise, return true.
303///
304/// Keep track of the nodes we fine that actually do lead to Dest in
305/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
306///
307bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
308                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
309  if (N == Dest) return true;  // N certainly leads to Dest :)
310
311  // If we've already processed this node and it does lead to Dest, there is no
312  // need to reprocess it.
313  if (NodesLeadingTo.count(N)) return true;
314
315  // If the first result of this node has been already legalized, then it cannot
316  // reach N.
317  if (LegalizedNodes.count(SDValue(N, 0))) return false;
318
319  // Okay, this node has not already been legalized.  Check and legalize all
320  // operands.  If none lead to Dest, then we can legalize this node.
321  bool OperandsLeadToDest = false;
322  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
323    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
324      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
325
326  if (OperandsLeadToDest) {
327    NodesLeadingTo.insert(N);
328    return true;
329  }
330
331  // Okay, this node looks safe, legalize it and return false.
332  LegalizeOp(SDValue(N, 0));
333  return false;
334}
335
336/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
337/// a load from the constant pool.
338static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
339                                SelectionDAG &DAG, const TargetLowering &TLI) {
340  bool Extend = false;
341  DebugLoc dl = CFP->getDebugLoc();
342
343  // If a FP immediate is precise when represented as a float and if the
344  // target can do an extending load from float to double, we put it into
345  // the constant pool as a float, even if it's is statically typed as a
346  // double.  This shrinks FP constants and canonicalizes them for targets where
347  // an FP extending load is the same cost as a normal load (such as on the x87
348  // fp stack or PPC FP unit).
349  MVT VT = CFP->getValueType(0);
350  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
351  if (!UseCP) {
352    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
353    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
354                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
355  }
356
357  MVT OrigVT = VT;
358  MVT SVT = VT;
359  while (SVT != MVT::f32) {
360    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
361    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
362        // Only do this if the target has a native EXTLOAD instruction from
363        // smaller type.
364        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
365        TLI.ShouldShrinkFPConstant(OrigVT)) {
366      const Type *SType = SVT.getTypeForMVT();
367      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
368      VT = SVT;
369      Extend = true;
370    }
371  }
372
373  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
374  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
375  if (Extend)
376    return DAG.getExtLoad(ISD::EXTLOAD, dl,
377                          OrigVT, DAG.getEntryNode(),
378                          CPIdx, PseudoSourceValue::getConstantPool(),
379                          0, VT, false, Alignment);
380  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
381                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
382}
383
384/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
385static
386SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
387                             const TargetLowering &TLI) {
388  SDValue Chain = ST->getChain();
389  SDValue Ptr = ST->getBasePtr();
390  SDValue Val = ST->getValue();
391  MVT VT = Val.getValueType();
392  int Alignment = ST->getAlignment();
393  int SVOffset = ST->getSrcValueOffset();
394  DebugLoc dl = ST->getDebugLoc();
395  if (ST->getMemoryVT().isFloatingPoint() ||
396      ST->getMemoryVT().isVector()) {
397    MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
398    if (TLI.isTypeLegal(intVT)) {
399      // Expand to a bitconvert of the value to the integer type of the
400      // same size, then a (misaligned) int store.
401      // FIXME: Does not handle truncating floating point stores!
402      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
403      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
404                          SVOffset, ST->isVolatile(), Alignment);
405    } else {
406      // Do a (aligned) store to a stack slot, then copy from the stack slot
407      // to the final destination using (unaligned) integer loads and stores.
408      MVT StoredVT = ST->getMemoryVT();
409      MVT RegVT =
410        TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
411      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
412      unsigned RegBytes = RegVT.getSizeInBits() / 8;
413      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
414
415      // Make sure the stack slot is also aligned for the register type.
416      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
417
418      // Perform the original store, only redirected to the stack slot.
419      SDValue Store = DAG.getTruncStore(Chain, dl,
420                                        Val, StackPtr, NULL, 0, StoredVT);
421      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
422      SmallVector<SDValue, 8> Stores;
423      unsigned Offset = 0;
424
425      // Do all but one copies using the full register width.
426      for (unsigned i = 1; i < NumRegs; i++) {
427        // Load one integer register's worth from the stack slot.
428        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
429        // Store it to the final location.  Remember the store.
430        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
431                                      ST->getSrcValue(), SVOffset + Offset,
432                                      ST->isVolatile(),
433                                      MinAlign(ST->getAlignment(), Offset)));
434        // Increment the pointers.
435        Offset += RegBytes;
436        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
437                               Increment);
438        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
439      }
440
441      // The last store may be partial.  Do a truncating store.  On big-endian
442      // machines this requires an extending load from the stack slot to ensure
443      // that the bits are in the right place.
444      MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
445
446      // Load from the stack slot.
447      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
448                                    NULL, 0, MemVT);
449
450      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
451                                         ST->getSrcValue(), SVOffset + Offset,
452                                         MemVT, ST->isVolatile(),
453                                         MinAlign(ST->getAlignment(), Offset)));
454      // The order of the stores doesn't matter - say it with a TokenFactor.
455      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
456                         Stores.size());
457    }
458  }
459  assert(ST->getMemoryVT().isInteger() &&
460         !ST->getMemoryVT().isVector() &&
461         "Unaligned store of unknown type.");
462  // Get the half-size VT
463  MVT NewStoredVT =
464    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
465  int NumBits = NewStoredVT.getSizeInBits();
466  int IncrementSize = NumBits / 8;
467
468  // Divide the stored value in two parts.
469  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
470  SDValue Lo = Val;
471  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
472
473  // Store the two parts
474  SDValue Store1, Store2;
475  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
476                             ST->getSrcValue(), SVOffset, NewStoredVT,
477                             ST->isVolatile(), Alignment);
478  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
479                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
480  Alignment = MinAlign(Alignment, IncrementSize);
481  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
482                             ST->getSrcValue(), SVOffset + IncrementSize,
483                             NewStoredVT, ST->isVolatile(), Alignment);
484
485  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
486}
487
488/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
489static
490SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
491                            const TargetLowering &TLI) {
492  int SVOffset = LD->getSrcValueOffset();
493  SDValue Chain = LD->getChain();
494  SDValue Ptr = LD->getBasePtr();
495  MVT VT = LD->getValueType(0);
496  MVT LoadedVT = LD->getMemoryVT();
497  DebugLoc dl = LD->getDebugLoc();
498  if (VT.isFloatingPoint() || VT.isVector()) {
499    MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
500    if (TLI.isTypeLegal(intVT)) {
501      // Expand to a (misaligned) integer load of the same size,
502      // then bitconvert to floating point or vector.
503      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
504                                    SVOffset, LD->isVolatile(),
505                                    LD->getAlignment());
506      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
507      if (VT.isFloatingPoint() && LoadedVT != VT)
508        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
509
510      SDValue Ops[] = { Result, Chain };
511      return DAG.getMergeValues(Ops, 2, dl);
512    } else {
513      // Copy the value to a (aligned) stack slot using (unaligned) integer
514      // loads and stores, then do a (aligned) load from the stack slot.
515      MVT RegVT = TLI.getRegisterType(intVT);
516      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
517      unsigned RegBytes = RegVT.getSizeInBits() / 8;
518      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
519
520      // Make sure the stack slot is also aligned for the register type.
521      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
522
523      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
524      SmallVector<SDValue, 8> Stores;
525      SDValue StackPtr = StackBase;
526      unsigned Offset = 0;
527
528      // Do all but one copies using the full register width.
529      for (unsigned i = 1; i < NumRegs; i++) {
530        // Load one integer register's worth from the original location.
531        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
532                                   SVOffset + Offset, LD->isVolatile(),
533                                   MinAlign(LD->getAlignment(), Offset));
534        // Follow the load with a store to the stack slot.  Remember the store.
535        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
536                                      NULL, 0));
537        // Increment the pointers.
538        Offset += RegBytes;
539        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
540        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
541                               Increment);
542      }
543
544      // The last copy may be partial.  Do an extending load.
545      MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
546      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
547                                    LD->getSrcValue(), SVOffset + Offset,
548                                    MemVT, LD->isVolatile(),
549                                    MinAlign(LD->getAlignment(), Offset));
550      // Follow the load with a store to the stack slot.  Remember the store.
551      // On big-endian machines this requires a truncating store to ensure
552      // that the bits end up in the right place.
553      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
554                                         NULL, 0, MemVT));
555
556      // The order of the stores doesn't matter - say it with a TokenFactor.
557      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
558                               Stores.size());
559
560      // Finally, perform the original load only redirected to the stack slot.
561      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
562                            NULL, 0, LoadedVT);
563
564      // Callers expect a MERGE_VALUES node.
565      SDValue Ops[] = { Load, TF };
566      return DAG.getMergeValues(Ops, 2, dl);
567    }
568  }
569  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
570         "Unaligned load of unsupported type.");
571
572  // Compute the new VT that is half the size of the old one.  This is an
573  // integer MVT.
574  unsigned NumBits = LoadedVT.getSizeInBits();
575  MVT NewLoadedVT;
576  NewLoadedVT = MVT::getIntegerVT(NumBits/2);
577  NumBits >>= 1;
578
579  unsigned Alignment = LD->getAlignment();
580  unsigned IncrementSize = NumBits / 8;
581  ISD::LoadExtType HiExtType = LD->getExtensionType();
582
583  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
584  if (HiExtType == ISD::NON_EXTLOAD)
585    HiExtType = ISD::ZEXTLOAD;
586
587  // Load the value in two parts
588  SDValue Lo, Hi;
589  if (TLI.isLittleEndian()) {
590    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
591                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
592    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
593                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
594    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
595                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
596                        MinAlign(Alignment, IncrementSize));
597  } else {
598    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
599                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
600    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
601                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
602    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
603                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
604                        MinAlign(Alignment, IncrementSize));
605  }
606
607  // aggregate the two parts
608  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
609  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
610  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
611
612  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
613                             Hi.getValue(1));
614
615  SDValue Ops[] = { Result, TF };
616  return DAG.getMergeValues(Ops, 2, dl);
617}
618
619/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
620/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
621/// is necessary to spill the vector being inserted into to memory, perform
622/// the insert there, and then read the result back.
623SDValue SelectionDAGLegalize::
624PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
625                               DebugLoc dl) {
626  SDValue Tmp1 = Vec;
627  SDValue Tmp2 = Val;
628  SDValue Tmp3 = Idx;
629
630  // If the target doesn't support this, we have to spill the input vector
631  // to a temporary stack slot, update the element, then reload it.  This is
632  // badness.  We could also load the value into a vector register (either
633  // with a "move to register" or "extload into register" instruction, then
634  // permute it into place, if the idx is a constant and if the idx is
635  // supported by the target.
636  MVT VT    = Tmp1.getValueType();
637  MVT EltVT = VT.getVectorElementType();
638  MVT IdxVT = Tmp3.getValueType();
639  MVT PtrVT = TLI.getPointerTy();
640  SDValue StackPtr = DAG.CreateStackTemporary(VT);
641
642  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
643
644  // Store the vector.
645  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
646                            PseudoSourceValue::getFixedStack(SPFI), 0);
647
648  // Truncate or zero extend offset to target pointer type.
649  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
650  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
651  // Add the offset to the index.
652  unsigned EltSize = EltVT.getSizeInBits()/8;
653  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
654  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
655  // Store the scalar value.
656  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
657                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
658  // Load the updated vector.
