LegalizeDAG.cpp revision 4b6e6750fed37879ce4730571cae1bfa342e8e02
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/DebugInfo.h"
15#include "llvm/CodeGen/Analysis.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/Target/TargetFrameLowering.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/CallingConv.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38/// hacks on it until the target machine can handle it.  This involves
39/// eliminating value sizes the machine cannot handle (promoting small sizes to
40/// large sizes or splitting up large values into small values) as well as
41/// eliminating operations the machine cannot handle.
42///
43/// This code also does a small amount of optimization and recognition of idioms
44/// as part of its processing.  For example, if a target does not support a
45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46/// will attempt merge setcc and brc instructions into brcc's.
47///
48namespace {
49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
50  const TargetMachine &TM;
51  const TargetLowering &TLI;
52  SelectionDAG &DAG;
53
54  /// LegalizePosition - The iterator for walking through the node list.
55  SelectionDAG::allnodes_iterator LegalizePosition;
56
57  /// LegalizedNodes - The set of nodes which have already been legalized.
58  SmallPtrSet<SDNode *, 16> LegalizedNodes;
59
60  // Libcall insertion helpers.
61
62public:
63  explicit SelectionDAGLegalize(SelectionDAG &DAG);
64
65  void LegalizeDAG();
66
67private:
68  /// LegalizeOp - Legalizes the given operation.
69  void LegalizeOp(SDNode *Node);
70
71  SDValue OptimizeFloatStore(StoreSDNode *ST);
72
73  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
74  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
75  /// is necessary to spill the vector being inserted into to memory, perform
76  /// the insert there, and then read the result back.
77  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
78                                         SDValue Idx, DebugLoc dl);
79  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
80                                  SDValue Idx, DebugLoc dl);
81
82  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
83  /// performs the same shuffe in terms of order or result bytes, but on a type
84  /// whose vector element type is narrower than the original shuffle type.
85  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
86  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
87                                     SDValue N1, SDValue N2,
88                                     ArrayRef<int> Mask) const;
89
90  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
91                             DebugLoc dl);
92
93  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
94  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
95                        unsigned NumOps, bool isSigned, DebugLoc dl);
96
97  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
98                                                 SDNode *Node, bool isSigned);
99  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
100                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
101                          RTLIB::Libcall Call_PPCF128);
102  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
103                           RTLIB::Libcall Call_I8,
104                           RTLIB::Libcall Call_I16,
105                           RTLIB::Libcall Call_I32,
106                           RTLIB::Libcall Call_I64,
107                           RTLIB::Libcall Call_I128);
108  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
109
110  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
111  SDValue ExpandBUILD_VECTOR(SDNode *Node);
112  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
113  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
114                                SmallVectorImpl<SDValue> &Results);
115  SDValue ExpandFCOPYSIGN(SDNode *Node);
116  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
117                               DebugLoc dl);
118  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
119                                DebugLoc dl);
120  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
121                                DebugLoc dl);
122
123  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
124  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
125
126  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
127  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
128  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
129
130  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
131
132  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
133
134  void ExpandNode(SDNode *Node);
135  void PromoteNode(SDNode *Node);
136
137  void ForgetNode(SDNode *N) {
138    LegalizedNodes.erase(N);
139    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
140      ++LegalizePosition;
141  }
142
143public:
144  // DAGUpdateListener implementation.
145  virtual void NodeDeleted(SDNode *N, SDNode *E) {
146    ForgetNode(N);
147  }
148  virtual void NodeUpdated(SDNode *N) {}
149
150  // Node replacement helpers
151  void ReplacedNode(SDNode *N) {
152    if (N->use_empty()) {
153      DAG.RemoveDeadNode(N);
154    } else {
155      ForgetNode(N);
156    }
157  }
158  void ReplaceNode(SDNode *Old, SDNode *New) {
159    DAG.ReplaceAllUsesWith(Old, New);
160    ReplacedNode(Old);
161  }
162  void ReplaceNode(SDValue Old, SDValue New) {
163    DAG.ReplaceAllUsesWith(Old, New);
164    ReplacedNode(Old.getNode());
165  }
166  void ReplaceNode(SDNode *Old, const SDValue *New) {
167    DAG.ReplaceAllUsesWith(Old, New);
168    ReplacedNode(Old);
169  }
170};
171}
172
173/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
174/// performs the same shuffe in terms of order or result bytes, but on a type
175/// whose vector element type is narrower than the original shuffle type.
176/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
177SDValue
178SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
179                                                 SDValue N1, SDValue N2,
180                                                 ArrayRef<int> Mask) const {
181  unsigned NumMaskElts = VT.getVectorNumElements();
182  unsigned NumDestElts = NVT.getVectorNumElements();
183  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
184
185  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
186
187  if (NumEltsGrowth == 1)
188    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
189
190  SmallVector<int, 8> NewMask;
191  for (unsigned i = 0; i != NumMaskElts; ++i) {
192    int Idx = Mask[i];
193    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
194      if (Idx < 0)
195        NewMask.push_back(-1);
196      else
197        NewMask.push_back(Idx * NumEltsGrowth + j);
198    }
199  }
200  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
201  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
202  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
203}
204
205SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
206  : SelectionDAG::DAGUpdateListener(dag),
207    TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
208    DAG(dag) {
209}
210
211void SelectionDAGLegalize::LegalizeDAG() {
212  DAG.AssignTopologicalOrder();
213
214  // Visit all the nodes. We start in topological order, so that we see
215  // nodes with their original operands intact. Legalization can produce
216  // new nodes which may themselves need to be legalized. Iterate until all
217  // nodes have been legalized.
218  for (;;) {
219    bool AnyLegalized = false;
220    for (LegalizePosition = DAG.allnodes_end();
221         LegalizePosition != DAG.allnodes_begin(); ) {
222      --LegalizePosition;
223
224      SDNode *N = LegalizePosition;
225      if (LegalizedNodes.insert(N)) {
226        AnyLegalized = true;
227        LegalizeOp(N);
228      }
229    }
230    if (!AnyLegalized)
231      break;
232
233  }
234
235  // Remove dead nodes now.
236  DAG.RemoveDeadNodes();
237}
238
239/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
240/// a load from the constant pool.
241SDValue
242SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
243  bool Extend = false;
244  DebugLoc dl = CFP->getDebugLoc();
245
246  // If a FP immediate is precise when represented as a float and if the
247  // target can do an extending load from float to double, we put it into
248  // the constant pool as a float, even if it's is statically typed as a
249  // double.  This shrinks FP constants and canonicalizes them for targets where
250  // an FP extending load is the same cost as a normal load (such as on the x87
251  // fp stack or PPC FP unit).
252  EVT VT = CFP->getValueType(0);
253  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
254  if (!UseCP) {
255    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
256    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
257                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
258  }
259
260  EVT OrigVT = VT;
261  EVT SVT = VT;
262  while (SVT != MVT::f32) {
263    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
264    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
265        // Only do this if the target has a native EXTLOAD instruction from
266        // smaller type.
267        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
268        TLI.ShouldShrinkFPConstant(OrigVT)) {
269      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
270      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
271      VT = SVT;
272      Extend = true;
273    }
274  }
275
276  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
277  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
278  if (Extend) {
279    SDValue Result =
280      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
281                     DAG.getEntryNode(),
282                     CPIdx, MachinePointerInfo::getConstantPool(),
283                     VT, false, false, Alignment);
284    return Result;
285  }
286  SDValue Result =
287    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
288                MachinePointerInfo::getConstantPool(), false, false, false,
289                Alignment);
290  return Result;
291}
292
293/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
294static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
295                                 const TargetLowering &TLI,
296                                 SelectionDAGLegalize *DAGLegalize) {
297  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
298         "unaligned indexed stores not implemented!");
299  SDValue Chain = ST->getChain();
300  SDValue Ptr = ST->getBasePtr();
301  SDValue Val = ST->getValue();
302  EVT VT = Val.getValueType();
303  int Alignment = ST->getAlignment();
304  DebugLoc dl = ST->getDebugLoc();
305  if (ST->getMemoryVT().isFloatingPoint() ||
306      ST->getMemoryVT().isVector()) {
307    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
308    if (TLI.isTypeLegal(intVT)) {
309      // Expand to a bitconvert of the value to the integer type of the
310      // same size, then a (misaligned) int store.
311      // FIXME: Does not handle truncating floating point stores!
312      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
313      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
314                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
315      DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
316      return;
317    }
318    // Do a (aligned) store to a stack slot, then copy from the stack slot
319    // to the final destination using (unaligned) integer loads and stores.
