LegalizeDAG.cpp revision 40b2c32475572d33ede7cf202f2d49cab9b43bb4
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/CodeGen/Analysis.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineJumpTableInfo.h"
21#include "llvm/DebugInfo.h"
22#include "llvm/IR/CallingConv.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/LLVMContext.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Target/TargetFrameLowering.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetMachine.h"
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
39/// hacks on it until the target machine can handle it.  This involves
40/// eliminating value sizes the machine cannot handle (promoting small sizes to
41/// large sizes or splitting up large values into small values) as well as
42/// eliminating operations the machine cannot handle.
43///
44/// This code also does a small amount of optimization and recognition of idioms
45/// as part of its processing.  For example, if a target does not support a
46/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
47/// will attempt merge setcc and brc instructions into brcc's.
48///
49namespace {
50class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
51  const TargetMachine &TM;
52  const TargetLowering &TLI;
53  SelectionDAG &DAG;
54
55  /// LegalizePosition - The iterator for walking through the node list.
56  SelectionDAG::allnodes_iterator LegalizePosition;
57
58  /// LegalizedNodes - The set of nodes which have already been legalized.
59  SmallPtrSet<SDNode *, 16> LegalizedNodes;
60
61  // Libcall insertion helpers.
62
63public:
64  explicit SelectionDAGLegalize(SelectionDAG &DAG);
65
66  void LegalizeDAG();
67
68private:
69  /// LegalizeOp - Legalizes the given operation.
70  void LegalizeOp(SDNode *Node);
71
72  SDValue OptimizeFloatStore(StoreSDNode *ST);
73
74  void LegalizeLoadOps(SDNode *Node);
75  void LegalizeStoreOps(SDNode *Node);
76
77  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
78  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
79  /// is necessary to spill the vector being inserted into to memory, perform
80  /// the insert there, and then read the result back.
81  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
82                                         SDValue Idx, DebugLoc dl);
83  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
84                                  SDValue Idx, DebugLoc dl);
85
86  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
87  /// performs the same shuffe in terms of order or result bytes, but on a type
88  /// whose vector element type is narrower than the original shuffle type.
89  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
90  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
91                                     SDValue N1, SDValue N2,
92                                     ArrayRef<int> Mask) const;
93
94  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
95                             DebugLoc dl);
96
97  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
98  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
99                        unsigned NumOps, bool isSigned, DebugLoc dl);
100
101  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
102                                                 SDNode *Node, bool isSigned);
103  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
104                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
105                          RTLIB::Libcall Call_PPCF128);
106  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
107                           RTLIB::Libcall Call_I8,
108                           RTLIB::Libcall Call_I16,
109                           RTLIB::Libcall Call_I32,
110                           RTLIB::Libcall Call_I64,
111                           RTLIB::Libcall Call_I128);
112  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
113
114  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
115  SDValue ExpandBUILD_VECTOR(SDNode *Node);
116  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
117  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
118                                SmallVectorImpl<SDValue> &Results);
119  SDValue ExpandFCOPYSIGN(SDNode *Node);
120  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
121                               DebugLoc dl);
122  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
123                                DebugLoc dl);
124  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
125                                DebugLoc dl);
126
127  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
128  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
129
130  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
131  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
132  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
133
134  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
135
136  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
137
138  void ExpandNode(SDNode *Node);
139  void PromoteNode(SDNode *Node);
140
141  void ForgetNode(SDNode *N) {
142    LegalizedNodes.erase(N);
143    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
144      ++LegalizePosition;
145  }
146
147public:
148  // DAGUpdateListener implementation.
149  virtual void NodeDeleted(SDNode *N, SDNode *E) {
150    ForgetNode(N);
151  }
152  virtual void NodeUpdated(SDNode *N) {}
153
154  // Node replacement helpers
155  void ReplacedNode(SDNode *N) {
156    if (N->use_empty()) {
157      DAG.RemoveDeadNode(N);
158    } else {
159      ForgetNode(N);
160    }
161  }
162  void ReplaceNode(SDNode *Old, SDNode *New) {
163    DAG.ReplaceAllUsesWith(Old, New);
164    ReplacedNode(Old);
165  }
166  void ReplaceNode(SDValue Old, SDValue New) {
167    DAG.ReplaceAllUsesWith(Old, New);
168    ReplacedNode(Old.getNode());
169  }
170  void ReplaceNode(SDNode *Old, const SDValue *New) {
171    DAG.ReplaceAllUsesWith(Old, New);
172    ReplacedNode(Old);
173  }
174};
175}
176
177/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
178/// performs the same shuffe in terms of order or result bytes, but on a type
179/// whose vector element type is narrower than the original shuffle type.
180/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
181SDValue
182SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
183                                                 SDValue N1, SDValue N2,
184                                                 ArrayRef<int> Mask) const {
185  unsigned NumMaskElts = VT.getVectorNumElements();
186  unsigned NumDestElts = NVT.getVectorNumElements();
187  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
188
189  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
190
191  if (NumEltsGrowth == 1)
192    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
193
194  SmallVector<int, 8> NewMask;
195  for (unsigned i = 0; i != NumMaskElts; ++i) {
196    int Idx = Mask[i];
197    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
198      if (Idx < 0)
199        NewMask.push_back(-1);
200      else
201        NewMask.push_back(Idx * NumEltsGrowth + j);
202    }
203  }
204  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
205  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
206  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
207}
208
209SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
210  : SelectionDAG::DAGUpdateListener(dag),
211    TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
212    DAG(dag) {
213}
214
215void SelectionDAGLegalize::LegalizeDAG() {
216  DAG.AssignTopologicalOrder();
217
218  // Visit all the nodes. We start in topological order, so that we see
219  // nodes with their original operands intact. Legalization can produce
220  // new nodes which may themselves need to be legalized. Iterate until all
221  // nodes have been legalized.
222  for (;;) {
223    bool AnyLegalized = false;
224    for (LegalizePosition = DAG.allnodes_end();
225         LegalizePosition != DAG.allnodes_begin(); ) {
226      --LegalizePosition;
227
228      SDNode *N = LegalizePosition;
229      if (LegalizedNodes.insert(N)) {
230        AnyLegalized = true;
231        LegalizeOp(N);
232      }
233    }
234    if (!AnyLegalized)
235      break;
236
237  }
238
239  // Remove dead nodes now.
240  DAG.RemoveDeadNodes();
241}
242
243/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
244/// a load from the constant pool.
245SDValue
246SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
247  bool Extend = false;
248  DebugLoc dl = CFP->getDebugLoc();
249
250  // If a FP immediate is precise when represented as a float and if the
251  // target can do an extending load from float to double, we put it into
252  // the constant pool as a float, even if it's is statically typed as a
253  // double.  This shrinks FP constants and canonicalizes them for targets where
254  // an FP extending load is the same cost as a normal load (such as on the x87
255  // fp stack or PPC FP unit).
256  EVT VT = CFP->getValueType(0);
257  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
258  if (!UseCP) {
259    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
260    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
261                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
262  }
263
264  EVT OrigVT = VT;
265  EVT SVT = VT;
266  while (SVT != MVT::f32) {
267    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
268    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
269        // Only do this if the target has a native EXTLOAD instruction from
270        // smaller type.
271        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
272        TLI.ShouldShrinkFPConstant(OrigVT)) {
273      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
274      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
275      VT = SVT;
276      Extend = true;
277    }
278  }
279
280  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
281  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
282  if (Extend) {
283    SDValue Result =
284      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
285                     DAG.getEntryNode(),
286                     CPIdx, MachinePointerInfo::getConstantPool(),
287                     VT, false, false, Alignment);
288    return Result;
289  }
290  SDValue Result =
291    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
292                MachinePointerInfo::getConstantPool(), false, false, false,
293                Alignment);
294  return Result;
295}
296
297/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
298static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
299                                 const TargetLowering &TLI,
300                                 SelectionDAGLegalize *DAGLegalize) {
301  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
302         "unaligned indexed stores not implemented!");
303  SDValue Chain = ST->getChain();
304  SDValue Ptr = ST->getBasePtr();
305  SDValue Val = ST->getValue();
306  EVT VT = Val.getValueType();
307  int Alignment = ST->getAlignment();
308  DebugLoc dl = ST->getDebugLoc();
309  if (ST->getMemoryVT().isFloatingPoint() ||
310      ST->getMemoryVT().isVector()) {
311    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
312    if (TLI.isTypeLegal(intVT)) {
313      // Expand to a bitconvert of the value to the integer type of the
314      // same size, then a (misaligned) int store.
315      // FIXME: Does not handle truncating floating point stores!
316      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
317      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
318                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
319      DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
320      return;
321    }
322    // Do a (aligned) store to a stack slot, then copy from the stack slot
323    // to the final destination using (unaligned) integer loads and stores.
324    EVT StoredVT = ST->getMemoryVT();
325    MVT RegVT =
326      TLI.getRegisterType(*DAG.getContext(),
327                          EVT::getIntegerVT(*DAG.getContext(),
328                                            StoredVT.getSizeInBits()));
329    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
330    unsigned RegBytes = RegVT.getSizeInBits() / 8;
331    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
332
333    // Make sure the stack slot is also aligned for the register type.
334    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
335
336    // Perform the original store, only redirected to the stack slot.
337    SDValue Store = DAG.getTruncStore(Chain, dl,
338                                      Val, StackPtr, MachinePointerInfo(),
339                                      StoredVT, false, false, 0);
340    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
341    SmallVector<SDValue, 8> Stores;
342    unsigned Offset = 0;
343
344    // Do all but one copies using the full register width.
345    for (unsigned i = 1; i < NumRegs; i++) {
346      // Load one integer register's worth from the stack slot.
347      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
348                                 MachinePointerInfo(),
349                                 false, false, false, 0);
350      // Store it to the final location.  Remember the store.
351      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
352                                  ST->getPointerInfo().getWithOffset(Offset),
353                                    ST->isVolatile(), ST->isNonTemporal(),
354                                    MinAlign(ST->getAlignment(), Offset)));
355      // Increment the pointers.
356      Offset += RegBytes;
357      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
358                             Increment);
359      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
360    }
361
362    // The last store may be partial.  Do a truncating store.  On big-endian
363    // machines this requires an extending load from the stack slot to ensure
364    // that the bits are in the right place.
365    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
366                                  8 * (StoredBytes - Offset));
367
368    // Load from the stack slot.
369    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
370                                  MachinePointerInfo(),
371                                  MemVT, false, false, 0);
372
373    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
374                                       ST->getPointerInfo()
375                                         .getWithOffset(Offset),
376                                       MemVT, ST->isVolatile(),
377                                       ST->isNonTemporal(),
378                                       MinAlign(ST->getAlignment(), Offset)));
379    // The order of the stores doesn't matter - say it with a TokenFactor.
380    SDValue Result =
381      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
382                  Stores.size());
383    DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
384    return;
385  }
386  assert(ST->getMemoryVT().isInteger() &&
387         !ST->getMemoryVT().isVector() &&
388         "Unaligned store of unknown type.");
389  // Get the half-size VT
390  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
391  int NumBits = NewStoredVT.getSizeInBits();
392  int IncrementSize = NumBits / 8;
393
394  // Divide the stored value in two parts.
395  SDValue ShiftAmount = DAG.getConstant(NumBits,
396                                      TLI.getShiftAmountTy(Val.getValueType()));
397  SDValue Lo = Val;
398  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
399
400  // Store the two parts
401  SDValue Store1, Store2;
402  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
403                             ST->getPointerInfo(), NewStoredVT,
404                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
405  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
406                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
407  Alignment = MinAlign(Alignment, IncrementSize);
408  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
409                             ST->getPointerInfo().getWithOffset(IncrementSize),
410                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
411                             Alignment);
412
413  SDValue Result =
414    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
415  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
416}
417
418/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
419static void
420ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
421                    const TargetLowering &TLI,
422                    SDValue &ValResult, SDValue &ChainResult) {
423  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
424         "unaligned indexed loads not implemented!");
425  SDValue Chain = LD->getChain();
426  SDValue Ptr = LD->getBasePtr();
427  EVT VT = LD->getValueType(0);
428  EVT LoadedVT = LD->getMemoryVT();
429  DebugLoc dl = LD->getDebugLoc();
430  if (VT.isFloatingPoint() || VT.isVector()) {
431    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
432    if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
433      // Expand to a (misaligned) integer load of the same size,
434      // then bitconvert to floating point or vector.
435      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
436                                    LD->isVolatile(),
437                                    LD->isNonTemporal(),
438                                    LD->isInvariant(), LD->getAlignment());
439      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
440      if (LoadedVT != VT)
441        Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
442                             ISD::ANY_EXTEND, dl, VT, Result);
443
444      ValResult = Result;
445      ChainResult = Chain;
446      return;
447    }
448
449    // Copy the value to a (aligned) stack slot using (unaligned) integer
450    // loads and stores, then do a (aligned) load from the stack slot.
451    MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
452    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
453    unsigned RegBytes = RegVT.getSizeInBits() / 8;
454    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
455
456    // Make sure the stack slot is also aligned for the register type.
457    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
458
459    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
460    SmallVector<SDValue, 8> Stores;
461    SDValue StackPtr = StackBase;
462    unsigned Offset = 0;
463
464    // Do all but one copies using the full register width.
465    for (unsigned i = 1; i < NumRegs; i++) {
466      // Load one integer register's worth from the original location.
467      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
468                                 LD->getPointerInfo().getWithOffset(Offset),
469                                 LD->isVolatile(), LD->isNonTemporal(),
470                                 LD->isInvariant(),
471                                 MinAlign(LD->getAlignment(), Offset));
472      // Follow the load with a store to the stack slot.  Remember the store.
473      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
474                                    MachinePointerInfo(), false, false, 0));
475      // Increment the pointers.
476      Offset += RegBytes;
477      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
478      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
479                             Increment);
480    }
481
482    // The last copy may be partial.  Do an extending load.
483    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
484                                  8 * (LoadedBytes - Offset));
485    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
486                                  LD->getPointerInfo().getWithOffset(Offset),
487                                  MemVT, LD->isVolatile(),
488                                  LD->isNonTemporal(),
489                                  MinAlign(LD->getAlignment(), Offset));
490    // Follow the load with a store to the stack slot.  Remember the store.
491    // On big-endian machines this requires a truncating store to ensure
492    // that the bits end up in the right place.
493    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
494                                       MachinePointerInfo(), MemVT,
495                                       false, false, 0));
496
497    // The order of the stores doesn't matter - say it with a TokenFactor.
498    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
499                             Stores.size());
500
501    // Finally, perform the original load only redirected to the stack slot.
502    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
503                          MachinePointerInfo(), LoadedVT, false, false, 0);
504
505    // Callers expect a MERGE_VALUES node.
