LegalizeDAG.cpp revision 3d6ccfba314ed38e4506dae2781a060e9a3e07ac
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalVariable.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class SelectionDAGLegalize {
56  const TargetMachine &TM;
57  const TargetLowering &TLI;
58  SelectionDAG &DAG;
59  CodeGenOpt::Level OptLevel;
60
61  // Libcall insertion helpers.
62
63  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64  /// legalized.  We use this to ensure that calls are properly serialized
65  /// against each other, including inserted libcalls.
66  SDValue LastCALLSEQ_END;
67
68  /// IsLegalizingCall - This member is used *only* for purposes of providing
69  /// helpful assertions that a libcall isn't created while another call is
70  /// being legalized (which could lead to non-serialized call sequences).
71  bool IsLegalizingCall;
72
73  enum LegalizeAction {
74    Legal,      // The target natively supports this operation.
75    Promote,    // This operation should be executed in a larger type.
76    Expand      // Try to expand this to other ops, otherwise use a libcall.
77  };
78
79  /// ValueTypeActions - This is a bitvector that contains two bits for each
80  /// value type, where the two bits correspond to the LegalizeAction enum.
81  /// This can be queried with "getTypeAction(VT)".
82  TargetLowering::ValueTypeActionImpl ValueTypeActions;
83
84  /// LegalizedNodes - For nodes that are of legal width, and that have more
85  /// than one use, this map indicates what regularized operand to use.  This
86  /// allows us to avoid legalizing the same thing more than once.
87  DenseMap<SDValue, SDValue> LegalizedNodes;
88
89  void AddLegalizedOperand(SDValue From, SDValue To) {
90    LegalizedNodes.insert(std::make_pair(From, To));
91    // If someone requests legalization of the new node, return itself.
92    if (From != To)
93      LegalizedNodes.insert(std::make_pair(To, To));
94  }
95
96public:
97  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
98
99  /// getTypeAction - Return how we should legalize values of this type, either
100  /// it is already legal or we need to expand it into multiple registers of
101  /// smaller integer type, or we need to promote it to a larger type.
102  LegalizeAction getTypeAction(EVT VT) const {
103    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
104  }
105
106  /// isTypeLegal - Return true if this type is legal on this target.
107  ///
108  bool isTypeLegal(EVT VT) const {
109    return getTypeAction(VT) == Legal;
110  }
111
112  void LegalizeDAG();
113
114private:
115  /// LegalizeOp - We know that the specified value has a legal type.
116  /// Recursively ensure that the operands have legal types, then return the
117  /// result.
118  SDValue LegalizeOp(SDValue O);
119
120  SDValue OptimizeFloatStore(StoreSDNode *ST);
121
122  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
123  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
124  /// is necessary to spill the vector being inserted into to memory, perform
125  /// the insert there, and then read the result back.
126  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
127                                         SDValue Idx, DebugLoc dl);
128  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
129                                  SDValue Idx, DebugLoc dl);
130
131  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
132  /// performs the same shuffe in terms of order or result bytes, but on a type
133  /// whose vector element type is narrower than the original shuffle type.
134  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
135  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
136                                     SDValue N1, SDValue N2,
137                                     SmallVectorImpl<int> &Mask) const;
138
139  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
140                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
141
142  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
143                             DebugLoc dl);
144
145  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
146  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
147                                                 SDNode *Node, bool isSigned);
148  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
149                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
150                          RTLIB::Libcall Call_PPCF128);
151  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
152                           RTLIB::Libcall Call_I8,
153                           RTLIB::Libcall Call_I16,
154                           RTLIB::Libcall Call_I32,
155                           RTLIB::Libcall Call_I64,
156                           RTLIB::Libcall Call_I128);
157
158  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
159  SDValue ExpandBUILD_VECTOR(SDNode *Node);
160  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
161  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
162                                SmallVectorImpl<SDValue> &Results);
163  SDValue ExpandFCOPYSIGN(SDNode *Node);
164  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
165                               DebugLoc dl);
166  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
169                                DebugLoc dl);
170
171  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
172  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
173
174  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
175  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
176
177  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
178
179  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
180  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181};
182}
183
184/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
185/// performs the same shuffe in terms of order or result bytes, but on a type
186/// whose vector element type is narrower than the original shuffle type.
187/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
188SDValue
189SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
190                                                 SDValue N1, SDValue N2,
191                                             SmallVectorImpl<int> &Mask) const {
192  unsigned NumMaskElts = VT.getVectorNumElements();
193  unsigned NumDestElts = NVT.getVectorNumElements();
194  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
195
196  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
197
198  if (NumEltsGrowth == 1)
199    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
200
201  SmallVector<int, 8> NewMask;
202  for (unsigned i = 0; i != NumMaskElts; ++i) {
203    int Idx = Mask[i];
204    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
205      if (Idx < 0)
206        NewMask.push_back(-1);
207      else
208        NewMask.push_back(Idx * NumEltsGrowth + j);
209    }
210  }
211  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
212  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
213  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
214}
215
216SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
217                                           CodeGenOpt::Level ol)
218  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
219    DAG(dag), OptLevel(ol),
220    ValueTypeActions(TLI.getValueTypeActions()) {
221  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
222         "Too many value types for ValueTypeActions to hold!");
223}
224
225void SelectionDAGLegalize::LegalizeDAG() {
226  LastCALLSEQ_END = DAG.getEntryNode();
227  IsLegalizingCall = false;
228
229  // The legalize process is inherently a bottom-up recursive process (users
230  // legalize their uses before themselves).  Given infinite stack space, we
231  // could just start legalizing on the root and traverse the whole graph.  In
232  // practice however, this causes us to run out of stack space on large basic
233  // blocks.  To avoid this problem, compute an ordering of the nodes where each
234  // node is only legalized after all of its operands are legalized.
235  DAG.AssignTopologicalOrder();
236  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
237       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
238    LegalizeOp(SDValue(I, 0));
239
240  // Finally, it's possible the root changed.  Get the new root.
241  SDValue OldRoot = DAG.getRoot();
242  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
243  DAG.setRoot(LegalizedNodes[OldRoot]);
244
245  LegalizedNodes.clear();
246
247  // Remove dead nodes now.
248  DAG.RemoveDeadNodes();
249}
250
251
252/// FindCallEndFromCallStart - Given a chained node that is part of a call
253/// sequence, find the CALLSEQ_END node that terminates the call sequence.
254static SDNode *FindCallEndFromCallStart(SDNode *Node) {
255  if (Node->getOpcode() == ISD::CALLSEQ_END)
256    return Node;
257  if (Node->use_empty())
258    return 0;   // No CallSeqEnd
259
260  // The chain is usually at the end.
261  SDValue TheChain(Node, Node->getNumValues()-1);
262  if (TheChain.getValueType() != MVT::Other) {
263    // Sometimes it's at the beginning.
264    TheChain = SDValue(Node, 0);
265    if (TheChain.getValueType() != MVT::Other) {
266      // Otherwise, hunt for it.
267      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
268        if (Node->getValueType(i) == MVT::Other) {
269          TheChain = SDValue(Node, i);
270          break;
271        }
272
273      // Otherwise, we walked into a node without a chain.
274      if (TheChain.getValueType() != MVT::Other)
275        return 0;
276    }
277  }
278
279  for (SDNode::use_iterator UI = Node->use_begin(),
280       E = Node->use_end(); UI != E; ++UI) {
281
282    // Make sure to only follow users of our token chain.
283    SDNode *User = *UI;
284    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
285      if (User->getOperand(i) == TheChain)
286        if (SDNode *Result = FindCallEndFromCallStart(User))
287          return Result;
288  }
289  return 0;
290}
291
292/// FindCallStartFromCallEnd - Given a chained node that is part of a call
293/// sequence, find the CALLSEQ_START node that initiates the call sequence.
294static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
295  assert(Node && "Didn't find callseq_start for a call??");
296  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
297
298  assert(Node->getOperand(0).getValueType() == MVT::Other &&
299         "Node doesn't have a token chain argument!");
300  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
301}
302
303/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
304/// see if any uses can reach Dest.  If no dest operands can get to dest,
305/// legalize them, legalize ourself, and return false, otherwise, return true.
306///
307/// Keep track of the nodes we fine that actually do lead to Dest in
308/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
309///
310bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
311                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
312  if (N == Dest) return true;  // N certainly leads to Dest :)
313
314  // If we've already processed this node and it does lead to Dest, there is no
315  // need to reprocess it.
316  if (NodesLeadingTo.count(N)) return true;
317
318  // If the first result of this node has been already legalized, then it cannot
319  // reach N.
320  if (LegalizedNodes.count(SDValue(N, 0))) return false;
321
322  // Okay, this node has not already been legalized.  Check and legalize all
323  // operands.  If none lead to Dest, then we can legalize this node.
324  bool OperandsLeadToDest = false;
325  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
326    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
327      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
328                                   NodesLeadingTo);
329
330  if (OperandsLeadToDest) {
331    NodesLeadingTo.insert(N);
332    return true;
333  }
334
335  // Okay, this node looks safe, legalize it and return false.
336  LegalizeOp(SDValue(N, 0));
337  return false;
338}
339
340/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
341/// a load from the constant pool.
342static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
343                                SelectionDAG &DAG, const TargetLowering &TLI) {
344  bool Extend = false;
345  DebugLoc dl = CFP->getDebugLoc();
346
347  // If a FP immediate is precise when represented as a float and if the
348  // target can do an extending load from float to double, we put it into
349  // the constant pool as a float, even if it's is statically typed as a
350  // double.  This shrinks FP constants and canonicalizes them for targets where
351  // an FP extending load is the same cost as a normal load (such as on the x87
352  // fp stack or PPC FP unit).
353  EVT VT = CFP->getValueType(0);
354  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
355  if (!UseCP) {
356    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
357    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
358                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
359  }
360
361  EVT OrigVT = VT;
362  EVT SVT = VT;
363  while (SVT != MVT::f32) {
364    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
365    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
366        // Only do this if the target has a native EXTLOAD instruction from
367        // smaller type.
368        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
369        TLI.ShouldShrinkFPConstant(OrigVT)) {
370      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
371      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
372      VT = SVT;
373      Extend = true;
374    }
375  }
376
377  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
378  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
379  if (Extend)
380    return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, dl,
381                          DAG.getEntryNode(),
382                          CPIdx, MachinePointerInfo::getConstantPool(),
383                          VT, false, false, Alignment);
384  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
385                     MachinePointerInfo::getConstantPool(), false, false,
386                     Alignment);
387}
388
389/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
390static
391SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
392                             const TargetLowering &TLI) {
393  SDValue Chain = ST->getChain();
394  SDValue Ptr = ST->getBasePtr();
395  SDValue Val = ST->getValue();
396  EVT VT = Val.getValueType();
397  int Alignment = ST->getAlignment();
398  int SVOffset = ST->getSrcValueOffset();
399  DebugLoc dl = ST->getDebugLoc();
400  if (ST->getMemoryVT().isFloatingPoint() ||
401      ST->getMemoryVT().isVector()) {
402    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
403    if (TLI.isTypeLegal(intVT)) {
404      // Expand to a bitconvert of the value to the integer type of the
405      // same size, then a (misaligned) int store.
406      // FIXME: Does not handle truncating floating point stores!
407      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
408      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
409                          SVOffset, ST->isVolatile(), ST->isNonTemporal(),
410                          Alignment);
411    } else {
412      // Do a (aligned) store to a stack slot, then copy from the stack slot
413      // to the final destination using (unaligned) integer loads and stores.
414      EVT StoredVT = ST->getMemoryVT();
415      EVT RegVT =
416        TLI.getRegisterType(*DAG.getContext(),
417                            EVT::getIntegerVT(*DAG.getContext(),
418                                              StoredVT.getSizeInBits()));
419      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
420      unsigned RegBytes = RegVT.getSizeInBits() / 8;
421      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
422
423      // Make sure the stack slot is also aligned for the register type.
424      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
425
426      // Perform the original store, only redirected to the stack slot.
427      SDValue Store = DAG.getTruncStore(Chain, dl,
428                                        Val, StackPtr, MachinePointerInfo(),
429                                        StoredVT, false, false, 0);
430      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
431      SmallVector<SDValue, 8> Stores;
432      unsigned Offset = 0;
433
434      // Do all but one copies using the full register width.
435      for (unsigned i = 1; i < NumRegs; i++) {
436        // Load one integer register's worth from the stack slot.
437        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
438                                   MachinePointerInfo(),
439                                   false, false, 0);
440        // Store it to the final location.  Remember the store.
441        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
442                                    ST->getPointerInfo().getWithOffset(Offset),
443                                      ST->isVolatile(), ST->isNonTemporal(),
444                                      MinAlign(ST->getAlignment(), Offset)));
445        // Increment the pointers.
446        Offset += RegBytes;
447        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
448                               Increment);
449        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
450      }
451
452      // The last store may be partial.  Do a truncating store.  On big-endian
453      // machines this requires an extending load from the stack slot to ensure
454      // that the bits are in the right place.
455      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
456                                    8 * (StoredBytes - Offset));
457
458      // Load from the stack slot.