320    EVT StoredVT = ST->getMemoryVT();
321    EVT RegVT =
322      TLI.getRegisterType(*DAG.getContext(),
323                          EVT::getIntegerVT(*DAG.getContext(),
324                                            StoredVT.getSizeInBits()));
325    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
326    unsigned RegBytes = RegVT.getSizeInBits() / 8;
327    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
328
329    // Make sure the stack slot is also aligned for the register type.
330    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
331
332    // Perform the original store, only redirected to the stack slot.
333    SDValue Store = DAG.getTruncStore(Chain, dl,
334                                      Val, StackPtr, MachinePointerInfo(),
335                                      StoredVT, false, false, 0);
336    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
337    SmallVector<SDValue, 8> Stores;
338    unsigned Offset = 0;
339
340    // Do all but one copies using the full register width.
341    for (unsigned i = 1; i < NumRegs; i++) {
342      // Load one integer register's worth from the stack slot.
343      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
344                                 MachinePointerInfo(),
345                                 false, false, false, 0);
346      // Store it to the final location.  Remember the store.
347      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
348                                  ST->getPointerInfo().getWithOffset(Offset),
349                                    ST->isVolatile(), ST->isNonTemporal(),
350                                    MinAlign(ST->getAlignment(), Offset)));
351      // Increment the pointers.
352      Offset += RegBytes;
353      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
354                             Increment);
355      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
356    }
357
358    // The last store may be partial.  Do a truncating store.  On big-endian
359    // machines this requires an extending load from the stack slot to ensure
360    // that the bits are in the right place.
361    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
362                                  8 * (StoredBytes - Offset));
363
364    // Load from the stack slot.
365    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
366                                  MachinePointerInfo(),
367                                  MemVT, false, false, 0);
368
369    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
370                                       ST->getPointerInfo()
371                                         .getWithOffset(Offset),
372                                       MemVT, ST->isVolatile(),
373                                       ST->isNonTemporal(),
374                                       MinAlign(ST->getAlignment(), Offset)));
375    // The order of the stores doesn't matter - say it with a TokenFactor.
376    SDValue Result =
377      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
378                  Stores.size());
379    DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
380    return;
381  }
382  assert(ST->getMemoryVT().isInteger() &&
383         !ST->getMemoryVT().isVector() &&
384         "Unaligned store of unknown type.");
385  // Get the half-size VT
386  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
387  int NumBits = NewStoredVT.getSizeInBits();
388  int IncrementSize = NumBits / 8;
389
390  // Divide the stored value in two parts.
391  SDValue ShiftAmount = DAG.getConstant(NumBits,
392                                      TLI.getShiftAmountTy(Val.getValueType()));
393  SDValue Lo = Val;
394  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
395
396  // Store the two parts
397  SDValue Store1, Store2;
398  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
399                             ST->getPointerInfo(), NewStoredVT,
400                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
401  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
402                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
403  Alignment = MinAlign(Alignment, IncrementSize);
404  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
405                             ST->getPointerInfo().getWithOffset(IncrementSize),
406                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
407                             Alignment);
408
409  SDValue Result =
410    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
411  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
412}
413
414/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
415static void
416ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
417                    const TargetLowering &TLI,
418                    SDValue &ValResult, SDValue &ChainResult) {
419  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
420         "unaligned indexed loads not implemented!");
421  SDValue Chain = LD->getChain();
422  SDValue Ptr = LD->getBasePtr();
423  EVT VT = LD->getValueType(0);
424  EVT LoadedVT = LD->getMemoryVT();
425  DebugLoc dl = LD->getDebugLoc();
426  if (VT.isFloatingPoint() || VT.isVector()) {
427    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
428    if (TLI.isTypeLegal(intVT)) {
429      // Expand to a (misaligned) integer load of the same size,
430      // then bitconvert to floating point or vector.
431      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
432                                    LD->isVolatile(),
433                                    LD->isNonTemporal(),
434                                    LD->isInvariant(), LD->getAlignment());
435      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
436      if (VT.isFloatingPoint() && LoadedVT != VT)
437        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
438
439      ValResult = Result;
440      ChainResult = Chain;
441      return;
442    }
443
444    // Copy the value to a (aligned) stack slot using (unaligned) integer
445    // loads and stores, then do a (aligned) load from the stack slot.
446    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
447    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
448    unsigned RegBytes = RegVT.getSizeInBits() / 8;
449    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
450
451    // Make sure the stack slot is also aligned for the register type.
452    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
453
454    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
455    SmallVector<SDValue, 8> Stores;
456    SDValue StackPtr = StackBase;
457    unsigned Offset = 0;
458
459    // Do all but one copies using the full register width.
460    for (unsigned i = 1; i < NumRegs; i++) {
461      // Load one integer register's worth from the original location.
462      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
463                                 LD->getPointerInfo().getWithOffset(Offset),
464                                 LD->isVolatile(), LD->isNonTemporal(),
465                                 LD->isInvariant(),
466                                 MinAlign(LD->getAlignment(), Offset));
467      // Follow the load with a store to the stack slot.  Remember the store.
468      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
469                                    MachinePointerInfo(), false, false, 0));
470      // Increment the pointers.
471      Offset += RegBytes;
472      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
473      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
474                             Increment);
475    }
476
477    // The last copy may be partial.  Do an extending load.
478    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
479                                  8 * (LoadedBytes - Offset));
480    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
481                                  LD->getPointerInfo().getWithOffset(Offset),
482                                  MemVT, LD->isVolatile(),
483                                  LD->isNonTemporal(),
484                                  MinAlign(LD->getAlignment(), Offset));
485    // Follow the load with a store to the stack slot.  Remember the store.
486    // On big-endian machines this requires a truncating store to ensure
487    // that the bits end up in the right place.
488    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
489                                       MachinePointerInfo(), MemVT,
490                                       false, false, 0));
491
492    // The order of the stores doesn't matter - say it with a TokenFactor.
493    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
494                             Stores.size());
495
496    // Finally, perform the original load only redirected to the stack slot.
497    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
498                          MachinePointerInfo(), LoadedVT, false, false, 0);
499
500    // Callers expect a MERGE_VALUES node.
501    ValResult = Load;
502    ChainResult = TF;
503    return;
504  }
505  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
506         "Unaligned load of unsupported type.");
507
508  // Compute the new VT that is half the size of the old one.  This is an
509  // integer MVT.
510  unsigned NumBits = LoadedVT.getSizeInBits();
511  EVT NewLoadedVT;
512  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
513  NumBits >>= 1;
514
515  unsigned Alignment = LD->getAlignment();
516  unsigned IncrementSize = NumBits / 8;
517  ISD::LoadExtType HiExtType = LD->getExtensionType();
518
519  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
520  if (HiExtType == ISD::NON_EXTLOAD)
521    HiExtType = ISD::ZEXTLOAD;
522
523  // Load the value in two parts
524  SDValue Lo, Hi;
525  if (TLI.isLittleEndian()) {
526    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
527                        NewLoadedVT, LD->isVolatile(),
528                        LD->isNonTemporal(), Alignment);
529    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
530                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
531    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
532                        LD->getPointerInfo().getWithOffset(IncrementSize),
533                        NewLoadedVT, LD->isVolatile(),
534                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
535  } else {
536    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
537                        NewLoadedVT, LD->isVolatile(),
538                        LD->isNonTemporal(), Alignment);
539    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
540                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
541    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
542                        LD->getPointerInfo().getWithOffset(IncrementSize),
543                        NewLoadedVT, LD->isVolatile(),
544                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
545  }
546
547  // aggregate the two parts
548  SDValue ShiftAmount = DAG.getConstant(NumBits,
549                                       TLI.getShiftAmountTy(Hi.getValueType()));
550  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
551  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
552
553  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
554                             Hi.getValue(1));
555
556  ValResult = Result;
557  ChainResult = TF;
558}
559
560/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
561/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
562/// is necessary to spill the vector being inserted into to memory, perform
563/// the insert there, and then read the result back.
564SDValue SelectionDAGLegalize::
565PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
566                               DebugLoc dl) {
567  SDValue Tmp1 = Vec;
568  SDValue Tmp2 = Val;
569  SDValue Tmp3 = Idx;
570
571  // If the target doesn't support this, we have to spill the input vector
572  // to a temporary stack slot, update the element, then reload it.  This is
573  // badness.  We could also load the value into a vector register (either
574  // with a "move to register" or "extload into register" instruction, then
575  // permute it into place, if the idx is a constant and if the idx is
576  // supported by the target.