506    ValResult = Load;
507    ChainResult = TF;
508    return;
509  }
510  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
511         "Unaligned load of unsupported type.");
512
513  // Compute the new VT that is half the size of the old one.  This is an
514  // integer MVT.
515  unsigned NumBits = LoadedVT.getSizeInBits();
516  EVT NewLoadedVT;
517  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
518  NumBits >>= 1;
519
520  unsigned Alignment = LD->getAlignment();
521  unsigned IncrementSize = NumBits / 8;
522  ISD::LoadExtType HiExtType = LD->getExtensionType();
523
524  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
525  if (HiExtType == ISD::NON_EXTLOAD)
526    HiExtType = ISD::ZEXTLOAD;
527
528  // Load the value in two parts
529  SDValue Lo, Hi;
530  if (TLI.isLittleEndian()) {
531    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
532                        NewLoadedVT, LD->isVolatile(),
533                        LD->isNonTemporal(), Alignment);
534    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
535                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
536    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
537                        LD->getPointerInfo().getWithOffset(IncrementSize),
538                        NewLoadedVT, LD->isVolatile(),
539                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
540  } else {
541    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
542                        NewLoadedVT, LD->isVolatile(),
543                        LD->isNonTemporal(), Alignment);
544    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
545                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
546    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
547                        LD->getPointerInfo().getWithOffset(IncrementSize),
548                        NewLoadedVT, LD->isVolatile(),
549                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
550  }
551
552  // aggregate the two parts
553  SDValue ShiftAmount = DAG.getConstant(NumBits,
554                                       TLI.getShiftAmountTy(Hi.getValueType()));
555  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
556  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
557
558  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
559                             Hi.getValue(1));
560
561  ValResult = Result;
562  ChainResult = TF;
563}
564
565/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
566/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
567/// is necessary to spill the vector being inserted into to memory, perform
568/// the insert there, and then read the result back.
569SDValue SelectionDAGLegalize::
570PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
571                               DebugLoc dl) {
572  SDValue Tmp1 = Vec;
573  SDValue Tmp2 = Val;
574  SDValue Tmp3 = Idx;
575
576  // If the target doesn't support this, we have to spill the input vector
577  // to a temporary stack slot, update the element, then reload it.  This is
578  // badness.  We could also load the value into a vector register (either
579  // with a "move to register" or "extload into register" instruction, then
580  // permute it into place, if the idx is a constant and if the idx is
581  // supported by the target.
582  EVT VT    = Tmp1.getValueType();
583  EVT EltVT = VT.getVectorElementType();
584  EVT IdxVT = Tmp3.getValueType();
585  EVT PtrVT = TLI.getPointerTy();
586  SDValue StackPtr = DAG.CreateStackTemporary(VT);
587
588  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
589
590  // Store the vector.
591  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
592                            MachinePointerInfo::getFixedStack(SPFI),
593                            false, false, 0);
594
595  // Truncate or zero extend offset to target pointer type.
596  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
597  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
598  // Add the offset to the index.
599  unsigned EltSize = EltVT.getSizeInBits()/8;
600  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
601  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
602  // Store the scalar value.
603  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
604                         false, false, 0);
605  // Load the updated vector.
606  return DAG.getLoad(VT, dl, Ch, StackPtr,
607                     MachinePointerInfo::getFixedStack(SPFI), false, false,
608                     false, 0);
609}
610
611
612SDValue SelectionDAGLegalize::
613ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
614  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
615    // SCALAR_TO_VECTOR requires that the type of the value being inserted
616    // match the element type of the vector being created, except for
617    // integers in which case the inserted value can be over width.
618    EVT EltVT = Vec.getValueType().getVectorElementType();
619    if (Val.getValueType() == EltVT ||
620        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
621      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
622                                  Vec.getValueType(), Val);
623
624      unsigned NumElts = Vec.getValueType().getVectorNumElements();
625      // We generate a shuffle of InVec and ScVec, so the shuffle mask
626      // should be 0,1,2,3,4,5... with the appropriate element replaced with
627      // elt 0 of the RHS.
628      SmallVector<int, 8> ShufOps;
629      for (unsigned i = 0; i != NumElts; ++i)
630        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
631
632      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
633                                  &ShufOps[0]);
634    }
635  }
636  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
637}
638
639SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
640  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
641  // FIXME: We shouldn't do this for TargetConstantFP's.
642  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
643  // to phase ordering between legalized code and the dag combiner.  This
644  // probably means that we need to integrate dag combiner and legalizer
645  // together.
646  // We generally can't do this one for long doubles.
647  SDValue Chain = ST->getChain();
648  SDValue Ptr = ST->getBasePtr();
649  unsigned Alignment = ST->getAlignment();
650  bool isVolatile = ST->isVolatile();
651  bool isNonTemporal = ST->isNonTemporal();
652  DebugLoc dl = ST->getDebugLoc();
653  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
654    if (CFP->getValueType(0) == MVT::f32 &&
655        TLI.isTypeLegal(MVT::i32)) {
656      SDValue Con = DAG.getConstant(CFP->getValueAPF().
657                                      bitcastToAPInt().zextOrTrunc(32),
658                              MVT::i32);
659      return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
660                          isVolatile, isNonTemporal, Alignment);
661    }
662
663    if (CFP->getValueType(0) == MVT::f64) {
664      // If this target supports 64-bit registers, do a single 64-bit store.
665      if (TLI.isTypeLegal(MVT::i64)) {
666        SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
667                                  zextOrTrunc(64), MVT::i64);
668        return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
669                            isVolatile, isNonTemporal, Alignment);
670      }
671
672      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
673        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
674        // stores.  If the target supports neither 32- nor 64-bits, this
675        // xform is certainly not worth it.
676        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
677        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
678        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
679        if (TLI.isBigEndian()) std::swap(Lo, Hi);
680
681        Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
682                          isNonTemporal, Alignment);
683        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
684                            DAG.getIntPtrConstant(4));
685        Hi = DAG.getStore(Chain, dl, Hi, Ptr,
686                          ST->getPointerInfo().getWithOffset(4),
687                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
688
689        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
690      }
691    }
692  }
693  return SDValue(0, 0);
694}
695
696void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
697    StoreSDNode *ST = cast<StoreSDNode>(Node);
698    SDValue Chain = ST->getChain();
699    SDValue Ptr = ST->getBasePtr();
700    DebugLoc dl = Node->getDebugLoc();
701
702    unsigned Alignment = ST->getAlignment();
703    bool isVolatile = ST->isVolatile();
704    bool isNonTemporal = ST->isNonTemporal();
705
706    if (!ST->isTruncatingStore()) {
707      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
708        ReplaceNode(ST, OptStore);
709        return;
710      }
711
712      {
713        SDValue Value = ST->getValue();
714        MVT VT = Value.getSimpleValueType();
715        switch (TLI.getOperationAction(ISD::STORE, VT)) {
716        default: llvm_unreachable("This action is not supported yet!");
717        case TargetLowering::Legal:
718          // If this is an unaligned store and the target doesn't support it,
719          // expand it.
720          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
721            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
722            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
723            if (ST->getAlignment() < ABIAlignment)
724              ExpandUnalignedStore(cast<StoreSDNode>(Node),
725                                   DAG, TLI, this);
726          }
727          break;
728        case TargetLowering::Custom: {
729          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
730          if (Res.getNode())
731            ReplaceNode(SDValue(Node, 0), Res);
732          return;
733        }
734        case TargetLowering::Promote: {
735          MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
736          assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
737                 "Can only promote stores to same size type");
738          Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
739          SDValue Result =
740            DAG.getStore(Chain, dl, Value, Ptr,
741                         ST->getPointerInfo(), isVolatile,
742                         isNonTemporal, Alignment);
743          ReplaceNode(SDValue(Node, 0), Result);
744          break;
745        }
746        }
747        return;
748      }
749    } else {
750      SDValue Value = ST->getValue();
751
752      EVT StVT = ST->getMemoryVT();
753      unsigned StWidth = StVT.getSizeInBits();
754
755      if (StWidth != StVT.getStoreSizeInBits()) {
756        // Promote to a byte-sized store with upper bits zero if not
757        // storing an integral number of bytes.  For example, promote
758        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
759        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
760                                    StVT.getStoreSizeInBits());
761        Value = DAG.getZeroExtendInReg(Value, dl, StVT);
762        SDValue Result =
763          DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
764                            NVT, isVolatile, isNonTemporal, Alignment);
765        ReplaceNode(SDValue(Node, 0), Result);
766      } else if (StWidth & (StWidth - 1)) {
767        // If not storing a power-of-2 number of bits, expand as two stores.
768        assert(!StVT.isVector() && "Unsupported truncstore!");
769        unsigned RoundWidth = 1 << Log2_32(StWidth);
770        assert(RoundWidth < StWidth);
771        unsigned ExtraWidth = StWidth - RoundWidth;
772        assert(ExtraWidth < RoundWidth);
773        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
774               "Store size not an integral number of bytes!");
775        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
776        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
777        SDValue Lo, Hi;
778        unsigned IncrementSize;
779
780        if (TLI.isLittleEndian()) {
781          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
782          // Store the bottom RoundWidth bits.
783          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
784                                 RoundVT,
785                                 isVolatile, isNonTemporal, Alignment);
786
787          // Store the remaining ExtraWidth bits.
788          IncrementSize = RoundWidth / 8;
789          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
790                             DAG.getIntPtrConstant(IncrementSize));
791          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
792                           DAG.getConstant(RoundWidth,
793                                    TLI.getShiftAmountTy(Value.getValueType())));
794          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
795                             ST->getPointerInfo().getWithOffset(IncrementSize),
796                                 ExtraVT, isVolatile, isNonTemporal,
797                                 MinAlign(Alignment, IncrementSize));
798        } else {
799          // Big endian - avoid unaligned stores.
800          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
801          // Store the top RoundWidth bits.
802          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
803                           DAG.getConstant(ExtraWidth,
804                                    TLI.getShiftAmountTy(Value.getValueType())));
805          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
806                                 RoundVT, isVolatile, isNonTemporal, Alignment);
807
808          // Store the remaining ExtraWidth bits.
809          IncrementSize = RoundWidth / 8;
810          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
811                             DAG.getIntPtrConstant(IncrementSize));
812          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
813                              ST->getPointerInfo().getWithOffset(IncrementSize),
814                                 ExtraVT, isVolatile, isNonTemporal,
815                                 MinAlign(Alignment, IncrementSize));
816        }
817
818        // The order of the stores doesn't matter.
819        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
820        ReplaceNode(SDValue(Node, 0), Result);
821      } else {
822        switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(),
823                                        StVT.getSimpleVT())) {
824        default: llvm_unreachable("This action is not supported yet!");
825        case TargetLowering::Legal:
826          // If this is an unaligned store and the target doesn't support it,
827          // expand it.
828          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
829            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
830            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
831            if (ST->getAlignment() < ABIAlignment)
832              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
833          }
834          break;
835        case TargetLowering::Custom: {
836          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
837          if (Res.getNode())
838            ReplaceNode(SDValue(Node, 0), Res);
839          return;
840        }
841        case TargetLowering::Expand:
842          assert(!StVT.isVector() &&
843                 "Vector Stores are handled in LegalizeVectorOps");
844
845          // TRUNCSTORE:i16 i32 -> STORE i16
846          assert(TLI.isTypeLegal(StVT) &&
847                 "Do not know how to expand this store!");
848          Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
849          SDValue Result =
850            DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
851                         isVolatile, isNonTemporal, Alignment);
852          ReplaceNode(SDValue(Node, 0), Result);
853          break;
854        }
855      }
856    }
857}
858
859void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
860  LoadSDNode *LD = cast<LoadSDNode>(Node);
861  SDValue Chain = LD->getChain();  // The chain.
862  SDValue Ptr = LD->getBasePtr();  // The base pointer.
863  SDValue Value;                   // The value returned by the load op.
864  DebugLoc dl = Node->getDebugLoc();
865
866  ISD::LoadExtType ExtType = LD->getExtensionType();
867  if (ExtType == ISD::NON_EXTLOAD) {
868    MVT VT = Node->getSimpleValueType(0);
869    SDValue RVal = SDValue(Node, 0);
870    SDValue RChain = SDValue(Node, 1);
871
872    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
873    default: llvm_unreachable("This action is not supported yet!");
874    case TargetLowering::Legal:
875      // If this is an unaligned load and the target doesn't support it,
876      // expand it.
877      if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
878        Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
879        unsigned ABIAlignment =
880          TLI.getDataLayout()->getABITypeAlignment(Ty);
881        if (LD->getAlignment() < ABIAlignment){
882          ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
883        }
884      }
885      break;
886    case TargetLowering::Custom: {
887      SDValue Res = TLI.LowerOperation(RVal, DAG);
888      if (Res.getNode()) {
889        RVal = Res;
890        RChain = Res.getValue(1);
891      }
892      break;
893    }
894    case TargetLowering::Promote: {
895      MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
896      assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
897             "Can only promote loads to same size type");
898
899      SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(),
900                         LD->isVolatile(), LD->isNonTemporal(),
901                         LD->isInvariant(), LD->getAlignment());
902      RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
903      RChain = Res.getValue(1);
904      break;
905    }
906    }
907    if (RChain.getNode() != Node) {
908      assert(RVal.getNode() != Node && "Load must be completely replaced");
909      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
910      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
911      ReplacedNode(Node);
912    }
913    return;
914  }
915
916  EVT SrcVT = LD->getMemoryVT();
917  unsigned SrcWidth = SrcVT.getSizeInBits();
918  unsigned Alignment = LD->getAlignment();
919  bool isVolatile = LD->isVolatile();
920  bool isNonTemporal = LD->isNonTemporal();
921
922  if (SrcWidth != SrcVT.getStoreSizeInBits() &&
923      // Some targets pretend to have an i1 loading operation, and actually
924      // load an i8.  This trick is correct for ZEXTLOAD because the top 7
925      // bits are guaranteed to be zero; it helps the optimizers understand
926      // that these bits are zero.  It is also useful for EXTLOAD, since it
927      // tells the optimizers that those bits are undefined.  It would be
928      // nice to have an effective generic way of getting these benefits...
929      // Until such a way is found, don't insist on promoting i1 here.
930      (SrcVT != MVT::i1 ||
931       TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
932    // Promote to a byte-sized load if not loading an integral number of
933    // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
934    unsigned NewWidth = SrcVT.getStoreSizeInBits();
935    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
936    SDValue Ch;
937
938    // The extra bits are guaranteed to be zero, since we stored them that
939    // way.  A zext load from NVT thus automatically gives zext from SrcVT.
940
941    ISD::LoadExtType NewExtType =
942      ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
943
944    SDValue Result =
945      DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
946                     Chain, Ptr, LD->getPointerInfo(),
947                     NVT, isVolatile, isNonTemporal, Alignment);
948
949    Ch = Result.getValue(1); // The chain.
950
951    if (ExtType == ISD::SEXTLOAD)
952      // Having the top bits zero doesn't help when sign extending.