459      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Store, StackPtr,
460                                    MachinePointerInfo(),
461                                    MemVT, false, false, 0);
462
463      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
464                                         ST->getPointerInfo()
465                                           .getWithOffset(Offset),
466                                         MemVT, ST->isVolatile(),
467                                         ST->isNonTemporal(),
468                                         MinAlign(ST->getAlignment(), Offset)));
469      // The order of the stores doesn't matter - say it with a TokenFactor.
470      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
471                         Stores.size());
472    }
473  }
474  assert(ST->getMemoryVT().isInteger() &&
475         !ST->getMemoryVT().isVector() &&
476         "Unaligned store of unknown type.");
477  // Get the half-size VT
478  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
479  int NumBits = NewStoredVT.getSizeInBits();
480  int IncrementSize = NumBits / 8;
481
482  // Divide the stored value in two parts.
483  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
484  SDValue Lo = Val;
485  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
486
487  // Store the two parts
488  SDValue Store1, Store2;
489  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
490                             ST->getSrcValue(), SVOffset, NewStoredVT,
491                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
492  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
493                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
494  Alignment = MinAlign(Alignment, IncrementSize);
495  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
496                             ST->getSrcValue(), SVOffset + IncrementSize,
497                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
498                             Alignment);
499
500  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
501}
502
503/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
504static
505SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
506                            const TargetLowering &TLI) {
507  SDValue Chain = LD->getChain();
508  SDValue Ptr = LD->getBasePtr();
509  EVT VT = LD->getValueType(0);
510  EVT LoadedVT = LD->getMemoryVT();
511  DebugLoc dl = LD->getDebugLoc();
512  if (VT.isFloatingPoint() || VT.isVector()) {
513    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
514    if (TLI.isTypeLegal(intVT)) {
515      // Expand to a (misaligned) integer load of the same size,
516      // then bitconvert to floating point or vector.
517      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
518                                    LD->isVolatile(),
519                                    LD->isNonTemporal(), LD->getAlignment());
520      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
521      if (VT.isFloatingPoint() && LoadedVT != VT)
522        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
523
524      SDValue Ops[] = { Result, Chain };
525      return DAG.getMergeValues(Ops, 2, dl);
526    }
527
528    // Copy the value to a (aligned) stack slot using (unaligned) integer
529    // loads and stores, then do a (aligned) load from the stack slot.
530    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
531    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
532    unsigned RegBytes = RegVT.getSizeInBits() / 8;
533    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
534
535    // Make sure the stack slot is also aligned for the register type.
536    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
537
538    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
539    SmallVector<SDValue, 8> Stores;
540    SDValue StackPtr = StackBase;
541    unsigned Offset = 0;
542
543    // Do all but one copies using the full register width.
544    for (unsigned i = 1; i < NumRegs; i++) {
545      // Load one integer register's worth from the original location.
546      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
547                                 LD->getPointerInfo().getWithOffset(Offset),
548                                 LD->isVolatile(), LD->isNonTemporal(),
549                                 MinAlign(LD->getAlignment(), Offset));
550      // Follow the load with a store to the stack slot.  Remember the store.
551      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
552                                    NULL, 0, false, false, 0));
553      // Increment the pointers.
554      Offset += RegBytes;
555      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
556      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
557                             Increment);
558    }
559
560    // The last copy may be partial.  Do an extending load.
561    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
562                                  8 * (LoadedBytes - Offset));
563    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Chain, Ptr,
564                                  LD->getPointerInfo().getWithOffset(Offset),
565                                  MemVT, LD->isVolatile(),
566                                  LD->isNonTemporal(),
567                                  MinAlign(LD->getAlignment(), Offset));
568    // Follow the load with a store to the stack slot.  Remember the store.
569    // On big-endian machines this requires a truncating store to ensure
570    // that the bits end up in the right place.
571    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
572                                       MachinePointerInfo(), MemVT,
573                                       false, false, 0));
574
575    // The order of the stores doesn't matter - say it with a TokenFactor.
576    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
577                             Stores.size());
578
579    // Finally, perform the original load only redirected to the stack slot.
580    Load = DAG.getExtLoad(LD->getExtensionType(), VT, dl, TF, StackBase,
581                          MachinePointerInfo(), LoadedVT, false, false, 0);
582
583    // Callers expect a MERGE_VALUES node.
584    SDValue Ops[] = { Load, TF };
585    return DAG.getMergeValues(Ops, 2, dl);
586  }
587  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
588         "Unaligned load of unsupported type.");
589
590  // Compute the new VT that is half the size of the old one.  This is an
591  // integer MVT.
592  unsigned NumBits = LoadedVT.getSizeInBits();
593  EVT NewLoadedVT;
594  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
595  NumBits >>= 1;
596
597  unsigned Alignment = LD->getAlignment();
598  unsigned IncrementSize = NumBits / 8;
599  ISD::LoadExtType HiExtType = LD->getExtensionType();
600
601  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
602  if (HiExtType == ISD::NON_EXTLOAD)
603    HiExtType = ISD::ZEXTLOAD;
604
605  // Load the value in two parts
606  SDValue Lo, Hi;
607  if (TLI.isLittleEndian()) {
608    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr, LD->getPointerInfo(),
609                        NewLoadedVT, LD->isVolatile(),
610                        LD->isNonTemporal(), Alignment);
611    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
612                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
613    Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr,
614                        LD->getPointerInfo().getWithOffset(IncrementSize),
615                        NewLoadedVT, LD->isVolatile(),
616                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
617  } else {
618    Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr, LD->getPointerInfo(),
619                        NewLoadedVT, LD->isVolatile(),
620                        LD->isNonTemporal(), Alignment);
621    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
622                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
623    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr,
624                        LD->getPointerInfo().getWithOffset(IncrementSize),
625                        NewLoadedVT, LD->isVolatile(),
626                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
627  }
628
629  // aggregate the two parts
630  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
631  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
632  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
633
634  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
635                             Hi.getValue(1));
636
637  SDValue Ops[] = { Result, TF };
638  return DAG.getMergeValues(Ops, 2, dl);
639}
640
641/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
642/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
643/// is necessary to spill the vector being inserted into to memory, perform
644/// the insert there, and then read the result back.
645SDValue SelectionDAGLegalize::
646PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
647                               DebugLoc dl) {
648  SDValue Tmp1 = Vec;
649  SDValue Tmp2 = Val;
650  SDValue Tmp3 = Idx;
651
652  // If the target doesn't support this, we have to spill the input vector
653  // to a temporary stack slot, update the element, then reload it.  This is
654  // badness.  We could also load the value into a vector register (either
655  // with a "move to register" or "extload into register" instruction, then
656  // permute it into place, if the idx is a constant and if the idx is
657  // supported by the target.
658  EVT VT    = Tmp1.getValueType();
659  EVT EltVT = VT.getVectorElementType();
660  EVT IdxVT = Tmp3.getValueType();
661  EVT PtrVT = TLI.getPointerTy();
662  SDValue StackPtr = DAG.CreateStackTemporary(VT);
663
664  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
665
666  // Store the vector.
667  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
668                            MachinePointerInfo::getFixedStack(SPFI),
669                            false, false, 0);
670
671  // Truncate or zero extend offset to target pointer type.
672  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
673  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
674  // Add the offset to the index.
675  unsigned EltSize = EltVT.getSizeInBits()/8;
676  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
677  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
678  // Store the scalar value.
679  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
680                         false, false, 0);
681  // Load the updated vector.
682  return DAG.getLoad(VT, dl, Ch, StackPtr,
683                     MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
684}
685
686
687SDValue SelectionDAGLegalize::
688ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
689  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
690    // SCALAR_TO_VECTOR requires that the type of the value being inserted
691    // match the element type of the vector being created, except for
692    // integers in which case the inserted value can be over width.
693    EVT EltVT = Vec.getValueType().getVectorElementType();
694    if (Val.getValueType() == EltVT ||
695        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
696      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
697                                  Vec.getValueType(), Val);
698
699      unsigned NumElts = Vec.getValueType().getVectorNumElements();
700      // We generate a shuffle of InVec and ScVec, so the shuffle mask
701      // should be 0,1,2,3,4,5... with the appropriate element replaced with
702      // elt 0 of the RHS.
703      SmallVector<int, 8> ShufOps;
704      for (unsigned i = 0; i != NumElts; ++i)
705        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
706
707      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
708                                  &ShufOps[0]);
709    }
710  }
711  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
712}
713
714SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
715  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
716  // FIXME: We shouldn't do this for TargetConstantFP's.
717  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
718  // to phase ordering between legalized code and the dag combiner.  This
719  // probably means that we need to integrate dag combiner and legalizer
720  // together.
721  // We generally can't do this one for long doubles.
722  SDValue Tmp1 = ST->getChain();
723  SDValue Tmp2 = ST->getBasePtr();
724  SDValue Tmp3;
725  int SVOffset = ST->getSrcValueOffset();
726  unsigned Alignment = ST->getAlignment();
727  bool isVolatile = ST->isVolatile();
728  bool isNonTemporal = ST->isNonTemporal();
729  DebugLoc dl = ST->getDebugLoc();
730  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
731    if (CFP->getValueType(0) == MVT::f32 &&
732        getTypeAction(MVT::i32) == Legal) {
733      Tmp3 = DAG.getConstant(CFP->getValueAPF().
734                                      bitcastToAPInt().zextOrTrunc(32),
735                              MVT::i32);
736      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
737                          SVOffset, isVolatile, isNonTemporal, Alignment);
738    } else if (CFP->getValueType(0) == MVT::f64) {
739      // If this target supports 64-bit registers, do a single 64-bit store.
740      if (getTypeAction(MVT::i64) == Legal) {
741        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
742                                  zextOrTrunc(64), MVT::i64);
743        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
744                            SVOffset, isVolatile, isNonTemporal, Alignment);
745      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
746        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
747        // stores.  If the target supports neither 32- nor 64-bits, this
748        // xform is certainly not worth it.
749        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
750        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
751        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
752        if (TLI.isBigEndian()) std::swap(Lo, Hi);
753
754        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
755                          SVOffset, isVolatile, isNonTemporal, Alignment);
756        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
757                            DAG.getIntPtrConstant(4));
758        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
759                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
760
761        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
762      }
763    }
764  }
765  return SDValue();
766}
767
768/// LegalizeOp - We know that the specified value has a legal type, and
769/// that its operands are legal.  Now ensure that the operation itself
770/// is legal, recursively ensuring that the operands' operations remain
771/// legal.
772SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
773  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
774    return Op;
775
776  SDNode *Node = Op.getNode();
777  DebugLoc dl = Node->getDebugLoc();
778
779  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
780    assert(getTypeAction(Node->getValueType(i)) == Legal &&
781           "Unexpected illegal type!");
782
783  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
784    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
785            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
786           "Unexpected illegal type!");
787
788  // Note that LegalizeOp may be reentered even from single-use nodes, which
789  // means that we always must cache transformed nodes.
790  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
791  if (I != LegalizedNodes.end()) return I->second;
792
793  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
794  SDValue Result = Op;
795  bool isCustom = false;
796
797  // Figure out the correct action; the way to query this varies by opcode
798  TargetLowering::LegalizeAction Action;
799  bool SimpleFinishLegalizing = true;
800  switch (Node->getOpcode()) {
801  case ISD::INTRINSIC_W_CHAIN:
802  case ISD::INTRINSIC_WO_CHAIN:
803  case ISD::INTRINSIC_VOID:
804  case ISD::VAARG:
805  case ISD::STACKSAVE:
806    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
807    break;
808  case ISD::SINT_TO_FP:
809  case ISD::UINT_TO_FP:
810  case ISD::EXTRACT_VECTOR_ELT:
811    Action = TLI.getOperationAction(Node->getOpcode(),
812                                    Node->getOperand(0).getValueType());
813    break;
814  case ISD::FP_ROUND_INREG:
815  case ISD::SIGN_EXTEND_INREG: {
816    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
817    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
818    break;
819  }
820  case ISD::SELECT_CC:
821  case ISD::SETCC:
822  case ISD::BR_CC: {
823    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
824                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
825    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
826    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
827    ISD::CondCode CCCode =
828        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
829    Action = TLI.getCondCodeAction(CCCode, OpVT);
830    if (Action == TargetLowering::Legal) {
831      if (Node->getOpcode() == ISD::SELECT_CC)
832        Action = TLI.getOperationAction(Node->getOpcode(),
833                                        Node->getValueType(0));
834      else
835        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
836    }
837    break;
838  }
839  case ISD::LOAD:
840  case ISD::STORE:
841    // FIXME: Model these properly.  LOAD and STORE are complicated, and
842    // STORE expects the unlegalized operand in some cases.
843    SimpleFinishLegalizing = false;
844    break;
845  case ISD::CALLSEQ_START:
846  case ISD::CALLSEQ_END:
847    // FIXME: This shouldn't be necessary.  These nodes have special properties
848    // dealing with the recursive nature of legalization.  Removing this
849    // special case should be done as part of making LegalizeDAG non-recursive.
850    SimpleFinishLegalizing = false;
851    break;
852  case ISD::EXTRACT_ELEMENT:
853  case ISD::FLT_ROUNDS_:
854  case ISD::SADDO:
855  case ISD::SSUBO:
856  case ISD::UADDO:
857  case ISD::USUBO:
858  case ISD::SMULO:
859  case ISD::UMULO:
860  case ISD::FPOWI:
861  case ISD::MERGE_VALUES:
862  case ISD::EH_RETURN:
863  case ISD::FRAME_TO_ARGS_OFFSET:
864  case ISD::EH_SJLJ_SETJMP:
865  case ISD::EH_SJLJ_LONGJMP:
866    // These operations lie about being legal: when they claim to be legal,
867    // they should actually be expanded.