659  return DAG.getLoad(VT, dl, Ch, StackPtr,
660                     PseudoSourceValue::getFixedStack(SPFI), 0);
661}
662
663
664SDValue SelectionDAGLegalize::
665ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
666  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
667    // SCALAR_TO_VECTOR requires that the type of the value being inserted
668    // match the element type of the vector being created, except for
669    // integers in which case the inserted value can be over width.
670    MVT EltVT = Vec.getValueType().getVectorElementType();
671    if (Val.getValueType() == EltVT ||
672        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
673      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
674                                  Vec.getValueType(), Val);
675
676      unsigned NumElts = Vec.getValueType().getVectorNumElements();
677      // We generate a shuffle of InVec and ScVec, so the shuffle mask
678      // should be 0,1,2,3,4,5... with the appropriate element replaced with
679      // elt 0 of the RHS.
680      SmallVector<int, 8> ShufOps;
681      for (unsigned i = 0; i != NumElts; ++i)
682        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
683
684      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
685                                  &ShufOps[0]);
686    }
687  }
688  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
689}
690
691/// LegalizeOp - We know that the specified value has a legal type, and
692/// that its operands are legal.  Now ensure that the operation itself
693/// is legal, recursively ensuring that the operands' operations remain
694/// legal.
695SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
696  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
697    return Op;
698
699  SDNode *Node = Op.getNode();
700  DebugLoc dl = Node->getDebugLoc();
701
702  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
703    assert(getTypeAction(Node->getValueType(i)) == Legal &&
704           "Unexpected illegal type!");
705
706  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
707    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
708            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
709           "Unexpected illegal type!");
710
711  // Note that LegalizeOp may be reentered even from single-use nodes, which
712  // means that we always must cache transformed nodes.
713  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
714  if (I != LegalizedNodes.end()) return I->second;
715
716  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
717  SDValue Result = Op;
718  bool isCustom = false;
719
720  // Figure out the correct action; the way to query this varies by opcode
721  TargetLowering::LegalizeAction Action;
722  bool SimpleFinishLegalizing = true;
723  switch (Node->getOpcode()) {
724  case ISD::INTRINSIC_W_CHAIN:
725  case ISD::INTRINSIC_WO_CHAIN:
726  case ISD::INTRINSIC_VOID:
727  case ISD::VAARG:
728  case ISD::STACKSAVE:
729    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
730    break;
731  case ISD::SINT_TO_FP:
732  case ISD::UINT_TO_FP:
733  case ISD::EXTRACT_VECTOR_ELT:
734    Action = TLI.getOperationAction(Node->getOpcode(),
735                                    Node->getOperand(0).getValueType());
736    break;
737  case ISD::FP_ROUND_INREG:
738  case ISD::SIGN_EXTEND_INREG: {
739    MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
740    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
741    break;
742  }
743  case ISD::SELECT_CC:
744  case ISD::SETCC:
745  case ISD::BR_CC: {
746    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
747                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
748    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
749    MVT OpVT = Node->getOperand(CompareOperand).getValueType();
750    ISD::CondCode CCCode =
751        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
752    Action = TLI.getCondCodeAction(CCCode, OpVT);
753    if (Action == TargetLowering::Legal) {
754      if (Node->getOpcode() == ISD::SELECT_CC)
755        Action = TLI.getOperationAction(Node->getOpcode(),
756                                        Node->getValueType(0));
757      else
758        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
759    }
760    break;
761  }
762  case ISD::LOAD:
763  case ISD::STORE:
764  case ISD::FORMAL_ARGUMENTS:
765  case ISD::CALL:
766  case ISD::CALLSEQ_START:
767  case ISD::CALLSEQ_END:
768    // These instructions have properties that aren't modeled in the
769    // generic codepath
770    SimpleFinishLegalizing = false;
771    break;
772  case ISD::EXTRACT_ELEMENT:
773  case ISD::FLT_ROUNDS_:
774  case ISD::SADDO:
775  case ISD::SSUBO:
776  case ISD::UADDO:
777  case ISD::USUBO:
778  case ISD::SMULO:
779  case ISD::UMULO:
780  case ISD::FPOWI:
781  case ISD::MERGE_VALUES:
782  case ISD::EH_RETURN:
783  case ISD::FRAME_TO_ARGS_OFFSET:
784    // These operations lie about being legal: when they claim to be legal,
785    // they should actually be expanded.
786    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
787    if (Action == TargetLowering::Legal)
788      Action = TargetLowering::Expand;
789    break;
790  case ISD::TRAMPOLINE:
791  case ISD::FRAMEADDR:
792  case ISD::RETURNADDR:
793    // These operations lie about being legal: when they claim to be legal,
794    // they should actually be custom-lowered.
795    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
796    if (Action == TargetLowering::Legal)
797      Action = TargetLowering::Custom;
798    break;
799  case ISD::BUILD_VECTOR:
800    // A weird case: legalization for BUILD_VECTOR never legalizes the
801    // operands!
802    // FIXME: This really sucks... changing it isn't semantically incorrect,
803    // but it massively pessimizes the code for floating-point BUILD_VECTORs
804    // because ConstantFP operands get legalized into constant pool loads
805    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
806    // though, because BUILD_VECTORS usually get lowered into other nodes
807    // which get legalized properly.
808    SimpleFinishLegalizing = false;
809    break;
810  default:
811    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
812      Action = TargetLowering::Legal;
813    } else {
814      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
815    }
816    break;
817  }
818
819  if (SimpleFinishLegalizing) {
820    SmallVector<SDValue, 8> Ops, ResultVals;
821    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
822      Ops.push_back(LegalizeOp(Node->getOperand(i)));
823    switch (Node->getOpcode()) {
824    default: break;
825    case ISD::BR:
826    case ISD::BRIND:
827    case ISD::BR_JT:
828    case ISD::BR_CC:
829    case ISD::BRCOND:
830    case ISD::RET:
831      // Branches tweak the chain to include LastCALLSEQ_END
832      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
833                            LastCALLSEQ_END);
834      Ops[0] = LegalizeOp(Ops[0]);
835      LastCALLSEQ_END = DAG.getEntryNode();
836      break;
837    case ISD::SHL:
838    case ISD::SRL:
839    case ISD::SRA:
840    case ISD::ROTL:
841    case ISD::ROTR:
842      // Legalizing shifts/rotates requires adjusting the shift amount
843      // to the appropriate width.
844      if (!Ops[1].getValueType().isVector())
845        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
846      break;
847    }
848
849    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
850                                    Ops.size());
851    switch (Action) {
852    case TargetLowering::Legal:
853      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
854        ResultVals.push_back(Result.getValue(i));
855      break;
856    case TargetLowering::Custom:
857      // FIXME: The handling for custom lowering with multiple results is
858      // a complete mess.
859      Tmp1 = TLI.LowerOperation(Result, DAG);
860      if (Tmp1.getNode()) {
861        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
862          if (e == 1)
863            ResultVals.push_back(Tmp1);
864          else
865            ResultVals.push_back(Tmp1.getValue(i));
866        }
867        break;
868      }
869
870      // FALL THROUGH
871    case TargetLowering::Expand:
872      ExpandNode(Result.getNode(), ResultVals);
873      break;
874    case TargetLowering::Promote:
875      PromoteNode(Result.getNode(), ResultVals);
876      break;
877    }
878    if (!ResultVals.empty()) {
879      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
880        if (ResultVals[i] != SDValue(Node, i))
881          ResultVals[i] = LegalizeOp(ResultVals[i]);
882        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
883      }
884      return ResultVals[Op.getResNo()];
885    }
886  }
887
888  switch (Node->getOpcode()) {
889  default:
890#ifndef NDEBUG
891    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
892#endif
893    assert(0 && "Do not know how to legalize this operator!");
894    abort();
895  case ISD::FORMAL_ARGUMENTS:
896  case ISD::CALL:
897    // The only option for this is to custom lower it.
898    Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
899    assert(Tmp3.getNode() && "Target didn't custom lower this node!");
900    // A call within a calling sequence must be legalized to something
901    // other than the normal CALLSEQ_END.  Violating this gets Legalize
902    // into an infinite loop.
903    assert ((!IsLegalizingCall ||
904             Node->getOpcode() != ISD::CALL ||
905             Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
906            "Nested CALLSEQ_START..CALLSEQ_END not supported.");
907
908    // The number of incoming and outgoing values should match; unless the final
909    // outgoing value is a flag.
910    assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
911            (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
912             Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
913               MVT::Flag)) &&
914           "Lowering call/formal_arguments produced unexpected # results!");
915
916    // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
917    // remember that we legalized all of them, so it doesn't get relegalized.
918    for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
919      if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
920        continue;
921      Tmp1 = LegalizeOp(Tmp3.getValue(i));
922      if (Op.getResNo() == i)
923        Tmp2 = Tmp1;
924      AddLegalizedOperand(SDValue(Node, i), Tmp1);
925    }
926    return Tmp2;
927  case ISD::BUILD_VECTOR:
928    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
929    default: assert(0 && "This action is not supported yet!");
930    case TargetLowering::Custom:
931      Tmp3 = TLI.LowerOperation(Result, DAG);
932      if (Tmp3.getNode()) {
933        Result = Tmp3;
934        break;
935      }
936      // FALLTHROUGH
937    case TargetLowering::Expand:
938      Result = ExpandBUILD_VECTOR(Result.getNode());
939      break;
940    }
941    break;
942  case ISD::CALLSEQ_START: {
943    SDNode *CallEnd = FindCallEndFromCallStart(Node);
944
945    // Recursively Legalize all of the inputs of the call end that do not lead
946    // to this call start.  This ensures that any libcalls that need be inserted
947    // are inserted *before* the CALLSEQ_START.
948    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
949    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
950      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
951                                   NodesLeadingTo);
952    }
953
954    // Now that we legalized all of the inputs (which may have inserted
955    // libcalls) create the new CALLSEQ_START node.
956    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
957
958    // Merge in the last call, to ensure that this call start after the last
959    // call ended.
960    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
961      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
962                         Tmp1, LastCALLSEQ_END);
963      Tmp1 = LegalizeOp(Tmp1);
964    }
965
966    // Do not try to legalize the target-specific arguments (#1+).
967    if (Tmp1 != Node->getOperand(0)) {
968      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
969      Ops[0] = Tmp1;
970      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
971    }
972
973    // Remember that the CALLSEQ_START is legalized.
974    AddLegalizedOperand(Op.getValue(0), Result);
975    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
976      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
977
978    // Now that the callseq_start and all of the non-call nodes above this call
979    // sequence have been legalized, legalize the call itself.  During this
980    // process, no libcalls can/will be inserted, guaranteeing that no calls
981    // can overlap.
982    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
983    // Note that we are selecting this call!
984    LastCALLSEQ_END = SDValue(CallEnd, 0);
985    IsLegalizingCall = true;
986
987    // Legalize the call, starting from the CALLSEQ_END.
988    LegalizeOp(LastCALLSEQ_END);
989    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
990    return Result;
991  }
992  case ISD::CALLSEQ_END:
993    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
994    // will cause this node to be legalized as well as handling libcalls right.
995    if (LastCALLSEQ_END.getNode() != Node) {
996      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
997      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
998      assert(I != LegalizedNodes.end() &&
999             "Legalizing the call start should have legalized this node!");
1000      return I->second;
1001    }
1002
1003    // Otherwise, the call start has been legalized and everything is going
1004    // according to plan.  Just legalize ourselves normally here.
1005    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1006    // Do not try to legalize the target-specific arguments (#1+), except for
1007    // an optional flag input.