953      Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
954                           Result.getValueType(),
955                           Result, DAG.getValueType(SrcVT));
956    else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
957      // All the top bits are guaranteed to be zero - inform the optimizers.
958      Result = DAG.getNode(ISD::AssertZext, dl,
959                           Result.getValueType(), Result,
960                           DAG.getValueType(SrcVT));
961
962    Value = Result;
963    Chain = Ch;
964  } else if (SrcWidth & (SrcWidth - 1)) {
965    // If not loading a power-of-2 number of bits, expand as two loads.
966    assert(!SrcVT.isVector() && "Unsupported extload!");
967    unsigned RoundWidth = 1 << Log2_32(SrcWidth);
968    assert(RoundWidth < SrcWidth);
969    unsigned ExtraWidth = SrcWidth - RoundWidth;
970    assert(ExtraWidth < RoundWidth);
971    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
972           "Load size not an integral number of bytes!");
973    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
974    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
975    SDValue Lo, Hi, Ch;
976    unsigned IncrementSize;
977
978    if (TLI.isLittleEndian()) {
979      // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
980      // Load the bottom RoundWidth bits.
981      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
982                          Chain, Ptr,
983                          LD->getPointerInfo(), RoundVT, isVolatile,
984                          isNonTemporal, Alignment);
985
986      // Load the remaining ExtraWidth bits.
987      IncrementSize = RoundWidth / 8;
988      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
989                         DAG.getIntPtrConstant(IncrementSize));
990      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
991                          LD->getPointerInfo().getWithOffset(IncrementSize),
992                          ExtraVT, isVolatile, isNonTemporal,
993                          MinAlign(Alignment, IncrementSize));
994
995      // Build a factor node to remember that this load is independent of
996      // the other one.
997      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
998                       Hi.getValue(1));
999
1000      // Move the top bits to the right place.
1001      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1002                       DAG.getConstant(RoundWidth,
1003                                       TLI.getShiftAmountTy(Hi.getValueType())));
1004
1005      // Join the hi and lo parts.
1006      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1007    } else {
1008      // Big endian - avoid unaligned loads.
1009      // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1010      // Load the top RoundWidth bits.
1011      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1012                          LD->getPointerInfo(), RoundVT, isVolatile,
1013                          isNonTemporal, Alignment);
1014
1015      // Load the remaining ExtraWidth bits.
1016      IncrementSize = RoundWidth / 8;
1017      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1018                         DAG.getIntPtrConstant(IncrementSize));
1019      Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1020                          dl, Node->getValueType(0), Chain, Ptr,
1021                          LD->getPointerInfo().getWithOffset(IncrementSize),
1022                          ExtraVT, isVolatile, isNonTemporal,
1023                          MinAlign(Alignment, IncrementSize));
1024
1025      // Build a factor node to remember that this load is independent of
1026      // the other one.
1027      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1028                       Hi.getValue(1));
1029
1030      // Move the top bits to the right place.
1031      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1032                       DAG.getConstant(ExtraWidth,
1033                                       TLI.getShiftAmountTy(Hi.getValueType())));
1034
1035      // Join the hi and lo parts.
1036      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1037    }
1038
1039    Chain = Ch;
1040  } else {
1041    bool isCustom = false;
1042    switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) {
1043    default: llvm_unreachable("This action is not supported yet!");
1044    case TargetLowering::Custom:
1045             isCustom = true;
1046             // FALLTHROUGH
1047    case TargetLowering::Legal: {
1048             Value = SDValue(Node, 0);
1049             Chain = SDValue(Node, 1);
1050
1051             if (isCustom) {
1052               SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1053               if (Res.getNode()) {
1054                 Value = Res;
1055                 Chain = Res.getValue(1);
1056               }
1057             } else {
1058               // If this is an unaligned load and the target doesn't support it,
1059               // expand it.
1060               if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1061                 Type *Ty =
1062                   LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1063                 unsigned ABIAlignment =
1064                   TLI.getDataLayout()->getABITypeAlignment(Ty);
1065                 if (LD->getAlignment() < ABIAlignment){
1066                   ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1067                                       DAG, TLI, Value, Chain);
1068                 }
1069               }
1070             }
1071             break;
1072    }
1073    case TargetLowering::Expand:
1074             if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1075               SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
1076                                          LD->getPointerInfo(),
1077                                          LD->isVolatile(), LD->isNonTemporal(),
1078                                          LD->isInvariant(), LD->getAlignment());
1079               unsigned ExtendOp;
1080               switch (ExtType) {
1081               case ISD::EXTLOAD:
1082                 ExtendOp = (SrcVT.isFloatingPoint() ?
1083                             ISD::FP_EXTEND : ISD::ANY_EXTEND);
1084                 break;
1085               case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1086               case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1087               default: llvm_unreachable("Unexpected extend load type!");
1088               }
1089               Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1090               Chain = Load.getValue(1);
1091               break;
1092             }
1093
1094             assert(!SrcVT.isVector() &&
1095                    "Vector Loads are handled in LegalizeVectorOps");
1096
1097             // FIXME: This does not work for vectors on most targets.  Sign- and
1098             // zero-extend operations are currently folded into extending loads,
1099             // whether they are legal or not, and then we end up here without any
1100             // support for legalizing them.
1101             assert(ExtType != ISD::EXTLOAD &&
1102                    "EXTLOAD should always be supported!");
1103             // Turn the unsupported load into an EXTLOAD followed by an explicit
1104             // zero/sign extend inreg.
1105             SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1106                                             Chain, Ptr, LD->getPointerInfo(), SrcVT,
1107                                             LD->isVolatile(), LD->isNonTemporal(),
1108                                             LD->getAlignment());
1109             SDValue ValRes;
1110             if (ExtType == ISD::SEXTLOAD)
1111               ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1112                                    Result.getValueType(),
1113                                    Result, DAG.getValueType(SrcVT));
1114             else
1115               ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1116             Value = ValRes;
1117             Chain = Result.getValue(1);
1118             break;
1119    }
1120  }
1121
1122  // Since loads produce two values, make sure to remember that we legalized
1123  // both of them.
1124  if (Chain.getNode() != Node) {
1125    assert(Value.getNode() != Node && "Load must be completely replaced");
1126    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
1127    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1128    ReplacedNode(Node);
1129  }
1130}
1131
1132/// LegalizeOp - Return a legal replacement for the given operation, with
1133/// all legal operands.
1134void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
1135  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
1136    return;
1137
1138  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1139    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
1140             TargetLowering::TypeLegal &&
1141           "Unexpected illegal type!");
1142
1143  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1144    assert((TLI.getTypeAction(*DAG.getContext(),
1145                              Node->getOperand(i).getValueType()) ==
1146              TargetLowering::TypeLegal ||
1147            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
1148           "Unexpected illegal type!");
1149
1150  // Figure out the correct action; the way to query this varies by opcode
1151  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
1152  bool SimpleFinishLegalizing = true;
1153  switch (Node->getOpcode()) {
1154  case ISD::INTRINSIC_W_CHAIN:
1155  case ISD::INTRINSIC_WO_CHAIN:
1156  case ISD::INTRINSIC_VOID:
1157  case ISD::STACKSAVE:
1158    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1159    break;
1160  case ISD::VAARG:
1161    Action = TLI.getOperationAction(Node->getOpcode(),
1162                                    Node->getValueType(0));
1163    if (Action != TargetLowering::Promote)
1164      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1165    break;
1166  case ISD::SINT_TO_FP:
1167  case ISD::UINT_TO_FP:
1168  case ISD::EXTRACT_VECTOR_ELT:
1169    Action = TLI.getOperationAction(Node->getOpcode(),
1170                                    Node->getOperand(0).getValueType());
1171    break;
1172  case ISD::FP_ROUND_INREG:
1173  case ISD::SIGN_EXTEND_INREG: {
1174    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1175    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1176    break;
1177  }
1178  case ISD::ATOMIC_STORE: {
1179    Action = TLI.getOperationAction(Node->getOpcode(),
1180                                    Node->getOperand(2).getValueType());
1181    break;
1182  }
1183  case ISD::SELECT_CC:
1184  case ISD::SETCC:
1185  case ISD::BR_CC: {
1186    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1187                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
1188    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1189    MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1190    ISD::CondCode CCCode =
1191        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1192    Action = TLI.getCondCodeAction(CCCode, OpVT);
1193    if (Action == TargetLowering::Legal) {
1194      if (Node->getOpcode() == ISD::SELECT_CC)
1195        Action = TLI.getOperationAction(Node->getOpcode(),
1196                                        Node->getValueType(0));
1197      else
1198        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1199    }
1200    break;
1201  }
1202  case ISD::LOAD:
1203  case ISD::STORE:
1204    // FIXME: Model these properly.  LOAD and STORE are complicated, and
1205    // STORE expects the unlegalized operand in some cases.
1206    SimpleFinishLegalizing = false;
1207    break;
1208  case ISD::CALLSEQ_START:
1209  case ISD::CALLSEQ_END:
1210    // FIXME: This shouldn't be necessary.  These nodes have special properties
1211    // dealing with the recursive nature of legalization.  Removing this
1212    // special case should be done as part of making LegalizeDAG non-recursive.
1213    SimpleFinishLegalizing = false;
1214    break;
1215  case ISD::EXTRACT_ELEMENT:
1216  case ISD::FLT_ROUNDS_:
1217  case ISD::SADDO:
1218  case ISD::SSUBO:
1219  case ISD::UADDO:
1220  case ISD::USUBO:
1221  case ISD::SMULO:
1222  case ISD::UMULO:
1223  case ISD::FPOWI:
1224  case ISD::MERGE_VALUES:
1225  case ISD::EH_RETURN:
1226  case ISD::FRAME_TO_ARGS_OFFSET:
1227  case ISD::EH_SJLJ_SETJMP:
1228  case ISD::EH_SJLJ_LONGJMP:
1229    // These operations lie about being legal: when they claim to be legal,
1230    // they should actually be expanded.
1231    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1232    if (Action == TargetLowering::Legal)
1233      Action = TargetLowering::Expand;
1234    break;
1235  case ISD::INIT_TRAMPOLINE:
1236  case ISD::ADJUST_TRAMPOLINE:
1237  case ISD::FRAMEADDR:
1238  case ISD::RETURNADDR:
1239    // These operations lie about being legal: when they claim to be legal,
1240    // they should actually be custom-lowered.
1241    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1242    if (Action == TargetLowering::Legal)
1243      Action = TargetLowering::Custom;
1244    break;
1245  case ISD::DEBUGTRAP:
1246    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1247    if (Action == TargetLowering::Expand) {
1248      // replace ISD::DEBUGTRAP with ISD::TRAP
1249      SDValue NewVal;
1250      NewVal = DAG.getNode(ISD::TRAP, Node->getDebugLoc(), Node->getVTList(),
1251                           Node->getOperand(0));
1252      ReplaceNode(Node, NewVal.getNode());
1253      LegalizeOp(NewVal.getNode());
1254      return;
1255    }
1256    break;
1257
1258  default:
1259    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1260      Action = TargetLowering::Legal;
1261    } else {
1262      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1263    }
1264    break;
1265  }
1266
1267  if (SimpleFinishLegalizing) {
1268    SDNode *NewNode = Node;
1269    switch (Node->getOpcode()) {
1270    default: break;
1271    case ISD::SHL:
1272    case ISD::SRL:
1273    case ISD::SRA:
1274    case ISD::ROTL:
1275    case ISD::ROTR:
1276      // Legalizing shifts/rotates requires adjusting the shift amount
1277      // to the appropriate width.
1278      if (!Node->getOperand(1).getValueType().isVector()) {
1279        SDValue SAO =
1280          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1281                                    Node->getOperand(1));
1282        HandleSDNode Handle(SAO);
1283        LegalizeOp(SAO.getNode());
1284        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1285                                         Handle.getValue());
1286      }
1287      break;
1288    case ISD::SRL_PARTS:
1289    case ISD::SRA_PARTS:
1290    case ISD::SHL_PARTS:
1291      // Legalizing shifts/rotates requires adjusting the shift amount
1292      // to the appropriate width.
1293      if (!Node->getOperand(2).getValueType().isVector()) {
1294        SDValue SAO =
1295          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1296                                    Node->getOperand(2));
1297        HandleSDNode Handle(SAO);
1298        LegalizeOp(SAO.getNode());
1299        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1300                                         Node->getOperand(1),
1301                                         Handle.getValue());
1302      }
1303      break;
1304    }
1305
1306    if (NewNode != Node) {
1307      DAG.ReplaceAllUsesWith(Node, NewNode);
1308      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1309        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
1310      ReplacedNode(Node);
1311      Node = NewNode;
1312    }
1313    switch (Action) {
1314    case TargetLowering::Legal:
1315      return;
1316    case TargetLowering::Custom: {
1317      // FIXME: The handling for custom lowering with multiple results is
1318      // a complete mess.
1319      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1320      if (Res.getNode()) {
1321        SmallVector<SDValue, 8> ResultVals;
1322        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
1323          if (e == 1)
1324            ResultVals.push_back(Res);
1325          else
1326            ResultVals.push_back(Res.getValue(i));
1327        }
1328        if (Res.getNode() != Node || Res.getResNo() != 0) {
1329          DAG.ReplaceAllUsesWith(Node, ResultVals.data());
1330          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1331            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
1332          ReplacedNode(Node);
1333        }
1334        return;
1335      }
1336    }
1337      // FALL THROUGH
1338    case TargetLowering::Expand:
1339      ExpandNode(Node);
1340      return;
1341    case TargetLowering::Promote:
1342      PromoteNode(Node);
1343      return;
1344    }
1345  }
1346
1347  switch (Node->getOpcode()) {
1348  default:
1349#ifndef NDEBUG
1350    dbgs() << "NODE: ";
1351    Node->dump( &DAG);
1352    dbgs() << "\n";
1353#endif
1354    llvm_unreachable("Do not know how to legalize this operator!");
1355
1356  case ISD::CALLSEQ_START:
1357  case ISD::CALLSEQ_END:
1358    break;
1359  case ISD::LOAD: {
1360    return LegalizeLoadOps(Node);
1361  }
1362  case ISD::STORE: {
1363    return LegalizeStoreOps(Node);
1364  }
1365  }
1366}
1367
1368SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1369  SDValue Vec = Op.getOperand(0);
1370  SDValue Idx = Op.getOperand(1);
1371  DebugLoc dl = Op.getDebugLoc();
1372  // Store the value to a temporary stack slot, then LOAD the returned part.
1373  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1374  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1375                            MachinePointerInfo(), false, false, 0);
1376
1377  // Add the offset to the index.