868    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
869    if (Action == TargetLowering::Legal)
870      Action = TargetLowering::Expand;
871    break;
872  case ISD::TRAMPOLINE:
873  case ISD::FRAMEADDR:
874  case ISD::RETURNADDR:
875    // These operations lie about being legal: when they claim to be legal,
876    // they should actually be custom-lowered.
877    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
878    if (Action == TargetLowering::Legal)
879      Action = TargetLowering::Custom;
880    break;
881  case ISD::BUILD_VECTOR:
882    // A weird case: legalization for BUILD_VECTOR never legalizes the
883    // operands!
884    // FIXME: This really sucks... changing it isn't semantically incorrect,
885    // but it massively pessimizes the code for floating-point BUILD_VECTORs
886    // because ConstantFP operands get legalized into constant pool loads
887    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
888    // though, because BUILD_VECTORS usually get lowered into other nodes
889    // which get legalized properly.
890    SimpleFinishLegalizing = false;
891    break;
892  default:
893    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
894      Action = TargetLowering::Legal;
895    } else {
896      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
897    }
898    break;
899  }
900
901  if (SimpleFinishLegalizing) {
902    SmallVector<SDValue, 8> Ops, ResultVals;
903    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
904      Ops.push_back(LegalizeOp(Node->getOperand(i)));
905    switch (Node->getOpcode()) {
906    default: break;
907    case ISD::BR:
908    case ISD::BRIND:
909    case ISD::BR_JT:
910    case ISD::BR_CC:
911    case ISD::BRCOND:
912      // Branches tweak the chain to include LastCALLSEQ_END
913      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
914                            LastCALLSEQ_END);
915      Ops[0] = LegalizeOp(Ops[0]);
916      LastCALLSEQ_END = DAG.getEntryNode();
917      break;
918    case ISD::SHL:
919    case ISD::SRL:
920    case ISD::SRA:
921    case ISD::ROTL:
922    case ISD::ROTR:
923      // Legalizing shifts/rotates requires adjusting the shift amount
924      // to the appropriate width.
925      if (!Ops[1].getValueType().isVector())
926        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
927      break;
928    case ISD::SRL_PARTS:
929    case ISD::SRA_PARTS:
930    case ISD::SHL_PARTS:
931      // Legalizing shifts/rotates requires adjusting the shift amount
932      // to the appropriate width.
933      if (!Ops[2].getValueType().isVector())
934        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
935      break;
936    }
937
938    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
939                                            Ops.size()), 0);
940    switch (Action) {
941    case TargetLowering::Legal:
942      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
943        ResultVals.push_back(Result.getValue(i));
944      break;
945    case TargetLowering::Custom:
946      // FIXME: The handling for custom lowering with multiple results is
947      // a complete mess.
948      Tmp1 = TLI.LowerOperation(Result, DAG);
949      if (Tmp1.getNode()) {
950        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
951          if (e == 1)
952            ResultVals.push_back(Tmp1);
953          else
954            ResultVals.push_back(Tmp1.getValue(i));
955        }
956        break;
957      }
958
959      // FALL THROUGH
960    case TargetLowering::Expand:
961      ExpandNode(Result.getNode(), ResultVals);
962      break;
963    case TargetLowering::Promote:
964      PromoteNode(Result.getNode(), ResultVals);
965      break;
966    }
967    if (!ResultVals.empty()) {
968      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
969        if (ResultVals[i] != SDValue(Node, i))
970          ResultVals[i] = LegalizeOp(ResultVals[i]);
971        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
972      }
973      return ResultVals[Op.getResNo()];
974    }
975  }
976
977  switch (Node->getOpcode()) {
978  default:
979#ifndef NDEBUG
980    dbgs() << "NODE: ";
981    Node->dump( &DAG);
982    dbgs() << "\n";
983#endif
984    assert(0 && "Do not know how to legalize this operator!");
985
986  case ISD::BUILD_VECTOR:
987    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
988    default: assert(0 && "This action is not supported yet!");
989    case TargetLowering::Custom:
990      Tmp3 = TLI.LowerOperation(Result, DAG);
991      if (Tmp3.getNode()) {
992        Result = Tmp3;
993        break;
994      }
995      // FALLTHROUGH
996    case TargetLowering::Expand:
997      Result = ExpandBUILD_VECTOR(Result.getNode());
998      break;
999    }
1000    break;
1001  case ISD::CALLSEQ_START: {
1002    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1003
1004    // Recursively Legalize all of the inputs of the call end that do not lead
1005    // to this call start.  This ensures that any libcalls that need be inserted
1006    // are inserted *before* the CALLSEQ_START.
1007    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1008    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1009      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1010                                   NodesLeadingTo);
1011    }
1012
1013    // Now that we have legalized all of the inputs (which may have inserted
1014    // libcalls), create the new CALLSEQ_START node.
1015    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1016
1017    // Merge in the last call to ensure that this call starts after the last
1018    // call ended.
1019    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1020      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1021                         Tmp1, LastCALLSEQ_END);
1022      Tmp1 = LegalizeOp(Tmp1);
1023    }
1024
1025    // Do not try to legalize the target-specific arguments (#1+).
1026    if (Tmp1 != Node->getOperand(0)) {
1027      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1028      Ops[0] = Tmp1;
1029      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1030                                              Ops.size()), Result.getResNo());
1031    }
1032
1033    // Remember that the CALLSEQ_START is legalized.
1034    AddLegalizedOperand(Op.getValue(0), Result);
1035    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1036      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1037
1038    // Now that the callseq_start and all of the non-call nodes above this call
1039    // sequence have been legalized, legalize the call itself.  During this
1040    // process, no libcalls can/will be inserted, guaranteeing that no calls
1041    // can overlap.
1042    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1043    // Note that we are selecting this call!
1044    LastCALLSEQ_END = SDValue(CallEnd, 0);
1045    IsLegalizingCall = true;
1046
1047    // Legalize the call, starting from the CALLSEQ_END.
1048    LegalizeOp(LastCALLSEQ_END);
1049    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1050    return Result;
1051  }
1052  case ISD::CALLSEQ_END:
1053    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1054    // will cause this node to be legalized as well as handling libcalls right.
1055    if (LastCALLSEQ_END.getNode() != Node) {
1056      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1057      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1058      assert(I != LegalizedNodes.end() &&
1059             "Legalizing the call start should have legalized this node!");
1060      return I->second;
1061    }
1062
1063    // Otherwise, the call start has been legalized and everything is going
1064    // according to plan.  Just legalize ourselves normally here.
1065    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1066    // Do not try to legalize the target-specific arguments (#1+), except for
1067    // an optional flag input.
1068    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1069      if (Tmp1 != Node->getOperand(0)) {
1070        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1071        Ops[0] = Tmp1;
1072        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1073                                                &Ops[0], Ops.size()),
1074                         Result.getResNo());
1075      }
1076    } else {
1077      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1078      if (Tmp1 != Node->getOperand(0) ||
1079          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1080        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1081        Ops[0] = Tmp1;
1082        Ops.back() = Tmp2;
1083        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1084                                                &Ops[0], Ops.size()),
1085                         Result.getResNo());
1086      }
1087    }
1088    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1089    // This finishes up call legalization.
1090    IsLegalizingCall = false;
1091
1092    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1093    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1094    if (Node->getNumValues() == 2)
1095      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1096    return Result.getValue(Op.getResNo());
1097  case ISD::LOAD: {
1098    LoadSDNode *LD = cast<LoadSDNode>(Node);
1099    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1100    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1101
1102    ISD::LoadExtType ExtType = LD->getExtensionType();
1103    if (ExtType == ISD::NON_EXTLOAD) {
1104      EVT VT = Node->getValueType(0);
1105      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1106                                              Tmp1, Tmp2, LD->getOffset()),
1107                       Result.getResNo());
1108      Tmp3 = Result.getValue(0);
1109      Tmp4 = Result.getValue(1);
1110
1111      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1112      default: assert(0 && "This action is not supported yet!");
1113      case TargetLowering::Legal:
1114        // If this is an unaligned load and the target doesn't support it,
1115        // expand it.
1116        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1117          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1118          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1119          if (LD->getAlignment() < ABIAlignment){
1120            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1121                                         DAG, TLI);
1122            Tmp3 = Result.getOperand(0);
1123            Tmp4 = Result.getOperand(1);
1124            Tmp3 = LegalizeOp(Tmp3);
1125            Tmp4 = LegalizeOp(Tmp4);
1126          }
1127        }
1128        break;
1129      case TargetLowering::Custom:
1130        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1131        if (Tmp1.getNode()) {
1132          Tmp3 = LegalizeOp(Tmp1);
1133          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1134        }
1135        break;
1136      case TargetLowering::Promote: {
1137        // Only promote a load of vector type to another.
1138        assert(VT.isVector() && "Cannot promote this load!");
1139        // Change base type to a different vector type.
1140        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1141
1142        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
1143                           LD->isVolatile(), LD->isNonTemporal(),
1144                           LD->getAlignment());
1145        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1146        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1147        break;
1148      }
1149      }
1150      // Since loads produce two values, make sure to remember that we
1151      // legalized both of them.
1152      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1153      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1154      return Op.getResNo() ? Tmp4 : Tmp3;
1155    }
1156
1157    EVT SrcVT = LD->getMemoryVT();
1158    unsigned SrcWidth = SrcVT.getSizeInBits();
1159    unsigned Alignment = LD->getAlignment();
1160    bool isVolatile = LD->isVolatile();
1161    bool isNonTemporal = LD->isNonTemporal();
1162
1163    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1164        // Some targets pretend to have an i1 loading operation, and actually
1165        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1166        // bits are guaranteed to be zero; it helps the optimizers understand
1167        // that these bits are zero.  It is also useful for EXTLOAD, since it
1168        // tells the optimizers that those bits are undefined.  It would be
1169        // nice to have an effective generic way of getting these benefits...
1170        // Until such a way is found, don't insist on promoting i1 here.
1171        (SrcVT != MVT::i1 ||
1172         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1173      // Promote to a byte-sized load if not loading an integral number of
1174      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1175      unsigned NewWidth = SrcVT.getStoreSizeInBits();
1176      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1177      SDValue Ch;
1178
1179      // The extra bits are guaranteed to be zero, since we stored them that
1180      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1181
1182      ISD::LoadExtType NewExtType =
1183        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1184
1185      Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), dl,
1186                              Tmp1, Tmp2, LD->getPointerInfo(),
1187                              NVT, isVolatile, isNonTemporal, Alignment);
1188
1189      Ch = Result.getValue(1); // The chain.
1190
1191      if (ExtType == ISD::SEXTLOAD)
1192        // Having the top bits zero doesn't help when sign extending.
1193        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1194                             Result.getValueType(),
1195                             Result, DAG.getValueType(SrcVT));
1196      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1197        // All the top bits are guaranteed to be zero - inform the optimizers.
1198        Result = DAG.getNode(ISD::AssertZext, dl,
1199                             Result.getValueType(), Result,
1200                             DAG.getValueType(SrcVT));
1201
1202      Tmp1 = LegalizeOp(Result);
1203      Tmp2 = LegalizeOp(Ch);
1204    } else if (SrcWidth & (SrcWidth - 1)) {
1205      // If not loading a power-of-2 number of bits, expand as two loads.
1206      assert(!SrcVT.isVector() && "Unsupported extload!");
1207      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1208      assert(RoundWidth < SrcWidth);
1209      unsigned ExtraWidth = SrcWidth - RoundWidth;
1210      assert(ExtraWidth < RoundWidth);
1211      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1212             "Load size not an integral number of bytes!");
1213      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1214      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1215      SDValue Lo, Hi, Ch;
1216      unsigned IncrementSize;
1217
1218      if (TLI.isLittleEndian()) {
1219        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1220        // Load the bottom RoundWidth bits.
1221        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), dl,
1222                            Tmp1, Tmp2,
1223                            LD->getPointerInfo(), RoundVT, isVolatile,
1224                            isNonTemporal, Alignment);
1225
1226        // Load the remaining ExtraWidth bits.
1227        IncrementSize = RoundWidth / 8;
1228        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1229                           DAG.getIntPtrConstant(IncrementSize));
1230        Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1231                            LD->getPointerInfo().getWithOffset(IncrementSize),
1232                            ExtraVT, isVolatile, isNonTemporal,
1233                            MinAlign(Alignment, IncrementSize));
1234
1235        // Build a factor node to remember that this load is independent of
1236        // the other one.
1237        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1238                         Hi.getValue(1));
1239
1240        // Move the top bits to the right place.
1241        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1242                         DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1243
1244        // Join the hi and lo parts.
1245        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1246      } else {
1247        // Big endian - avoid unaligned loads.
1248        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1249        // Load the top RoundWidth bits.
1250        Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1251                            LD->getPointerInfo(), RoundVT, isVolatile,
1252                            isNonTemporal, Alignment);
1253
1254        // Load the remaining ExtraWidth bits.