1008    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1009      if (Tmp1 != Node->getOperand(0)) {
1010        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1011        Ops[0] = Tmp1;
1012        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1013      }
1014    } else {
1015      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1016      if (Tmp1 != Node->getOperand(0) ||
1017          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1018        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1019        Ops[0] = Tmp1;
1020        Ops.back() = Tmp2;
1021        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1022      }
1023    }
1024    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1025    // This finishes up call legalization.
1026    IsLegalizingCall = false;
1027
1028    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1029    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1030    if (Node->getNumValues() == 2)
1031      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1032    return Result.getValue(Op.getResNo());
1033  case ISD::BR_CC:
1034    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1035    // Ensure that libcalls are emitted before a branch.
1036    Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END);
1037    Tmp1 = LegalizeOp(Tmp1);
1038    Tmp2 = Node->getOperand(2);              // LHS
1039    Tmp3 = Node->getOperand(3);              // RHS
1040    Tmp4 = Node->getOperand(1);              // CC
1041
1042    LegalizeSetCC(TLI.getSetCCResultType(Tmp2.getValueType()),
1043                  Tmp2, Tmp3, Tmp4, dl);
1044    LastCALLSEQ_END = DAG.getEntryNode();
1045
1046    // If we didn't get both a LHS and RHS back from LegalizeSetCC,
1047    // the LHS is a legal SETCC itself.  In this case, we need to compare
1048    // the result against zero to select between true and false values.
1049    if (Tmp3.getNode() == 0) {
1050      Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
1051      Tmp4 = DAG.getCondCode(ISD::SETNE);
1052    }
1053
1054    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3,
1055                                    Node->getOperand(4));
1056
1057    switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) {
1058    default: assert(0 && "Unexpected action for BR_CC!");
1059    case TargetLowering::Legal: break;
1060    case TargetLowering::Custom:
1061      Tmp4 = TLI.LowerOperation(Result, DAG);
1062      if (Tmp4.getNode()) Result = Tmp4;
1063      break;
1064    }
1065    break;
1066  case ISD::LOAD: {
1067    LoadSDNode *LD = cast<LoadSDNode>(Node);
1068    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1069    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1070
1071    ISD::LoadExtType ExtType = LD->getExtensionType();
1072    if (ExtType == ISD::NON_EXTLOAD) {
1073      MVT VT = Node->getValueType(0);
1074      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1075      Tmp3 = Result.getValue(0);
1076      Tmp4 = Result.getValue(1);
1077
1078      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1079      default: assert(0 && "This action is not supported yet!");
1080      case TargetLowering::Legal:
1081        // If this is an unaligned load and the target doesn't support it,
1082        // expand it.
1083        if (!TLI.allowsUnalignedMemoryAccesses()) {
1084          unsigned ABIAlignment = TLI.getTargetData()->
1085            getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
1086          if (LD->getAlignment() < ABIAlignment){
1087            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1088                                         TLI);
1089            Tmp3 = Result.getOperand(0);
1090            Tmp4 = Result.getOperand(1);
1091            Tmp3 = LegalizeOp(Tmp3);
1092            Tmp4 = LegalizeOp(Tmp4);
1093          }
1094        }
1095        break;
1096      case TargetLowering::Custom:
1097        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1098        if (Tmp1.getNode()) {
1099          Tmp3 = LegalizeOp(Tmp1);
1100          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1101        }
1102        break;
1103      case TargetLowering::Promote: {
1104        // Only promote a load of vector type to another.
1105        assert(VT.isVector() && "Cannot promote this load!");
1106        // Change base type to a different vector type.
1107        MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1108
1109        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1110                           LD->getSrcValueOffset(),
1111                           LD->isVolatile(), LD->getAlignment());
1112        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1113        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1114        break;
1115      }
1116      }
1117      // Since loads produce two values, make sure to remember that we
1118      // legalized both of them.
1119      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1120      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1121      return Op.getResNo() ? Tmp4 : Tmp3;
1122    } else {
1123      MVT SrcVT = LD->getMemoryVT();
1124      unsigned SrcWidth = SrcVT.getSizeInBits();
1125      int SVOffset = LD->getSrcValueOffset();
1126      unsigned Alignment = LD->getAlignment();
1127      bool isVolatile = LD->isVolatile();
1128
1129      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1130          // Some targets pretend to have an i1 loading operation, and actually
1131          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1132          // bits are guaranteed to be zero; it helps the optimizers understand
1133          // that these bits are zero.  It is also useful for EXTLOAD, since it
1134          // tells the optimizers that those bits are undefined.  It would be
1135          // nice to have an effective generic way of getting these benefits...
1136          // Until such a way is found, don't insist on promoting i1 here.
1137          (SrcVT != MVT::i1 ||
1138           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1139        // Promote to a byte-sized load if not loading an integral number of
1140        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1141        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1142        MVT NVT = MVT::getIntegerVT(NewWidth);
1143        SDValue Ch;
1144
1145        // The extra bits are guaranteed to be zero, since we stored them that
1146        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1147
1148        ISD::LoadExtType NewExtType =
1149          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1150
1151        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1152                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1153                                NVT, isVolatile, Alignment);
1154
1155        Ch = Result.getValue(1); // The chain.
1156
1157        if (ExtType == ISD::SEXTLOAD)
1158          // Having the top bits zero doesn't help when sign extending.
1159          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1160                               Result.getValueType(),
1161                               Result, DAG.getValueType(SrcVT));
1162        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1163          // All the top bits are guaranteed to be zero - inform the optimizers.
1164          Result = DAG.getNode(ISD::AssertZext, dl,
1165                               Result.getValueType(), Result,
1166                               DAG.getValueType(SrcVT));
1167
1168        Tmp1 = LegalizeOp(Result);
1169        Tmp2 = LegalizeOp(Ch);
1170      } else if (SrcWidth & (SrcWidth - 1)) {
1171        // If not loading a power-of-2 number of bits, expand as two loads.
1172        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1173               "Unsupported extload!");
1174        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1175        assert(RoundWidth < SrcWidth);
1176        unsigned ExtraWidth = SrcWidth - RoundWidth;
1177        assert(ExtraWidth < RoundWidth);
1178        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1179               "Load size not an integral number of bytes!");
1180        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1181        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1182        SDValue Lo, Hi, Ch;
1183        unsigned IncrementSize;
1184
1185        if (TLI.isLittleEndian()) {
1186          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1187          // Load the bottom RoundWidth bits.
1188          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1189                              Node->getValueType(0), Tmp1, Tmp2,
1190                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1191                              Alignment);
1192
1193          // Load the remaining ExtraWidth bits.
1194          IncrementSize = RoundWidth / 8;
1195          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1196                             DAG.getIntPtrConstant(IncrementSize));
1197          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1198                              LD->getSrcValue(), SVOffset + IncrementSize,
1199                              ExtraVT, isVolatile,
1200                              MinAlign(Alignment, IncrementSize));
1201
1202          // Build a factor node to remember that this load is independent of the
1203          // other one.
1204          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1205                           Hi.getValue(1));
1206
1207          // Move the top bits to the right place.
1208          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1209                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1210
1211          // Join the hi and lo parts.
1212          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1213        } else {
1214          // Big endian - avoid unaligned loads.
1215          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1216          // Load the top RoundWidth bits.
1217          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1218                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1219                              Alignment);
1220
1221          // Load the remaining ExtraWidth bits.
1222          IncrementSize = RoundWidth / 8;
1223          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1224                             DAG.getIntPtrConstant(IncrementSize));
1225          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1226                              Node->getValueType(0), Tmp1, Tmp2,
1227                              LD->getSrcValue(), SVOffset + IncrementSize,
1228                              ExtraVT, isVolatile,
1229                              MinAlign(Alignment, IncrementSize));
1230
1231          // Build a factor node to remember that this load is independent of the
1232          // other one.
1233          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1234                           Hi.getValue(1));
1235
1236          // Move the top bits to the right place.
1237          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1238                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1239
1240          // Join the hi and lo parts.
1241          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1242        }
1243
1244        Tmp1 = LegalizeOp(Result);
1245        Tmp2 = LegalizeOp(Ch);
1246      } else {
1247        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1248        default: assert(0 && "This action is not supported yet!");
1249        case TargetLowering::Custom:
1250          isCustom = true;
1251          // FALLTHROUGH
1252        case TargetLowering::Legal:
1253          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1254          Tmp1 = Result.getValue(0);
1255          Tmp2 = Result.getValue(1);
1256
1257          if (isCustom) {
1258            Tmp3 = TLI.LowerOperation(Result, DAG);
1259            if (Tmp3.getNode()) {
1260              Tmp1 = LegalizeOp(Tmp3);
1261              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1262            }
1263          } else {
1264            // If this is an unaligned load and the target doesn't support it,
1265            // expand it.
1266            if (!TLI.allowsUnalignedMemoryAccesses()) {
1267              unsigned ABIAlignment = TLI.getTargetData()->
1268                getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
1269              if (LD->getAlignment() < ABIAlignment){
1270                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1271                                             TLI);
1272                Tmp1 = Result.getOperand(0);
1273                Tmp2 = Result.getOperand(1);
1274                Tmp1 = LegalizeOp(Tmp1);
1275                Tmp2 = LegalizeOp(Tmp2);
1276              }
1277            }
1278          }
1279          break;
1280        case TargetLowering::Expand:
1281          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1282          if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1283            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1284                                         LD->getSrcValueOffset(),
1285                                         LD->isVolatile(), LD->getAlignment());
1286            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1287                                 Node->getValueType(0), Load);
1288            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1289            Tmp2 = LegalizeOp(Load.getValue(1));
1290            break;
1291          }
1292          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1293          // Turn the unsupported load into an EXTLOAD followed by an explicit
1294          // zero/sign extend inreg.
1295          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1296                                  Tmp1, Tmp2, LD->getSrcValue(),
1297                                  LD->getSrcValueOffset(), SrcVT,
1298                                  LD->isVolatile(), LD->getAlignment());
1299          SDValue ValRes;
1300          if (ExtType == ISD::SEXTLOAD)
1301            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1302                                 Result.getValueType(),
1303                                 Result, DAG.getValueType(SrcVT));
1304          else
1305            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1306          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1307          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1308          break;
1309        }
1310      }
1311
1312      // Since loads produce two values, make sure to remember that we legalized
1313      // both of them.
1314      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1315      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1316      return Op.getResNo() ? Tmp2 : Tmp1;
1317    }
1318  }
1319  case ISD::STORE: {
1320    StoreSDNode *ST = cast<StoreSDNode>(Node);
1321    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1322    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1323    int SVOffset = ST->getSrcValueOffset();
1324    unsigned Alignment = ST->getAlignment();
1325    bool isVolatile = ST->isVolatile();
1326
1327    if (!ST->isTruncatingStore()) {
1328      // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
1329      // FIXME: We shouldn't do this for TargetConstantFP's.
1330      // FIXME: move this to the DAG Combiner!  Note that we can't regress due
1331      // to phase ordering between legalized code and the dag combiner.  This
1332      // probably means that we need to integrate dag combiner and legalizer
1333      // together.
1334      // We generally can't do this one for long doubles.
1335      if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
1336        if (CFP->getValueType(0) == MVT::f32 &&
1337            getTypeAction(MVT::i32) == Legal) {
1338          Tmp3 = DAG.getConstant(CFP->getValueAPF().
1339                                          bitcastToAPInt().zextOrTrunc(32),
1340                                  MVT::i32);
1341          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1342                                SVOffset, isVolatile, Alignment);
1343          break;
1344        } else if (CFP->getValueType(0) == MVT::f64) {
1345          // If this target supports 64-bit registers, do a single 64-bit store.