1378  unsigned EltSize =
1379      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1380  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1381                    DAG.getConstant(EltSize, Idx.getValueType()));
1382
1383  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1384    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1385  else
1386    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1387
1388  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1389
1390  if (Op.getValueType().isVector())
1391    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1392                       false, false, false, 0);
1393  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1394                        MachinePointerInfo(),
1395                        Vec.getValueType().getVectorElementType(),
1396                        false, false, 0);
1397}
1398
1399SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1400  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1401
1402  SDValue Vec  = Op.getOperand(0);
1403  SDValue Part = Op.getOperand(1);
1404  SDValue Idx  = Op.getOperand(2);
1405  DebugLoc dl  = Op.getDebugLoc();
1406
1407  // Store the value to a temporary stack slot, then LOAD the returned part.
1408
1409  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1410  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1411  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1412
1413  // First store the whole vector.
1414  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1415                            false, false, 0);
1416
1417  // Then store the inserted part.
1418
1419  // Add the offset to the index.
1420  unsigned EltSize =
1421      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1422
1423  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1424                    DAG.getConstant(EltSize, Idx.getValueType()));
1425
1426  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1427    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1428  else
1429    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1430
1431  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1432                                    StackPtr);
1433
1434  // Store the subvector.
1435  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1436                    MachinePointerInfo(), false, false, 0);
1437
1438  // Finally, load the updated vector.
1439  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1440                     false, false, false, 0);
1441}
1442
1443SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1444  // We can't handle this case efficiently.  Allocate a sufficiently
1445  // aligned object on the stack, store each element into it, then load
1446  // the result as a vector.
1447  // Create the stack frame object.
1448  EVT VT = Node->getValueType(0);
1449  EVT EltVT = VT.getVectorElementType();
1450  DebugLoc dl = Node->getDebugLoc();
1451  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1452  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1453  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1454
1455  // Emit a store of each element to the stack slot.
1456  SmallVector<SDValue, 8> Stores;
1457  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1458  // Store (in the right endianness) the elements to memory.
1459  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1460    // Ignore undef elements.
1461    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1462
1463    unsigned Offset = TypeByteSize*i;
1464
1465    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1466    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1467
1468    // If the destination vector element type is narrower than the source
1469    // element type, only store the bits necessary.
1470    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1471      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1472                                         Node->getOperand(i), Idx,
1473                                         PtrInfo.getWithOffset(Offset),
1474                                         EltVT, false, false, 0));
1475    } else
1476      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1477                                    Node->getOperand(i), Idx,
1478                                    PtrInfo.getWithOffset(Offset),
1479                                    false, false, 0));
1480  }
1481
1482  SDValue StoreChain;
1483  if (!Stores.empty())    // Not all undef elements?
1484    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1485                             &Stores[0], Stores.size());
1486  else
1487    StoreChain = DAG.getEntryNode();
1488
1489  // Result is a load from the stack slot.
1490  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1491                     false, false, false, 0);
1492}
1493
1494SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1495  DebugLoc dl = Node->getDebugLoc();
1496  SDValue Tmp1 = Node->getOperand(0);
1497  SDValue Tmp2 = Node->getOperand(1);
1498
1499  // Get the sign bit of the RHS.  First obtain a value that has the same
1500  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1501  SDValue SignBit;
1502  EVT FloatVT = Tmp2.getValueType();
1503  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1504  if (TLI.isTypeLegal(IVT)) {
1505    // Convert to an integer with the same sign bit.
1506    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1507  } else {
1508    // Store the float to memory, then load the sign part out as an integer.
1509    MVT LoadTy = TLI.getPointerTy();
1510    // First create a temporary that is aligned for both the load and store.
1511    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1512    // Then store the float to it.
1513    SDValue Ch =
1514      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1515                   false, false, 0);
1516    if (TLI.isBigEndian()) {
1517      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1518      // Load out a legal integer with the same sign bit as the float.
1519      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1520                            false, false, false, 0);
1521    } else { // Little endian
1522      SDValue LoadPtr = StackPtr;
1523      // The float may be wider than the integer we are going to load.  Advance
1524      // the pointer so that the loaded integer will contain the sign bit.
1525      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1526      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1527      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1528                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1529      // Load a legal integer containing the sign bit.
1530      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1531                            false, false, false, 0);
1532      // Move the sign bit to the top bit of the loaded integer.
1533      unsigned BitShift = LoadTy.getSizeInBits() -
1534        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1535      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1536      if (BitShift)
1537        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1538                              DAG.getConstant(BitShift,
1539                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1540    }
1541  }
1542  // Now get the sign bit proper, by seeing whether the value is negative.
1543  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1544                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1545                         ISD::SETLT);
1546  // Get the absolute value of the result.
1547  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1548  // Select between the nabs and abs value based on the sign bit of
1549  // the input.
1550  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1551                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1552                     AbsVal);
1553}
1554
1555void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1556                                           SmallVectorImpl<SDValue> &Results) {
1557  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1558  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1559          " not tell us which reg is the stack pointer!");
1560  DebugLoc dl = Node->getDebugLoc();
1561  EVT VT = Node->getValueType(0);
1562  SDValue Tmp1 = SDValue(Node, 0);
1563  SDValue Tmp2 = SDValue(Node, 1);
1564  SDValue Tmp3 = Node->getOperand(2);
1565  SDValue Chain = Tmp1.getOperand(0);
1566
1567  // Chain the dynamic stack allocation so that it doesn't modify the stack
1568  // pointer when other instructions are using the stack.
1569  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1570
1571  SDValue Size  = Tmp2.getOperand(1);
1572  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1573  Chain = SP.getValue(1);
1574  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1575  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1576  if (Align > StackAlign)
1577    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1578                      DAG.getConstant(-(uint64_t)Align, VT));
1579  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1580  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1581
1582  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1583                            DAG.getIntPtrConstant(0, true), SDValue());
1584
1585  Results.push_back(Tmp1);
1586  Results.push_back(Tmp2);
1587}
1588
1589/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1590/// condition code CC on the current target. This routine expands SETCC with
1591/// illegal condition code into AND / OR of multiple SETCC values.
1592void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1593                                                 SDValue &LHS, SDValue &RHS,
1594                                                 SDValue &CC,
1595                                                 DebugLoc dl) {
1596  MVT OpVT = LHS.getSimpleValueType();
1597  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1598  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1599  default: llvm_unreachable("Unknown condition code action!");
1600  case TargetLowering::Legal:
1601    // Nothing to do.
1602    break;
1603  case TargetLowering::Expand: {
1604    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1605    ISD::CondCode InvCC = ISD::SETCC_INVALID;
1606    unsigned Opc = 0;
1607    switch (CCCode) {
1608    default: llvm_unreachable("Don't know how to expand this condition!");
1609    case ISD::SETO:
1610        assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
1611            == TargetLowering::Legal
1612            && "If SETO is expanded, SETOEQ must be legal!");
1613        CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1614    case ISD::SETUO:
1615        assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
1616            == TargetLowering::Legal
1617            && "If SETUO is expanded, SETUNE must be legal!");
1618        CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1619    case ISD::SETOEQ:
1620    case ISD::SETOGT:
1621    case ISD::SETOGE:
1622    case ISD::SETOLT:
1623    case ISD::SETOLE:
1624    case ISD::SETONE:
1625    case ISD::SETUEQ:
1626    case ISD::SETUNE:
1627    case ISD::SETUGT:
1628    case ISD::SETUGE:
1629    case ISD::SETULT:
1630    case ISD::SETULE:
1631        // If we are floating point, assign and break, otherwise fall through.
1632        if (!OpVT.isInteger()) {
1633          // We can use the 4th bit to tell if we are the unordered
1634          // or ordered version of the opcode.
1635          CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1636          Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1637          CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1638          break;
1639        }
1640        // Fallthrough if we are unsigned integer.
1641    case ISD::SETLE:
1642    case ISD::SETGT:
1643    case ISD::SETGE:
1644    case ISD::SETLT:
1645    case ISD::SETNE:
1646    case ISD::SETEQ:
1647      InvCC = ISD::getSetCCSwappedOperands(CCCode);
1648      if (TLI.getCondCodeAction(InvCC, OpVT) == TargetLowering::Expand) {
1649        // We only support using the inverted operation and not a
1650        // different manner of supporting expanding these cases.
1651        llvm_unreachable("Don't know how to expand this condition!");
1652      }
1653      LHS = DAG.getSetCC(dl, VT, RHS, LHS, InvCC);
1654      RHS = SDValue();
1655      CC = SDValue();
1656      return;
1657    }
1658
1659    SDValue SetCC1, SetCC2;
1660    if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1661      // If we aren't the ordered or unorder operation,
1662      // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1663      SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1664      SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1665    } else {
1666      // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1667      SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1668      SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1669    }
1670    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1671    RHS = SDValue();
1672    CC  = SDValue();
1673    break;
1674  }
1675  }
1676}
1677
1678/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1679/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1680/// a load from the stack slot to DestVT, extending it if needed.
1681/// The resultant code need not be legal.
1682SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1683                                               EVT SlotVT,
1684                                               EVT DestVT,
1685                                               DebugLoc dl) {
1686  // Create the stack frame object.
1687  unsigned SrcAlign =
1688    TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
1689                                              getTypeForEVT(*DAG.getContext()));
1690  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1691
1692  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1693  int SPFI = StackPtrFI->getIndex();
1694  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1695
1696  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1697  unsigned SlotSize = SlotVT.getSizeInBits();
1698  unsigned DestSize = DestVT.getSizeInBits();
1699  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1700  unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
1701
1702  // Emit a store to the stack slot.  Use a truncstore if the input value is
1703  // later than DestVT.
1704  SDValue Store;
1705
1706  if (SrcSize > SlotSize)
1707    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1708                              PtrInfo, SlotVT, false, false, SrcAlign);
1709  else {
1710    assert(SrcSize == SlotSize && "Invalid store");
1711    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1712                         PtrInfo, false, false, SrcAlign);
1713  }
1714
1715  // Result is a load from the stack slot.
1716  if (SlotSize == DestSize)
1717    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1718                       false, false, false, DestAlign);
1719
1720  assert(SlotSize < DestSize && "Unknown extension!");
1721  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1722                        PtrInfo, SlotVT, false, false, DestAlign);
1723}
1724
1725SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1726  DebugLoc dl = Node->getDebugLoc();
1727  // Create a vector sized/aligned stack slot, store the value to element #0,
1728  // then load the whole vector back out.
1729  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1730
1731  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1732  int SPFI = StackPtrFI->getIndex();
1733
1734  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1735                                 StackPtr,
1736                                 MachinePointerInfo::getFixedStack(SPFI),
1737                                 Node->getValueType(0).getVectorElementType(),
1738                                 false, false, 0);
1739  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1740                     MachinePointerInfo::getFixedStack(SPFI),
1741                     false, false, false, 0);
1742}
1743
1744
1745/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1746/// support the operation, but do support the resultant vector type.
1747SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1748  unsigned NumElems = Node->getNumOperands();
1749  SDValue Value1, Value2;
1750  DebugLoc dl = Node->getDebugLoc();
1751  EVT VT = Node->getValueType(0);
1752  EVT OpVT = Node->getOperand(0).getValueType();
1753  EVT EltVT = VT.getVectorElementType();
1754
1755  // If the only non-undef value is the low element, turn this into a
1756  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1757  bool isOnlyLowElement = true;
1758  bool MoreThanTwoValues = false;
1759  bool isConstant = true;
1760  for (unsigned i = 0; i < NumElems; ++i) {
1761    SDValue V = Node->getOperand(i);
1762    if (V.getOpcode() == ISD::UNDEF)
1763      continue;
1764    if (i > 0)
1765      isOnlyLowElement = false;
1766    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1767      isConstant = false;
1768
1769    if (!Value1.getNode()) {
1770      Value1 = V;
1771    } else if (!Value2.getNode()) {
1772      if (V != Value1)
1773        Value2 = V;
1774    } else if (V != Value1 && V != Value2) {
1775      MoreThanTwoValues = true;
1776    }
1777  }
1778
1779  if (!Value1.getNode())
1780    return DAG.getUNDEF(VT);
1781
1782  if (isOnlyLowElement)
1783    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1784
1785  // If all elements are constants, create a load from the constant pool.
1786  if (isConstant) {
1787    SmallVector<Constant*, 16> CV;
1788    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1789      if (ConstantFPSDNode *V =
1790          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1791        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1792      } else if (ConstantSDNode *V =
1793                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1794        if (OpVT==EltVT)
1795          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1796        else {
1797          // If OpVT and EltVT don't match, EltVT is not legal and the
1798          // element values have been promoted/truncated earlier.  Undo this;
1799          // we don't want a v16i8 to become a v16i32 for example.
1800          const ConstantInt *CI = V->getConstantIntValue();
1801          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1802                                        CI->getZExtValue()));
1803        }
1804      } else {
1805        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1806        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1807        CV.push_back(UndefValue::get(OpNTy));
1808      }
1809    }
1810    Constant *CP = ConstantVector::get(CV);
1811    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1812    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1813    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1814                       MachinePointerInfo::getConstantPool(),
1815                       false, false, false, Alignment);
1816  }
1817
1818  if (!MoreThanTwoValues) {
1819    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1820    for (unsigned i = 0; i < NumElems; ++i) {
1821      SDValue V = Node->getOperand(i);
1822      if (V.getOpcode() == ISD::UNDEF)
1823        continue;
1824      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1825    }
1826    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1827      // Get the splatted value into the low element of a vector register.
1828      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1829      SDValue Vec2;
1830      if (Value2.getNode())
1831        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1832      else
1833        Vec2 = DAG.getUNDEF(VT);
1834
1835      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1836      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1837    }
1838  }
1839
1840  // Otherwise, we can't handle this case efficiently.
1841  return ExpandVectorBuildThroughStack(Node);
1842}
1843
1844static bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
1845                                SDValue &Chain, const TargetLowering &TLI) {
1846  const Function *F = DAG.getMachineFunction().getFunction();
1847
1848  // Conservatively require the attributes of the call to match those of
1849  // the return. Ignore noalias because it doesn't affect the call sequence.
1850  Attribute CallerRetAttr = F->getAttributes().getRetAttributes();
1851  if (AttrBuilder(CallerRetAttr)
1852      .removeAttribute(Attribute::NoAlias).hasAttributes())
1853    return false;
1854
1855  // It's not safe to eliminate the sign / zero extension of the return value.
1856  if (CallerRetAttr.hasAttribute(Attribute::ZExt) ||
1857      CallerRetAttr.hasAttribute(Attribute::SExt))
1858    return false;
1859
1860  // Check if the only use is a function return node.