1255        IncrementSize = RoundWidth / 8;
1256        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1257                           DAG.getIntPtrConstant(IncrementSize));
1258        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1259                            Node->getValueType(0), dl, Tmp1, Tmp2,
1260                            LD->getPointerInfo().getWithOffset(IncrementSize),
1261                            ExtraVT, isVolatile, isNonTemporal,
1262                            MinAlign(Alignment, IncrementSize));
1263
1264        // Build a factor node to remember that this load is independent of
1265        // the other one.
1266        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1267                         Hi.getValue(1));
1268
1269        // Move the top bits to the right place.
1270        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1271                         DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1272
1273        // Join the hi and lo parts.
1274        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1275      }
1276
1277      Tmp1 = LegalizeOp(Result);
1278      Tmp2 = LegalizeOp(Ch);
1279    } else {
1280      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1281      default: assert(0 && "This action is not supported yet!");
1282      case TargetLowering::Custom:
1283        isCustom = true;
1284        // FALLTHROUGH
1285      case TargetLowering::Legal:
1286        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1287                                                Tmp1, Tmp2, LD->getOffset()),
1288                         Result.getResNo());
1289        Tmp1 = Result.getValue(0);
1290        Tmp2 = Result.getValue(1);
1291
1292        if (isCustom) {
1293          Tmp3 = TLI.LowerOperation(Result, DAG);
1294          if (Tmp3.getNode()) {
1295            Tmp1 = LegalizeOp(Tmp3);
1296            Tmp2 = LegalizeOp(Tmp3.getValue(1));
1297          }
1298        } else {
1299          // If this is an unaligned load and the target doesn't support it,
1300          // expand it.
1301          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1302            const Type *Ty =
1303              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1304            unsigned ABIAlignment =
1305              TLI.getTargetData()->getABITypeAlignment(Ty);
1306            if (LD->getAlignment() < ABIAlignment){
1307              Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1308                                           DAG, TLI);
1309              Tmp1 = Result.getOperand(0);
1310              Tmp2 = Result.getOperand(1);
1311              Tmp1 = LegalizeOp(Tmp1);
1312              Tmp2 = LegalizeOp(Tmp2);
1313            }
1314          }
1315        }
1316        break;
1317      case TargetLowering::Expand:
1318        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && isTypeLegal(SrcVT)) {
1319          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1320                                     LD->getPointerInfo(),
1321                                     LD->isVolatile(), LD->isNonTemporal(),
1322                                     LD->getAlignment());
1323          unsigned ExtendOp;
1324          switch (ExtType) {
1325          case ISD::EXTLOAD:
1326            ExtendOp = (SrcVT.isFloatingPoint() ?
1327                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1328            break;
1329          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1330          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1331          default: llvm_unreachable("Unexpected extend load type!");
1332          }
1333          Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1334          Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1335          Tmp2 = LegalizeOp(Load.getValue(1));
1336          break;
1337        }
1338        // FIXME: This does not work for vectors on most targets.  Sign- and
1339        // zero-extend operations are currently folded into extending loads,
1340        // whether they are legal or not, and then we end up here without any
1341        // support for legalizing them.
1342        assert(ExtType != ISD::EXTLOAD &&
1343               "EXTLOAD should always be supported!");
1344        // Turn the unsupported load into an EXTLOAD followed by an explicit
1345        // zero/sign extend inreg.
1346        Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), dl,
1347                                Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1348                                LD->isVolatile(), LD->isNonTemporal(),
1349                                LD->getAlignment());
1350        SDValue ValRes;
1351        if (ExtType == ISD::SEXTLOAD)
1352          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1353                               Result.getValueType(),
1354                               Result, DAG.getValueType(SrcVT));
1355        else
1356          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1357        Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1358        Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1359        break;
1360      }
1361    }
1362
1363    // Since loads produce two values, make sure to remember that we legalized
1364    // both of them.
1365    AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1366    AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1367    return Op.getResNo() ? Tmp2 : Tmp1;
1368  }
1369  case ISD::STORE: {
1370    StoreSDNode *ST = cast<StoreSDNode>(Node);
1371    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1372    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1373    int SVOffset = ST->getSrcValueOffset();
1374    unsigned Alignment = ST->getAlignment();
1375    bool isVolatile = ST->isVolatile();
1376    bool isNonTemporal = ST->isNonTemporal();
1377
1378    if (!ST->isTruncatingStore()) {
1379      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1380        Result = SDValue(OptStore, 0);
1381        break;
1382      }
1383
1384      {
1385        Tmp3 = LegalizeOp(ST->getValue());
1386        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1387                                                Tmp1, Tmp3, Tmp2,
1388                                                ST->getOffset()),
1389                         Result.getResNo());
1390
1391        EVT VT = Tmp3.getValueType();
1392        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1393        default: assert(0 && "This action is not supported yet!");
1394        case TargetLowering::Legal:
1395          // If this is an unaligned store and the target doesn't support it,
1396          // expand it.
1397          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1398            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1399            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1400            if (ST->getAlignment() < ABIAlignment)
1401              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1402                                            DAG, TLI);
1403          }
1404          break;
1405        case TargetLowering::Custom:
1406          Tmp1 = TLI.LowerOperation(Result, DAG);
1407          if (Tmp1.getNode()) Result = Tmp1;
1408          break;
1409        case TargetLowering::Promote:
1410          assert(VT.isVector() && "Unknown legal promote case!");
1411          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1412                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1413          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1414                                ST->getSrcValue(), SVOffset, isVolatile,
1415                                isNonTemporal, Alignment);
1416          break;
1417        }
1418        break;
1419      }
1420    } else {
1421      Tmp3 = LegalizeOp(ST->getValue());
1422
1423      EVT StVT = ST->getMemoryVT();
1424      unsigned StWidth = StVT.getSizeInBits();
1425
1426      if (StWidth != StVT.getStoreSizeInBits()) {
1427        // Promote to a byte-sized store with upper bits zero if not
1428        // storing an integral number of bytes.  For example, promote
1429        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1430        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1431                                    StVT.getStoreSizeInBits());
1432        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1433        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1434                                   SVOffset, NVT, isVolatile, isNonTemporal,
1435                                   Alignment);
1436      } else if (StWidth & (StWidth - 1)) {
1437        // If not storing a power-of-2 number of bits, expand as two stores.
1438        assert(!StVT.isVector() && "Unsupported truncstore!");
1439        unsigned RoundWidth = 1 << Log2_32(StWidth);
1440        assert(RoundWidth < StWidth);
1441        unsigned ExtraWidth = StWidth - RoundWidth;
1442        assert(ExtraWidth < RoundWidth);
1443        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1444               "Store size not an integral number of bytes!");
1445        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1446        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1447        SDValue Lo, Hi;
1448        unsigned IncrementSize;
1449
1450        if (TLI.isLittleEndian()) {
1451          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1452          // Store the bottom RoundWidth bits.
1453          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1454                                 SVOffset, RoundVT,
1455                                 isVolatile, isNonTemporal, Alignment);
1456
1457          // Store the remaining ExtraWidth bits.
1458          IncrementSize = RoundWidth / 8;
1459          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1460                             DAG.getIntPtrConstant(IncrementSize));
1461          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1462                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1463          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1464                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1465                                 isNonTemporal,
1466                                 MinAlign(Alignment, IncrementSize));
1467        } else {
1468          // Big endian - avoid unaligned stores.
1469          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1470          // Store the top RoundWidth bits.
1471          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1472                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1473          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1474                                 SVOffset, RoundVT, isVolatile, isNonTemporal,
1475                                 Alignment);
1476
1477          // Store the remaining ExtraWidth bits.
1478          IncrementSize = RoundWidth / 8;
1479          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1480                             DAG.getIntPtrConstant(IncrementSize));
1481          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1482                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1483                                 isNonTemporal,
1484                                 MinAlign(Alignment, IncrementSize));
1485        }
1486
1487        // The order of the stores doesn't matter.
1488        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1489      } else {
1490        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1491            Tmp2 != ST->getBasePtr())
1492          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1493                                                  Tmp1, Tmp3, Tmp2,
1494                                                  ST->getOffset()),
1495                           Result.getResNo());
1496
1497        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1498        default: assert(0 && "This action is not supported yet!");
1499        case TargetLowering::Legal:
1500          // If this is an unaligned store and the target doesn't support it,
1501          // expand it.
1502          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1503            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1504            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1505            if (ST->getAlignment() < ABIAlignment)
1506              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1507                                            DAG, TLI);
1508          }
1509          break;
1510        case TargetLowering::Custom:
1511          Result = TLI.LowerOperation(Result, DAG);
1512          break;
1513        case Expand:
1514          // TRUNCSTORE:i16 i32 -> STORE i16
1515          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1516          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1517          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1518                                SVOffset, isVolatile, isNonTemporal,
1519                                Alignment);
1520          break;
1521        }
1522      }
1523    }
1524    break;
1525  }
1526  }
1527  assert(Result.getValueType() == Op.getValueType() &&
1528         "Bad legalization!");
1529
1530  // Make sure that the generated code is itself legal.
1531  if (Result != Op)
1532    Result = LegalizeOp(Result);
1533
1534  // Note that LegalizeOp may be reentered even from single-use nodes, which
1535  // means that we always must cache transformed nodes.
1536  AddLegalizedOperand(Op, Result);
1537  return Result;
1538}
1539
1540SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1541  SDValue Vec = Op.getOperand(0);
1542  SDValue Idx = Op.getOperand(1);
1543  DebugLoc dl = Op.getDebugLoc();
1544  // Store the value to a temporary stack slot, then LOAD the returned part.
1545  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1546  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1547                            false, false, 0);
1548
1549  // Add the offset to the index.
1550  unsigned EltSize =
1551      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1552  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1553                    DAG.getConstant(EltSize, Idx.getValueType()));
1554
1555  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1556    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1557  else
1558    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1559
1560  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1561
1562  if (Op.getValueType().isVector())
1563    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1564                       false, false, 0);
1565  return DAG.getExtLoad(ISD::EXTLOAD, Op.getValueType(), dl, Ch, StackPtr,
1566                        MachinePointerInfo(),
1567                        Vec.getValueType().getVectorElementType(),
1568                        false, false, 0);
1569}
1570
1571SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1572  // We can't handle this case efficiently.  Allocate a sufficiently
1573  // aligned object on the stack, store each element into it, then load
1574  // the result as a vector.
1575  // Create the stack frame object.
1576  EVT VT = Node->getValueType(0);
1577  EVT EltVT = VT.getVectorElementType();
1578  DebugLoc dl = Node->getDebugLoc();
1579  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1580  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1581  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1582
1583  // Emit a store of each element to the stack slot.
1584  SmallVector<SDValue, 8> Stores;
1585  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1586  // Store (in the right endianness) the elements to memory.
1587  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1588    // Ignore undef elements.
1589    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1590
1591    unsigned Offset = TypeByteSize*i;
1592
1593    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1594    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1595
1596    // If the destination vector element type is narrower than the source
1597    // element type, only store the bits necessary.
1598    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1599      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1600                                         Node->getOperand(i), Idx,
1601                                         PtrInfo.getWithOffset(Offset),
1602                                         EltVT, false, false, 0));
1603    } else
1604      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1605                                    Node->getOperand(i), Idx,
1606                                    PtrInfo.getWithOffset(Offset),
1607                                    false, false, 0));
1608  }
1609
1610  SDValue StoreChain;
1611  if (!Stores.empty())    // Not all undef elements?
1612    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1613                             &Stores[0], Stores.size());
1614  else
1615    StoreChain = DAG.getEntryNode();
1616
1617  // Result is a load from the stack slot.
1618  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1619}
1620
1621SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1622  DebugLoc dl = Node->getDebugLoc();
1623  SDValue Tmp1 = Node->getOperand(0);
1624  SDValue Tmp2 = Node->getOperand(1);
1625
1626  // Get the sign bit of the RHS.  First obtain a value that has the same
1627  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1628  SDValue SignBit;
1629  EVT FloatVT = Tmp2.getValueType();
1630  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1631  if (isTypeLegal(IVT)) {
1632    // Convert to an integer with the same sign bit.
1633    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1634  } else {
1635    // Store the float to memory, then load the sign part out as an integer.
1636    MVT LoadTy = TLI.getPointerTy();
1637    // First create a temporary that is aligned for both the load and store.
1638    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1639    // Then store the float to it.
1640    SDValue Ch =
1641      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1642                   false, false, 0);
1643    if (TLI.isBigEndian()) {
1644      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1645      // Load out a legal integer with the same sign bit as the float.
1646      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1647                            false, false, 0);
1648    } else { // Little endian
1649      SDValue LoadPtr = StackPtr;
1650      // The float may be wider than the integer we are going to load.  Advance
1651      // the pointer so that the loaded integer will contain the sign bit.
1652      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1653      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1654      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1655                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1656      // Load a legal integer containing the sign bit.
1657      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1658                            false, false, 0);
1659      // Move the sign bit to the top bit of the loaded integer.
1660      unsigned BitShift = LoadTy.getSizeInBits() -
1661        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1662      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1663      if (BitShift)
1664        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1665                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1666    }
1667  }
1668  // Now get the sign bit proper, by seeing whether the value is negative.
1669  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1670                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1671                         ISD::SETLT);
1672  // Get the absolute value of the result.
1673  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1674  // Select between the nabs and abs value based on the sign bit of
1675  // the input.