577  EVT VT    = Tmp1.getValueType();
578  EVT EltVT = VT.getVectorElementType();
579  EVT IdxVT = Tmp3.getValueType();
580  EVT PtrVT = TLI.getPointerTy();
581  SDValue StackPtr = DAG.CreateStackTemporary(VT);
582
583  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
584
585  // Store the vector.
586  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
587                            MachinePointerInfo::getFixedStack(SPFI),
588                            false, false, 0);
589
590  // Truncate or zero extend offset to target pointer type.
591  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
592  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
593  // Add the offset to the index.
594  unsigned EltSize = EltVT.getSizeInBits()/8;
595  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
596  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
597  // Store the scalar value.
598  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
599                         false, false, 0);
600  // Load the updated vector.
601  return DAG.getLoad(VT, dl, Ch, StackPtr,
602                     MachinePointerInfo::getFixedStack(SPFI), false, false,
603                     false, 0);
604}
605
606
607SDValue SelectionDAGLegalize::
608ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
609  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
610    // SCALAR_TO_VECTOR requires that the type of the value being inserted
611    // match the element type of the vector being created, except for
612    // integers in which case the inserted value can be over width.
613    EVT EltVT = Vec.getValueType().getVectorElementType();
614    if (Val.getValueType() == EltVT ||
615        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
616      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
617                                  Vec.getValueType(), Val);
618
619      unsigned NumElts = Vec.getValueType().getVectorNumElements();
620      // We generate a shuffle of InVec and ScVec, so the shuffle mask
621      // should be 0,1,2,3,4,5... with the appropriate element replaced with
622      // elt 0 of the RHS.
623      SmallVector<int, 8> ShufOps;
624      for (unsigned i = 0; i != NumElts; ++i)
625        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
626
627      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
628                                  &ShufOps[0]);
629    }
630  }
631  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
632}
633
634SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
635  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
636  // FIXME: We shouldn't do this for TargetConstantFP's.
637  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
638  // to phase ordering between legalized code and the dag combiner.  This
639  // probably means that we need to integrate dag combiner and legalizer
640  // together.
641  // We generally can't do this one for long doubles.
642  SDValue Tmp1 = ST->getChain();
643  SDValue Tmp2 = ST->getBasePtr();
644  SDValue Tmp3;
645  unsigned Alignment = ST->getAlignment();
646  bool isVolatile = ST->isVolatile();
647  bool isNonTemporal = ST->isNonTemporal();
648  DebugLoc dl = ST->getDebugLoc();
649  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
650    if (CFP->getValueType(0) == MVT::f32 &&
651        TLI.isTypeLegal(MVT::i32)) {
652      Tmp3 = DAG.getConstant(CFP->getValueAPF().
653                                      bitcastToAPInt().zextOrTrunc(32),
654                              MVT::i32);
655      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
656                          isVolatile, isNonTemporal, Alignment);
657    }
658
659    if (CFP->getValueType(0) == MVT::f64) {
660      // If this target supports 64-bit registers, do a single 64-bit store.
661      if (TLI.isTypeLegal(MVT::i64)) {
662        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
663                                  zextOrTrunc(64), MVT::i64);
664        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
665                            isVolatile, isNonTemporal, Alignment);
666      }
667
668      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
669        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
670        // stores.  If the target supports neither 32- nor 64-bits, this
671        // xform is certainly not worth it.
672        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
673        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
674        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
675        if (TLI.isBigEndian()) std::swap(Lo, Hi);
676
677        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
678                          isNonTemporal, Alignment);
679        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
680                            DAG.getIntPtrConstant(4));
681        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
682                          ST->getPointerInfo().getWithOffset(4),
683                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
684
685        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
686      }
687    }
688  }
689  return SDValue(0, 0);
690}
691
692/// LegalizeOp - Return a legal replacement for the given operation, with
693/// all legal operands.
694void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
695  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
696    return;
697
698  DebugLoc dl = Node->getDebugLoc();
699
700  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
701    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
702             TargetLowering::TypeLegal &&
703           "Unexpected illegal type!");
704
705  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
706    assert((TLI.getTypeAction(*DAG.getContext(),
707                              Node->getOperand(i).getValueType()) ==
708              TargetLowering::TypeLegal ||
709            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
710           "Unexpected illegal type!");
711
712  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
713  bool isCustom = false;
714
715  // Figure out the correct action; the way to query this varies by opcode
716  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
717  bool SimpleFinishLegalizing = true;
718  switch (Node->getOpcode()) {
719  case ISD::INTRINSIC_W_CHAIN:
720  case ISD::INTRINSIC_WO_CHAIN:
721  case ISD::INTRINSIC_VOID:
722  case ISD::STACKSAVE:
723    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
724    break;
725  case ISD::VAARG:
726    Action = TLI.getOperationAction(Node->getOpcode(),
727                                    Node->getValueType(0));
728    if (Action != TargetLowering::Promote)
729      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
730    break;
731  case ISD::SINT_TO_FP:
732  case ISD::UINT_TO_FP:
733  case ISD::EXTRACT_VECTOR_ELT:
734    Action = TLI.getOperationAction(Node->getOpcode(),
735                                    Node->getOperand(0).getValueType());
736    break;
737  case ISD::FP_ROUND_INREG:
738  case ISD::SIGN_EXTEND_INREG: {
739    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
740    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
741    break;
742  }
743  case ISD::ATOMIC_STORE: {
744    Action = TLI.getOperationAction(Node->getOpcode(),
745                                    Node->getOperand(2).getValueType());
746    break;
747  }
748  case ISD::SELECT_CC:
749  case ISD::SETCC:
750  case ISD::BR_CC: {
751    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
752                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
753    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
754    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
755    ISD::CondCode CCCode =
756        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
757    Action = TLI.getCondCodeAction(CCCode, OpVT);
758    if (Action == TargetLowering::Legal) {
759      if (Node->getOpcode() == ISD::SELECT_CC)
760        Action = TLI.getOperationAction(Node->getOpcode(),
761                                        Node->getValueType(0));
762      else
763        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
764    }
765    break;
766  }
767  case ISD::LOAD:
768  case ISD::STORE:
769    // FIXME: Model these properly.  LOAD and STORE are complicated, and
770    // STORE expects the unlegalized operand in some cases.
771    SimpleFinishLegalizing = false;
772    break;
773  case ISD::CALLSEQ_START:
774  case ISD::CALLSEQ_END:
775    // FIXME: This shouldn't be necessary.  These nodes have special properties
776    // dealing with the recursive nature of legalization.  Removing this
777    // special case should be done as part of making LegalizeDAG non-recursive.
778    SimpleFinishLegalizing = false;
779    break;
780  case ISD::EXTRACT_ELEMENT:
781  case ISD::FLT_ROUNDS_:
782  case ISD::SADDO:
783  case ISD::SSUBO:
784  case ISD::UADDO:
785  case ISD::USUBO:
786  case ISD::SMULO:
787  case ISD::UMULO:
788  case ISD::FPOWI:
789  case ISD::MERGE_VALUES:
790  case ISD::EH_RETURN:
791  case ISD::FRAME_TO_ARGS_OFFSET:
792  case ISD::EH_SJLJ_SETJMP:
793  case ISD::EH_SJLJ_LONGJMP:
794    // These operations lie about being legal: when they claim to be legal,
795    // they should actually be expanded.
796    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
797    if (Action == TargetLowering::Legal)
798      Action = TargetLowering::Expand;
799    break;
800  case ISD::INIT_TRAMPOLINE:
801  case ISD::ADJUST_TRAMPOLINE:
802  case ISD::FRAMEADDR:
803  case ISD::RETURNADDR:
804    // These operations lie about being legal: when they claim to be legal,
805    // they should actually be custom-lowered.
806    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
807    if (Action == TargetLowering::Legal)
808      Action = TargetLowering::Custom;
809    break;
810  default:
811    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
812      Action = TargetLowering::Legal;
813    } else {
814      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
815    }
816    break;
817  }
818
819  if (SimpleFinishLegalizing) {
820    SDNode *NewNode = Node;
821    switch (Node->getOpcode()) {
822    default: break;
823    case ISD::SHL:
824    case ISD::SRL:
825    case ISD::SRA:
826    case ISD::ROTL:
827    case ISD::ROTR:
828      // Legalizing shifts/rotates requires adjusting the shift amount
829      // to the appropriate width.