1861  return TLI.isUsedByReturnOnly(Node, Chain);
1862}
1863
1864// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1865// does not fit into a register, return the lo part and set the hi part to the
1866// by-reg argument.  If it does fit into a single register, return the result
1867// and leave the Hi part unset.
1868SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1869                                            bool isSigned) {
1870  TargetLowering::ArgListTy Args;
1871  TargetLowering::ArgListEntry Entry;
1872  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1873    EVT ArgVT = Node->getOperand(i).getValueType();
1874    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1875    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1876    Entry.isSExt = isSigned;
1877    Entry.isZExt = !isSigned;
1878    Args.push_back(Entry);
1879  }
1880  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1881                                         TLI.getPointerTy());
1882
1883  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1884
1885  // By default, the input chain to this libcall is the entry node of the
1886  // function. If the libcall is going to be emitted as a tail call then
1887  // TLI.isUsedByReturnOnly will change it to the right chain if the return
1888  // node which is being folded has a non-entry input chain.
1889  SDValue InChain = DAG.getEntryNode();
1890
1891  // isTailCall may be true since the callee does not reference caller stack
1892  // frame. Check if it's in the right position.
1893  SDValue TCChain = InChain;
1894  bool isTailCall = isInTailCallPosition(DAG, Node, TCChain, TLI);
1895  if (isTailCall)
1896    InChain = TCChain;
1897
1898  TargetLowering::
1899  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1900                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1901                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1902                    Callee, Args, DAG, Node->getDebugLoc());
1903  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1904
1905
1906  if (!CallInfo.second.getNode())
1907    // It's a tailcall, return the chain (which is the DAG root).
1908    return DAG.getRoot();
1909
1910  return CallInfo.first;
1911}
1912
1913/// ExpandLibCall - Generate a libcall taking the given operands as arguments
1914/// and returning a result of type RetVT.
1915SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1916                                            const SDValue *Ops, unsigned NumOps,
1917                                            bool isSigned, DebugLoc dl) {
1918  TargetLowering::ArgListTy Args;
1919  Args.reserve(NumOps);
1920
1921  TargetLowering::ArgListEntry Entry;
1922  for (unsigned i = 0; i != NumOps; ++i) {
1923    Entry.Node = Ops[i];
1924    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1925    Entry.isSExt = isSigned;
1926    Entry.isZExt = !isSigned;
1927    Args.push_back(Entry);
1928  }
1929  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1930                                         TLI.getPointerTy());
1931
1932  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1933  TargetLowering::
1934  CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1935                       false, 0, TLI.getLibcallCallingConv(LC),
1936                       /*isTailCall=*/false,
1937                  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1938                  Callee, Args, DAG, dl);
1939  std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
1940
1941  return CallInfo.first;
1942}
1943
1944// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1945// ExpandLibCall except that the first operand is the in-chain.
1946std::pair<SDValue, SDValue>
1947SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1948                                         SDNode *Node,
1949                                         bool isSigned) {
1950  SDValue InChain = Node->getOperand(0);
1951
1952  TargetLowering::ArgListTy Args;
1953  TargetLowering::ArgListEntry Entry;
1954  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1955    EVT ArgVT = Node->getOperand(i).getValueType();
1956    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1957    Entry.Node = Node->getOperand(i);
1958    Entry.Ty = ArgTy;
1959    Entry.isSExt = isSigned;
1960    Entry.isZExt = !isSigned;
1961    Args.push_back(Entry);
1962  }
1963  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1964                                         TLI.getPointerTy());
1965
1966  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1967  TargetLowering::
1968  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1969                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1970                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1971                    Callee, Args, DAG, Node->getDebugLoc());
1972  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1973
1974  return CallInfo;
1975}
1976
1977SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1978                                              RTLIB::Libcall Call_F32,
1979                                              RTLIB::Libcall Call_F64,
1980                                              RTLIB::Libcall Call_F80,
1981                                              RTLIB::Libcall Call_PPCF128) {
1982  RTLIB::Libcall LC;
1983  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1984  default: llvm_unreachable("Unexpected request for libcall!");
1985  case MVT::f32: LC = Call_F32; break;
1986  case MVT::f64: LC = Call_F64; break;
1987  case MVT::f80: LC = Call_F80; break;
1988  case MVT::ppcf128: LC = Call_PPCF128; break;
1989  }
1990  return ExpandLibCall(LC, Node, false);
1991}
1992
1993SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1994                                               RTLIB::Libcall Call_I8,
1995                                               RTLIB::Libcall Call_I16,
1996                                               RTLIB::Libcall Call_I32,
1997                                               RTLIB::Libcall Call_I64,
1998                                               RTLIB::Libcall Call_I128) {
1999  RTLIB::Libcall LC;
2000  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2001  default: llvm_unreachable("Unexpected request for libcall!");
2002  case MVT::i8:   LC = Call_I8; break;
2003  case MVT::i16:  LC = Call_I16; break;
2004  case MVT::i32:  LC = Call_I32; break;
2005  case MVT::i64:  LC = Call_I64; break;
2006  case MVT::i128: LC = Call_I128; break;
2007  }
2008  return ExpandLibCall(LC, Node, isSigned);
2009}
2010
2011/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
2012static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2013                                     const TargetLowering &TLI) {
2014  RTLIB::Libcall LC;
2015  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2016  default: llvm_unreachable("Unexpected request for libcall!");
2017  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2018  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2019  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2020  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2021  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2022  }
2023
2024  return TLI.getLibcallName(LC) != 0;
2025}
2026
2027/// useDivRem - Only issue divrem libcall if both quotient and remainder are
2028/// needed.
2029static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2030  // The other use might have been replaced with a divrem already.
2031  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2032  unsigned OtherOpcode = 0;
2033  if (isSigned)
2034    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2035  else
2036    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2037
2038  SDValue Op0 = Node->getOperand(0);
2039  SDValue Op1 = Node->getOperand(1);
2040  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2041         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2042    SDNode *User = *UI;
2043    if (User == Node)
2044      continue;
2045    if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
2046        User->getOperand(0) == Op0 &&
2047        User->getOperand(1) == Op1)
2048      return true;
2049  }
2050  return false;
2051}
2052
2053/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2054/// pairs.
2055void
2056SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2057                                          SmallVectorImpl<SDValue> &Results) {
2058  unsigned Opcode = Node->getOpcode();
2059  bool isSigned = Opcode == ISD::SDIVREM;
2060
2061  RTLIB::Libcall LC;
2062  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2063  default: llvm_unreachable("Unexpected request for libcall!");
2064  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2065  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2066  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2067  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2068  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2069  }
2070
2071  // The input chain to this libcall is the entry node of the function.
2072  // Legalizing the call will automatically add the previous call to the
2073  // dependence.
2074  SDValue InChain = DAG.getEntryNode();
2075
2076  EVT RetVT = Node->getValueType(0);
2077  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2078
2079  TargetLowering::ArgListTy Args;
2080  TargetLowering::ArgListEntry Entry;
2081  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2082    EVT ArgVT = Node->getOperand(i).getValueType();
2083    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2084    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2085    Entry.isSExt = isSigned;
2086    Entry.isZExt = !isSigned;
2087    Args.push_back(Entry);
2088  }
2089
2090  // Also pass the return address of the remainder.
2091  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2092  Entry.Node = FIPtr;
2093  Entry.Ty = RetTy->getPointerTo();
2094  Entry.isSExt = isSigned;
2095  Entry.isZExt = !isSigned;
2096  Args.push_back(Entry);
2097
2098  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2099                                         TLI.getPointerTy());
2100
2101  DebugLoc dl = Node->getDebugLoc();
2102  TargetLowering::
2103  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
2104                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2105                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2106                    Callee, Args, DAG, dl);
2107  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2108
2109  // Remainder is loaded back from the stack frame.
2110  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2111                            MachinePointerInfo(), false, false, false, 0);
2112  Results.push_back(CallInfo.first);
2113  Results.push_back(Rem);
2114}
2115
2116/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2117/// INT_TO_FP operation of the specified operand when the target requests that
2118/// we expand it.  At this point, we know that the result and operand types are
2119/// legal for the target.
2120SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2121                                                   SDValue Op0,
2122                                                   EVT DestVT,
2123                                                   DebugLoc dl) {
2124  if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2125    // simple 32-bit [signed|unsigned] integer to float/double expansion
2126
2127    // Get the stack frame index of a 8 byte buffer.
2128    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2129
2130    // word offset constant for Hi/Lo address computation
2131    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2132    // set up Hi and Lo (into buffer) address based on endian
2133    SDValue Hi = StackSlot;
2134    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2135                             TLI.getPointerTy(), StackSlot, WordOff);
2136    if (TLI.isLittleEndian())
2137      std::swap(Hi, Lo);
2138
2139    // if signed map to unsigned space
2140    SDValue Op0Mapped;
2141    if (isSigned) {
2142      // constant used to invert sign bit (signed to unsigned mapping)
2143      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2144      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2145    } else {
2146      Op0Mapped = Op0;
2147    }
2148    // store the lo of the constructed double - based on integer input
2149    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2150                                  Op0Mapped, Lo, MachinePointerInfo(),
2151                                  false, false, 0);
2152    // initial hi portion of constructed double
2153    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2154    // store the hi of the constructed double - biased exponent
2155    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2156                                  MachinePointerInfo(),
2157                                  false, false, 0);
2158    // load the constructed double
2159    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2160                               MachinePointerInfo(), false, false, false, 0);
2161    // FP constant to bias correct the final result
2162    SDValue Bias = DAG.getConstantFP(isSigned ?
2163                                     BitsToDouble(0x4330000080000000ULL) :
2164                                     BitsToDouble(0x4330000000000000ULL),
2165                                     MVT::f64);
2166    // subtract the bias
2167    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2168    // final result
2169    SDValue Result;
2170    // handle final rounding
2171    if (DestVT == MVT::f64) {
2172      // do nothing
2173      Result = Sub;
2174    } else if (DestVT.bitsLT(MVT::f64)) {
2175      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2176                           DAG.getIntPtrConstant(0));
2177    } else if (DestVT.bitsGT(MVT::f64)) {
2178      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2179    }
2180    return Result;
2181  }
2182  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2183  // Code below here assumes !isSigned without checking again.
2184
2185  // Implementation of unsigned i64 to f64 following the algorithm in
2186  // __floatundidf in compiler_rt. This implementation has the advantage
2187  // of performing rounding correctly, both in the default rounding mode
2188  // and in all alternate rounding modes.
2189  // TODO: Generalize this for use with other types.
2190  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2191    SDValue TwoP52 =
2192      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2193    SDValue TwoP84PlusTwoP52 =
2194      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2195    SDValue TwoP84 =
2196      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2197
2198    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2199    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2200                             DAG.getConstant(32, MVT::i64));
2201    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2202    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2203    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2204    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2205    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2206                                TwoP84PlusTwoP52);
2207    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2208  }
2209
2210  // Implementation of unsigned i64 to f32.
2211  // TODO: Generalize this for use with other types.
2212  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2213    // For unsigned conversions, convert them to signed conversions using the
2214    // algorithm from the x86_64 __floatundidf in compiler_rt.
2215    if (!isSigned) {
2216      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2217
2218      SDValue ShiftConst =
2219          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2220      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2221      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2222      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2223      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2224
2225      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2226      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2227
2228      // TODO: This really should be implemented using a branch rather than a
2229      // select.  We happen to get lucky and machinesink does the right
2230      // thing most of the time.  This would be a good candidate for a
2231      //pseudo-op, or, even better, for whole-function isel.
2232      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2233        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2234      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2235    }
2236
2237    // Otherwise, implement the fully general conversion.
2238
2239    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2240         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2241    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2242         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2243    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2244         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2245    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2246                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2247    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2248    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2249                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2250                   ISD::SETUGE);
2251    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2252    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2253
2254    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2255                             DAG.getConstant(32, SHVT));
2256    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2257    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2258    SDValue TwoP32 =
2259      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2260    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2261    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2262    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2263    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2264    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2265                       DAG.getIntPtrConstant(0));
2266  }
2267
2268  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2269
2270  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2271                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2272                                 ISD::SETLT);
2273  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2274  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2275                                    SignSet, Four, Zero);
2276
2277  // If the sign bit of the integer is set, the large number will be treated
2278  // as a negative number.  To counteract this, the dynamic code adds an
2279  // offset depending on the data type.
2280  uint64_t FF;
2281  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2282  default: llvm_unreachable("Unsupported integer type!");
2283  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2284  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2285  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2286  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2287  }
2288  if (TLI.isLittleEndian()) FF <<= 32;
2289  Constant *FudgeFactor = ConstantInt::get(
2290                                       Type::getInt64Ty(*DAG.getContext()), FF);
2291
2292  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2293  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2294  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2295  Alignment = std::min(Alignment, 4u);
2296  SDValue FudgeInReg;
2297  if (DestVT == MVT::f32)
2298    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2299                             MachinePointerInfo::getConstantPool(),
2300                             false, false, false, Alignment);
2301  else {
2302    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2303                                  DAG.getEntryNode(), CPIdx,
2304                                  MachinePointerInfo::getConstantPool(),
2305                                  MVT::f32, false, false, Alignment);
2306    HandleSDNode Handle(Load);
2307    LegalizeOp(Load.getNode());
2308    FudgeInReg = Handle.getValue();
2309  }
2310
2311  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2312}
2313
2314/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2315/// *INT_TO_FP operation of the specified operand when the target requests that
2316/// we promote it.  At this point, we know that the result and operand types are
2317/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2318/// operation that takes a larger input.
2319SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2320                                                    EVT DestVT,
2321                                                    bool isSigned,
2322                                                    DebugLoc dl) {
2323  // First step, figure out the appropriate *INT_TO_FP operation to use.
2324  EVT NewInTy = LegalOp.getValueType();
2325
2326  unsigned OpToUse = 0;
2327
2328  // Scan for the appropriate larger type to use.
2329  while (1) {
2330    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2331    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2332
2333    // If the target supports SINT_TO_FP of this type, use it.
2334    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2335      OpToUse = ISD::SINT_TO_FP;
2336      break;
2337    }
2338    if (isSigned) continue;
2339
2340    // If the target supports UINT_TO_FP of this type, use it.
2341    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2342      OpToUse = ISD::UINT_TO_FP;
2343      break;
2344    }
2345
2346    // Otherwise, try a larger type.
2347  }
2348
2349  // Okay, we found the operation and type to use.  Zero extend our input to the
2350  // desired type then run the operation on it.
2351  return DAG.getNode(OpToUse, dl, DestVT,
2352                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2353                                 dl, NewInTy, LegalOp));
2354}
2355
2356/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2357/// FP_TO_*INT operation of the specified operand when the target requests that
2358/// we promote it.  At this point, we know that the result and operand types are
2359/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2360/// operation that returns a larger result.