1346          if (getTypeAction(MVT::i64) == Legal) {
1347            Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
1348                                     zextOrTrunc(64), MVT::i64);
1349            Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1350                                  SVOffset, isVolatile, Alignment);
1351            break;
1352          } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
1353            // Otherwise, if the target supports 32-bit registers, use 2 32-bit
1354            // stores.  If the target supports neither 32- nor 64-bits, this
1355            // xform is certainly not worth it.
1356            const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
1357            SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
1358            SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
1359            if (TLI.isBigEndian()) std::swap(Lo, Hi);
1360
1361            Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
1362                              SVOffset, isVolatile, Alignment);
1363            Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1364                               DAG.getIntPtrConstant(4));
1365            Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
1366                              isVolatile, MinAlign(Alignment, 4U));
1367
1368            Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1369            break;
1370          }
1371        }
1372      }
1373
1374      {
1375        Tmp3 = LegalizeOp(ST->getValue());
1376        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1377                                        ST->getOffset());
1378
1379        MVT VT = Tmp3.getValueType();
1380        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1381        default: assert(0 && "This action is not supported yet!");
1382        case TargetLowering::Legal:
1383          // If this is an unaligned store and the target doesn't support it,
1384          // expand it.
1385          if (!TLI.allowsUnalignedMemoryAccesses()) {
1386            unsigned ABIAlignment = TLI.getTargetData()->
1387              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
1388            if (ST->getAlignment() < ABIAlignment)
1389              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1390                                            TLI);
1391          }
1392          break;
1393        case TargetLowering::Custom:
1394          Tmp1 = TLI.LowerOperation(Result, DAG);
1395          if (Tmp1.getNode()) Result = Tmp1;
1396          break;
1397        case TargetLowering::Promote:
1398          assert(VT.isVector() && "Unknown legal promote case!");
1399          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1400                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1401          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1402                                ST->getSrcValue(), SVOffset, isVolatile,
1403                                Alignment);
1404          break;
1405        }
1406        break;
1407      }
1408    } else {
1409      Tmp3 = LegalizeOp(ST->getValue());
1410
1411      MVT StVT = ST->getMemoryVT();
1412      unsigned StWidth = StVT.getSizeInBits();
1413
1414      if (StWidth != StVT.getStoreSizeInBits()) {
1415        // Promote to a byte-sized store with upper bits zero if not
1416        // storing an integral number of bytes.  For example, promote
1417        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1418        MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
1419        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1420        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1421                                   SVOffset, NVT, isVolatile, Alignment);
1422      } else if (StWidth & (StWidth - 1)) {
1423        // If not storing a power-of-2 number of bits, expand as two stores.
1424        assert(StVT.isExtended() && !StVT.isVector() &&
1425               "Unsupported truncstore!");
1426        unsigned RoundWidth = 1 << Log2_32(StWidth);
1427        assert(RoundWidth < StWidth);
1428        unsigned ExtraWidth = StWidth - RoundWidth;
1429        assert(ExtraWidth < RoundWidth);
1430        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1431               "Store size not an integral number of bytes!");
1432        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1433        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1434        SDValue Lo, Hi;
1435        unsigned IncrementSize;
1436
1437        if (TLI.isLittleEndian()) {
1438          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1439          // Store the bottom RoundWidth bits.
1440          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1441                                 SVOffset, RoundVT,
1442                                 isVolatile, Alignment);
1443
1444          // Store the remaining ExtraWidth bits.
1445          IncrementSize = RoundWidth / 8;
1446          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1447                             DAG.getIntPtrConstant(IncrementSize));
1448          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1449                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1450          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1451                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1452                                 MinAlign(Alignment, IncrementSize));
1453        } else {
1454          // Big endian - avoid unaligned stores.
1455          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1456          // Store the top RoundWidth bits.
1457          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1458                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1459          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1460                                 SVOffset, RoundVT, isVolatile, Alignment);
1461
1462          // Store the remaining ExtraWidth bits.
1463          IncrementSize = RoundWidth / 8;
1464          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1465                             DAG.getIntPtrConstant(IncrementSize));
1466          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1467                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1468                                 MinAlign(Alignment, IncrementSize));
1469        }
1470
1471        // The order of the stores doesn't matter.
1472        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1473      } else {
1474        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1475            Tmp2 != ST->getBasePtr())
1476          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1477                                          ST->getOffset());
1478
1479        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1480        default: assert(0 && "This action is not supported yet!");
1481        case TargetLowering::Legal:
1482          // If this is an unaligned store and the target doesn't support it,
1483          // expand it.
1484          if (!TLI.allowsUnalignedMemoryAccesses()) {
1485            unsigned ABIAlignment = TLI.getTargetData()->
1486              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
1487            if (ST->getAlignment() < ABIAlignment)
1488              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1489                                            TLI);
1490          }
1491          break;
1492        case TargetLowering::Custom:
1493          Result = TLI.LowerOperation(Result, DAG);
1494          break;
1495        case Expand:
1496          // TRUNCSTORE:i16 i32 -> STORE i16
1497          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1498          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1499          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1500                                SVOffset, isVolatile, Alignment);
1501          break;
1502        }
1503      }
1504    }
1505    break;
1506  }
1507  case ISD::SELECT_CC: {
1508    Tmp1 = Node->getOperand(0);               // LHS
1509    Tmp2 = Node->getOperand(1);               // RHS
1510    Tmp3 = LegalizeOp(Node->getOperand(2));   // True
1511    Tmp4 = LegalizeOp(Node->getOperand(3));   // False
1512    SDValue CC = Node->getOperand(4);
1513
1514    LegalizeSetCC(TLI.getSetCCResultType(Tmp1.getValueType()),
1515                  Tmp1, Tmp2, CC, dl);
1516
1517    // If we didn't get both a LHS and RHS back from LegalizeSetCC,
1518    // the LHS is a legal SETCC itself.  In this case, we need to compare
1519    // the result against zero to select between true and false values.
1520    if (Tmp2.getNode() == 0) {
1521      Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
1522      CC = DAG.getCondCode(ISD::SETNE);
1523    }
1524    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC);
1525
1526    // Everything is legal, see if we should expand this op or something.
1527    switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) {
1528    default: assert(0 && "This action is not supported yet!");
1529    case TargetLowering::Legal: break;
1530    case TargetLowering::Custom:
1531      Tmp1 = TLI.LowerOperation(Result, DAG);
1532      if (Tmp1.getNode()) Result = Tmp1;
1533      break;
1534    }
1535    break;
1536  }
1537  case ISD::SETCC:
1538    Tmp1 = Node->getOperand(0);
1539    Tmp2 = Node->getOperand(1);
1540    Tmp3 = Node->getOperand(2);
1541    LegalizeSetCC(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
1542
1543    // If we had to Expand the SetCC operands into a SELECT node, then it may
1544    // not always be possible to return a true LHS & RHS.  In this case, just
1545    // return the value we legalized, returned in the LHS
1546    if (Tmp2.getNode() == 0) {
1547      Result = Tmp1;
1548      break;
1549    }
1550
1551    switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) {
1552    default: assert(0 && "Cannot handle this action for SETCC yet!");
1553    case TargetLowering::Custom:
1554      isCustom = true;
1555      // FALLTHROUGH.
1556    case TargetLowering::Legal:
1557      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
1558      if (isCustom) {
1559        Tmp4 = TLI.LowerOperation(Result, DAG);
1560        if (Tmp4.getNode()) Result = Tmp4;
1561      }
1562      break;
1563    case TargetLowering::Promote: {
1564      // First step, figure out the appropriate operation to use.
1565      // Allow SETCC to not be supported for all legal data types
1566      // Mostly this targets FP
1567      MVT NewInTy = Node->getOperand(0).getValueType();
1568      MVT OldVT = NewInTy; OldVT = OldVT;
1569
1570      // Scan for the appropriate larger type to use.
1571      while (1) {
1572        NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
1573
1574        assert(NewInTy.isInteger() == OldVT.isInteger() &&
1575               "Fell off of the edge of the integer world");
1576        assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() &&
1577               "Fell off of the edge of the floating point world");
1578
1579        // If the target supports SETCC of this type, use it.
1580        if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy))
1581          break;
1582      }
1583      if (NewInTy.isInteger())
1584        assert(0 && "Cannot promote Legal Integer SETCC yet");
1585      else {
1586        Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1);
1587        Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2);
1588      }
1589      Tmp1 = LegalizeOp(Tmp1);
1590      Tmp2 = LegalizeOp(Tmp2);
1591      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
1592      Result = LegalizeOp(Result);
1593      break;
1594    }
1595    case TargetLowering::Expand:
1596      // Expand a setcc node into a select_cc of the same condition, lhs, and
1597      // rhs that selects between const 1 (true) and const 0 (false).
1598      MVT VT = Node->getValueType(0);
1599      Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
1600                           DAG.getConstant(1, VT), DAG.getConstant(0, VT),
1601                           Tmp3);
1602      break;
1603    }
1604    break;
1605  }
1606
1607  assert(Result.getValueType() == Op.getValueType() &&
1608         "Bad legalization!");
1609
1610  // Make sure that the generated code is itself legal.
1611  if (Result != Op)
1612    Result = LegalizeOp(Result);
1613
1614  // Note that LegalizeOp may be reentered even from single-use nodes, which
1615  // means that we always must cache transformed nodes.
1616  AddLegalizedOperand(Op, Result);
1617  return Result;
1618}
1619
1620SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1621  SDValue Vec = Op.getOperand(0);
1622  SDValue Idx = Op.getOperand(1);
1623  DebugLoc dl = Op.getDebugLoc();
1624  // Store the value to a temporary stack slot, then LOAD the returned part.
1625  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1626  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1627
1628  // Add the offset to the index.
1629  unsigned EltSize =
1630      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1631  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1632                    DAG.getConstant(EltSize, Idx.getValueType()));
1633
1634  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1635    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1636  else
1637    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1638
1639  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1640
1641  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1642}
1643
1644SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1645  DebugLoc dl = Node->getDebugLoc();
1646  SDValue Tmp1 = Node->getOperand(0);
1647  SDValue Tmp2 = Node->getOperand(1);
1648  assert((Tmp2.getValueType() == MVT::f32 ||
1649          Tmp2.getValueType() == MVT::f64) &&
1650          "Ugly special-cased code!");
1651  // Get the sign bit of the RHS.
1652  SDValue SignBit;
1653  MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1654  if (isTypeLegal(IVT)) {
1655    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1656  } else {
1657    assert(isTypeLegal(TLI.getPointerTy()) &&
1658            (TLI.getPointerTy() == MVT::i32 ||
1659            TLI.getPointerTy() == MVT::i64) &&
1660            "Legal type for load?!");
1661    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1662    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1663    SDValue Ch =
1664        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1665    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1666      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1667                            LoadPtr, DAG.getIntPtrConstant(4));
1668    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1669                              Ch, LoadPtr, NULL, 0, MVT::i32);
1670  }
1671  SignBit =
1672      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1673                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1674                    ISD::SETLT);
1675  // Get the absolute value of the result.
1676  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1677  // Select between the nabs and abs value based on the sign bit of
1678  // the input.