830      if (!Node->getOperand(1).getValueType().isVector()) {
831        SDValue SAO =
832          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
833                                    Node->getOperand(1));
834        HandleSDNode Handle(SAO);
835        LegalizeOp(SAO.getNode());
836        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
837                                         Handle.getValue());
838      }
839      break;
840    case ISD::SRL_PARTS:
841    case ISD::SRA_PARTS:
842    case ISD::SHL_PARTS:
843      // Legalizing shifts/rotates requires adjusting the shift amount
844      // to the appropriate width.
845      if (!Node->getOperand(2).getValueType().isVector()) {
846        SDValue SAO =
847          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
848                                    Node->getOperand(2));
849        HandleSDNode Handle(SAO);
850        LegalizeOp(SAO.getNode());
851        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
852                                         Node->getOperand(1),
853                                         Handle.getValue());
854      }
855      break;
856    }
857
858    if (NewNode != Node) {
859      DAG.ReplaceAllUsesWith(Node, NewNode);
860      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
861        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
862      ReplacedNode(Node);
863      Node = NewNode;
864    }
865    switch (Action) {
866    case TargetLowering::Legal:
867      return;
868    case TargetLowering::Custom:
869      // FIXME: The handling for custom lowering with multiple results is
870      // a complete mess.
871      Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
872      if (Tmp1.getNode()) {
873        SmallVector<SDValue, 8> ResultVals;
874        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
875          if (e == 1)
876            ResultVals.push_back(Tmp1);
877          else
878            ResultVals.push_back(Tmp1.getValue(i));
879        }
880        if (Tmp1.getNode() != Node || Tmp1.getResNo() != 0) {
881          DAG.ReplaceAllUsesWith(Node, ResultVals.data());
882          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
883            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
884          ReplacedNode(Node);
885        }
886        return;
887      }
888
889      // FALL THROUGH
890    case TargetLowering::Expand:
891      ExpandNode(Node);
892      return;
893    case TargetLowering::Promote:
894      PromoteNode(Node);
895      return;
896    }
897  }
898
899  switch (Node->getOpcode()) {
900  default:
901#ifndef NDEBUG
902    dbgs() << "NODE: ";
903    Node->dump( &DAG);
904    dbgs() << "\n";
905#endif
906    llvm_unreachable("Do not know how to legalize this operator!");
907
908  case ISD::CALLSEQ_START:
909  case ISD::CALLSEQ_END:
910    break;
911  case ISD::LOAD: {
912    LoadSDNode *LD = cast<LoadSDNode>(Node);
913    Tmp1 = LD->getChain();   // Legalize the chain.
914    Tmp2 = LD->getBasePtr(); // Legalize the base pointer.
915
916    ISD::LoadExtType ExtType = LD->getExtensionType();
917    if (ExtType == ISD::NON_EXTLOAD) {
918      EVT VT = Node->getValueType(0);
919      Tmp3 = SDValue(Node, 0);
920      Tmp4 = SDValue(Node, 1);
921
922      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
923      default: llvm_unreachable("This action is not supported yet!");
924      case TargetLowering::Legal:
925        // If this is an unaligned load and the target doesn't support it,
926        // expand it.
927        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
928          Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
929          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
930          if (LD->getAlignment() < ABIAlignment){
931            ExpandUnalignedLoad(cast<LoadSDNode>(Node),
932                                DAG, TLI, Tmp3, Tmp4);
933          }
934        }
935        break;
936      case TargetLowering::Custom:
937        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
938        if (Tmp1.getNode()) {
939          Tmp3 = Tmp1;
940          Tmp4 = Tmp1.getValue(1);
941        }
942        break;
943      case TargetLowering::Promote: {
944        // Only promote a load of vector type to another.
945        assert(VT.isVector() && "Cannot promote this load!");
946        // Change base type to a different vector type.
947        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
948
949        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
950                           LD->isVolatile(), LD->isNonTemporal(),
951                           LD->isInvariant(), LD->getAlignment());
952        Tmp3 = DAG.getNode(ISD::BITCAST, dl, VT, Tmp1);
953        Tmp4 = Tmp1.getValue(1);
954        break;
955      }
956      }
957      if (Tmp4.getNode() != Node) {
958        assert(Tmp3.getNode() != Node && "Load must be completely replaced");
959        DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp3);
960        DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp4);
961        ReplacedNode(Node);
962      }
963      return;
964    }
965
966    EVT SrcVT = LD->getMemoryVT();
967    unsigned SrcWidth = SrcVT.getSizeInBits();
968    unsigned Alignment = LD->getAlignment();
969    bool isVolatile = LD->isVolatile();
970    bool isNonTemporal = LD->isNonTemporal();
971
972    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
973        // Some targets pretend to have an i1 loading operation, and actually
974        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
975        // bits are guaranteed to be zero; it helps the optimizers understand
976        // that these bits are zero.  It is also useful for EXTLOAD, since it
977        // tells the optimizers that those bits are undefined.  It would be
978        // nice to have an effective generic way of getting these benefits...
979        // Until such a way is found, don't insist on promoting i1 here.
980        (SrcVT != MVT::i1 ||
981         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
982      // Promote to a byte-sized load if not loading an integral number of
983      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
984      unsigned NewWidth = SrcVT.getStoreSizeInBits();
985      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
986      SDValue Ch;
987
988      // The extra bits are guaranteed to be zero, since we stored them that
989      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
990
991      ISD::LoadExtType NewExtType =
992        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
993
994      SDValue Result =
995        DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
996                       Tmp1, Tmp2, LD->getPointerInfo(),
997                       NVT, isVolatile, isNonTemporal, Alignment);
998
999      Ch = Result.getValue(1); // The chain.
1000
1001      if (ExtType == ISD::SEXTLOAD)
1002        // Having the top bits zero doesn't help when sign extending.
1003        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1004                             Result.getValueType(),
1005                             Result, DAG.getValueType(SrcVT));
1006      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1007        // All the top bits are guaranteed to be zero - inform the optimizers.
1008        Result = DAG.getNode(ISD::AssertZext, dl,
1009                             Result.getValueType(), Result,
1010                             DAG.getValueType(SrcVT));
1011
1012      Tmp1 = Result;
1013      Tmp2 = Ch;
1014    } else if (SrcWidth & (SrcWidth - 1)) {
1015      // If not loading a power-of-2 number of bits, expand as two loads.
1016      assert(!SrcVT.isVector() && "Unsupported extload!");
1017      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1018      assert(RoundWidth < SrcWidth);
1019      unsigned ExtraWidth = SrcWidth - RoundWidth;
1020      assert(ExtraWidth < RoundWidth);
1021      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1022             "Load size not an integral number of bytes!");
1023      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1024      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1025      SDValue Lo, Hi, Ch;
1026      unsigned IncrementSize;
1027
1028      if (TLI.isLittleEndian()) {
1029        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1030        // Load the bottom RoundWidth bits.
1031        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1032                            Tmp1, Tmp2,
1033                            LD->getPointerInfo(), RoundVT, isVolatile,
1034                            isNonTemporal, Alignment);
1035
1036        // Load the remaining ExtraWidth bits.
1037        IncrementSize = RoundWidth / 8;
1038        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1039                           DAG.getIntPtrConstant(IncrementSize));
1040        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1041                            LD->getPointerInfo().getWithOffset(IncrementSize),
1042                            ExtraVT, isVolatile, isNonTemporal,
1043                            MinAlign(Alignment, IncrementSize));
1044
1045        // Build a factor node to remember that this load is independent of
1046        // the other one.
1047        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1048                         Hi.getValue(1));
1049
1050        // Move the top bits to the right place.
1051        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1052                         DAG.getConstant(RoundWidth,
1053                                      TLI.getShiftAmountTy(Hi.getValueType())));
1054
1055        // Join the hi and lo parts.
1056        Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1057      } else {
1058        // Big endian - avoid unaligned loads.
1059        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1060        // Load the top RoundWidth bits.
1061        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1062                            LD->getPointerInfo(), RoundVT, isVolatile,
1063                            isNonTemporal, Alignment);
1064
1065        // Load the remaining ExtraWidth bits.
1066        IncrementSize = RoundWidth / 8;
1067        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1068                           DAG.getIntPtrConstant(IncrementSize));
1069        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1070                            dl, Node->getValueType(0), Tmp1, Tmp2,
1071                            LD->getPointerInfo().getWithOffset(IncrementSize),
1072                            ExtraVT, isVolatile, isNonTemporal,
1073                            MinAlign(Alignment, IncrementSize));
1074
1075        // Build a factor node to remember that this load is independent of
1076        // the other one.