1676  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1677                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1678                     AbsVal);
1679}
1680
1681void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1682                                           SmallVectorImpl<SDValue> &Results) {
1683  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1684  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1685          " not tell us which reg is the stack pointer!");
1686  DebugLoc dl = Node->getDebugLoc();
1687  EVT VT = Node->getValueType(0);
1688  SDValue Tmp1 = SDValue(Node, 0);
1689  SDValue Tmp2 = SDValue(Node, 1);
1690  SDValue Tmp3 = Node->getOperand(2);
1691  SDValue Chain = Tmp1.getOperand(0);
1692
1693  // Chain the dynamic stack allocation so that it doesn't modify the stack
1694  // pointer when other instructions are using the stack.
1695  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1696
1697  SDValue Size  = Tmp2.getOperand(1);
1698  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1699  Chain = SP.getValue(1);
1700  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1701  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1702  if (Align > StackAlign)
1703    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1704                      DAG.getConstant(-(uint64_t)Align, VT));
1705  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1706  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1707
1708  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1709                            DAG.getIntPtrConstant(0, true), SDValue());
1710
1711  Results.push_back(Tmp1);
1712  Results.push_back(Tmp2);
1713}
1714
1715/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1716/// condition code CC on the current target. This routine expands SETCC with
1717/// illegal condition code into AND / OR of multiple SETCC values.
1718void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1719                                                 SDValue &LHS, SDValue &RHS,
1720                                                 SDValue &CC,
1721                                                 DebugLoc dl) {
1722  EVT OpVT = LHS.getValueType();
1723  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1724  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1725  default: assert(0 && "Unknown condition code action!");
1726  case TargetLowering::Legal:
1727    // Nothing to do.
1728    break;
1729  case TargetLowering::Expand: {
1730    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1731    unsigned Opc = 0;
1732    switch (CCCode) {
1733    default: assert(0 && "Don't know how to expand this condition!");
1734    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1735    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1736    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1737    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1738    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1739    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1740    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1741    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1742    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1743    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1744    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1745    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1746    // FIXME: Implement more expansions.
1747    }
1748
1749    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1750    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1751    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1752    RHS = SDValue();
1753    CC  = SDValue();
1754    break;
1755  }
1756  }
1757}
1758
1759/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1760/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1761/// a load from the stack slot to DestVT, extending it if needed.
1762/// The resultant code need not be legal.
1763SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1764                                               EVT SlotVT,
1765                                               EVT DestVT,
1766                                               DebugLoc dl) {
1767  // Create the stack frame object.
1768  unsigned SrcAlign =
1769    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1770                                              getTypeForEVT(*DAG.getContext()));
1771  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1772
1773  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1774  int SPFI = StackPtrFI->getIndex();
1775  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1776
1777  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1778  unsigned SlotSize = SlotVT.getSizeInBits();
1779  unsigned DestSize = DestVT.getSizeInBits();
1780  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1781  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1782
1783  // Emit a store to the stack slot.  Use a truncstore if the input value is
1784  // later than DestVT.
1785  SDValue Store;
1786
1787  if (SrcSize > SlotSize)
1788    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1789                              SV, 0, SlotVT, false, false, SrcAlign);
1790  else {
1791    assert(SrcSize == SlotSize && "Invalid store");
1792    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1793                         SV, 0, false, false, SrcAlign);
1794  }
1795
1796  // Result is a load from the stack slot.
1797  if (SlotSize == DestSize)
1798    return DAG.getLoad(DestVT, dl, Store, FIPtr, MachinePointerInfo(SV),
1799                       false, false, DestAlign);
1800
1801  assert(SlotSize < DestSize && "Unknown extension!");
1802  return DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl, Store, FIPtr,
1803                        MachinePointerInfo(SV), SlotVT,
1804                        false, false, DestAlign);
1805}
1806
1807SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1808  DebugLoc dl = Node->getDebugLoc();
1809  // Create a vector sized/aligned stack slot, store the value to element #0,
1810  // then load the whole vector back out.
1811  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1812
1813  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1814  int SPFI = StackPtrFI->getIndex();
1815
1816  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1817                                 StackPtr,
1818                                 MachinePointerInfo::getFixedStack(SPFI),
1819                                 Node->getValueType(0).getVectorElementType(),
1820                                 false, false, 0);
1821  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1822                     MachinePointerInfo::getFixedStack(SPFI),
1823                     false, false, 0);
1824}
1825
1826
1827/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1828/// support the operation, but do support the resultant vector type.
1829SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1830  unsigned NumElems = Node->getNumOperands();
1831  SDValue Value1, Value2;
1832  DebugLoc dl = Node->getDebugLoc();
1833  EVT VT = Node->getValueType(0);
1834  EVT OpVT = Node->getOperand(0).getValueType();
1835  EVT EltVT = VT.getVectorElementType();
1836
1837  // If the only non-undef value is the low element, turn this into a
1838  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1839  bool isOnlyLowElement = true;
1840  bool MoreThanTwoValues = false;
1841  bool isConstant = true;
1842  for (unsigned i = 0; i < NumElems; ++i) {
1843    SDValue V = Node->getOperand(i);
1844    if (V.getOpcode() == ISD::UNDEF)
1845      continue;
1846    if (i > 0)
1847      isOnlyLowElement = false;
1848    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1849      isConstant = false;
1850
1851    if (!Value1.getNode()) {
1852      Value1 = V;
1853    } else if (!Value2.getNode()) {
1854      if (V != Value1)
1855        Value2 = V;
1856    } else if (V != Value1 && V != Value2) {
1857      MoreThanTwoValues = true;
1858    }
1859  }
1860
1861  if (!Value1.getNode())
1862    return DAG.getUNDEF(VT);
1863
1864  if (isOnlyLowElement)
1865    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1866
1867  // If all elements are constants, create a load from the constant pool.
1868  if (isConstant) {
1869    std::vector<Constant*> CV;
1870    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1871      if (ConstantFPSDNode *V =
1872          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1873        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1874      } else if (ConstantSDNode *V =
1875                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1876        if (OpVT==EltVT)
1877          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1878        else {
1879          // If OpVT and EltVT don't match, EltVT is not legal and the
1880          // element values have been promoted/truncated earlier.  Undo this;
1881          // we don't want a v16i8 to become a v16i32 for example.
1882          const ConstantInt *CI = V->getConstantIntValue();
1883          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1884                                        CI->getZExtValue()));
1885        }
1886      } else {
1887        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1888        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1889        CV.push_back(UndefValue::get(OpNTy));
1890      }
1891    }
1892    Constant *CP = ConstantVector::get(CV);
1893    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1894    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1895    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1896                       MachinePointerInfo::getConstantPool(),
1897                       false, false, Alignment);
1898  }
1899
1900  if (!MoreThanTwoValues) {
1901    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1902    for (unsigned i = 0; i < NumElems; ++i) {
1903      SDValue V = Node->getOperand(i);
1904      if (V.getOpcode() == ISD::UNDEF)
1905        continue;
1906      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1907    }
1908    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1909      // Get the splatted value into the low element of a vector register.
1910      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1911      SDValue Vec2;
1912      if (Value2.getNode())
1913        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1914      else
1915        Vec2 = DAG.getUNDEF(VT);
1916
1917      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1918      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1919    }
1920  }
1921
1922  // Otherwise, we can't handle this case efficiently.
1923  return ExpandVectorBuildThroughStack(Node);
1924}
1925
1926// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1927// does not fit into a register, return the lo part and set the hi part to the
1928// by-reg argument.  If it does fit into a single register, return the result
1929// and leave the Hi part unset.
1930SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1931                                            bool isSigned) {
1932  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1933  // The input chain to this libcall is the entry node of the function.
1934  // Legalizing the call will automatically add the previous call to the
1935  // dependence.
1936  SDValue InChain = DAG.getEntryNode();
1937
1938  TargetLowering::ArgListTy Args;
1939  TargetLowering::ArgListEntry Entry;
1940  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1941    EVT ArgVT = Node->getOperand(i).getValueType();
1942    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1943    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1944    Entry.isSExt = isSigned;
1945    Entry.isZExt = !isSigned;
1946    Args.push_back(Entry);
1947  }
1948  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1949                                         TLI.getPointerTy());
1950
1951  // Splice the libcall in wherever FindInputOutputChains tells us to.
1952  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1953  std::pair<SDValue, SDValue> CallInfo =
1954    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1955                    0, TLI.getLibcallCallingConv(LC), false,
1956                    /*isReturnValueUsed=*/true,
1957                    Callee, Args, DAG, Node->getDebugLoc());
1958
1959  // Legalize the call sequence, starting with the chain.  This will advance
1960  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1961  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1962  LegalizeOp(CallInfo.second);
1963  return CallInfo.first;
1964}
1965
1966// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1967// ExpandLibCall except that the first operand is the in-chain.
1968std::pair<SDValue, SDValue>
1969SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1970                                         SDNode *Node,
1971                                         bool isSigned) {
1972  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1973  SDValue InChain = Node->getOperand(0);
1974
1975  TargetLowering::ArgListTy Args;
1976  TargetLowering::ArgListEntry Entry;
1977  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1978    EVT ArgVT = Node->getOperand(i).getValueType();
1979    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1980    Entry.Node = Node->getOperand(i);
1981    Entry.Ty = ArgTy;
1982    Entry.isSExt = isSigned;
1983    Entry.isZExt = !isSigned;
1984    Args.push_back(Entry);
1985  }
1986  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1987                                         TLI.getPointerTy());
1988
1989  // Splice the libcall in wherever FindInputOutputChains tells us to.
1990  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1991  std::pair<SDValue, SDValue> CallInfo =
1992    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1993                    0, TLI.getLibcallCallingConv(LC), false,
1994                    /*isReturnValueUsed=*/true,
1995                    Callee, Args, DAG, Node->getDebugLoc());
1996
1997  // Legalize the call sequence, starting with the chain.  This will advance
1998  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1999  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2000  LegalizeOp(CallInfo.second);
2001  return CallInfo;
2002}
2003
2004SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2005                                              RTLIB::Libcall Call_F32,
2006                                              RTLIB::Libcall Call_F64,
2007                                              RTLIB::Libcall Call_F80,
2008                                              RTLIB::Libcall Call_PPCF128) {
2009  RTLIB::Libcall LC;
2010  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2011  default: assert(0 && "Unexpected request for libcall!");
2012  case MVT::f32: LC = Call_F32; break;
2013  case MVT::f64: LC = Call_F64; break;
2014  case MVT::f80: LC = Call_F80; break;
2015  case MVT::ppcf128: LC = Call_PPCF128; break;
2016  }
2017  return ExpandLibCall(LC, Node, false);
2018}
2019
2020SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2021                                               RTLIB::Libcall Call_I8,
2022                                               RTLIB::Libcall Call_I16,
2023                                               RTLIB::Libcall Call_I32,
2024                                               RTLIB::Libcall Call_I64,
2025                                               RTLIB::Libcall Call_I128) {
2026  RTLIB::Libcall LC;
2027  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2028  default: assert(0 && "Unexpected request for libcall!");
2029  case MVT::i8:   LC = Call_I8; break;
2030  case MVT::i16:  LC = Call_I16; break;
2031  case MVT::i32:  LC = Call_I32; break;
2032  case MVT::i64:  LC = Call_I64; break;
2033  case MVT::i128: LC = Call_I128; break;
2034  }
2035  return ExpandLibCall(LC, Node, isSigned);
2036}
2037
2038/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2039/// INT_TO_FP operation of the specified operand when the target requests that
2040/// we expand it.  At this point, we know that the result and operand types are
2041/// legal for the target.
2042SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2043                                                   SDValue Op0,
2044                                                   EVT DestVT,
2045                                                   DebugLoc dl) {
2046  if (Op0.getValueType() == MVT::i32) {
2047    // simple 32-bit [signed|unsigned] integer to float/double expansion
2048
2049    // Get the stack frame index of a 8 byte buffer.
2050    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2051
2052    // word offset constant for Hi/Lo address computation
2053    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2054    // set up Hi and Lo (into buffer) address based on endian
2055    SDValue Hi = StackSlot;
2056    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2057                             TLI.getPointerTy(), StackSlot, WordOff);
2058    if (TLI.isLittleEndian())
2059      std::swap(Hi, Lo);
2060
2061    // if signed map to unsigned space
2062    SDValue Op0Mapped;
2063    if (isSigned) {
2064      // constant used to invert sign bit (signed to unsigned mapping)
2065      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2066      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2067    } else {
2068      Op0Mapped = Op0;
2069    }
2070    // store the lo of the constructed double - based on integer input
2071    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2072                                  Op0Mapped, Lo, NULL, 0,
2073                                  false, false, 0);
2074    // initial hi portion of constructed double
2075    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2076    // store the hi of the constructed double - biased exponent
2077    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
2078                                false, false, 0);
2079    // load the constructed double
2080    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2081                               MachinePointerInfo(), false, false, 0);
2082    // FP constant to bias correct the final result
2083    SDValue Bias = DAG.getConstantFP(isSigned ?
2084                                     BitsToDouble(0x4330000080000000ULL) :
2085                                     BitsToDouble(0x4330000000000000ULL),
2086                                     MVT::f64);
2087    // subtract the bias
2088    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2089    // final result
2090    SDValue Result;
2091    // handle final rounding
2092    if (DestVT == MVT::f64) {
2093      // do nothing
2094      Result = Sub;
2095    } else if (DestVT.bitsLT(MVT::f64)) {
2096      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2097                           DAG.getIntPtrConstant(0));
2098    } else if (DestVT.bitsGT(MVT::f64)) {
2099      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2100    }
2101    return Result;
2102  }
2103  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2104  // Code below here assumes !isSigned without checking again.