1679  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1680                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1681                     AbsVal);
1682}
1683
1684SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1685  DebugLoc dl = Node->getDebugLoc();
1686  DwarfWriter *DW = DAG.getDwarfWriter();
1687  bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1688                                                    MVT::Other);
1689  bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1690
1691  const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1692  GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1693  if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1694    DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1695
1696    unsigned Line = DSP->getLine();
1697    unsigned Col = DSP->getColumn();
1698
1699    if (OptLevel == CodeGenOpt::None) {
1700      // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1701      // won't hurt anything.
1702      if (useDEBUG_LOC) {
1703        return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1704                           DAG.getConstant(Line, MVT::i32),
1705                           DAG.getConstant(Col, MVT::i32),
1706                           DAG.getSrcValue(CU.getGV()));
1707      } else {
1708        unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1709        return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1710      }
1711    }
1712  }
1713  return Node->getOperand(0);
1714}
1715
1716void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1717                                           SmallVectorImpl<SDValue> &Results) {
1718  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1719  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1720          " not tell us which reg is the stack pointer!");
1721  DebugLoc dl = Node->getDebugLoc();
1722  MVT VT = Node->getValueType(0);
1723  SDValue Tmp1 = SDValue(Node, 0);
1724  SDValue Tmp2 = SDValue(Node, 1);
1725  SDValue Tmp3 = Node->getOperand(2);
1726  SDValue Chain = Tmp1.getOperand(0);
1727
1728  // Chain the dynamic stack allocation so that it doesn't modify the stack
1729  // pointer when other instructions are using the stack.
1730  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1731
1732  SDValue Size  = Tmp2.getOperand(1);
1733  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1734  Chain = SP.getValue(1);
1735  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1736  unsigned StackAlign =
1737    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1738  if (Align > StackAlign)
1739    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1740                      DAG.getConstant(-(uint64_t)Align, VT));
1741  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1742  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1743
1744  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1745                            DAG.getIntPtrConstant(0, true), SDValue());
1746
1747  Results.push_back(Tmp1);
1748  Results.push_back(Tmp2);
1749}
1750
1751/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC
1752/// with condition CC on the current target.  This usually involves legalizing
1753/// or promoting the arguments.  In the case where LHS and RHS must be expanded,
1754/// there may be no choice but to create a new SetCC node to represent the
1755/// legalized value of setcc lhs, rhs.  In this case, the value is returned in
1756/// LHS, and the SDValue returned in RHS has a nil SDNode value.
1757void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue &LHS,
1758                                                 SDValue &RHS,
1759                                                 SDValue &CC,
1760                                                 DebugLoc dl) {
1761  LHS = LegalizeOp(LHS);
1762  RHS = LegalizeOp(RHS);
1763}
1764
1765/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1766/// condition code CC on the current target. This routine assumes LHS and rHS
1767/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1768/// illegal condition code into AND / OR of multiple SETCC values.
1769void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
1770                                                 SDValue &LHS, SDValue &RHS,
1771                                                 SDValue &CC,
1772                                                 DebugLoc dl) {
1773  MVT OpVT = LHS.getValueType();
1774  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1775  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1776  default: assert(0 && "Unknown condition code action!");
1777  case TargetLowering::Legal:
1778    // Nothing to do.
1779    break;
1780  case TargetLowering::Expand: {
1781    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1782    unsigned Opc = 0;
1783    switch (CCCode) {
1784    default: assert(0 && "Don't know how to expand this condition!"); abort();
1785    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1786    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1787    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1788    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1789    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1790    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1791    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1792    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1793    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1794    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1795    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1796    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1797    // FIXME: Implement more expansions.
1798    }
1799
1800    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1801    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1802    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1803    RHS = SDValue();
1804    CC  = SDValue();
1805    break;
1806  }
1807  }
1808}
1809
1810/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1811/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1812/// a load from the stack slot to DestVT, extending it if needed.
1813/// The resultant code need not be legal.
1814SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1815                                               MVT SlotVT,
1816                                               MVT DestVT,
1817                                               DebugLoc dl) {
1818  // Create the stack frame object.
1819  unsigned SrcAlign =
1820    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1821                                              getTypeForMVT());
1822  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1823
1824  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1825  int SPFI = StackPtrFI->getIndex();
1826  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1827
1828  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1829  unsigned SlotSize = SlotVT.getSizeInBits();
1830  unsigned DestSize = DestVT.getSizeInBits();
1831  unsigned DestAlign =
1832    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT());
1833
1834  // Emit a store to the stack slot.  Use a truncstore if the input value is
1835  // later than DestVT.
1836  SDValue Store;
1837
1838  if (SrcSize > SlotSize)
1839    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1840                              SV, 0, SlotVT, false, SrcAlign);
1841  else {
1842    assert(SrcSize == SlotSize && "Invalid store");
1843    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1844                         SV, 0, false, SrcAlign);
1845  }
1846
1847  // Result is a load from the stack slot.
1848  if (SlotSize == DestSize)
1849    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1850
1851  assert(SlotSize < DestSize && "Unknown extension!");
1852  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1853                        false, DestAlign);
1854}
1855
1856SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1857  DebugLoc dl = Node->getDebugLoc();
1858  // Create a vector sized/aligned stack slot, store the value to element #0,
1859  // then load the whole vector back out.
1860  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1861
1862  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1863  int SPFI = StackPtrFI->getIndex();
1864
1865  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1866                                 StackPtr,
1867                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1868                                 Node->getValueType(0).getVectorElementType());
1869  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1870                     PseudoSourceValue::getFixedStack(SPFI), 0);
1871}
1872
1873
1874/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1875/// support the operation, but do support the resultant vector type.
1876SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1877  unsigned NumElems = Node->getNumOperands();
1878  SDValue SplatValue = Node->getOperand(0);
1879  DebugLoc dl = Node->getDebugLoc();
1880  MVT VT = Node->getValueType(0);
1881  MVT OpVT = SplatValue.getValueType();
1882  MVT EltVT = VT.getVectorElementType();
1883
1884  // If the only non-undef value is the low element, turn this into a
1885  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1886  bool isOnlyLowElement = true;
1887
1888  // FIXME: it would be far nicer to change this into map<SDValue,uint64_t>
1889  // and use a bitmask instead of a list of elements.
1890  // FIXME: this doesn't treat <0, u, 0, u> for example, as a splat.
1891  std::map<SDValue, std::vector<unsigned> > Values;
1892  Values[SplatValue].push_back(0);
1893  bool isConstant = true;
1894  if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) &&
1895      SplatValue.getOpcode() != ISD::UNDEF)
1896    isConstant = false;
1897
1898  for (unsigned i = 1; i < NumElems; ++i) {
1899    SDValue V = Node->getOperand(i);
1900    Values[V].push_back(i);
1901    if (V.getOpcode() != ISD::UNDEF)
1902      isOnlyLowElement = false;
1903    if (SplatValue != V)
1904      SplatValue = SDValue(0, 0);
1905
1906    // If this isn't a constant element or an undef, we can't use a constant
1907    // pool load.
1908    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) &&
1909        V.getOpcode() != ISD::UNDEF)
1910      isConstant = false;
1911  }
1912
1913  if (isOnlyLowElement) {
1914    // If the low element is an undef too, then this whole things is an undef.
1915    if (Node->getOperand(0).getOpcode() == ISD::UNDEF)
1916      return DAG.getUNDEF(VT);
1917    // Otherwise, turn this into a scalar_to_vector node.
1918    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1919  }
1920
1921  // If all elements are constants, create a load from the constant pool.
1922  if (isConstant) {
1923    std::vector<Constant*> CV;
1924    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1925      if (ConstantFPSDNode *V =
1926          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1927        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1928      } else if (ConstantSDNode *V =
1929                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1930        CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1931      } else {
1932        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1933        const Type *OpNTy = OpVT.getTypeForMVT();
1934        CV.push_back(UndefValue::get(OpNTy));
1935      }
1936    }
1937    Constant *CP = ConstantVector::get(CV);
1938    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1939    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1940    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1941                       PseudoSourceValue::getConstantPool(), 0,
1942                       false, Alignment);
1943  }
1944
1945  if (SplatValue.getNode()) {   // Splat of one value?
1946    // Build the shuffle constant vector: <0, 0, 0, 0>
1947    SmallVector<int, 8> ZeroVec(NumElems, 0);
1948
1949    // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
1950    if (TLI.isShuffleMaskLegal(ZeroVec, Node->getValueType(0))) {
1951      // Get the splatted value into the low element of a vector register.
1952      SDValue LowValVec =
1953        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, SplatValue);
1954
1955      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1956      return DAG.getVectorShuffle(VT, dl, LowValVec, DAG.getUNDEF(VT),
1957                                  &ZeroVec[0]);
1958    }
1959  }
1960
1961  // If there are only two unique elements, we may be able to turn this into a
1962  // vector shuffle.
1963  if (Values.size() == 2) {
1964    // Get the two values in deterministic order.
1965    SDValue Val1 = Node->getOperand(1);
1966    SDValue Val2;
1967    std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin();
1968    if (MI->first != Val1)
1969      Val2 = MI->first;
1970    else
1971      Val2 = (++MI)->first;
1972
1973    // If Val1 is an undef, make sure it ends up as Val2, to ensure that our
1974    // vector shuffle has the undef vector on the RHS.
1975    if (Val1.getOpcode() == ISD::UNDEF)
1976      std::swap(Val1, Val2);
1977
1978    // Build the shuffle constant vector: e.g. <0, 4, 0, 4>
1979    SmallVector<int, 8> ShuffleMask(NumElems, -1);
1980
1981    // Set elements of the shuffle mask for Val1.
1982    std::vector<unsigned> &Val1Elts = Values[Val1];
1983    for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i)
1984      ShuffleMask[Val1Elts[i]] = 0;
1985
1986    // Set elements of the shuffle mask for Val2.
1987    std::vector<unsigned> &Val2Elts = Values[Val2];
1988    for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i)
1989      if (Val2.getOpcode() != ISD::UNDEF)
1990        ShuffleMask[Val2Elts[i]] = NumElems;
1991
1992    // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it.
1993    if (TLI.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR, VT) &&
1994        TLI.isShuffleMaskLegal(ShuffleMask, VT)) {
1995      Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val1);
1996      Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val2);
1997      return DAG.getVectorShuffle(VT, dl, Val1, Val2, &ShuffleMask[0]);
1998    }
1999  }
2000
2001  // Otherwise, we can't handle this case efficiently.  Allocate a sufficiently
2002  // aligned object on the stack, store each element into it, then load
2003  // the result as a vector.
2004  // Create the stack frame object.
2005  SDValue FIPtr = DAG.CreateStackTemporary(VT);
2006  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
2007  const Value *SV = PseudoSourceValue::getFixedStack(FI);
2008
2009  // Emit a store of each element to the stack slot.
2010  SmallVector<SDValue, 8> Stores;
2011  unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
2012  // Store (in the right endianness) the elements to memory.
2013  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2014    // Ignore undef elements.
2015    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
2016
2017    unsigned Offset = TypeByteSize*i;
2018
2019    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
2020    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
2021
2022    Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
2023                                  Idx, SV, Offset));
2024  }
2025
2026  SDValue StoreChain;
2027  if (!Stores.empty())    // Not all undef elements?
2028    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2029                             &Stores[0], Stores.size());
2030  else
2031    StoreChain = DAG.getEntryNode();
2032
2033  // Result is a load from the stack slot.
2034  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
2035}
2036
2037// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
2038// does not fit into a register, return the lo part and set the hi part to the
2039// by-reg argument.  If it does fit into a single register, return the result
2040// and leave the Hi part unset.