2361SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2362                                                    EVT DestVT,
2363                                                    bool isSigned,
2364                                                    DebugLoc dl) {
2365  // First step, figure out the appropriate FP_TO*INT operation to use.
2366  EVT NewOutTy = DestVT;
2367
2368  unsigned OpToUse = 0;
2369
2370  // Scan for the appropriate larger type to use.
2371  while (1) {
2372    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2373    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2374
2375    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2376      OpToUse = ISD::FP_TO_SINT;
2377      break;
2378    }
2379
2380    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2381      OpToUse = ISD::FP_TO_UINT;
2382      break;
2383    }
2384
2385    // Otherwise, try a larger type.
2386  }
2387
2388
2389  // Okay, we found the operation and type to use.
2390  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2391
2392  // Truncate the result of the extended FP_TO_*INT operation to the desired
2393  // size.
2394  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2395}
2396
2397/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2398///
2399SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2400  EVT VT = Op.getValueType();
2401  EVT SHVT = TLI.getShiftAmountTy(VT);
2402  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2403  switch (VT.getSimpleVT().SimpleTy) {
2404  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2405  case MVT::i16:
2406    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2407    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2408    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2409  case MVT::i32:
2410    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2411    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2412    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2413    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2414    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2415    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2416    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2417    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2418    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2419  case MVT::i64:
2420    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2421    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2422    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2423    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2424    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2425    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2426    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2427    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2428    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2429    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2430    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2431    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2432    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2433    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2434    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2435    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2436    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2437    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2438    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2439    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2440    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2441  }
2442}
2443
2444/// SplatByte - Distribute ByteVal over NumBits bits.
2445// FIXME: Move this helper to a common place.
2446static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2447  APInt Val = APInt(NumBits, ByteVal);
2448  unsigned Shift = 8;
2449  for (unsigned i = NumBits; i > 8; i >>= 1) {
2450    Val = (Val << Shift) | Val;
2451    Shift <<= 1;
2452  }
2453  return Val;
2454}
2455
2456/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2457///
2458SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2459                                             DebugLoc dl) {
2460  switch (Opc) {
2461  default: llvm_unreachable("Cannot expand this yet!");
2462  case ISD::CTPOP: {
2463    EVT VT = Op.getValueType();
2464    EVT ShVT = TLI.getShiftAmountTy(VT);
2465    unsigned Len = VT.getSizeInBits();
2466
2467    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2468           "CTPOP not implemented for this type.");
2469
2470    // This is the "best" algorithm from
2471    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2472
2473    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2474    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2475    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2476    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2477
2478    // v = v - ((v >> 1) & 0x55555555...)
2479    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2480                     DAG.getNode(ISD::AND, dl, VT,
2481                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2482                                             DAG.getConstant(1, ShVT)),
2483                                 Mask55));
2484    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2485    Op = DAG.getNode(ISD::ADD, dl, VT,
2486                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2487                     DAG.getNode(ISD::AND, dl, VT,
2488                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2489                                             DAG.getConstant(2, ShVT)),
2490                                 Mask33));
2491    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2492    Op = DAG.getNode(ISD::AND, dl, VT,
2493                     DAG.getNode(ISD::ADD, dl, VT, Op,
2494                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2495                                             DAG.getConstant(4, ShVT))),
2496                     Mask0F);
2497    // v = (v * 0x01010101...) >> (Len - 8)
2498    Op = DAG.getNode(ISD::SRL, dl, VT,
2499                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2500                     DAG.getConstant(Len - 8, ShVT));
2501
2502    return Op;
2503  }
2504  case ISD::CTLZ_ZERO_UNDEF:
2505    // This trivially expands to CTLZ.
2506    return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2507  case ISD::CTLZ: {
2508    // for now, we do this:
2509    // x = x | (x >> 1);
2510    // x = x | (x >> 2);
2511    // ...
2512    // x = x | (x >>16);
2513    // x = x | (x >>32); // for 64-bit input
2514    // return popcount(~x);
2515    //
2516    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2517    EVT VT = Op.getValueType();
2518    EVT ShVT = TLI.getShiftAmountTy(VT);
2519    unsigned len = VT.getSizeInBits();
2520    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2521      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2522      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2523                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2524    }
2525    Op = DAG.getNOT(dl, Op, VT);
2526    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2527  }
2528  case ISD::CTTZ_ZERO_UNDEF:
2529    // This trivially expands to CTTZ.
2530    return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2531  case ISD::CTTZ: {
2532    // for now, we use: { return popcount(~x & (x - 1)); }
2533    // unless the target has ctlz but not ctpop, in which case we use:
2534    // { return 32 - nlz(~x & (x-1)); }
2535    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2536    EVT VT = Op.getValueType();
2537    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2538                               DAG.getNOT(dl, Op, VT),
2539                               DAG.getNode(ISD::SUB, dl, VT, Op,
2540                                           DAG.getConstant(1, VT)));
2541    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2542    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2543        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2544      return DAG.getNode(ISD::SUB, dl, VT,
2545                         DAG.getConstant(VT.getSizeInBits(), VT),
2546                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2547    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2548  }
2549  }
2550}
2551
2552std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2553  unsigned Opc = Node->getOpcode();
2554  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2555  RTLIB::Libcall LC;
2556
2557  switch (Opc) {
2558  default:
2559    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2560  case ISD::ATOMIC_SWAP:
2561    switch (VT.SimpleTy) {
2562    default: llvm_unreachable("Unexpected value type for atomic!");
2563    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2564    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2565    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2566    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2567    }
2568    break;
2569  case ISD::ATOMIC_CMP_SWAP:
2570    switch (VT.SimpleTy) {
2571    default: llvm_unreachable("Unexpected value type for atomic!");
2572    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2573    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2574    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2575    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2576    }
2577    break;
2578  case ISD::ATOMIC_LOAD_ADD:
2579    switch (VT.SimpleTy) {
2580    default: llvm_unreachable("Unexpected value type for atomic!");
2581    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2582    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2583    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2584    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2585    }
2586    break;
2587  case ISD::ATOMIC_LOAD_SUB:
2588    switch (VT.SimpleTy) {
2589    default: llvm_unreachable("Unexpected value type for atomic!");
2590    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2591    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2592    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2593    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2594    }
2595    break;
2596  case ISD::ATOMIC_LOAD_AND:
2597    switch (VT.SimpleTy) {
2598    default: llvm_unreachable("Unexpected value type for atomic!");
2599    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2600    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2601    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2602    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2603    }
2604    break;
2605  case ISD::ATOMIC_LOAD_OR:
2606    switch (VT.SimpleTy) {
2607    default: llvm_unreachable("Unexpected value type for atomic!");
2608    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2609    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2610    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2611    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2612    }
2613    break;
2614  case ISD::ATOMIC_LOAD_XOR:
2615    switch (VT.SimpleTy) {
2616    default: llvm_unreachable("Unexpected value type for atomic!");
2617    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2618    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2619    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2620    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2621    }
2622    break;
2623  case ISD::ATOMIC_LOAD_NAND:
2624    switch (VT.SimpleTy) {
2625    default: llvm_unreachable("Unexpected value type for atomic!");
2626    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2627    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2628    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2629    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2630    }
2631    break;
2632  }
2633
2634  return ExpandChainLibCall(LC, Node, false);
2635}
2636
2637void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2638  SmallVector<SDValue, 8> Results;
2639  DebugLoc dl = Node->getDebugLoc();
2640  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2641  switch (Node->getOpcode()) {
2642  case ISD::CTPOP:
2643  case ISD::CTLZ:
2644  case ISD::CTLZ_ZERO_UNDEF:
2645  case ISD::CTTZ:
2646  case ISD::CTTZ_ZERO_UNDEF:
2647    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2648    Results.push_back(Tmp1);
2649    break;
2650  case ISD::BSWAP:
2651    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2652    break;
2653  case ISD::FRAMEADDR:
2654  case ISD::RETURNADDR:
2655  case ISD::FRAME_TO_ARGS_OFFSET:
2656    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2657    break;
2658  case ISD::FLT_ROUNDS_:
2659    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2660    break;
2661  case ISD::EH_RETURN:
2662  case ISD::EH_LABEL:
2663  case ISD::PREFETCH:
2664  case ISD::VAEND:
2665  case ISD::EH_SJLJ_LONGJMP:
2666    // If the target didn't expand these, there's nothing to do, so just
2667    // preserve the chain and be done.
2668    Results.push_back(Node->getOperand(0));
2669    break;
2670  case ISD::EH_SJLJ_SETJMP:
2671    // If the target didn't expand this, just return 'zero' and preserve the
2672    // chain.
2673    Results.push_back(DAG.getConstant(0, MVT::i32));
2674    Results.push_back(Node->getOperand(0));
2675    break;
2676  case ISD::ATOMIC_FENCE:
2677  case ISD::MEMBARRIER: {
2678    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2679    // FIXME: handle "fence singlethread" more efficiently.
2680    TargetLowering::ArgListTy Args;
2681    TargetLowering::
2682    CallLoweringInfo CLI(Node->getOperand(0),
2683                         Type::getVoidTy(*DAG.getContext()),
2684                      false, false, false, false, 0, CallingConv::C,
2685                      /*isTailCall=*/false,
2686                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2687                      DAG.getExternalSymbol("__sync_synchronize",
2688                                            TLI.getPointerTy()),
2689                      Args, DAG, dl);
2690    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2691
2692    Results.push_back(CallResult.second);
2693    break;
2694  }
2695  case ISD::ATOMIC_LOAD: {
2696    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2697    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2698    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2699                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2700                                 Node->getOperand(0),
2701                                 Node->getOperand(1), Zero, Zero,
2702                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2703                                 cast<AtomicSDNode>(Node)->getOrdering(),
2704                                 cast<AtomicSDNode>(Node)->getSynchScope());
2705    Results.push_back(Swap.getValue(0));
2706    Results.push_back(Swap.getValue(1));
2707    break;
2708  }
2709  case ISD::ATOMIC_STORE: {
2710    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2711    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2712                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2713                                 Node->getOperand(0),
2714                                 Node->getOperand(1), Node->getOperand(2),
2715                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2716                                 cast<AtomicSDNode>(Node)->getOrdering(),
2717                                 cast<AtomicSDNode>(Node)->getSynchScope());
2718    Results.push_back(Swap.getValue(1));
2719    break;
2720  }
2721  // By default, atomic intrinsics are marked Legal and lowered. Targets
2722  // which don't support them directly, however, may want libcalls, in which
2723  // case they mark them Expand, and we get here.
2724  case ISD::ATOMIC_SWAP:
2725  case ISD::ATOMIC_LOAD_ADD:
2726  case ISD::ATOMIC_LOAD_SUB:
2727  case ISD::ATOMIC_LOAD_AND:
2728  case ISD::ATOMIC_LOAD_OR:
2729  case ISD::ATOMIC_LOAD_XOR:
2730  case ISD::ATOMIC_LOAD_NAND:
2731  case ISD::ATOMIC_LOAD_MIN:
2732  case ISD::ATOMIC_LOAD_MAX:
2733  case ISD::ATOMIC_LOAD_UMIN:
2734  case ISD::ATOMIC_LOAD_UMAX:
2735  case ISD::ATOMIC_CMP_SWAP: {
2736    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2737    Results.push_back(Tmp.first);
2738    Results.push_back(Tmp.second);
2739    break;
2740  }
2741  case ISD::DYNAMIC_STACKALLOC:
2742    ExpandDYNAMIC_STACKALLOC(Node, Results);
2743    break;
2744  case ISD::MERGE_VALUES:
2745    for (unsigned i = 0; i < Node->getNumValues(); i++)
2746      Results.push_back(Node->getOperand(i));
2747    break;
2748  case ISD::UNDEF: {
2749    EVT VT = Node->getValueType(0);
2750    if (VT.isInteger())
2751      Results.push_back(DAG.getConstant(0, VT));
2752    else {
2753      assert(VT.isFloatingPoint() && "Unknown value type!");
2754      Results.push_back(DAG.getConstantFP(0, VT));
2755    }
2756    break;
2757  }
2758  case ISD::TRAP: {
2759    // If this operation is not supported, lower it to 'abort()' call
2760    TargetLowering::ArgListTy Args;
2761    TargetLowering::
2762    CallLoweringInfo CLI(Node->getOperand(0),
2763                         Type::getVoidTy(*DAG.getContext()),
2764                      false, false, false, false, 0, CallingConv::C,
2765                      /*isTailCall=*/false,
2766                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2767                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2768                      Args, DAG, dl);
2769    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2770
2771    Results.push_back(CallResult.second);
2772    break;
2773  }
2774  case ISD::FP_ROUND:
2775  case ISD::BITCAST:
2776    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2777                            Node->getValueType(0), dl);
2778    Results.push_back(Tmp1);
2779    break;
2780  case ISD::FP_EXTEND:
2781    Tmp1 = EmitStackConvert(Node->getOperand(0),
2782                            Node->getOperand(0).getValueType(),
2783                            Node->getValueType(0), dl);
2784    Results.push_back(Tmp1);
2785    break;
2786  case ISD::SIGN_EXTEND_INREG: {
2787    // NOTE: we could fall back on load/store here too for targets without
2788    // SAR.  However, it is doubtful that any exist.
2789    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2790    EVT VT = Node->getValueType(0);
2791    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2792    if (VT.isVector())
2793      ShiftAmountTy = VT;
2794    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2795                        ExtraVT.getScalarType().getSizeInBits();
2796    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2797    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2798                       Node->getOperand(0), ShiftCst);
2799    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2800    Results.push_back(Tmp1);
2801    break;
2802  }
2803  case ISD::FP_ROUND_INREG: {
2804    // The only way we can lower this is to turn it into a TRUNCSTORE,
2805    // EXTLOAD pair, targeting a temporary location (a stack slot).
2806
2807    // NOTE: there is a choice here between constantly creating new stack
2808    // slots and always reusing the same one.  We currently always create
2809    // new ones, as reuse may inhibit scheduling.