2105
2106  // Implementation of unsigned i64 to f64 following the algorithm in
2107  // __floatundidf in compiler_rt. This implementation has the advantage
2108  // of performing rounding correctly, both in the default rounding mode
2109  // and in all alternate rounding modes.
2110  // TODO: Generalize this for use with other types.
2111  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2112    SDValue TwoP52 =
2113      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2114    SDValue TwoP84PlusTwoP52 =
2115      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2116    SDValue TwoP84 =
2117      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2118
2119    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2120    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2121                             DAG.getConstant(32, MVT::i64));
2122    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2123    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2124    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2125    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2126    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2127                                TwoP84PlusTwoP52);
2128    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2129  }
2130
2131  // Implementation of unsigned i64 to f32.  This implementation has the
2132  // advantage of performing rounding correctly.
2133  // TODO: Generalize this for use with other types.
2134  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2135    EVT SHVT = TLI.getShiftAmountTy();
2136
2137    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2138         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2139    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2140         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2141    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2142         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2143    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2144                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2145    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2146    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2147                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2148                    ISD::SETUGE);
2149    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2150
2151    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2152                             DAG.getConstant(32, SHVT));
2153    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2154    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2155    SDValue TwoP32 =
2156      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2157    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2158    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2159    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2160    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2161    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2162                       DAG.getIntPtrConstant(0));
2163
2164  }
2165
2166  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2167
2168  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2169                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2170                                 ISD::SETLT);
2171  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2172  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2173                                    SignSet, Four, Zero);
2174
2175  // If the sign bit of the integer is set, the large number will be treated
2176  // as a negative number.  To counteract this, the dynamic code adds an
2177  // offset depending on the data type.
2178  uint64_t FF;
2179  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2180  default: assert(0 && "Unsupported integer type!");
2181  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2182  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2183  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2184  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2185  }
2186  if (TLI.isLittleEndian()) FF <<= 32;
2187  Constant *FudgeFactor = ConstantInt::get(
2188                                       Type::getInt64Ty(*DAG.getContext()), FF);
2189
2190  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2191  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2192  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2193  Alignment = std::min(Alignment, 4u);
2194  SDValue FudgeInReg;
2195  if (DestVT == MVT::f32)
2196    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2197                             MachinePointerInfo::getConstantPool(),
2198                             false, false, Alignment);
2199  else {
2200    FudgeInReg =
2201      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl,
2202                                DAG.getEntryNode(), CPIdx,
2203                                MachinePointerInfo::getConstantPool(),
2204                                MVT::f32, false, false, Alignment));
2205  }
2206
2207  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2208}
2209
2210/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2211/// *INT_TO_FP operation of the specified operand when the target requests that
2212/// we promote it.  At this point, we know that the result and operand types are
2213/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2214/// operation that takes a larger input.
2215SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2216                                                    EVT DestVT,
2217                                                    bool isSigned,
2218                                                    DebugLoc dl) {
2219  // First step, figure out the appropriate *INT_TO_FP operation to use.
2220  EVT NewInTy = LegalOp.getValueType();
2221
2222  unsigned OpToUse = 0;
2223
2224  // Scan for the appropriate larger type to use.
2225  while (1) {
2226    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2227    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2228
2229    // If the target supports SINT_TO_FP of this type, use it.
2230    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2231      OpToUse = ISD::SINT_TO_FP;
2232      break;
2233    }
2234    if (isSigned) continue;
2235
2236    // If the target supports UINT_TO_FP of this type, use it.
2237    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2238      OpToUse = ISD::UINT_TO_FP;
2239      break;
2240    }
2241
2242    // Otherwise, try a larger type.
2243  }
2244
2245  // Okay, we found the operation and type to use.  Zero extend our input to the
2246  // desired type then run the operation on it.
2247  return DAG.getNode(OpToUse, dl, DestVT,
2248                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2249                                 dl, NewInTy, LegalOp));
2250}
2251
2252/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2253/// FP_TO_*INT operation of the specified operand when the target requests that
2254/// we promote it.  At this point, we know that the result and operand types are
2255/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2256/// operation that returns a larger result.
2257SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2258                                                    EVT DestVT,
2259                                                    bool isSigned,
2260                                                    DebugLoc dl) {
2261  // First step, figure out the appropriate FP_TO*INT operation to use.
2262  EVT NewOutTy = DestVT;
2263
2264  unsigned OpToUse = 0;
2265
2266  // Scan for the appropriate larger type to use.
2267  while (1) {
2268    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2269    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2270
2271    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2272      OpToUse = ISD::FP_TO_SINT;
2273      break;
2274    }
2275
2276    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2277      OpToUse = ISD::FP_TO_UINT;
2278      break;
2279    }
2280
2281    // Otherwise, try a larger type.
2282  }
2283
2284
2285  // Okay, we found the operation and type to use.
2286  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2287
2288  // Truncate the result of the extended FP_TO_*INT operation to the desired
2289  // size.
2290  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2291}
2292
2293/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2294///
2295SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2296  EVT VT = Op.getValueType();
2297  EVT SHVT = TLI.getShiftAmountTy();
2298  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2299  switch (VT.getSimpleVT().SimpleTy) {
2300  default: assert(0 && "Unhandled Expand type in BSWAP!");
2301  case MVT::i16:
2302    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2303    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2304    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2305  case MVT::i32:
2306    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2307    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2308    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2309    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2310    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2311    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2312    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2313    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2314    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2315  case MVT::i64:
2316    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2317    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2318    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2319    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2320    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2321    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2322    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2323    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2324    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2325    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2326    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2327    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2328    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2329    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2330    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2331    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2332    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2333    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2334    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2335    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2336    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2337  }
2338}
2339
2340/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2341///
2342SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2343                                             DebugLoc dl) {
2344  switch (Opc) {
2345  default: assert(0 && "Cannot expand this yet!");
2346  case ISD::CTPOP: {
2347    static const uint64_t mask[6] = {
2348      0x5555555555555555ULL, 0x3333333333333333ULL,
2349      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2350      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2351    };
2352    EVT VT = Op.getValueType();
2353    EVT ShVT = TLI.getShiftAmountTy();
2354    unsigned len = VT.getSizeInBits();
2355    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2356      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2357      unsigned EltSize = VT.isVector() ?
2358        VT.getVectorElementType().getSizeInBits() : len;
2359      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2360      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2361      Op = DAG.getNode(ISD::ADD, dl, VT,
2362                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2363                       DAG.getNode(ISD::AND, dl, VT,
2364                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2365                                   Tmp2));
2366    }
2367    return Op;
2368  }
2369  case ISD::CTLZ: {
2370    // for now, we do this:
2371    // x = x | (x >> 1);
2372    // x = x | (x >> 2);
2373    // ...
2374    // x = x | (x >>16);
2375    // x = x | (x >>32); // for 64-bit input
2376    // return popcount(~x);
2377    //
2378    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2379    EVT VT = Op.getValueType();
2380    EVT ShVT = TLI.getShiftAmountTy();
2381    unsigned len = VT.getSizeInBits();
2382    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2383      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2384      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2385                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2386    }
2387    Op = DAG.getNOT(dl, Op, VT);
2388    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2389  }
2390  case ISD::CTTZ: {
2391    // for now, we use: { return popcount(~x & (x - 1)); }
2392    // unless the target has ctlz but not ctpop, in which case we use:
2393    // { return 32 - nlz(~x & (x-1)); }
2394    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2395    EVT VT = Op.getValueType();
2396    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2397                               DAG.getNOT(dl, Op, VT),
2398                               DAG.getNode(ISD::SUB, dl, VT, Op,
2399                                           DAG.getConstant(1, VT)));
2400    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2401    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2402        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2403      return DAG.getNode(ISD::SUB, dl, VT,
2404                         DAG.getConstant(VT.getSizeInBits(), VT),
2405                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2406    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2407  }
2408  }
2409}
2410
2411std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2412  unsigned Opc = Node->getOpcode();
2413  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2414  RTLIB::Libcall LC;
2415
2416  switch (Opc) {
2417  default:
2418    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2419    break;
2420  case ISD::ATOMIC_SWAP:
2421    switch (VT.SimpleTy) {
2422    default: llvm_unreachable("Unexpected value type for atomic!");
2423    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2424    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2425    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2426    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2427    }
2428    break;
2429  case ISD::ATOMIC_CMP_SWAP:
2430    switch (VT.SimpleTy) {
2431    default: llvm_unreachable("Unexpected value type for atomic!");
2432    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2433    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2434    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2435    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2436    }
2437    break;
2438  case ISD::ATOMIC_LOAD_ADD:
2439    switch (VT.SimpleTy) {
2440    default: llvm_unreachable("Unexpected value type for atomic!");
2441    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2442    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2443    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2444    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2445    }
2446    break;
2447  case ISD::ATOMIC_LOAD_SUB:
2448    switch (VT.SimpleTy) {
2449    default: llvm_unreachable("Unexpected value type for atomic!");
2450    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2451    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2452    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2453    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2454    }
2455    break;
2456  case ISD::ATOMIC_LOAD_AND:
2457    switch (VT.SimpleTy) {
2458    default: llvm_unreachable("Unexpected value type for atomic!");
2459    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2460    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2461    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2462    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2463    }
2464    break;
2465  case ISD::ATOMIC_LOAD_OR:
2466    switch (VT.SimpleTy) {
2467    default: llvm_unreachable("Unexpected value type for atomic!");
2468    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2469    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2470    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2471    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2472    }
2473    break;
2474  case ISD::ATOMIC_LOAD_XOR:
2475    switch (VT.SimpleTy) {
2476    default: llvm_unreachable("Unexpected value type for atomic!");
2477    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2478    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2479    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2480    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2481    }
2482    break;
2483  case ISD::ATOMIC_LOAD_NAND:
2484    switch (VT.SimpleTy) {
2485    default: llvm_unreachable("Unexpected value type for atomic!");
2486    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2487    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2488    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2489    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2490    }
2491    break;
2492  }
2493
2494  return ExpandChainLibCall(LC, Node, false);
2495}
2496
2497void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2498                                      SmallVectorImpl<SDValue> &Results) {
2499  DebugLoc dl = Node->getDebugLoc();
2500  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2501  switch (Node->getOpcode()) {
2502  case ISD::CTPOP:
2503  case ISD::CTLZ:
2504  case ISD::CTTZ:
2505    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2506    Results.push_back(Tmp1);
2507    break;
2508  case ISD::BSWAP:
2509    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2510    break;
2511  case ISD::FRAMEADDR:
2512  case ISD::RETURNADDR:
2513  case ISD::FRAME_TO_ARGS_OFFSET:
2514    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2515    break;
2516  case ISD::FLT_ROUNDS_:
2517    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2518    break;
2519  case ISD::EH_RETURN:
2520  case ISD::EH_LABEL:
2521  case ISD::PREFETCH:
2522  case ISD::VAEND:
2523  case ISD::EH_SJLJ_LONGJMP:
2524    Results.push_back(Node->getOperand(0));
2525    break;
2526  case ISD::EH_SJLJ_SETJMP:
2527    Results.push_back(DAG.getConstant(0, MVT::i32));
2528    Results.push_back(Node->getOperand(0));
2529    break;
2530  case ISD::MEMBARRIER: {
2531    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2532    TargetLowering::ArgListTy Args;
2533    std::pair<SDValue, SDValue> CallResult =
2534      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2535                      false, false, false, false, 0, CallingConv::C, false,
2536                      /*isReturnValueUsed=*/true,
2537                      DAG.getExternalSymbol("__sync_synchronize",
2538                                            TLI.getPointerTy()),
2539                      Args, DAG, dl);
2540    Results.push_back(CallResult.second);
2541    break;
2542  }
2543  // By default, atomic intrinsics are marked Legal and lowered. Targets
2544  // which don't support them directly, however, may want libcalls, in which
2545  // case they mark them Expand, and we get here.
2546  // FIXME: Unimplemented for now. Add libcalls.