2041SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2042                                            bool isSigned) {
2043  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
2044  // The input chain to this libcall is the entry node of the function.
2045  // Legalizing the call will automatically add the previous call to the
2046  // dependence.
2047  SDValue InChain = DAG.getEntryNode();
2048
2049  TargetLowering::ArgListTy Args;
2050  TargetLowering::ArgListEntry Entry;
2051  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2052    MVT ArgVT = Node->getOperand(i).getValueType();
2053    const Type *ArgTy = ArgVT.getTypeForMVT();
2054    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2055    Entry.isSExt = isSigned;
2056    Entry.isZExt = !isSigned;
2057    Args.push_back(Entry);
2058  }
2059  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2060                                         TLI.getPointerTy());
2061
2062  // Splice the libcall in wherever FindInputOutputChains tells us to.
2063  const Type *RetTy = Node->getValueType(0).getTypeForMVT();
2064  std::pair<SDValue, SDValue> CallInfo =
2065    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2066                    CallingConv::C, false, Callee, Args, DAG,
2067                    Node->getDebugLoc());
2068
2069  // Legalize the call sequence, starting with the chain.  This will advance
2070  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2071  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2072  LegalizeOp(CallInfo.second);
2073  return CallInfo.first;
2074}
2075
2076SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2077                                              RTLIB::Libcall Call_F32,
2078                                              RTLIB::Libcall Call_F64,
2079                                              RTLIB::Libcall Call_F80,
2080                                              RTLIB::Libcall Call_PPCF128) {
2081  RTLIB::Libcall LC;
2082  switch (Node->getValueType(0).getSimpleVT()) {
2083  default: assert(0 && "Unexpected request for libcall!");
2084  case MVT::f32: LC = Call_F32; break;
2085  case MVT::f64: LC = Call_F64; break;
2086  case MVT::f80: LC = Call_F80; break;
2087  case MVT::ppcf128: LC = Call_PPCF128; break;
2088  }
2089  return ExpandLibCall(LC, Node, false);
2090}
2091
2092SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2093                                               RTLIB::Libcall Call_I16,
2094                                               RTLIB::Libcall Call_I32,
2095                                               RTLIB::Libcall Call_I64,
2096                                               RTLIB::Libcall Call_I128) {
2097  RTLIB::Libcall LC;
2098  switch (Node->getValueType(0).getSimpleVT()) {
2099  default: assert(0 && "Unexpected request for libcall!");
2100  case MVT::i16: LC = Call_I16; break;
2101  case MVT::i32: LC = Call_I32; break;
2102  case MVT::i64: LC = Call_I64; break;
2103  case MVT::i128: LC = Call_I128; break;
2104  }
2105  return ExpandLibCall(LC, Node, isSigned);
2106}
2107
2108/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2109/// INT_TO_FP operation of the specified operand when the target requests that
2110/// we expand it.  At this point, we know that the result and operand types are
2111/// legal for the target.
2112SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2113                                                   SDValue Op0,
2114                                                   MVT DestVT,
2115                                                   DebugLoc dl) {
2116  if (Op0.getValueType() == MVT::i32) {
2117    // simple 32-bit [signed|unsigned] integer to float/double expansion
2118
2119    // Get the stack frame index of a 8 byte buffer.
2120    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2121
2122    // word offset constant for Hi/Lo address computation
2123    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2124    // set up Hi and Lo (into buffer) address based on endian
2125    SDValue Hi = StackSlot;
2126    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2127                             TLI.getPointerTy(), StackSlot, WordOff);
2128    if (TLI.isLittleEndian())
2129      std::swap(Hi, Lo);
2130
2131    // if signed map to unsigned space
2132    SDValue Op0Mapped;
2133    if (isSigned) {
2134      // constant used to invert sign bit (signed to unsigned mapping)
2135      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2136      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2137    } else {
2138      Op0Mapped = Op0;
2139    }
2140    // store the lo of the constructed double - based on integer input
2141    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2142                                  Op0Mapped, Lo, NULL, 0);
2143    // initial hi portion of constructed double
2144    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2145    // store the hi of the constructed double - biased exponent
2146    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
2147    // load the constructed double
2148    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
2149    // FP constant to bias correct the final result
2150    SDValue Bias = DAG.getConstantFP(isSigned ?
2151                                     BitsToDouble(0x4330000080000000ULL) :
2152                                     BitsToDouble(0x4330000000000000ULL),
2153                                     MVT::f64);
2154    // subtract the bias
2155    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2156    // final result
2157    SDValue Result;
2158    // handle final rounding
2159    if (DestVT == MVT::f64) {
2160      // do nothing
2161      Result = Sub;
2162    } else if (DestVT.bitsLT(MVT::f64)) {
2163      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2164                           DAG.getIntPtrConstant(0));
2165    } else if (DestVT.bitsGT(MVT::f64)) {
2166      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2167    }
2168    return Result;
2169  }
2170  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2171  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2172
2173  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2174                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2175                                 ISD::SETLT);
2176  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2177  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2178                                    SignSet, Four, Zero);
2179
2180  // If the sign bit of the integer is set, the large number will be treated
2181  // as a negative number.  To counteract this, the dynamic code adds an
2182  // offset depending on the data type.
2183  uint64_t FF;
2184  switch (Op0.getValueType().getSimpleVT()) {
2185  default: assert(0 && "Unsupported integer type!");
2186  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2187  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2188  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2189  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2190  }
2191  if (TLI.isLittleEndian()) FF <<= 32;
2192  Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
2193
2194  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2195  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2196  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2197  Alignment = std::min(Alignment, 4u);
2198  SDValue FudgeInReg;
2199  if (DestVT == MVT::f32)
2200    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2201                             PseudoSourceValue::getConstantPool(), 0,
2202                             false, Alignment);
2203  else {
2204    FudgeInReg =
2205      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2206                                DAG.getEntryNode(), CPIdx,
2207                                PseudoSourceValue::getConstantPool(), 0,
2208                                MVT::f32, false, Alignment));
2209  }
2210
2211  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2212}
2213
2214/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2215/// *INT_TO_FP operation of the specified operand when the target requests that
2216/// we promote it.  At this point, we know that the result and operand types are
2217/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2218/// operation that takes a larger input.
2219SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2220                                                    MVT DestVT,
2221                                                    bool isSigned,
2222                                                    DebugLoc dl) {
2223  // First step, figure out the appropriate *INT_TO_FP operation to use.
2224  MVT NewInTy = LegalOp.getValueType();
2225
2226  unsigned OpToUse = 0;
2227
2228  // Scan for the appropriate larger type to use.
2229  while (1) {
2230    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
2231    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2232
2233    // If the target supports SINT_TO_FP of this type, use it.
2234    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2235      OpToUse = ISD::SINT_TO_FP;
2236      break;
2237    }
2238    if (isSigned) continue;
2239
2240    // If the target supports UINT_TO_FP of this type, use it.
2241    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2242      OpToUse = ISD::UINT_TO_FP;
2243      break;
2244    }
2245
2246    // Otherwise, try a larger type.
2247  }
2248
2249  // Okay, we found the operation and type to use.  Zero extend our input to the
2250  // desired type then run the operation on it.
2251  return DAG.getNode(OpToUse, dl, DestVT,
2252                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2253                                 dl, NewInTy, LegalOp));
2254}
2255
2256/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2257/// FP_TO_*INT operation of the specified operand when the target requests that
2258/// we promote it.  At this point, we know that the result and operand types are
2259/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2260/// operation that returns a larger result.
2261SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2262                                                    MVT DestVT,
2263                                                    bool isSigned,
2264                                                    DebugLoc dl) {
2265  // First step, figure out the appropriate FP_TO*INT operation to use.
2266  MVT NewOutTy = DestVT;
2267
2268  unsigned OpToUse = 0;
2269
2270  // Scan for the appropriate larger type to use.
2271  while (1) {
2272    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
2273    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2274
2275    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2276      OpToUse = ISD::FP_TO_SINT;
2277      break;
2278    }
2279
2280    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2281      OpToUse = ISD::FP_TO_UINT;
2282      break;
2283    }
2284
2285    // Otherwise, try a larger type.
2286  }
2287
2288
2289  // Okay, we found the operation and type to use.
2290  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2291
2292  // Truncate the result of the extended FP_TO_*INT operation to the desired
2293  // size.
2294  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2295}
2296
2297/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2298///
2299SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2300  MVT VT = Op.getValueType();
2301  MVT SHVT = TLI.getShiftAmountTy();
2302  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2303  switch (VT.getSimpleVT()) {
2304  default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
2305  case MVT::i16:
2306    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2307    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2308    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2309  case MVT::i32:
2310    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2311    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2312    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2313    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2314    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2315    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2316    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2317    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2318    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2319  case MVT::i64:
2320    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2321    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2322    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2323    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2324    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2325    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2326    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2327    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2328    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2329    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2330    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2331    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2332    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2333    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2334    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2335    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2336    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2337    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2338    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2339    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2340    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2341  }
2342}
2343
2344/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2345///
2346SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2347                                             DebugLoc dl) {
2348  switch (Opc) {
2349  default: assert(0 && "Cannot expand this yet!");
2350  case ISD::CTPOP: {
2351    static const uint64_t mask[6] = {
2352      0x5555555555555555ULL, 0x3333333333333333ULL,
2353      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2354      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2355    };
2356    MVT VT = Op.getValueType();
2357    MVT ShVT = TLI.getShiftAmountTy();
2358    unsigned len = VT.getSizeInBits();
2359    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2360      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2361      unsigned EltSize = VT.isVector() ?
2362        VT.getVectorElementType().getSizeInBits() : len;
2363      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2364      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2365      Op = DAG.getNode(ISD::ADD, dl, VT,
2366                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2367                       DAG.getNode(ISD::AND, dl, VT,
2368                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2369                                   Tmp2));
2370    }
2371    return Op;
2372  }
2373  case ISD::CTLZ: {
2374    // for now, we do this:
2375    // x = x | (x >> 1);
2376    // x = x | (x >> 2);
2377    // ...