2810    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2811    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2812                            Node->getValueType(0), dl);
2813    Results.push_back(Tmp1);
2814    break;
2815  }
2816  case ISD::SINT_TO_FP:
2817  case ISD::UINT_TO_FP:
2818    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2819                                Node->getOperand(0), Node->getValueType(0), dl);
2820    Results.push_back(Tmp1);
2821    break;
2822  case ISD::FP_TO_UINT: {
2823    SDValue True, False;
2824    EVT VT =  Node->getOperand(0).getValueType();
2825    EVT NVT = Node->getValueType(0);
2826    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2827    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2828    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2829    Tmp1 = DAG.getConstantFP(apf, VT);
2830    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2831                        Node->getOperand(0),
2832                        Tmp1, ISD::SETLT);
2833    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2834    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2835                        DAG.getNode(ISD::FSUB, dl, VT,
2836                                    Node->getOperand(0), Tmp1));
2837    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2838                        DAG.getConstant(x, NVT));
2839    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2840    Results.push_back(Tmp1);
2841    break;
2842  }
2843  case ISD::VAARG: {
2844    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2845    EVT VT = Node->getValueType(0);
2846    Tmp1 = Node->getOperand(0);
2847    Tmp2 = Node->getOperand(1);
2848    unsigned Align = Node->getConstantOperandVal(3);
2849
2850    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2851                                     MachinePointerInfo(V),
2852                                     false, false, false, 0);
2853    SDValue VAList = VAListLoad;
2854
2855    if (Align > TLI.getMinStackArgumentAlignment()) {
2856      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2857
2858      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2859                           DAG.getConstant(Align - 1,
2860                                           TLI.getPointerTy()));
2861
2862      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2863                           DAG.getConstant(-(int64_t)Align,
2864                                           TLI.getPointerTy()));
2865    }
2866
2867    // Increment the pointer, VAList, to the next vaarg
2868    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2869                       DAG.getConstant(TLI.getDataLayout()->
2870                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2871                                       TLI.getPointerTy()));
2872    // Store the incremented VAList to the legalized pointer
2873    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2874                        MachinePointerInfo(V), false, false, 0);
2875    // Load the actual argument out of the pointer VAList
2876    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2877                                  false, false, false, 0));
2878    Results.push_back(Results[0].getValue(1));
2879    break;
2880  }
2881  case ISD::VACOPY: {
2882    // This defaults to loading a pointer from the input and storing it to the
2883    // output, returning the chain.
2884    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2885    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2886    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2887                       Node->getOperand(2), MachinePointerInfo(VS),
2888                       false, false, false, 0);
2889    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2890                        MachinePointerInfo(VD), false, false, 0);
2891    Results.push_back(Tmp1);
2892    break;
2893  }
2894  case ISD::EXTRACT_VECTOR_ELT:
2895    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2896      // This must be an access of the only element.  Return it.
2897      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2898                         Node->getOperand(0));
2899    else
2900      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2901    Results.push_back(Tmp1);
2902    break;
2903  case ISD::EXTRACT_SUBVECTOR:
2904    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2905    break;
2906  case ISD::INSERT_SUBVECTOR:
2907    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2908    break;
2909  case ISD::CONCAT_VECTORS: {
2910    Results.push_back(ExpandVectorBuildThroughStack(Node));
2911    break;
2912  }
2913  case ISD::SCALAR_TO_VECTOR:
2914    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2915    break;
2916  case ISD::INSERT_VECTOR_ELT:
2917    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2918                                              Node->getOperand(1),
2919                                              Node->getOperand(2), dl));
2920    break;
2921  case ISD::VECTOR_SHUFFLE: {
2922    SmallVector<int, 32> NewMask;
2923    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2924
2925    EVT VT = Node->getValueType(0);
2926    EVT EltVT = VT.getVectorElementType();
2927    SDValue Op0 = Node->getOperand(0);
2928    SDValue Op1 = Node->getOperand(1);
2929    if (!TLI.isTypeLegal(EltVT)) {
2930
2931      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2932
2933      // BUILD_VECTOR operands are allowed to be wider than the element type.
2934      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
2935      if (NewEltVT.bitsLT(EltVT)) {
2936
2937        // Convert shuffle node.
2938        // If original node was v4i64 and the new EltVT is i32,
2939        // cast operands to v8i32 and re-build the mask.
2940
2941        // Calculate new VT, the size of the new VT should be equal to original.
2942        EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
2943                                      VT.getSizeInBits()/NewEltVT.getSizeInBits());
2944        assert(NewVT.bitsEq(VT));
2945
2946        // cast operands to new VT
2947        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2948        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2949
2950        // Convert the shuffle mask
2951        unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
2952
2953        // EltVT gets smaller
2954        assert(factor > 0);
2955
2956        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
2957          if (Mask[i] < 0) {
2958            for (unsigned fi = 0; fi < factor; ++fi)
2959              NewMask.push_back(Mask[i]);
2960          }
2961          else {
2962            for (unsigned fi = 0; fi < factor; ++fi)
2963              NewMask.push_back(Mask[i]*factor+fi);
2964          }
2965        }
2966        Mask = NewMask;
2967        VT = NewVT;
2968      }
2969      EltVT = NewEltVT;
2970    }
2971    unsigned NumElems = VT.getVectorNumElements();
2972    SmallVector<SDValue, 16> Ops;
2973    for (unsigned i = 0; i != NumElems; ++i) {
2974      if (Mask[i] < 0) {
2975        Ops.push_back(DAG.getUNDEF(EltVT));
2976        continue;
2977      }
2978      unsigned Idx = Mask[i];
2979      if (Idx < NumElems)
2980        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2981                                  Op0,
2982                                  DAG.getIntPtrConstant(Idx)));
2983      else
2984        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2985                                  Op1,
2986                                  DAG.getIntPtrConstant(Idx - NumElems)));
2987    }
2988
2989    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2990    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
2991    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
2992    Results.push_back(Tmp1);
2993    break;
2994  }
2995  case ISD::EXTRACT_ELEMENT: {
2996    EVT OpTy = Node->getOperand(0).getValueType();
2997    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2998      // 1 -> Hi
2999      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3000                         DAG.getConstant(OpTy.getSizeInBits()/2,
3001                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3002      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3003    } else {
3004      // 0 -> Lo
3005      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3006                         Node->getOperand(0));
3007    }
3008    Results.push_back(Tmp1);
3009    break;
3010  }
3011  case ISD::STACKSAVE:
3012    // Expand to CopyFromReg if the target set
3013    // StackPointerRegisterToSaveRestore.
3014    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3015      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3016                                           Node->getValueType(0)));
3017      Results.push_back(Results[0].getValue(1));
3018    } else {
3019      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3020      Results.push_back(Node->getOperand(0));
3021    }
3022    break;
3023  case ISD::STACKRESTORE:
3024    // Expand to CopyToReg if the target set
3025    // StackPointerRegisterToSaveRestore.
3026    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3027      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3028                                         Node->getOperand(1)));
3029    } else {
3030      Results.push_back(Node->getOperand(0));
3031    }
3032    break;
3033  case ISD::FCOPYSIGN:
3034    Results.push_back(ExpandFCOPYSIGN(Node));
3035    break;
3036  case ISD::FNEG:
3037    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3038    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3039    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3040                       Node->getOperand(0));
3041    Results.push_back(Tmp1);
3042    break;
3043  case ISD::FABS: {
3044    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3045    EVT VT = Node->getValueType(0);
3046    Tmp1 = Node->getOperand(0);
3047    Tmp2 = DAG.getConstantFP(0.0, VT);
3048    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3049                        Tmp1, Tmp2, ISD::SETUGT);
3050    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3051    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
3052    Results.push_back(Tmp1);
3053    break;
3054  }
3055  case ISD::FSQRT:
3056    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3057                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
3058    break;
3059  case ISD::FSIN:
3060    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3061                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
3062    break;
3063  case ISD::FCOS:
3064    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3065                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
3066    break;
3067  case ISD::FLOG:
3068    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3069                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
3070    break;
3071  case ISD::FLOG2:
3072    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3073                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
3074    break;
3075  case ISD::FLOG10:
3076    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3077                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
3078    break;
3079  case ISD::FEXP:
3080    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3081                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
3082    break;
3083  case ISD::FEXP2:
3084    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3085                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
3086    break;
3087  case ISD::FTRUNC:
3088    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3089                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
3090    break;
3091  case ISD::FFLOOR:
3092    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3093                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
3094    break;
3095  case ISD::FCEIL:
3096    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3097                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
3098    break;
3099  case ISD::FRINT:
3100    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3101                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
3102    break;
3103  case ISD::FNEARBYINT:
3104    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3105                                      RTLIB::NEARBYINT_F64,
3106                                      RTLIB::NEARBYINT_F80,
3107                                      RTLIB::NEARBYINT_PPCF128));
3108    break;
3109  case ISD::FPOWI:
3110    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3111                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3112    break;
3113  case ISD::FPOW:
3114    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3115                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
3116    break;
3117  case ISD::FDIV:
3118    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3119                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3120    break;
3121  case ISD::FREM:
3122    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3123                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3124    break;
3125  case ISD::FMA:
3126    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3127                                      RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
3128    break;
3129  case ISD::FP16_TO_FP32:
3130    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3131    break;
3132  case ISD::FP32_TO_FP16:
3133    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3134    break;
3135  case ISD::ConstantFP: {
3136    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3137    // Check to see if this FP immediate is already legal.
3138    // If this is a legal constant, turn it into a TargetConstantFP node.
3139    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3140      Results.push_back(ExpandConstantFP(CFP, true));
3141    break;
3142  }
3143  case ISD::EHSELECTION: {
3144    unsigned Reg = TLI.getExceptionSelectorRegister();
3145    assert(Reg && "Can't expand to unknown register!");
3146    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3147                                         Node->getValueType(0)));
3148    Results.push_back(Results[0].getValue(1));
3149    break;
3150  }
3151  case ISD::EXCEPTIONADDR: {
3152    unsigned Reg = TLI.getExceptionPointerRegister();
3153    assert(Reg && "Can't expand to unknown register!");
3154    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3155                                         Node->getValueType(0)));
3156    Results.push_back(Results[0].getValue(1));
3157    break;
3158  }
3159  case ISD::FSUB: {
3160    EVT VT = Node->getValueType(0);
3161    assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3162           TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
3163           "Don't know how to expand this FP subtraction!");
3164    Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3165    Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3166    Results.push_back(Tmp1);
3167    break;
3168  }
3169  case ISD::SUB: {
3170    EVT VT = Node->getValueType(0);
3171    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3172           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3173           "Don't know how to expand this subtraction!");
3174    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3175               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3176    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
3177    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3178    break;
3179  }
3180  case ISD::UREM:
3181  case ISD::SREM: {
3182    EVT VT = Node->getValueType(0);
3183    SDVTList VTs = DAG.getVTList(VT, VT);
3184    bool isSigned = Node->getOpcode() == ISD::SREM;
3185    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3186    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3187    Tmp2 = Node->getOperand(0);
3188    Tmp3 = Node->getOperand(1);
3189    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3190        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3191         // If div is legal, it's better to do the normal expansion
3192         !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) &&
3193         useDivRem(Node, isSigned, false))) {
3194      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3195    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3196      // X % Y -> X-X/Y*Y
3197      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3198      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3199      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3200    } else if (isSigned)
3201      Tmp1 = ExpandIntLibCall(Node, true,
3202                              RTLIB::SREM_I8,
3203                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3204                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3205    else
3206      Tmp1 = ExpandIntLibCall(Node, false,
3207                              RTLIB::UREM_I8,
3208                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3209                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3210    Results.push_back(Tmp1);
3211    break;
3212  }
3213  case ISD::UDIV:
3214  case ISD::SDIV: {
3215    bool isSigned = Node->getOpcode() == ISD::SDIV;
3216    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3217    EVT VT = Node->getValueType(0);
3218    SDVTList VTs = DAG.getVTList(VT, VT);
3219    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3220        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3221         useDivRem(Node, isSigned, true)))
3222      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3223                         Node->getOperand(1));
3224    else if (isSigned)
3225      Tmp1 = ExpandIntLibCall(Node, true,
3226                              RTLIB::SDIV_I8,
3227                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3228                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3229    else
3230      Tmp1 = ExpandIntLibCall(Node, false,
3231                              RTLIB::UDIV_I8,
3232                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3233                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3234    Results.push_back(Tmp1);
3235    break;
3236  }
3237  case ISD::MULHU:
3238  case ISD::MULHS: {
3239    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3240                                                              ISD::SMUL_LOHI;
3241    EVT VT = Node->getValueType(0);
3242    SDVTList VTs = DAG.getVTList(VT, VT);
3243    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3244           "If this wasn't legal, it shouldn't have been created!");
3245    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3246                       Node->getOperand(1));
3247    Results.push_back(Tmp1.getValue(1));
3248    break;
3249  }
3250  case ISD::SDIVREM:
3251  case ISD::UDIVREM:
3252    // Expand into divrem libcall
3253    ExpandDivRemLibCall(Node, Results);
3254    break;
3255  case ISD::MUL: {
3256    EVT VT = Node->getValueType(0);
3257    SDVTList VTs = DAG.getVTList(VT, VT);
3258    // See if multiply or divide can be lowered using two-result operations.
3259    // We just need the low half of the multiply; try both the signed
3260    // and unsigned forms. If the target supports both SMUL_LOHI and
3261    // UMUL_LOHI, form a preference by checking which forms of plain
3262    // MULH it supports.
3263    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3264    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3265    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3266    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3267    unsigned OpToUse = 0;
3268    if (HasSMUL_LOHI && !HasMULHS) {
3269      OpToUse = ISD::SMUL_LOHI;
3270    } else if (HasUMUL_LOHI && !HasMULHU) {
3271      OpToUse = ISD::UMUL_LOHI;
3272    } else if (HasSMUL_LOHI) {
3273      OpToUse = ISD::SMUL_LOHI;
3274    } else if (HasUMUL_LOHI) {
3275      OpToUse = ISD::UMUL_LOHI;
3276    }
3277    if (OpToUse) {
3278      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3279                                    Node->getOperand(1)));
3280      break;
3281    }
3282    Tmp1 = ExpandIntLibCall(Node, false,
3283                            RTLIB::MUL_I8,
3284                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3285                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3286    Results.push_back(Tmp1);
3287    break;
3288  }
3289  case ISD::SADDO:
3290  case ISD::SSUBO: {
3291    SDValue LHS = Node->getOperand(0);
3292    SDValue RHS = Node->getOperand(1);
3293    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3294                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3295                              LHS, RHS);
3296    Results.push_back(Sum);
3297    EVT OType = Node->getValueType(1);
3298
3299    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3300
3301    //   LHSSign -> LHS >= 0
3302    //   RHSSign -> RHS >= 0
3303    //   SumSign -> Sum >= 0
3304    //
3305    //   Add:
3306    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3307    //   Sub:
3308    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3309    //
3310    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3311    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3312    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3313                                      Node->getOpcode() == ISD::SADDO ?
3314                                      ISD::SETEQ : ISD::SETNE);
3315
3316    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3317    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3318
3319    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3320    Results.push_back(Cmp);
3321    break;
3322  }
3323  case ISD::UADDO:
3324  case ISD::USUBO: {
3325    SDValue LHS = Node->getOperand(0);
3326    SDValue RHS = Node->getOperand(1);
3327    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3328                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3329                              LHS, RHS);
3330    Results.push_back(Sum);
3331    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3332                                   Node->getOpcode () == ISD::UADDO ?