2547  case ISD::ATOMIC_SWAP:
2548  case ISD::ATOMIC_LOAD_ADD:
2549  case ISD::ATOMIC_LOAD_SUB:
2550  case ISD::ATOMIC_LOAD_AND:
2551  case ISD::ATOMIC_LOAD_OR:
2552  case ISD::ATOMIC_LOAD_XOR:
2553  case ISD::ATOMIC_LOAD_NAND:
2554  case ISD::ATOMIC_LOAD_MIN:
2555  case ISD::ATOMIC_LOAD_MAX:
2556  case ISD::ATOMIC_LOAD_UMIN:
2557  case ISD::ATOMIC_LOAD_UMAX:
2558  case ISD::ATOMIC_CMP_SWAP: {
2559    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2560    Results.push_back(Tmp.first);
2561    Results.push_back(Tmp.second);
2562    break;
2563  }
2564  case ISD::DYNAMIC_STACKALLOC:
2565    ExpandDYNAMIC_STACKALLOC(Node, Results);
2566    break;
2567  case ISD::MERGE_VALUES:
2568    for (unsigned i = 0; i < Node->getNumValues(); i++)
2569      Results.push_back(Node->getOperand(i));
2570    break;
2571  case ISD::UNDEF: {
2572    EVT VT = Node->getValueType(0);
2573    if (VT.isInteger())
2574      Results.push_back(DAG.getConstant(0, VT));
2575    else {
2576      assert(VT.isFloatingPoint() && "Unknown value type!");
2577      Results.push_back(DAG.getConstantFP(0, VT));
2578    }
2579    break;
2580  }
2581  case ISD::TRAP: {
2582    // If this operation is not supported, lower it to 'abort()' call
2583    TargetLowering::ArgListTy Args;
2584    std::pair<SDValue, SDValue> CallResult =
2585      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2586                      false, false, false, false, 0, CallingConv::C, false,
2587                      /*isReturnValueUsed=*/true,
2588                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2589                      Args, DAG, dl);
2590    Results.push_back(CallResult.second);
2591    break;
2592  }
2593  case ISD::FP_ROUND:
2594  case ISD::BIT_CONVERT:
2595    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2596                            Node->getValueType(0), dl);
2597    Results.push_back(Tmp1);
2598    break;
2599  case ISD::FP_EXTEND:
2600    Tmp1 = EmitStackConvert(Node->getOperand(0),
2601                            Node->getOperand(0).getValueType(),
2602                            Node->getValueType(0), dl);
2603    Results.push_back(Tmp1);
2604    break;
2605  case ISD::SIGN_EXTEND_INREG: {
2606    // NOTE: we could fall back on load/store here too for targets without
2607    // SAR.  However, it is doubtful that any exist.
2608    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2609    EVT VT = Node->getValueType(0);
2610    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2611    if (VT.isVector())
2612      ShiftAmountTy = VT;
2613    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2614                        ExtraVT.getScalarType().getSizeInBits();
2615    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2616    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2617                       Node->getOperand(0), ShiftCst);
2618    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2619    Results.push_back(Tmp1);
2620    break;
2621  }
2622  case ISD::FP_ROUND_INREG: {
2623    // The only way we can lower this is to turn it into a TRUNCSTORE,
2624    // EXTLOAD pair, targetting a temporary location (a stack slot).
2625
2626    // NOTE: there is a choice here between constantly creating new stack
2627    // slots and always reusing the same one.  We currently always create
2628    // new ones, as reuse may inhibit scheduling.
2629    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2630    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2631                            Node->getValueType(0), dl);
2632    Results.push_back(Tmp1);
2633    break;
2634  }
2635  case ISD::SINT_TO_FP:
2636  case ISD::UINT_TO_FP:
2637    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2638                                Node->getOperand(0), Node->getValueType(0), dl);
2639    Results.push_back(Tmp1);
2640    break;
2641  case ISD::FP_TO_UINT: {
2642    SDValue True, False;
2643    EVT VT =  Node->getOperand(0).getValueType();
2644    EVT NVT = Node->getValueType(0);
2645    const uint64_t zero[] = {0, 0};
2646    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2647    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2648    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2649    Tmp1 = DAG.getConstantFP(apf, VT);
2650    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2651                        Node->getOperand(0),
2652                        Tmp1, ISD::SETLT);
2653    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2654    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2655                        DAG.getNode(ISD::FSUB, dl, VT,
2656                                    Node->getOperand(0), Tmp1));
2657    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2658                        DAG.getConstant(x, NVT));
2659    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2660    Results.push_back(Tmp1);
2661    break;
2662  }
2663  case ISD::VAARG: {
2664    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2665    EVT VT = Node->getValueType(0);
2666    Tmp1 = Node->getOperand(0);
2667    Tmp2 = Node->getOperand(1);
2668    unsigned Align = Node->getConstantOperandVal(3);
2669
2670    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2671                                     MachinePointerInfo(V), false, false, 0);
2672    SDValue VAList = VAListLoad;
2673
2674    if (Align > TLI.getMinStackArgumentAlignment()) {
2675      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2676
2677      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2678                           DAG.getConstant(Align - 1,
2679                                           TLI.getPointerTy()));
2680
2681      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2682                           DAG.getConstant(-Align,
2683                                           TLI.getPointerTy()));
2684    }
2685
2686    // Increment the pointer, VAList, to the next vaarg
2687    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2688                       DAG.getConstant(TLI.getTargetData()->
2689                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2690                                       TLI.getPointerTy()));
2691    // Store the incremented VAList to the legalized pointer
2692    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, V, 0,
2693                        false, false, 0);
2694    // Load the actual argument out of the pointer VAList
2695    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2696                                  false, false, 0));
2697    Results.push_back(Results[0].getValue(1));
2698    break;
2699  }
2700  case ISD::VACOPY: {
2701    // This defaults to loading a pointer from the input and storing it to the
2702    // output, returning the chain.
2703    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2704    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2705    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2706                       Node->getOperand(2), MachinePointerInfo(VS),
2707                       false, false, 0);
2708    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2709                        MachinePointerInfo(VD), false, false, 0);
2710    Results.push_back(Tmp1);
2711    break;
2712  }
2713  case ISD::EXTRACT_VECTOR_ELT:
2714    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2715      // This must be an access of the only element.  Return it.
2716      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2717                         Node->getOperand(0));
2718    else
2719      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2720    Results.push_back(Tmp1);
2721    break;
2722  case ISD::EXTRACT_SUBVECTOR:
2723    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2724    break;
2725  case ISD::CONCAT_VECTORS: {
2726    Results.push_back(ExpandVectorBuildThroughStack(Node));
2727    break;
2728  }
2729  case ISD::SCALAR_TO_VECTOR:
2730    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2731    break;
2732  case ISD::INSERT_VECTOR_ELT:
2733    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2734                                              Node->getOperand(1),
2735                                              Node->getOperand(2), dl));
2736    break;
2737  case ISD::VECTOR_SHUFFLE: {
2738    SmallVector<int, 8> Mask;
2739    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2740
2741    EVT VT = Node->getValueType(0);
2742    EVT EltVT = VT.getVectorElementType();
2743    if (getTypeAction(EltVT) == Promote)
2744      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2745    unsigned NumElems = VT.getVectorNumElements();
2746    SmallVector<SDValue, 8> Ops;
2747    for (unsigned i = 0; i != NumElems; ++i) {
2748      if (Mask[i] < 0) {
2749        Ops.push_back(DAG.getUNDEF(EltVT));
2750        continue;
2751      }
2752      unsigned Idx = Mask[i];
2753      if (Idx < NumElems)
2754        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2755                                  Node->getOperand(0),
2756                                  DAG.getIntPtrConstant(Idx)));
2757      else
2758        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2759                                  Node->getOperand(1),
2760                                  DAG.getIntPtrConstant(Idx - NumElems)));
2761    }
2762    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2763    Results.push_back(Tmp1);
2764    break;
2765  }
2766  case ISD::EXTRACT_ELEMENT: {
2767    EVT OpTy = Node->getOperand(0).getValueType();
2768    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2769      // 1 -> Hi
2770      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2771                         DAG.getConstant(OpTy.getSizeInBits()/2,
2772                                         TLI.getShiftAmountTy()));
2773      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2774    } else {
2775      // 0 -> Lo
2776      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2777                         Node->getOperand(0));
2778    }
2779    Results.push_back(Tmp1);
2780    break;
2781  }
2782  case ISD::STACKSAVE:
2783    // Expand to CopyFromReg if the target set
2784    // StackPointerRegisterToSaveRestore.
2785    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2786      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2787                                           Node->getValueType(0)));
2788      Results.push_back(Results[0].getValue(1));
2789    } else {
2790      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2791      Results.push_back(Node->getOperand(0));
2792    }
2793    break;
2794  case ISD::STACKRESTORE:
2795    // Expand to CopyToReg if the target set
2796    // StackPointerRegisterToSaveRestore.
2797    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2798      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2799                                         Node->getOperand(1)));
2800    } else {
2801      Results.push_back(Node->getOperand(0));
2802    }
2803    break;
2804  case ISD::FCOPYSIGN:
2805    Results.push_back(ExpandFCOPYSIGN(Node));
2806    break;
2807  case ISD::FNEG:
2808    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2809    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2810    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2811                       Node->getOperand(0));
2812    Results.push_back(Tmp1);
2813    break;
2814  case ISD::FABS: {
2815    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2816    EVT VT = Node->getValueType(0);
2817    Tmp1 = Node->getOperand(0);
2818    Tmp2 = DAG.getConstantFP(0.0, VT);
2819    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2820                        Tmp1, Tmp2, ISD::SETUGT);
2821    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2822    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2823    Results.push_back(Tmp1);
2824    break;
2825  }
2826  case ISD::FSQRT:
2827    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2828                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2829    break;
2830  case ISD::FSIN:
2831    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2832                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2833    break;
2834  case ISD::FCOS:
2835    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2836                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2837    break;
2838  case ISD::FLOG:
2839    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2840                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2841    break;
2842  case ISD::FLOG2:
2843    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2844                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2845    break;
2846  case ISD::FLOG10:
2847    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2848                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2849    break;
2850  case ISD::FEXP:
2851    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2852                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2853    break;
2854  case ISD::FEXP2:
2855    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2856                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2857    break;
2858  case ISD::FTRUNC:
2859    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2860                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2861    break;
2862  case ISD::FFLOOR:
2863    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2864                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2865    break;
2866  case ISD::FCEIL:
2867    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2868                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2869    break;
2870  case ISD::FRINT:
2871    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2872                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2873    break;
2874  case ISD::FNEARBYINT:
2875    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2876                                      RTLIB::NEARBYINT_F64,
2877                                      RTLIB::NEARBYINT_F80,
2878                                      RTLIB::NEARBYINT_PPCF128));
2879    break;
2880  case ISD::FPOWI:
2881    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2882                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2883    break;
2884  case ISD::FPOW:
2885    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2886                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2887    break;
2888  case ISD::FDIV:
2889    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2890                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2891    break;
2892  case ISD::FREM:
2893    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2894                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2895    break;
2896  case ISD::FP16_TO_FP32:
2897    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2898    break;
2899  case ISD::FP32_TO_FP16:
2900    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2901    break;
2902  case ISD::ConstantFP: {
2903    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2904    // Check to see if this FP immediate is already legal.
2905    // If this is a legal constant, turn it into a TargetConstantFP node.
2906    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2907      Results.push_back(SDValue(Node, 0));
2908    else
2909      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2910    break;
2911  }
2912  case ISD::EHSELECTION: {
2913    unsigned Reg = TLI.getExceptionSelectorRegister();
2914    assert(Reg && "Can't expand to unknown register!");
2915    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2916                                         Node->getValueType(0)));
2917    Results.push_back(Results[0].getValue(1));
2918    break;
2919  }
2920  case ISD::EXCEPTIONADDR: {
2921    unsigned Reg = TLI.getExceptionAddressRegister();
2922    assert(Reg && "Can't expand to unknown register!");
2923    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2924                                         Node->getValueType(0)));
2925    Results.push_back(Results[0].getValue(1));
2926    break;
2927  }
2928  case ISD::SUB: {
2929    EVT VT = Node->getValueType(0);
2930    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2931           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2932           "Don't know how to expand this subtraction!");
2933    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2934               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2935    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2936    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2937    break;
2938  }
2939  case ISD::UREM:
2940  case ISD::SREM: {
2941    EVT VT = Node->getValueType(0);
2942    SDVTList VTs = DAG.getVTList(VT, VT);
2943    bool isSigned = Node->getOpcode() == ISD::SREM;
2944    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2945    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2946    Tmp2 = Node->getOperand(0);
2947    Tmp3 = Node->getOperand(1);
2948    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2949      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2950    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2951      // X % Y -> X-X/Y*Y
2952      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2953      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2954      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2955    } else if (isSigned) {
2956      Tmp1 = ExpandIntLibCall(Node, true,
2957                              RTLIB::SREM_I8,
2958                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2959                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2960    } else {
2961      Tmp1 = ExpandIntLibCall(Node, false,
2962                              RTLIB::UREM_I8,
2963                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2964                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2965    }
2966    Results.push_back(Tmp1);
2967    break;
2968  }
2969  case ISD::UDIV:
2970  case ISD::SDIV: {
2971    bool isSigned = Node->getOpcode() == ISD::SDIV;
2972    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2973    EVT VT = Node->getValueType(0);
2974    SDVTList VTs = DAG.getVTList(VT, VT);
2975    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2976      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2977                         Node->getOperand(1));
2978    else if (isSigned)
2979      Tmp1 = ExpandIntLibCall(Node, true,
2980                              RTLIB::SDIV_I8,
2981                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2982                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2983    else
2984      Tmp1 = ExpandIntLibCall(Node, false,
2985                              RTLIB::UDIV_I8,
2986                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2987                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2988    Results.push_back(Tmp1);
2989    break;
2990  }
2991  case ISD::MULHU:
2992  case ISD::MULHS: {
2993    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2994                                                              ISD::SMUL_LOHI;
2995    EVT VT = Node->getValueType(0);
2996    SDVTList VTs = DAG.getVTList(VT, VT);
2997    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2998           "If this wasn't legal, it shouldn't have been created!");
2999    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3000                       Node->getOperand(1));
3001    Results.push_back(Tmp1.getValue(1));
3002    break;
3003  }
3004  case ISD::MUL: {
3005    EVT VT = Node->getValueType(0);
3006    SDVTList VTs = DAG.getVTList(VT, VT);
3007    // See if multiply or divide can be lowered using two-result operations.