2378    // x = x | (x >>16);
2379    // x = x | (x >>32); // for 64-bit input
2380    // return popcount(~x);
2381    //
2382    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2383    MVT VT = Op.getValueType();
2384    MVT ShVT = TLI.getShiftAmountTy();
2385    unsigned len = VT.getSizeInBits();
2386    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2387      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2388      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2389                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2390    }
2391    Op = DAG.getNOT(dl, Op, VT);
2392    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2393  }
2394  case ISD::CTTZ: {
2395    // for now, we use: { return popcount(~x & (x - 1)); }
2396    // unless the target has ctlz but not ctpop, in which case we use:
2397    // { return 32 - nlz(~x & (x-1)); }
2398    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2399    MVT VT = Op.getValueType();
2400    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2401                               DAG.getNOT(dl, Op, VT),
2402                               DAG.getNode(ISD::SUB, dl, VT, Op,
2403                                           DAG.getConstant(1, VT)));
2404    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2405    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2406        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2407      return DAG.getNode(ISD::SUB, dl, VT,
2408                         DAG.getConstant(VT.getSizeInBits(), VT),
2409                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2410    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2411  }
2412  }
2413}
2414
2415void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2416                                      SmallVectorImpl<SDValue> &Results) {
2417  DebugLoc dl = Node->getDebugLoc();
2418  SDValue Tmp1, Tmp2, Tmp3;
2419  switch (Node->getOpcode()) {
2420  case ISD::CTPOP:
2421  case ISD::CTLZ:
2422  case ISD::CTTZ:
2423    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2424    Results.push_back(Tmp1);
2425    break;
2426  case ISD::BSWAP:
2427    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2428    break;
2429  case ISD::FRAMEADDR:
2430  case ISD::RETURNADDR:
2431  case ISD::FRAME_TO_ARGS_OFFSET:
2432    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2433    break;
2434  case ISD::FLT_ROUNDS_:
2435    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2436    break;
2437  case ISD::EH_RETURN:
2438  case ISD::DECLARE:
2439  case ISD::DBG_LABEL:
2440  case ISD::EH_LABEL:
2441  case ISD::PREFETCH:
2442  case ISD::MEMBARRIER:
2443  case ISD::VAEND:
2444    Results.push_back(Node->getOperand(0));
2445    break;
2446  case ISD::DBG_STOPPOINT:
2447    Results.push_back(ExpandDBG_STOPPOINT(Node));
2448    break;
2449  case ISD::DYNAMIC_STACKALLOC:
2450    ExpandDYNAMIC_STACKALLOC(Node, Results);
2451    break;
2452  case ISD::MERGE_VALUES:
2453    for (unsigned i = 0; i < Node->getNumValues(); i++)
2454      Results.push_back(Node->getOperand(i));
2455    break;
2456  case ISD::UNDEF: {
2457    MVT VT = Node->getValueType(0);
2458    if (VT.isInteger())
2459      Results.push_back(DAG.getConstant(0, VT));
2460    else if (VT.isFloatingPoint())
2461      Results.push_back(DAG.getConstantFP(0, VT));
2462    else
2463      assert(0 && "Unknown value type!");
2464    break;
2465  }
2466  case ISD::TRAP: {
2467    // If this operation is not supported, lower it to 'abort()' call
2468    TargetLowering::ArgListTy Args;
2469    std::pair<SDValue, SDValue> CallResult =
2470      TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
2471                      false, false, false, false, CallingConv::C, false,
2472                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2473                      Args, DAG, dl);
2474    Results.push_back(CallResult.second);
2475    break;
2476  }
2477  case ISD::FP_ROUND:
2478  case ISD::BIT_CONVERT:
2479    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2480                            Node->getValueType(0), dl);
2481    Results.push_back(Tmp1);
2482    break;
2483  case ISD::FP_EXTEND:
2484    Tmp1 = EmitStackConvert(Node->getOperand(0),
2485                            Node->getOperand(0).getValueType(),
2486                            Node->getValueType(0), dl);
2487    Results.push_back(Tmp1);
2488    break;
2489  case ISD::SIGN_EXTEND_INREG: {
2490    // NOTE: we could fall back on load/store here too for targets without
2491    // SAR.  However, it is doubtful that any exist.
2492    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2493    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2494                        ExtraVT.getSizeInBits();
2495    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2496    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2497                       Node->getOperand(0), ShiftCst);
2498    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2499    Results.push_back(Tmp1);
2500    break;
2501  }
2502  case ISD::FP_ROUND_INREG: {
2503    // The only way we can lower this is to turn it into a TRUNCSTORE,
2504    // EXTLOAD pair, targetting a temporary location (a stack slot).
2505
2506    // NOTE: there is a choice here between constantly creating new stack
2507    // slots and always reusing the same one.  We currently always create
2508    // new ones, as reuse may inhibit scheduling.
2509    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2510    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2511                            Node->getValueType(0), dl);
2512    Results.push_back(Tmp1);
2513    break;
2514  }
2515  case ISD::SINT_TO_FP:
2516  case ISD::UINT_TO_FP:
2517    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2518                                Node->getOperand(0), Node->getValueType(0), dl);
2519    Results.push_back(Tmp1);
2520    break;
2521  case ISD::FP_TO_UINT: {
2522    SDValue True, False;
2523    MVT VT =  Node->getOperand(0).getValueType();
2524    MVT NVT = Node->getValueType(0);
2525    const uint64_t zero[] = {0, 0};
2526    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2527    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2528    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2529    Tmp1 = DAG.getConstantFP(apf, VT);
2530    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2531                        Node->getOperand(0),
2532                        Tmp1, ISD::SETLT);
2533    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2534    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2535                        DAG.getNode(ISD::FSUB, dl, VT,
2536                                    Node->getOperand(0), Tmp1));
2537    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2538                        DAG.getConstant(x, NVT));
2539    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2540    Results.push_back(Tmp1);
2541    break;
2542  }
2543  case ISD::VAARG: {
2544    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2545    MVT VT = Node->getValueType(0);
2546    Tmp1 = Node->getOperand(0);
2547    Tmp2 = Node->getOperand(1);
2548    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2549    // Increment the pointer, VAList, to the next vaarg
2550    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2551                       DAG.getConstant(TLI.getTargetData()->
2552                                       getTypeAllocSize(VT.getTypeForMVT()),
2553                                       TLI.getPointerTy()));
2554    // Store the incremented VAList to the legalized pointer
2555    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2556    // Load the actual argument out of the pointer VAList
2557    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2558    Results.push_back(Results[0].getValue(1));
2559    break;
2560  }
2561  case ISD::VACOPY: {
2562    // This defaults to loading a pointer from the input and storing it to the
2563    // output, returning the chain.
2564    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2565    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2566    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2567                       Node->getOperand(2), VS, 0);
2568    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2569    Results.push_back(Tmp1);
2570    break;
2571  }
2572  case ISD::EXTRACT_VECTOR_ELT:
2573    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2574      // This must be an access of the only element.  Return it.
2575      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2576                         Node->getOperand(0));
2577    else
2578      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2579    Results.push_back(Tmp1);
2580    break;
2581  case ISD::EXTRACT_SUBVECTOR:
2582    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2583    break;
2584  case ISD::CONCAT_VECTORS: {
2585    // Use extract/insert/build vector for now. We might try to be
2586    // more clever later.
2587    SmallVector<SDValue, 8> Ops;
2588    unsigned NumOperands = Node->getNumOperands();
2589    for (unsigned i=0; i < NumOperands; ++i) {
2590      SDValue SubOp = Node->getOperand(i);
2591      MVT VVT = SubOp.getNode()->getValueType(0);
2592      MVT EltVT = VVT.getVectorElementType();
2593      unsigned NumSubElem = VVT.getVectorNumElements();
2594      for (unsigned j=0; j < NumSubElem; ++j) {
2595        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
2596                                  DAG.getIntPtrConstant(j)));
2597      }
2598    }
2599    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
2600                       &Ops[0], Ops.size());
2601    Results.push_back(Tmp1);
2602    break;
2603  }
2604  case ISD::SCALAR_TO_VECTOR:
2605    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2606    break;
2607  case ISD::INSERT_VECTOR_ELT:
2608    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2609                                              Node->getOperand(1),
2610                                              Node->getOperand(2), dl));
2611    break;
2612  case ISD::VECTOR_SHUFFLE: {
2613    SmallVector<int, 8> Mask;
2614    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2615
2616    MVT VT = Node->getValueType(0);
2617    MVT EltVT = VT.getVectorElementType();
2618    unsigned NumElems = VT.getVectorNumElements();
2619    SmallVector<SDValue, 8> Ops;
2620    for (unsigned i = 0; i != NumElems; ++i) {
2621      if (Mask[i] < 0) {
2622        Ops.push_back(DAG.getUNDEF(EltVT));
2623        continue;
2624      }
2625      unsigned Idx = Mask[i];
2626      if (Idx < NumElems)
2627        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2628                                  Node->getOperand(0),
2629                                  DAG.getIntPtrConstant(Idx)));
2630      else
2631        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2632                                  Node->getOperand(1),
2633                                  DAG.getIntPtrConstant(Idx - NumElems)));
2634    }
2635    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2636    Results.push_back(Tmp1);
2637    break;
2638  }
2639  case ISD::EXTRACT_ELEMENT: {
2640    MVT OpTy = Node->getOperand(0).getValueType();
2641    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2642      // 1 -> Hi
2643      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2644                         DAG.getConstant(OpTy.getSizeInBits()/2,
2645                                         TLI.getShiftAmountTy()));
2646      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2647    } else {
2648      // 0 -> Lo
2649      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2650                         Node->getOperand(0));
2651    }
2652    Results.push_back(Tmp1);
2653    break;
2654  }
2655  case ISD::STACKSAVE:
2656    // Expand to CopyFromReg if the target set
2657    // StackPointerRegisterToSaveRestore.
2658    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2659      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2660                                           Node->getValueType(0)));
2661      Results.push_back(Results[0].getValue(1));
2662    } else {
2663      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2664      Results.push_back(Node->getOperand(0));
2665    }
2666    break;
2667  case ISD::STACKRESTORE:
2668    // Expand to CopyToReg if the target set
2669    // StackPointerRegisterToSaveRestore.
2670    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2671      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2672                                         Node->getOperand(1)));
2673    } else {
2674      Results.push_back(Node->getOperand(0));
2675    }
2676    break;
2677  case ISD::FCOPYSIGN:
2678    Results.push_back(ExpandFCOPYSIGN(Node));
2679    break;
2680  case ISD::FNEG:
2681    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2682    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2683    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2684                       Node->getOperand(0));
2685    Results.push_back(Tmp1);
2686    break;
2687  case ISD::FABS: {
2688    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2689    MVT VT = Node->getValueType(0);
2690    Tmp1 = Node->getOperand(0);
2691    Tmp2 = DAG.getConstantFP(0.0, VT);
2692    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2693                        Tmp1, Tmp2, ISD::SETUGT);
2694    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2695    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2696    Results.push_back(Tmp1);
2697    break;
2698  }
2699  case ISD::FSQRT:
2700    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2701                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2702    break;
2703  case ISD::FSIN:
2704    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2705                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2706    break;
2707  case ISD::FCOS:
2708    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2709                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2710    break;
2711  case ISD::FLOG:
2712    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2713                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2714    break;
2715  case ISD::FLOG2:
2716    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2717                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2718    break;
2719  case ISD::FLOG10:
2720    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2721                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2722    break;
2723  case ISD::FEXP:
2724    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2725                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2726    break;
2727  case ISD::FEXP2:
2728    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2729                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2730    break;
2731  case ISD::FTRUNC:
2732    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2733                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2734    break;
2735  case ISD::FFLOOR:
2736    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2737                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2738    break;
2739  case ISD::FCEIL:
2740    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2741                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2742    break;
2743  case ISD::FRINT:
2744    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2745                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2746    break;
2747  case ISD::FNEARBYINT:
2748    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2749                                      RTLIB::NEARBYINT_F64,
2750                                      RTLIB::NEARBYINT_F80,
2751                                      RTLIB::NEARBYINT_PPCF128));
2752    break;
2753  case ISD::FPOWI:
2754    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2755                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2756    break;
2757  case ISD::FPOW:
2758    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2759                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2760    break;
2761  case ISD::FDIV:
2762    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2763                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2764    break;
2765  case ISD::FREM:
2766    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2767                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2768    break;
2769  case ISD::ConstantFP: {
2770    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2771    // Check to see if this FP immediate is already legal.
2772    bool isLegal = false;
2773    for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2774            E = TLI.legal_fpimm_end(); I != E; ++I) {
2775      if (CFP->isExactlyValue(*I)) {
2776        isLegal = true;
2777        break;
2778      }
2779    }
2780    // If this is a legal constant, turn it into a TargetConstantFP node.