1077        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1078                         Hi.getValue(1));
1079
1080        // Move the top bits to the right place.
1081        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1082                         DAG.getConstant(ExtraWidth,
1083                                      TLI.getShiftAmountTy(Hi.getValueType())));
1084
1085        // Join the hi and lo parts.
1086        Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1087      }
1088
1089      Tmp2 = Ch;
1090    } else {
1091      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1092      default: llvm_unreachable("This action is not supported yet!");
1093      case TargetLowering::Custom:
1094        isCustom = true;
1095        // FALLTHROUGH
1096      case TargetLowering::Legal:
1097        Tmp1 = SDValue(Node, 0);
1098        Tmp2 = SDValue(Node, 1);
1099
1100        if (isCustom) {
1101          Tmp3 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1102          if (Tmp3.getNode()) {
1103            Tmp1 = Tmp3;
1104            Tmp2 = Tmp3.getValue(1);
1105          }
1106        } else {
1107          // If this is an unaligned load and the target doesn't support it,
1108          // expand it.
1109          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1110            Type *Ty =
1111              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1112            unsigned ABIAlignment =
1113              TLI.getTargetData()->getABITypeAlignment(Ty);
1114            if (LD->getAlignment() < ABIAlignment){
1115              ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1116                                  DAG, TLI, Tmp1, Tmp2);
1117            }
1118          }
1119        }
1120        break;
1121      case TargetLowering::Expand:
1122        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1123          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1124                                     LD->getPointerInfo(),
1125                                     LD->isVolatile(), LD->isNonTemporal(),
1126                                     LD->isInvariant(), LD->getAlignment());
1127          unsigned ExtendOp;
1128          switch (ExtType) {
1129          case ISD::EXTLOAD:
1130            ExtendOp = (SrcVT.isFloatingPoint() ?
1131                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1132            break;
1133          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1134          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1135          default: llvm_unreachable("Unexpected extend load type!");
1136          }
1137          Tmp1 = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1138          Tmp2 = Load.getValue(1);
1139          break;
1140        }
1141
1142        assert(!SrcVT.isVector() &&
1143               "Vector Loads are handled in LegalizeVectorOps");
1144
1145        // FIXME: This does not work for vectors on most targets.  Sign- and
1146        // zero-extend operations are currently folded into extending loads,
1147        // whether they are legal or not, and then we end up here without any
1148        // support for legalizing them.
1149        assert(ExtType != ISD::EXTLOAD &&
1150               "EXTLOAD should always be supported!");
1151        // Turn the unsupported load into an EXTLOAD followed by an explicit
1152        // zero/sign extend inreg.
1153        SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1154                                        Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1155                                        LD->isVolatile(), LD->isNonTemporal(),
1156                                        LD->getAlignment());
1157        SDValue ValRes;
1158        if (ExtType == ISD::SEXTLOAD)
1159          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1160                               Result.getValueType(),
1161                               Result, DAG.getValueType(SrcVT));
1162        else
1163          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1164        Tmp1 = ValRes;
1165        Tmp2 = Result.getValue(1);
1166        break;
1167      }
1168    }
1169
1170    // Since loads produce two values, make sure to remember that we legalized
1171    // both of them.
1172    if (Tmp2.getNode() != Node) {
1173      assert(Tmp1.getNode() != Node && "Load must be completely replaced");
1174      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp1);
1175      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp2);
1176      ReplacedNode(Node);
1177    }
1178    break;
1179  }
1180  case ISD::STORE: {
1181    StoreSDNode *ST = cast<StoreSDNode>(Node);
1182    Tmp1 = ST->getChain();
1183    Tmp2 = ST->getBasePtr();
1184    unsigned Alignment = ST->getAlignment();
1185    bool isVolatile = ST->isVolatile();
1186    bool isNonTemporal = ST->isNonTemporal();
1187
1188    if (!ST->isTruncatingStore()) {
1189      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1190        ReplaceNode(ST, OptStore);
1191        break;
1192      }
1193
1194      {
1195        Tmp3 = ST->getValue();
1196        EVT VT = Tmp3.getValueType();
1197        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1198        default: llvm_unreachable("This action is not supported yet!");
1199        case TargetLowering::Legal:
1200          // If this is an unaligned store and the target doesn't support it,
1201          // expand it.
1202          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1203            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1204            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1205            if (ST->getAlignment() < ABIAlignment)
1206              ExpandUnalignedStore(cast<StoreSDNode>(Node),
1207                                   DAG, TLI, this);
1208          }
1209          break;
1210        case TargetLowering::Custom:
1211          Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1212          if (Tmp1.getNode())
1213            ReplaceNode(SDValue(Node, 0), Tmp1);
1214          break;
1215        case TargetLowering::Promote: {
1216          assert(VT.isVector() && "Unknown legal promote case!");
1217          Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1218                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1219          SDValue Result =
1220            DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1221                         ST->getPointerInfo(), isVolatile,
1222                         isNonTemporal, Alignment);
1223          ReplaceNode(SDValue(Node, 0), Result);
1224          break;
1225        }
1226        }
1227        break;
1228      }
1229    } else {
1230      Tmp3 = ST->getValue();
1231
1232      EVT StVT = ST->getMemoryVT();
1233      unsigned StWidth = StVT.getSizeInBits();
1234
1235      if (StWidth != StVT.getStoreSizeInBits()) {
1236        // Promote to a byte-sized store with upper bits zero if not
1237        // storing an integral number of bytes.  For example, promote
1238        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1239        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1240                                    StVT.getStoreSizeInBits());
1241        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1242        SDValue Result =
1243          DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1244                            NVT, isVolatile, isNonTemporal, Alignment);
1245        ReplaceNode(SDValue(Node, 0), Result);
1246      } else if (StWidth & (StWidth - 1)) {
1247        // If not storing a power-of-2 number of bits, expand as two stores.
1248        assert(!StVT.isVector() && "Unsupported truncstore!");
1249        unsigned RoundWidth = 1 << Log2_32(StWidth);
1250        assert(RoundWidth < StWidth);
1251        unsigned ExtraWidth = StWidth - RoundWidth;
1252        assert(ExtraWidth < RoundWidth);
1253        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1254               "Store size not an integral number of bytes!");
1255        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1256        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1257        SDValue Lo, Hi;
1258        unsigned IncrementSize;
1259
1260        if (TLI.isLittleEndian()) {
1261          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1262          // Store the bottom RoundWidth bits.
1263          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1264                                 RoundVT,
1265                                 isVolatile, isNonTemporal, Alignment);
1266
1267          // Store the remaining ExtraWidth bits.
1268          IncrementSize = RoundWidth / 8;
1269          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1270                             DAG.getIntPtrConstant(IncrementSize));
1271          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1272                           DAG.getConstant(RoundWidth,
1273                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1274          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1275                             ST->getPointerInfo().getWithOffset(IncrementSize),
1276                                 ExtraVT, isVolatile, isNonTemporal,
1277                                 MinAlign(Alignment, IncrementSize));
1278        } else {
1279          // Big endian - avoid unaligned stores.
1280          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1281          // Store the top RoundWidth bits.
1282          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1283                           DAG.getConstant(ExtraWidth,
1284                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1285          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1286                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1287
1288          // Store the remaining ExtraWidth bits.
1289          IncrementSize = RoundWidth / 8;
1290          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1291                             DAG.getIntPtrConstant(IncrementSize));
1292          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1293                              ST->getPointerInfo().getWithOffset(IncrementSize),
1294                                 ExtraVT, isVolatile, isNonTemporal,
1295                                 MinAlign(Alignment, IncrementSize));
1296        }
1297
1298        // The order of the stores doesn't matter.
1299        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1300        ReplaceNode(SDValue(Node, 0), Result);
1301      } else {
1302        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1303        default: llvm_unreachable("This action is not supported yet!");
1304        case TargetLowering::Legal:
1305          // If this is an unaligned store and the target doesn't support it,
1306          // expand it.
1307          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1308            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1309            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1310            if (ST->getAlignment() < ABIAlignment)
1311              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
1312          }
1313          break;
1314        case TargetLowering::Custom:
1315          ReplaceNode(SDValue(Node, 0),
1316                      TLI.LowerOperation(SDValue(Node, 0), DAG));
1317          break;
1318        case TargetLowering::Expand:
1319          assert(!StVT.isVector() &&
1320                 "Vector Stores are handled in LegalizeVectorOps");
1321
1322          // TRUNCSTORE:i16 i32 -> STORE i16
1323          assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!");
1324          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1325          SDValue Result =
1326            DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1327                         isVolatile, isNonTemporal, Alignment);
1328          ReplaceNode(SDValue(Node, 0), Result);
1329          break;
1330        }
1331      }
1332    }
1333    break;
1334  }
1335  }
1336}
1337
1338SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1339  SDValue Vec = Op.getOperand(0);
1340  SDValue Idx = Op.getOperand(1);
1341  DebugLoc dl = Op.getDebugLoc();
1342  // Store the value to a temporary stack slot, then LOAD the returned part.