3008    // We just need the low half of the multiply; try both the signed
3009    // and unsigned forms. If the target supports both SMUL_LOHI and
3010    // UMUL_LOHI, form a preference by checking which forms of plain
3011    // MULH it supports.
3012    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3013    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3014    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3015    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3016    unsigned OpToUse = 0;
3017    if (HasSMUL_LOHI && !HasMULHS) {
3018      OpToUse = ISD::SMUL_LOHI;
3019    } else if (HasUMUL_LOHI && !HasMULHU) {
3020      OpToUse = ISD::UMUL_LOHI;
3021    } else if (HasSMUL_LOHI) {
3022      OpToUse = ISD::SMUL_LOHI;
3023    } else if (HasUMUL_LOHI) {
3024      OpToUse = ISD::UMUL_LOHI;
3025    }
3026    if (OpToUse) {
3027      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3028                                    Node->getOperand(1)));
3029      break;
3030    }
3031    Tmp1 = ExpandIntLibCall(Node, false,
3032                            RTLIB::MUL_I8,
3033                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3034                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3035    Results.push_back(Tmp1);
3036    break;
3037  }
3038  case ISD::SADDO:
3039  case ISD::SSUBO: {
3040    SDValue LHS = Node->getOperand(0);
3041    SDValue RHS = Node->getOperand(1);
3042    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3043                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3044                              LHS, RHS);
3045    Results.push_back(Sum);
3046    EVT OType = Node->getValueType(1);
3047
3048    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3049
3050    //   LHSSign -> LHS >= 0
3051    //   RHSSign -> RHS >= 0
3052    //   SumSign -> Sum >= 0
3053    //
3054    //   Add:
3055    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3056    //   Sub:
3057    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3058    //
3059    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3060    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3061    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3062                                      Node->getOpcode() == ISD::SADDO ?
3063                                      ISD::SETEQ : ISD::SETNE);
3064
3065    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3066    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3067
3068    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3069    Results.push_back(Cmp);
3070    break;
3071  }
3072  case ISD::UADDO:
3073  case ISD::USUBO: {
3074    SDValue LHS = Node->getOperand(0);
3075    SDValue RHS = Node->getOperand(1);
3076    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3077                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3078                              LHS, RHS);
3079    Results.push_back(Sum);
3080    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3081                                   Node->getOpcode () == ISD::UADDO ?
3082                                   ISD::SETULT : ISD::SETUGT));
3083    break;
3084  }
3085  case ISD::UMULO:
3086  case ISD::SMULO: {
3087    EVT VT = Node->getValueType(0);
3088    SDValue LHS = Node->getOperand(0);
3089    SDValue RHS = Node->getOperand(1);
3090    SDValue BottomHalf;
3091    SDValue TopHalf;
3092    static const unsigned Ops[2][3] =
3093        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3094          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3095    bool isSigned = Node->getOpcode() == ISD::SMULO;
3096    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3097      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3098      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3099    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3100      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3101                               RHS);
3102      TopHalf = BottomHalf.getValue(1);
3103    } else {
3104      // FIXME: We should be able to fall back to a libcall with an illegal
3105      // type in some cases.
3106      // Also, we can fall back to a division in some cases, but that's a big
3107      // performance hit in the general case.
3108      assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3109                                               VT.getSizeInBits() * 2)) &&
3110             "Don't know how to expand this operation yet!");
3111      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3112      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3113      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3114      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3115      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3116                               DAG.getIntPtrConstant(0));
3117      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3118                            DAG.getIntPtrConstant(1));
3119    }
3120    if (isSigned) {
3121      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
3122      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3123      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3124                             ISD::SETNE);
3125    } else {
3126      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3127                             DAG.getConstant(0, VT), ISD::SETNE);
3128    }
3129    Results.push_back(BottomHalf);
3130    Results.push_back(TopHalf);
3131    break;
3132  }
3133  case ISD::BUILD_PAIR: {
3134    EVT PairTy = Node->getValueType(0);
3135    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3136    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3137    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3138                       DAG.getConstant(PairTy.getSizeInBits()/2,
3139                                       TLI.getShiftAmountTy()));
3140    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3141    break;
3142  }
3143  case ISD::SELECT:
3144    Tmp1 = Node->getOperand(0);
3145    Tmp2 = Node->getOperand(1);
3146    Tmp3 = Node->getOperand(2);
3147    if (Tmp1.getOpcode() == ISD::SETCC) {
3148      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3149                             Tmp2, Tmp3,
3150                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3151    } else {
3152      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3153                             DAG.getConstant(0, Tmp1.getValueType()),
3154                             Tmp2, Tmp3, ISD::SETNE);
3155    }
3156    Results.push_back(Tmp1);
3157    break;
3158  case ISD::BR_JT: {
3159    SDValue Chain = Node->getOperand(0);
3160    SDValue Table = Node->getOperand(1);
3161    SDValue Index = Node->getOperand(2);
3162
3163    EVT PTy = TLI.getPointerTy();
3164
3165    const TargetData &TD = *TLI.getTargetData();
3166    unsigned EntrySize =
3167      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3168
3169    Index = DAG.getNode(ISD::MUL, dl, PTy,
3170                        Index, DAG.getConstant(EntrySize, PTy));
3171    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3172
3173    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3174    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, PTy, dl, Chain, Addr,
3175                                MachinePointerInfo::getJumpTable(), MemVT,
3176                                false, false, 0);
3177    Addr = LD;
3178    if (TM.getRelocationModel() == Reloc::PIC_) {
3179      // For PIC, the sequence is:
3180      // BRIND(load(Jumptable + index) + RelocBase)
3181      // RelocBase can be JumpTable, GOT or some sort of global base.
3182      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3183                          TLI.getPICJumpTableRelocBase(Table, DAG));
3184    }
3185    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3186    Results.push_back(Tmp1);
3187    break;
3188  }
3189  case ISD::BRCOND:
3190    // Expand brcond's setcc into its constituent parts and create a BR_CC
3191    // Node.
3192    Tmp1 = Node->getOperand(0);
3193    Tmp2 = Node->getOperand(1);
3194    if (Tmp2.getOpcode() == ISD::SETCC) {
3195      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3196                         Tmp1, Tmp2.getOperand(2),
3197                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3198                         Node->getOperand(2));
3199    } else {
3200      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3201                         DAG.getCondCode(ISD::SETNE), Tmp2,
3202                         DAG.getConstant(0, Tmp2.getValueType()),
3203                         Node->getOperand(2));
3204    }
3205    Results.push_back(Tmp1);
3206    break;
3207  case ISD::SETCC: {
3208    Tmp1 = Node->getOperand(0);
3209    Tmp2 = Node->getOperand(1);
3210    Tmp3 = Node->getOperand(2);
3211    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3212
3213    // If we expanded the SETCC into an AND/OR, return the new node
3214    if (Tmp2.getNode() == 0) {
3215      Results.push_back(Tmp1);
3216      break;
3217    }
3218
3219    // Otherwise, SETCC for the given comparison type must be completely
3220    // illegal; expand it into a SELECT_CC.
3221    EVT VT = Node->getValueType(0);
3222    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3223                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3224    Results.push_back(Tmp1);
3225    break;
3226  }
3227  case ISD::SELECT_CC: {
3228    Tmp1 = Node->getOperand(0);   // LHS
3229    Tmp2 = Node->getOperand(1);   // RHS
3230    Tmp3 = Node->getOperand(2);   // True
3231    Tmp4 = Node->getOperand(3);   // False
3232    SDValue CC = Node->getOperand(4);
3233
3234    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3235                          Tmp1, Tmp2, CC, dl);
3236
3237    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3238    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3239    CC = DAG.getCondCode(ISD::SETNE);
3240    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3241                       Tmp3, Tmp4, CC);
3242    Results.push_back(Tmp1);
3243    break;
3244  }
3245  case ISD::BR_CC: {
3246    Tmp1 = Node->getOperand(0);              // Chain
3247    Tmp2 = Node->getOperand(2);              // LHS
3248    Tmp3 = Node->getOperand(3);              // RHS
3249    Tmp4 = Node->getOperand(1);              // CC
3250
3251    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3252                          Tmp2, Tmp3, Tmp4, dl);
3253    LastCALLSEQ_END = DAG.getEntryNode();
3254
3255    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3256    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3257    Tmp4 = DAG.getCondCode(ISD::SETNE);
3258    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3259                       Tmp3, Node->getOperand(4));
3260    Results.push_back(Tmp1);
3261    break;
3262  }
3263  case ISD::GLOBAL_OFFSET_TABLE:
3264  case ISD::GlobalAddress:
3265  case ISD::GlobalTLSAddress:
3266  case ISD::ExternalSymbol:
3267  case ISD::ConstantPool:
3268  case ISD::JumpTable:
3269  case ISD::INTRINSIC_W_CHAIN:
3270  case ISD::INTRINSIC_WO_CHAIN:
3271  case ISD::INTRINSIC_VOID:
3272    // FIXME: Custom lowering for these operations shouldn't return null!
3273    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3274      Results.push_back(SDValue(Node, i));
3275    break;
3276  }
3277}
3278void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3279                                       SmallVectorImpl<SDValue> &Results) {
3280  EVT OVT = Node->getValueType(0);
3281  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3282      Node->getOpcode() == ISD::SINT_TO_FP ||
3283      Node->getOpcode() == ISD::SETCC) {
3284    OVT = Node->getOperand(0).getValueType();
3285  }
3286  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3287  DebugLoc dl = Node->getDebugLoc();
3288  SDValue Tmp1, Tmp2, Tmp3;
3289  switch (Node->getOpcode()) {
3290  case ISD::CTTZ:
3291  case ISD::CTLZ:
3292  case ISD::CTPOP:
3293    // Zero extend the argument.
3294    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3295    // Perform the larger operation.
3296    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3297    if (Node->getOpcode() == ISD::CTTZ) {
3298      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3299      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3300                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3301                          ISD::SETEQ);
3302      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3303                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3304    } else if (Node->getOpcode() == ISD::CTLZ) {
3305      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3306      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3307                          DAG.getConstant(NVT.getSizeInBits() -
3308                                          OVT.getSizeInBits(), NVT));
3309    }
3310    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3311    break;
3312  case ISD::BSWAP: {
3313    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3314    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3315    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3316    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3317                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3318    Results.push_back(Tmp1);
3319    break;
3320  }
3321  case ISD::FP_TO_UINT:
3322  case ISD::FP_TO_SINT:
3323    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3324                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3325    Results.push_back(Tmp1);
3326    break;
3327  case ISD::UINT_TO_FP:
3328  case ISD::SINT_TO_FP:
3329    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3330                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3331    Results.push_back(Tmp1);
3332    break;
3333  case ISD::AND:
3334  case ISD::OR:
3335  case ISD::XOR: {
3336    unsigned ExtOp, TruncOp;
3337    if (OVT.isVector()) {
3338      ExtOp   = ISD::BIT_CONVERT;
3339      TruncOp = ISD::BIT_CONVERT;
3340    } else {
3341      assert(OVT.isInteger() && "Cannot promote logic operation");
3342      ExtOp   = ISD::ANY_EXTEND;
3343      TruncOp = ISD::TRUNCATE;
3344    }
3345    // Promote each of the values to the new type.
3346    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3347    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3348    // Perform the larger operation, then convert back
3349    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3350    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3351    break;
3352  }
3353  case ISD::SELECT: {
3354    unsigned ExtOp, TruncOp;
3355    if (Node->getValueType(0).isVector()) {
3356      ExtOp   = ISD::BIT_CONVERT;
3357      TruncOp = ISD::BIT_CONVERT;
3358    } else if (Node->getValueType(0).isInteger()) {
3359      ExtOp   = ISD::ANY_EXTEND;
3360      TruncOp = ISD::TRUNCATE;
3361    } else {
3362      ExtOp   = ISD::FP_EXTEND;
3363      TruncOp = ISD::FP_ROUND;
3364    }
3365    Tmp1 = Node->getOperand(0);
3366    // Promote each of the values to the new type.
3367    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3368    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3369    // Perform the larger operation, then round down.
3370    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3371    if (TruncOp != ISD::FP_ROUND)
3372      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3373    else
3374      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3375                         DAG.getIntPtrConstant(0));
3376    Results.push_back(Tmp1);
3377    break;
3378  }
3379  case ISD::VECTOR_SHUFFLE: {
3380    SmallVector<int, 8> Mask;
3381    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3382
3383    // Cast the two input vectors.
3384    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3385    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3386
3387    // Convert the shuffle mask to the right # elements.
3388    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3389    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3390    Results.push_back(Tmp1);
3391    break;
3392  }
3393  case ISD::SETCC: {
3394    unsigned ExtOp = ISD::FP_EXTEND;
3395    if (NVT.isInteger()) {
3396      ISD::CondCode CCCode =
3397        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3398      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3399    }
3400    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3401    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3402    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3403                                  Tmp1, Tmp2, Node->getOperand(2)));
3404    break;
3405  }
3406  }
3407}
3408
3409// SelectionDAG::Legalize - This is the entry point for the file.
3410//
3411void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3412  /// run - This is the main entry point to this class.
3413  ///
3414  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3415}
3416
3417