2781    if (isLegal)
2782      Results.push_back(SDValue(Node, 0));
2783    else
2784      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2785    break;
2786  }
2787  case ISD::EHSELECTION: {
2788    unsigned Reg = TLI.getExceptionSelectorRegister();
2789    assert(Reg && "Can't expand to unknown register!");
2790    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2791                                         Node->getValueType(0)));
2792    Results.push_back(Results[0].getValue(1));
2793    break;
2794  }
2795  case ISD::EXCEPTIONADDR: {
2796    unsigned Reg = TLI.getExceptionAddressRegister();
2797    assert(Reg && "Can't expand to unknown register!");
2798    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2799                                         Node->getValueType(0)));
2800    Results.push_back(Results[0].getValue(1));
2801    break;
2802  }
2803  case ISD::SUB: {
2804    MVT VT = Node->getValueType(0);
2805    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2806           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2807           "Don't know how to expand this subtraction!");
2808    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2809               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2810    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2811    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2812    break;
2813  }
2814  case ISD::UREM:
2815  case ISD::SREM: {
2816    MVT VT = Node->getValueType(0);
2817    SDVTList VTs = DAG.getVTList(VT, VT);
2818    bool isSigned = Node->getOpcode() == ISD::SREM;
2819    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2820    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2821    Tmp2 = Node->getOperand(0);
2822    Tmp3 = Node->getOperand(1);
2823    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2824      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2825    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2826      // X % Y -> X-X/Y*Y
2827      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2828      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2829      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2830    } else if (isSigned) {
2831      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2832                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2833    } else {
2834      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2835                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2836    }
2837    Results.push_back(Tmp1);
2838    break;
2839  }
2840  case ISD::UDIV:
2841  case ISD::SDIV: {
2842    bool isSigned = Node->getOpcode() == ISD::SDIV;
2843    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2844    MVT VT = Node->getValueType(0);
2845    SDVTList VTs = DAG.getVTList(VT, VT);
2846    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2847      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2848                         Node->getOperand(1));
2849    else if (isSigned)
2850      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2851                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2852    else
2853      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2854                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2855    Results.push_back(Tmp1);
2856    break;
2857  }
2858  case ISD::MULHU:
2859  case ISD::MULHS: {
2860    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2861                                                              ISD::SMUL_LOHI;
2862    MVT VT = Node->getValueType(0);
2863    SDVTList VTs = DAG.getVTList(VT, VT);
2864    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2865           "If this wasn't legal, it shouldn't have been created!");
2866    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2867                       Node->getOperand(1));
2868    Results.push_back(Tmp1.getValue(1));
2869    break;
2870  }
2871  case ISD::MUL: {
2872    MVT VT = Node->getValueType(0);
2873    SDVTList VTs = DAG.getVTList(VT, VT);
2874    // See if multiply or divide can be lowered using two-result operations.
2875    // We just need the low half of the multiply; try both the signed
2876    // and unsigned forms. If the target supports both SMUL_LOHI and
2877    // UMUL_LOHI, form a preference by checking which forms of plain
2878    // MULH it supports.
2879    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2880    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2881    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2882    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2883    unsigned OpToUse = 0;
2884    if (HasSMUL_LOHI && !HasMULHS) {
2885      OpToUse = ISD::SMUL_LOHI;
2886    } else if (HasUMUL_LOHI && !HasMULHU) {
2887      OpToUse = ISD::UMUL_LOHI;
2888    } else if (HasSMUL_LOHI) {
2889      OpToUse = ISD::SMUL_LOHI;
2890    } else if (HasUMUL_LOHI) {
2891      OpToUse = ISD::UMUL_LOHI;
2892    }
2893    if (OpToUse) {
2894      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2895                                    Node->getOperand(1)));
2896      break;
2897    }
2898    Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2899                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2900    Results.push_back(Tmp1);
2901    break;
2902  }
2903  case ISD::SADDO:
2904  case ISD::SSUBO: {
2905    SDValue LHS = Node->getOperand(0);
2906    SDValue RHS = Node->getOperand(1);
2907    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2908                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2909                              LHS, RHS);
2910    Results.push_back(Sum);
2911    MVT OType = Node->getValueType(1);
2912
2913    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2914
2915    //   LHSSign -> LHS >= 0
2916    //   RHSSign -> RHS >= 0
2917    //   SumSign -> Sum >= 0
2918    //
2919    //   Add:
2920    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2921    //   Sub:
2922    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2923    //
2924    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2925    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2926    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2927                                      Node->getOpcode() == ISD::SADDO ?
2928                                      ISD::SETEQ : ISD::SETNE);
2929
2930    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2931    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2932
2933    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2934    Results.push_back(Cmp);
2935    break;
2936  }
2937  case ISD::UADDO:
2938  case ISD::USUBO: {
2939    SDValue LHS = Node->getOperand(0);
2940    SDValue RHS = Node->getOperand(1);
2941    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2942                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2943                              LHS, RHS);
2944    Results.push_back(Sum);
2945    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2946                                   Node->getOpcode () == ISD::UADDO ?
2947                                   ISD::SETULT : ISD::SETUGT));
2948    break;
2949  }
2950  case ISD::BUILD_PAIR: {
2951    MVT PairTy = Node->getValueType(0);
2952    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2953    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2954    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2955                       DAG.getConstant(PairTy.getSizeInBits()/2,
2956                                       TLI.getShiftAmountTy()));
2957    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2958    break;
2959  }
2960  case ISD::SELECT:
2961    Tmp1 = Node->getOperand(0);
2962    Tmp2 = Node->getOperand(1);
2963    Tmp3 = Node->getOperand(2);
2964    if (Tmp1.getOpcode() == ISD::SETCC) {
2965      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2966                             Tmp2, Tmp3,
2967                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2968    } else {
2969      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2970                             DAG.getConstant(0, Tmp1.getValueType()),
2971                             Tmp2, Tmp3, ISD::SETNE);
2972    }
2973    Results.push_back(Tmp1);
2974    break;
2975  case ISD::BR_JT: {
2976    SDValue Chain = Node->getOperand(0);
2977    SDValue Table = Node->getOperand(1);
2978    SDValue Index = Node->getOperand(2);
2979
2980    MVT PTy = TLI.getPointerTy();
2981    MachineFunction &MF = DAG.getMachineFunction();
2982    unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2983    Index= DAG.getNode(ISD::MUL, dl, PTy,
2984                        Index, DAG.getConstant(EntrySize, PTy));
2985    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2986
2987    MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
2988    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2989                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2990    Addr = LD;
2991    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2992      // For PIC, the sequence is:
2993      // BRIND(load(Jumptable + index) + RelocBase)
2994      // RelocBase can be JumpTable, GOT or some sort of global base.
2995      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2996                          TLI.getPICJumpTableRelocBase(Table, DAG));
2997    }
2998    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2999    Results.push_back(Tmp1);
3000    break;
3001  }
3002  case ISD::BRCOND:
3003    // Expand brcond's setcc into its constituent parts and create a BR_CC
3004    // Node.
3005    Tmp1 = Node->getOperand(0);
3006    Tmp2 = Node->getOperand(1);
3007    if (Tmp2.getOpcode() == ISD::SETCC) {
3008      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3009                         Tmp1, Tmp2.getOperand(2),
3010                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3011                         Node->getOperand(2));
3012    } else {
3013      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3014                         DAG.getCondCode(ISD::SETNE), Tmp2,
3015                         DAG.getConstant(0, Tmp2.getValueType()),
3016                         Node->getOperand(2));
3017    }
3018    Results.push_back(Tmp1);
3019    break;
3020  case ISD::GLOBAL_OFFSET_TABLE:
3021  case ISD::GlobalAddress:
3022  case ISD::GlobalTLSAddress:
3023  case ISD::ExternalSymbol:
3024  case ISD::ConstantPool:
3025  case ISD::JumpTable:
3026  case ISD::INTRINSIC_W_CHAIN:
3027  case ISD::INTRINSIC_WO_CHAIN:
3028  case ISD::INTRINSIC_VOID:
3029    // FIXME: Custom lowering for these operations shouldn't return null!
3030    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3031      Results.push_back(SDValue(Node, i));
3032    break;
3033  }
3034}
3035void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3036                                       SmallVectorImpl<SDValue> &Results) {
3037  MVT OVT = Node->getValueType(0);
3038  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3039      Node->getOpcode() == ISD::SINT_TO_FP) {
3040    OVT = Node->getOperand(0).getValueType();
3041  }
3042  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3043  DebugLoc dl = Node->getDebugLoc();
3044  SDValue Tmp1, Tmp2, Tmp3;
3045  switch (Node->getOpcode()) {
3046  case ISD::CTTZ:
3047  case ISD::CTLZ:
3048  case ISD::CTPOP:
3049    // Zero extend the argument.
3050    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3051    // Perform the larger operation.
3052    Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1);
3053    if (Node->getOpcode() == ISD::CTTZ) {
3054      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3055      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3056                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3057                          ISD::SETEQ);
3058      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3059                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3060    } else if (Node->getOpcode() == ISD::CTLZ) {
3061      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3062      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3063                          DAG.getConstant(NVT.getSizeInBits() -
3064                                          OVT.getSizeInBits(), NVT));
3065    }
3066    Results.push_back(Tmp1);
3067    break;
3068  case ISD::BSWAP: {
3069    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3070    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
3071    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3072    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3073                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3074    Results.push_back(Tmp1);
3075    break;
3076  }
3077  case ISD::FP_TO_UINT:
3078  case ISD::FP_TO_SINT:
3079    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3080                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3081    Results.push_back(Tmp1);
3082    break;
3083  case ISD::UINT_TO_FP:
3084  case ISD::SINT_TO_FP:
3085    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3086                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3087    Results.push_back(Tmp1);
3088    break;
3089  case ISD::AND:
3090  case ISD::OR:
3091  case ISD::XOR:
3092    assert(OVT.isVector() && "Don't know how to promote scalar logic ops");
3093    // Bit convert each of the values to the new type.
3094    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3095    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3096    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3097    // Bit convert the result back the original type.
3098    Results.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1));
3099    break;
3100  case ISD::SELECT:
3101    unsigned ExtOp, TruncOp;
3102    if (Node->getValueType(0).isVector()) {
3103      ExtOp   = ISD::BIT_CONVERT;
3104      TruncOp = ISD::BIT_CONVERT;
3105    } else if (Node->getValueType(0).isInteger()) {
3106      ExtOp   = ISD::ANY_EXTEND;
3107      TruncOp = ISD::TRUNCATE;
3108    } else {
3109      ExtOp   = ISD::FP_EXTEND;
3110      TruncOp = ISD::FP_ROUND;
3111    }
3112    Tmp1 = Node->getOperand(0);
3113    // Promote each of the values to the new type.
3114    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3115    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3116    // Perform the larger operation, then round down.
3117    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3118    if (TruncOp != ISD::FP_ROUND)
3119      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3120    else
3121      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3122                         DAG.getIntPtrConstant(0));
3123    Results.push_back(Tmp1);
3124    break;
3125  case ISD::VECTOR_SHUFFLE: {
3126    SmallVector<int, 8> Mask;
3127    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3128
3129    // Cast the two input vectors.
3130    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3131    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3132
3133    // Convert the shuffle mask to the right # elements.
3134    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3135    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3136    Results.push_back(Tmp1);
3137    break;
3138  }
3139  }
3140}
3141
3142// SelectionDAG::Legalize - This is the entry point for the file.
3143//
3144void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3145                            CodeGenOpt::Level OptLevel) {
3146  /// run - This is the main entry point to this class.
3147  ///
3148  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3149}
3150
3151