1343  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1344  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1345                            MachinePointerInfo(), false, false, 0);
1346
1347  // Add the offset to the index.
1348  unsigned EltSize =
1349      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1350  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1351                    DAG.getConstant(EltSize, Idx.getValueType()));
1352
1353  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1354    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1355  else
1356    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1357
1358  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1359
1360  if (Op.getValueType().isVector())
1361    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1362                       false, false, false, 0);
1363  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1364                        MachinePointerInfo(),
1365                        Vec.getValueType().getVectorElementType(),
1366                        false, false, 0);
1367}
1368
1369SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1370  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1371
1372  SDValue Vec  = Op.getOperand(0);
1373  SDValue Part = Op.getOperand(1);
1374  SDValue Idx  = Op.getOperand(2);
1375  DebugLoc dl  = Op.getDebugLoc();
1376
1377  // Store the value to a temporary stack slot, then LOAD the returned part.
1378
1379  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1380  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1381  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1382
1383  // First store the whole vector.
1384  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1385                            false, false, 0);
1386
1387  // Then store the inserted part.
1388
1389  // Add the offset to the index.
1390  unsigned EltSize =
1391      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1392
1393  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1394                    DAG.getConstant(EltSize, Idx.getValueType()));
1395
1396  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1397    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1398  else
1399    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1400
1401  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1402                                    StackPtr);
1403
1404  // Store the subvector.
1405  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1406                    MachinePointerInfo(), false, false, 0);
1407
1408  // Finally, load the updated vector.
1409  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1410                     false, false, false, 0);
1411}
1412
1413SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1414  // We can't handle this case efficiently.  Allocate a sufficiently
1415  // aligned object on the stack, store each element into it, then load
1416  // the result as a vector.
1417  // Create the stack frame object.
1418  EVT VT = Node->getValueType(0);
1419  EVT EltVT = VT.getVectorElementType();
1420  DebugLoc dl = Node->getDebugLoc();
1421  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1422  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1423  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1424
1425  // Emit a store of each element to the stack slot.
1426  SmallVector<SDValue, 8> Stores;
1427  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1428  // Store (in the right endianness) the elements to memory.
1429  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1430    // Ignore undef elements.
1431    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1432
1433    unsigned Offset = TypeByteSize*i;
1434
1435    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1436    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1437
1438    // If the destination vector element type is narrower than the source
1439    // element type, only store the bits necessary.
1440    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1441      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1442                                         Node->getOperand(i), Idx,
1443                                         PtrInfo.getWithOffset(Offset),
1444                                         EltVT, false, false, 0));
1445    } else
1446      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1447                                    Node->getOperand(i), Idx,
1448                                    PtrInfo.getWithOffset(Offset),
1449                                    false, false, 0));
1450  }
1451
1452  SDValue StoreChain;
1453  if (!Stores.empty())    // Not all undef elements?
1454    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1455                             &Stores[0], Stores.size());
1456  else
1457    StoreChain = DAG.getEntryNode();
1458
1459  // Result is a load from the stack slot.
1460  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1461                     false, false, false, 0);
1462}
1463
1464SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1465  DebugLoc dl = Node->getDebugLoc();
1466  SDValue Tmp1 = Node->getOperand(0);
1467  SDValue Tmp2 = Node->getOperand(1);
1468
1469  // Get the sign bit of the RHS.  First obtain a value that has the same
1470  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1471  SDValue SignBit;
1472  EVT FloatVT = Tmp2.getValueType();
1473  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1474  if (TLI.isTypeLegal(IVT)) {
1475    // Convert to an integer with the same sign bit.
1476    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1477  } else {
1478    // Store the float to memory, then load the sign part out as an integer.
1479    MVT LoadTy = TLI.getPointerTy();
1480    // First create a temporary that is aligned for both the load and store.
1481    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1482    // Then store the float to it.
1483    SDValue Ch =
1484      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1485                   false, false, 0);
1486    if (TLI.isBigEndian()) {
1487      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1488      // Load out a legal integer with the same sign bit as the float.
1489      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1490                            false, false, false, 0);
1491    } else { // Little endian
1492      SDValue LoadPtr = StackPtr;
1493      // The float may be wider than the integer we are going to load.  Advance
1494      // the pointer so that the loaded integer will contain the sign bit.
1495      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1496      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1497      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1498                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1499      // Load a legal integer containing the sign bit.
1500      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1501                            false, false, false, 0);
1502      // Move the sign bit to the top bit of the loaded integer.
1503      unsigned BitShift = LoadTy.getSizeInBits() -
1504        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1505      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1506      if (BitShift)
1507        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1508                              DAG.getConstant(BitShift,
1509                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1510    }
1511  }
1512  // Now get the sign bit proper, by seeing whether the value is negative.
1513  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1514                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1515                         ISD::SETLT);
1516  // Get the absolute value of the result.
1517  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1518  // Select between the nabs and abs value based on the sign bit of
1519  // the input.
1520  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1521                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1522                     AbsVal);
1523}
1524
1525void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1526                                           SmallVectorImpl<SDValue> &Results) {
1527  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1528  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1529          " not tell us which reg is the stack pointer!");
1530  DebugLoc dl = Node->getDebugLoc();
1531  EVT VT = Node->getValueType(0);
1532  SDValue Tmp1 = SDValue(Node, 0);
1533  SDValue Tmp2 = SDValue(Node, 1);
1534  SDValue Tmp3 = Node->getOperand(2);
1535  SDValue Chain = Tmp1.getOperand(0);
1536
1537  // Chain the dynamic stack allocation so that it doesn't modify the stack
1538  // pointer when other instructions are using the stack.
1539  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1540
1541  SDValue Size  = Tmp2.getOperand(1);
1542  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1543  Chain = SP.getValue(1);
1544  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1545  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1546  if (Align > StackAlign)
1547    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1548                      DAG.getConstant(-(uint64_t)Align, VT));
1549  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1550  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1551
1552  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1553                            DAG.getIntPtrConstant(0, true), SDValue());
1554
1555  Results.push_back(Tmp1);
1556  Results.push_back(Tmp2);
1557}
1558
1559/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1560/// condition code CC on the current target. This routine expands SETCC with
1561/// illegal condition code into AND / OR of multiple SETCC values.
1562void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1563                                                 SDValue &LHS, SDValue &RHS,
1564                                                 SDValue &CC,
1565                                                 DebugLoc dl) {
1566  EVT OpVT = LHS.getValueType();
1567  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1568  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1569  default: llvm_unreachable("Unknown condition code action!");
1570  case TargetLowering::Legal:
1571    // Nothing to do.
1572    break;
1573  case TargetLowering::Expand: {
1574    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1575    unsigned Opc = 0;
1576    switch (CCCode) {
1577    default: llvm_unreachable("Don't know how to expand this condition!");
1578    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1579    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1580    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1581    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1582    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1583    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1584    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1585    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1586    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1587    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1588    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1589    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1590    // FIXME: Implement more expansions.
1591    }
1592
1593    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1594    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1595    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1596    RHS = SDValue();
1597    CC  = SDValue();
1598    break;
1599  }
1600  }
1601}
1602
1603/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1604/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1605/// a load from the stack slot to DestVT, extending it if needed.
1606/// The resultant code need not be legal.
1607SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1608                                               EVT SlotVT,
1609                                               EVT DestVT,
1610                                               DebugLoc dl) {
1611  // Create the stack frame object.
1612  unsigned SrcAlign =
1613    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1614                                              getTypeForEVT(*DAG.getContext()));
1615  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1616
1617  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1618  int SPFI = StackPtrFI->getIndex();
1619  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1620
1621  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1622  unsigned SlotSize = SlotVT.getSizeInBits();
1623  unsigned DestSize = DestVT.getSizeInBits();
1624  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1625  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1626
1627  // Emit a store to the stack slot.  Use a truncstore if the input value is
1628  // later than DestVT.
1629  SDValue Store;
1630
1631  if (SrcSize > SlotSize)
1632    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1633                              PtrInfo, SlotVT, false, false, SrcAlign);
1634  else {
1635    assert(SrcSize == SlotSize && "Invalid store");
1636    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1637                         PtrInfo, false, false, SrcAlign);
1638  }
1639
1640  // Result is a load from the stack slot.