3333                                   ISD::SETULT : ISD::SETUGT));
3334    break;
3335  }
3336  case ISD::UMULO:
3337  case ISD::SMULO: {
3338    EVT VT = Node->getValueType(0);
3339    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3340    SDValue LHS = Node->getOperand(0);
3341    SDValue RHS = Node->getOperand(1);
3342    SDValue BottomHalf;
3343    SDValue TopHalf;
3344    static const unsigned Ops[2][3] =
3345        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3346          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3347    bool isSigned = Node->getOpcode() == ISD::SMULO;
3348    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3349      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3350      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3351    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3352      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3353                               RHS);
3354      TopHalf = BottomHalf.getValue(1);
3355    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3356                                                 VT.getSizeInBits() * 2))) {
3357      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3358      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3359      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3360      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3361                               DAG.getIntPtrConstant(0));
3362      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3363                            DAG.getIntPtrConstant(1));
3364    } else {
3365      // We can fall back to a libcall with an illegal type for the MUL if we
3366      // have a libcall big enough.
3367      // Also, we can fall back to a division in some cases, but that's a big
3368      // performance hit in the general case.
3369      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3370      if (WideVT == MVT::i16)
3371        LC = RTLIB::MUL_I16;
3372      else if (WideVT == MVT::i32)
3373        LC = RTLIB::MUL_I32;
3374      else if (WideVT == MVT::i64)
3375        LC = RTLIB::MUL_I64;
3376      else if (WideVT == MVT::i128)
3377        LC = RTLIB::MUL_I128;
3378      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3379
3380      // The high part is obtained by SRA'ing all but one of the bits of low
3381      // part.
3382      unsigned LoSize = VT.getSizeInBits();
3383      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3384                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3385      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3386                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3387
3388      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3389      // pre-lowered to the correct types. This all depends upon WideVT not
3390      // being a legal type for the architecture and thus has to be split to
3391      // two arguments.
3392      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3393      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3394      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3395                               DAG.getIntPtrConstant(0));
3396      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3397                            DAG.getIntPtrConstant(1));
3398      // Ret is a node with an illegal type. Because such things are not
3399      // generally permitted during this phase of legalization, delete the
3400      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3401      DAG.DeleteNode(Ret.getNode());
3402    }
3403
3404    if (isSigned) {
3405      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3406                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3407      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3408      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3409                             ISD::SETNE);
3410    } else {
3411      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3412                             DAG.getConstant(0, VT), ISD::SETNE);
3413    }
3414    Results.push_back(BottomHalf);
3415    Results.push_back(TopHalf);
3416    break;
3417  }
3418  case ISD::BUILD_PAIR: {
3419    EVT PairTy = Node->getValueType(0);
3420    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3421    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3422    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3423                       DAG.getConstant(PairTy.getSizeInBits()/2,
3424                                       TLI.getShiftAmountTy(PairTy)));
3425    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3426    break;
3427  }
3428  case ISD::SELECT:
3429    Tmp1 = Node->getOperand(0);
3430    Tmp2 = Node->getOperand(1);
3431    Tmp3 = Node->getOperand(2);
3432    if (Tmp1.getOpcode() == ISD::SETCC) {
3433      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3434                             Tmp2, Tmp3,
3435                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3436    } else {
3437      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3438                             DAG.getConstant(0, Tmp1.getValueType()),
3439                             Tmp2, Tmp3, ISD::SETNE);
3440    }
3441    Results.push_back(Tmp1);
3442    break;
3443  case ISD::BR_JT: {
3444    SDValue Chain = Node->getOperand(0);
3445    SDValue Table = Node->getOperand(1);
3446    SDValue Index = Node->getOperand(2);
3447
3448    EVT PTy = TLI.getPointerTy();
3449
3450    const DataLayout &TD = *TLI.getDataLayout();
3451    unsigned EntrySize =
3452      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3453
3454    Index = DAG.getNode(ISD::MUL, dl, PTy,
3455                        Index, DAG.getConstant(EntrySize, PTy));
3456    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3457
3458    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3459    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3460                                MachinePointerInfo::getJumpTable(), MemVT,
3461                                false, false, 0);
3462    Addr = LD;
3463    if (TM.getRelocationModel() == Reloc::PIC_) {
3464      // For PIC, the sequence is:
3465      // BRIND(load(Jumptable + index) + RelocBase)
3466      // RelocBase can be JumpTable, GOT or some sort of global base.
3467      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3468                          TLI.getPICJumpTableRelocBase(Table, DAG));
3469    }
3470    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3471    Results.push_back(Tmp1);
3472    break;
3473  }
3474  case ISD::BRCOND:
3475    // Expand brcond's setcc into its constituent parts and create a BR_CC
3476    // Node.
3477    Tmp1 = Node->getOperand(0);
3478    Tmp2 = Node->getOperand(1);
3479    if (Tmp2.getOpcode() == ISD::SETCC) {
3480      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3481                         Tmp1, Tmp2.getOperand(2),
3482                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3483                         Node->getOperand(2));
3484    } else {
3485      // We test only the i1 bit.  Skip the AND if UNDEF.
3486      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3487        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3488                    DAG.getConstant(1, Tmp2.getValueType()));
3489      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3490                         DAG.getCondCode(ISD::SETNE), Tmp3,
3491                         DAG.getConstant(0, Tmp3.getValueType()),
3492                         Node->getOperand(2));
3493    }
3494    Results.push_back(Tmp1);
3495    break;
3496  case ISD::SETCC: {
3497    Tmp1 = Node->getOperand(0);
3498    Tmp2 = Node->getOperand(1);
3499    Tmp3 = Node->getOperand(2);
3500    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3501
3502    // If we expanded the SETCC into an AND/OR, return the new node
3503    if (Tmp2.getNode() == 0) {
3504      Results.push_back(Tmp1);
3505      break;
3506    }
3507
3508    // Otherwise, SETCC for the given comparison type must be completely
3509    // illegal; expand it into a SELECT_CC.
3510    EVT VT = Node->getValueType(0);
3511    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3512                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3513    Results.push_back(Tmp1);
3514    break;
3515  }
3516  case ISD::SELECT_CC: {
3517    Tmp1 = Node->getOperand(0);   // LHS
3518    Tmp2 = Node->getOperand(1);   // RHS
3519    Tmp3 = Node->getOperand(2);   // True
3520    Tmp4 = Node->getOperand(3);   // False
3521    SDValue CC = Node->getOperand(4);
3522
3523    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3524                          Tmp1, Tmp2, CC, dl);
3525
3526    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3527    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3528    CC = DAG.getCondCode(ISD::SETNE);
3529    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3530                       Tmp3, Tmp4, CC);
3531    Results.push_back(Tmp1);
3532    break;
3533  }
3534  case ISD::BR_CC: {
3535    Tmp1 = Node->getOperand(0);              // Chain
3536    Tmp2 = Node->getOperand(2);              // LHS
3537    Tmp3 = Node->getOperand(3);              // RHS
3538    Tmp4 = Node->getOperand(1);              // CC
3539
3540    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3541                          Tmp2, Tmp3, Tmp4, dl);
3542
3543    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3544    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3545    Tmp4 = DAG.getCondCode(ISD::SETNE);
3546    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3547                       Tmp3, Node->getOperand(4));
3548    Results.push_back(Tmp1);
3549    break;
3550  }
3551  case ISD::BUILD_VECTOR:
3552    Results.push_back(ExpandBUILD_VECTOR(Node));
3553    break;
3554  case ISD::SRA:
3555  case ISD::SRL:
3556  case ISD::SHL: {
3557    // Scalarize vector SRA/SRL/SHL.
3558    EVT VT = Node->getValueType(0);
3559    assert(VT.isVector() && "Unable to legalize non-vector shift");
3560    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3561    unsigned NumElem = VT.getVectorNumElements();
3562
3563    SmallVector<SDValue, 8> Scalars;
3564    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3565      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3566                               VT.getScalarType(),
3567                               Node->getOperand(0), DAG.getIntPtrConstant(Idx));
3568      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3569                               VT.getScalarType(),
3570                               Node->getOperand(1), DAG.getIntPtrConstant(Idx));
3571      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3572                                    VT.getScalarType(), Ex, Sh));
3573    }
3574    SDValue Result =
3575      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3576                  &Scalars[0], Scalars.size());
3577    ReplaceNode(SDValue(Node, 0), Result);
3578    break;
3579  }
3580  case ISD::GLOBAL_OFFSET_TABLE:
3581  case ISD::GlobalAddress:
3582  case ISD::GlobalTLSAddress:
3583  case ISD::ExternalSymbol:
3584  case ISD::ConstantPool:
3585  case ISD::JumpTable:
3586  case ISD::INTRINSIC_W_CHAIN:
3587  case ISD::INTRINSIC_WO_CHAIN:
3588  case ISD::INTRINSIC_VOID:
3589    // FIXME: Custom lowering for these operations shouldn't return null!
3590    break;
3591  }
3592
3593  // Replace the original node with the legalized result.
3594  if (!Results.empty())
3595    ReplaceNode(Node, Results.data());
3596}
3597
3598void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3599  SmallVector<SDValue, 8> Results;
3600  MVT OVT = Node->getSimpleValueType(0);
3601  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3602      Node->getOpcode() == ISD::SINT_TO_FP ||
3603      Node->getOpcode() == ISD::SETCC) {
3604    OVT = Node->getOperand(0).getSimpleValueType();
3605  }
3606  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3607  DebugLoc dl = Node->getDebugLoc();
3608  SDValue Tmp1, Tmp2, Tmp3;
3609  switch (Node->getOpcode()) {
3610  case ISD::CTTZ:
3611  case ISD::CTTZ_ZERO_UNDEF:
3612  case ISD::CTLZ:
3613  case ISD::CTLZ_ZERO_UNDEF:
3614  case ISD::CTPOP:
3615    // Zero extend the argument.
3616    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3617    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3618    // already the correct result.
3619    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3620    if (Node->getOpcode() == ISD::CTTZ) {
3621      // FIXME: This should set a bit in the zero extended value instead.
3622      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3623                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3624                          ISD::SETEQ);
3625      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3626                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3627    } else if (Node->getOpcode() == ISD::CTLZ ||
3628               Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
3629      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3630      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3631                          DAG.getConstant(NVT.getSizeInBits() -
3632                                          OVT.getSizeInBits(), NVT));
3633    }
3634    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3635    break;
3636  case ISD::BSWAP: {
3637    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3638    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3639    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3640    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3641                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3642    Results.push_back(Tmp1);
3643    break;
3644  }
3645  case ISD::FP_TO_UINT:
3646  case ISD::FP_TO_SINT:
3647    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3648                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3649    Results.push_back(Tmp1);
3650    break;
3651  case ISD::UINT_TO_FP:
3652  case ISD::SINT_TO_FP:
3653    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3654                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3655    Results.push_back(Tmp1);
3656    break;
3657  case ISD::VAARG: {
3658    SDValue Chain = Node->getOperand(0); // Get the chain.
3659    SDValue Ptr = Node->getOperand(1); // Get the pointer.
3660
3661    unsigned TruncOp;
3662    if (OVT.isVector()) {
3663      TruncOp = ISD::BITCAST;
3664    } else {
3665      assert(OVT.isInteger()
3666        && "VAARG promotion is supported only for vectors or integer types");
3667      TruncOp = ISD::TRUNCATE;
3668    }
3669
3670    // Perform the larger operation, then convert back
3671    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
3672             Node->getConstantOperandVal(3));
3673    Chain = Tmp1.getValue(1);
3674
3675    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
3676
3677    // Modified the chain result - switch anything that used the old chain to
3678    // use the new one.
3679    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
3680    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
3681    ReplacedNode(Node);
3682    break;
3683  }
3684  case ISD::AND:
3685  case ISD::OR:
3686  case ISD::XOR: {
3687    unsigned ExtOp, TruncOp;
3688    if (OVT.isVector()) {
3689      ExtOp   = ISD::BITCAST;
3690      TruncOp = ISD::BITCAST;
3691    } else {
3692      assert(OVT.isInteger() && "Cannot promote logic operation");
3693      ExtOp   = ISD::ANY_EXTEND;
3694      TruncOp = ISD::TRUNCATE;
3695    }
3696    // Promote each of the values to the new type.
3697    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3698    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3699    // Perform the larger operation, then convert back
3700    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3701    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3702    break;
3703  }
3704  case ISD::SELECT: {
3705    unsigned ExtOp, TruncOp;
3706    if (Node->getValueType(0).isVector()) {
3707      ExtOp   = ISD::BITCAST;
3708      TruncOp = ISD::BITCAST;
3709    } else if (Node->getValueType(0).isInteger()) {
3710      ExtOp   = ISD::ANY_EXTEND;
3711      TruncOp = ISD::TRUNCATE;
3712    } else {
3713      ExtOp   = ISD::FP_EXTEND;
3714      TruncOp = ISD::FP_ROUND;
3715    }
3716    Tmp1 = Node->getOperand(0);
3717    // Promote each of the values to the new type.
3718    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3719    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3720    // Perform the larger operation, then round down.
3721    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3722    if (TruncOp != ISD::FP_ROUND)
3723      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3724    else
3725      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3726                         DAG.getIntPtrConstant(0));
3727    Results.push_back(Tmp1);
3728    break;
3729  }
3730  case ISD::VECTOR_SHUFFLE: {
3731    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3732
3733    // Cast the two input vectors.
3734    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3735    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3736
3737    // Convert the shuffle mask to the right # elements.
3738    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3739    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3740    Results.push_back(Tmp1);
3741    break;
3742  }
3743  case ISD::SETCC: {
3744    unsigned ExtOp = ISD::FP_EXTEND;
3745    if (NVT.isInteger()) {
3746      ISD::CondCode CCCode =
3747        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3748      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3749    }
3750    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3751    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3752    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3753                                  Tmp1, Tmp2, Node->getOperand(2)));
3754    break;
3755  }
3756  case ISD::FDIV:
3757  case ISD::FREM:
3758  case ISD::FPOW: {
3759    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3760    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
3761    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3762    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3763                                  Tmp3, DAG.getIntPtrConstant(0)));
3764    break;
3765  }
3766  case ISD::FLOG2:
3767  case ISD::FEXP2:
3768  case ISD::FLOG:
3769  case ISD::FEXP: {
3770    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3771    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3772    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3773                                  Tmp2, DAG.getIntPtrConstant(0)));
3774    break;
3775  }
3776  }
3777
3778  // Replace the original node with the legalized result.
3779  if (!Results.empty())
3780    ReplaceNode(Node, Results.data());
3781}
3782
3783// SelectionDAG::Legalize - This is the entry point for the file.
3784//
3785void SelectionDAG::Legalize() {
3786  /// run - This is the main entry point to this class.
3787  ///
3788  SelectionDAGLegalize(*this).LegalizeDAG();
3789}
3790