1641  if (SlotSize == DestSize)
1642    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1643                       false, false, false, DestAlign);
1644
1645  assert(SlotSize < DestSize && "Unknown extension!");
1646  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1647                        PtrInfo, SlotVT, false, false, DestAlign);
1648}
1649
1650SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1651  DebugLoc dl = Node->getDebugLoc();
1652  // Create a vector sized/aligned stack slot, store the value to element #0,
1653  // then load the whole vector back out.
1654  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1655
1656  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1657  int SPFI = StackPtrFI->getIndex();
1658
1659  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1660                                 StackPtr,
1661                                 MachinePointerInfo::getFixedStack(SPFI),
1662                                 Node->getValueType(0).getVectorElementType(),
1663                                 false, false, 0);
1664  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1665                     MachinePointerInfo::getFixedStack(SPFI),
1666                     false, false, false, 0);
1667}
1668
1669
1670/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1671/// support the operation, but do support the resultant vector type.
1672SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1673  unsigned NumElems = Node->getNumOperands();
1674  SDValue Value1, Value2;
1675  DebugLoc dl = Node->getDebugLoc();
1676  EVT VT = Node->getValueType(0);
1677  EVT OpVT = Node->getOperand(0).getValueType();
1678  EVT EltVT = VT.getVectorElementType();
1679
1680  // If the only non-undef value is the low element, turn this into a
1681  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1682  bool isOnlyLowElement = true;
1683  bool MoreThanTwoValues = false;
1684  bool isConstant = true;
1685  for (unsigned i = 0; i < NumElems; ++i) {
1686    SDValue V = Node->getOperand(i);
1687    if (V.getOpcode() == ISD::UNDEF)
1688      continue;
1689    if (i > 0)
1690      isOnlyLowElement = false;
1691    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1692      isConstant = false;
1693
1694    if (!Value1.getNode()) {
1695      Value1 = V;
1696    } else if (!Value2.getNode()) {
1697      if (V != Value1)
1698        Value2 = V;
1699    } else if (V != Value1 && V != Value2) {
1700      MoreThanTwoValues = true;
1701    }
1702  }
1703
1704  if (!Value1.getNode())
1705    return DAG.getUNDEF(VT);
1706
1707  if (isOnlyLowElement)
1708    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1709
1710  // If all elements are constants, create a load from the constant pool.
1711  if (isConstant) {
1712    SmallVector<Constant*, 16> CV;
1713    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1714      if (ConstantFPSDNode *V =
1715          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1716        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1717      } else if (ConstantSDNode *V =
1718                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1719        if (OpVT==EltVT)
1720          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1721        else {
1722          // If OpVT and EltVT don't match, EltVT is not legal and the
1723          // element values have been promoted/truncated earlier.  Undo this;
1724          // we don't want a v16i8 to become a v16i32 for example.
1725          const ConstantInt *CI = V->getConstantIntValue();
1726          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1727                                        CI->getZExtValue()));
1728        }
1729      } else {
1730        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1731        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1732        CV.push_back(UndefValue::get(OpNTy));
1733      }
1734    }
1735    Constant *CP = ConstantVector::get(CV);
1736    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1737    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1738    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1739                       MachinePointerInfo::getConstantPool(),
1740                       false, false, false, Alignment);
1741  }
1742
1743  if (!MoreThanTwoValues) {
1744    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1745    for (unsigned i = 0; i < NumElems; ++i) {
1746      SDValue V = Node->getOperand(i);
1747      if (V.getOpcode() == ISD::UNDEF)
1748        continue;
1749      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1750    }
1751    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1752      // Get the splatted value into the low element of a vector register.
1753      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1754      SDValue Vec2;
1755      if (Value2.getNode())
1756        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1757      else
1758        Vec2 = DAG.getUNDEF(VT);
1759
1760      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1761      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1762    }
1763  }
1764
1765  // Otherwise, we can't handle this case efficiently.
1766  return ExpandVectorBuildThroughStack(Node);
1767}
1768
1769// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1770// does not fit into a register, return the lo part and set the hi part to the
1771// by-reg argument.  If it does fit into a single register, return the result
1772// and leave the Hi part unset.
1773SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1774                                            bool isSigned) {
1775  TargetLowering::ArgListTy Args;
1776  TargetLowering::ArgListEntry Entry;
1777  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1778    EVT ArgVT = Node->getOperand(i).getValueType();
1779    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1780    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1781    Entry.isSExt = isSigned;
1782    Entry.isZExt = !isSigned;
1783    Args.push_back(Entry);
1784  }
1785  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1786                                         TLI.getPointerTy());
1787
1788  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1789
1790  // By default, the input chain to this libcall is the entry node of the
1791  // function. If the libcall is going to be emitted as a tail call then
1792  // TLI.isUsedByReturnOnly will change it to the right chain if the return
1793  // node which is being folded has a non-entry input chain.
1794  SDValue InChain = DAG.getEntryNode();
1795
1796  // isTailCall may be true since the callee does not reference caller stack
1797  // frame. Check if it's in the right position.
1798  SDValue TCChain = InChain;
1799  bool isTailCall = isInTailCallPosition(DAG, Node, TCChain, TLI);
1800  if (isTailCall)
1801    InChain = TCChain;
1802
1803  std::pair<SDValue, SDValue> CallInfo =
1804    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1805                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1806                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1807                    Callee, Args, DAG, Node->getDebugLoc());
1808
1809  if (!CallInfo.second.getNode())
1810    // It's a tailcall, return the chain (which is the DAG root).
1811    return DAG.getRoot();
1812
1813  return CallInfo.first;
1814}
1815
1816/// ExpandLibCall - Generate a libcall taking the given operands as arguments
1817/// and returning a result of type RetVT.
1818SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1819                                            const SDValue *Ops, unsigned NumOps,
1820                                            bool isSigned, DebugLoc dl) {
1821  TargetLowering::ArgListTy Args;
1822  Args.reserve(NumOps);
1823
1824  TargetLowering::ArgListEntry Entry;
1825  for (unsigned i = 0; i != NumOps; ++i) {
1826    Entry.Node = Ops[i];
1827    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1828    Entry.isSExt = isSigned;
1829    Entry.isZExt = !isSigned;
1830    Args.push_back(Entry);
1831  }
1832  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1833                                         TLI.getPointerTy());
1834
1835  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1836  std::pair<SDValue,SDValue> CallInfo =
1837  TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1838                  false, 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1839                  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1840                  Callee, Args, DAG, dl);
1841
1842  return CallInfo.first;
1843}
1844
1845// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1846// ExpandLibCall except that the first operand is the in-chain.
1847std::pair<SDValue, SDValue>
1848SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1849                                         SDNode *Node,
1850                                         bool isSigned) {
1851  SDValue InChain = Node->getOperand(0);
1852
1853  TargetLowering::ArgListTy Args;
1854  TargetLowering::ArgListEntry Entry;
1855  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1856    EVT ArgVT = Node->getOperand(i).getValueType();
1857    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1858    Entry.Node = Node->getOperand(i);
1859    Entry.Ty = ArgTy;
1860    Entry.isSExt = isSigned;
1861    Entry.isZExt = !isSigned;
1862    Args.push_back(Entry);
1863  }
1864  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1865                                         TLI.getPointerTy());
1866
1867  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1868  std::pair<SDValue, SDValue> CallInfo =
1869    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1870                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1871                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1872                    Callee, Args, DAG, Node->getDebugLoc());
1873
1874  return CallInfo;
1875}
1876
1877SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1878                                              RTLIB::Libcall Call_F32,
1879                                              RTLIB::Libcall Call_F64,
1880                                              RTLIB::Libcall Call_F80,
1881                                              RTLIB::Libcall Call_PPCF128) {
1882  RTLIB::Libcall LC;
1883  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1884  default: llvm_unreachable("Unexpected request for libcall!");
1885  case MVT::f32: LC = Call_F32; break;
1886  case MVT::f64: LC = Call_F64; break;
1887  case MVT::f80: LC = Call_F80; break;
1888  case MVT::ppcf128: LC = Call_PPCF128; break;
1889  }
1890  return ExpandLibCall(LC, Node, false);
1891}
1892
1893SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1894                                               RTLIB::Libcall Call_I8,
1895                                               RTLIB::Libcall Call_I16,
1896                                               RTLIB::Libcall Call_I32,
1897                                               RTLIB::Libcall Call_I64,
1898                                               RTLIB::Libcall Call_I128) {
1899  RTLIB::Libcall LC;
1900  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1901  default: llvm_unreachable("Unexpected request for libcall!");
1902  case MVT::i8:   LC = Call_I8; break;
1903  case MVT::i16:  LC = Call_I16; break;
1904  case MVT::i32:  LC = Call_I32; break;
1905  case MVT::i64:  LC = Call_I64; break;
1906  case MVT::i128: LC = Call_I128; break;
1907  }
1908  return ExpandLibCall(LC, Node, isSigned);
1909}
1910
1911/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
1912static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
1913                                     const TargetLowering &TLI) {
1914  RTLIB::Libcall LC;
1915  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1916  default: llvm_unreachable("Unexpected request for libcall!");
1917  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1918  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1919  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1920  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1921  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1922  }
1923
1924  return TLI.getLibcallName(LC) != 0;
1925}
1926
1927/// UseDivRem - Only issue divrem libcall if both quotient and remainder are
1928/// needed.
1929static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) {
1930  unsigned OtherOpcode = 0;
1931  if (isSigned)
1932    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
1933  else
1934    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
1935
1936  SDValue Op0 = Node->getOperand(0);
1937  SDValue Op1 = Node->getOperand(1);
1938  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
1939         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
1940    SDNode *User = *UI;
1941    if (User == Node)
1942      continue;
1943    if (User->getOpcode() == OtherOpcode &&
1944        User->getOperand(0) == Op0 &&
1945        User->getOperand(1) == Op1)
1946      return true;
1947  }
1948  return false;
1949}
1950
1951/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
1952/// pairs.
1953void
1954SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
1955                                          SmallVectorImpl<SDValue> &Results) {
1956  unsigned Opcode = Node->getOpcode();
1957  bool isSigned = Opcode == ISD::SDIVREM;
1958
1959  RTLIB::Libcall LC;
1960  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1961  default: llvm_unreachable("Unexpected request for libcall!");
1962  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1963  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1964  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1965  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1966  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1967  }
1968
1969  // The input chain to this libcall is the entry node of the function.
1970  // Legalizing the call will automatically add the previous call to the
1971  // dependence.
1972  SDValue InChain = DAG.getEntryNode();
1973
1974  EVT RetVT = Node->getValueType(0);
1975  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1976
1977  TargetLowering::ArgListTy Args;
1978  TargetLowering::ArgListEntry Entry;
1979  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1980    EVT ArgVT = Node->getOperand(i).getValueType();
1981    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1982    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1983    Entry.isSExt = isSigned;
1984    Entry.isZExt = !isSigned;
1985    Args.push_back(Entry);
1986  }
1987
1988  // Also pass the return address of the remainder.
1989  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
1990  Entry.Node = FIPtr;
1991  Entry.Ty = RetTy->getPointerTo();
1992  Entry.isSExt = isSigned;
1993  Entry.isZExt = !isSigned;
1994  Args.push_back(Entry);
1995
1996  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1997                                         TLI.getPointerTy());
1998
1999  DebugLoc dl = Node->getDebugLoc();
2000  std::pair<SDValue, SDValue> CallInfo =
2001    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2002                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2003                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2004                    Callee, Args, DAG, dl);
2005
2006  // Remainder is loaded back from the stack frame.
2007  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2008                            MachinePointerInfo(), false, false, false, 0);
2009  Results.push_back(CallInfo.first);
2010  Results.push_back(Rem);
2011}
2012
2013/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2014/// INT_TO_FP operation of the specified operand when the target requests that
2015/// we expand it.  At this point, we know that the result and operand types are
2016/// legal for the target.
2017SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2018                                                   SDValue Op0,
2019                                                   EVT DestVT,
2020                                                   DebugLoc dl) {
2021  if (Op0.getValueType() == MVT::i32) {
2022    // simple 32-bit [signed|unsigned] integer to float/double expansion
2023
2024    // Get the stack frame index of a 8 byte buffer.
2025    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2026
2027    // word offset constant for Hi/Lo address computation
2028    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2029    // set up Hi and Lo (into buffer) address based on endian
2030    SDValue Hi = StackSlot;
2031    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2032                             TLI.getPointerTy(), StackSlot, WordOff);
2033    if (TLI.isLittleEndian())
2034      std::swap(Hi, Lo);
2035
2036    // if signed map to unsigned space
2037    SDValue Op0Mapped;
2038    if (isSigned) {
2039      // constant used to invert sign bit (signed to unsigned mapping)
2040      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2041      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2042    } else {
2043      Op0Mapped = Op0;
2044    }
2045    // store the lo of the constructed double - based on integer input
2046    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2047                                  Op0Mapped, Lo, MachinePointerInfo(),
2048                                  false, false, 0);
2049    // initial hi portion of constructed double
2050    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2051    // store the hi of the constructed double - biased exponent
2052    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2053                                  MachinePointerInfo(),
2054                                  false, false, 0);
2055    // load the constructed double
2056    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2057                               MachinePointerInfo(), false, false, false, 0);
2058    // FP constant to bias correct the final result
2059    SDValue Bias = DAG.getConstantFP(isSigned ?
2060                                     BitsToDouble(0x4330000080000000ULL) :
2061                                     BitsToDouble(0x4330000000000000ULL),
2062                                     MVT::f64);
2063    // subtract the bias
2064    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2065    // final result
2066    SDValue Result;
2067    // handle final rounding
2068    if (DestVT == MVT::f64) {
2069      // do nothing
2070      Result = Sub;
2071    } else if (DestVT.bitsLT(MVT::f64)) {
2072      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2073                           DAG.getIntPtrConstant(0));
2074    } else if (DestVT.bitsGT(MVT::f64)) {
2075      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2076    }
2077    return Result;
2078  }
2079  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2080  // Code below here assumes !isSigned without checking again.
2081
2082  // Implementation of unsigned i64 to f64 following the algorithm in
2083  // __floatundidf in compiler_rt. This implementation has the advantage
2084  // of performing rounding correctly, both in the default rounding mode
2085  // and in all alternate rounding modes.
2086  // TODO: Generalize this for use with other types.
2087  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2088    SDValue TwoP52 =
2089      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2090    SDValue TwoP84PlusTwoP52 =
2091      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2092    SDValue TwoP84 =
2093      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2094
2095    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2096    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2097                             DAG.getConstant(32, MVT::i64));
2098    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2099    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2100    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2101    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2102    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2103                                TwoP84PlusTwoP52);
2104    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2105  }
2106
2107  // Implementation of unsigned i64 to f32.
2108  // TODO: Generalize this for use with other types.
2109  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2110    // For unsigned conversions, convert them to signed conversions using the
2111    // algorithm from the x86_64 __floatundidf in compiler_rt.
2112    if (!isSigned) {
2113      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2114
2115      SDValue ShiftConst =
2116          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2117      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2118      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2119      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2120      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2121
2122      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2123      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2124
2125      // TODO: This really should be implemented using a branch rather than a
2126      // select.  We happen to get lucky and machinesink does the right
2127      // thing most of the time.  This would be a good candidate for a
2128      //pseudo-op, or, even better, for whole-function isel.
2129      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2130        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2131      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2132    }
2133
2134    // Otherwise, implement the fully general conversion.
2135
2136    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2137         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2138    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2139         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2140    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2141         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2142    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2143                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2144    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2145    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2146                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2147                   ISD::SETUGE);
2148    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2149    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2150
2151    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2152                             DAG.getConstant(32, SHVT));
2153    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2154    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2155    SDValue TwoP32 =
2156      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2157    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2158    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2159    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2160    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2161    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2162                       DAG.getIntPtrConstant(0));
2163  }
2164
2165  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2166
2167  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2168                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2169                                 ISD::SETLT);
2170  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2171  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2172                                    SignSet, Four, Zero);
2173
2174  // If the sign bit of the integer is set, the large number will be treated
2175  // as a negative number.  To counteract this, the dynamic code adds an
2176  // offset depending on the data type.
2177  uint64_t FF;
2178  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2179  default: llvm_unreachable("Unsupported integer type!");
2180  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2181  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2182  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2183  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2184  }
2185  if (TLI.isLittleEndian()) FF <<= 32;
2186  Constant *FudgeFactor = ConstantInt::get(
2187                                       Type::getInt64Ty(*DAG.getContext()), FF);
2188
2189  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2190  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2191  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2192  Alignment = std::min(Alignment, 4u);
2193  SDValue FudgeInReg;
2194  if (DestVT == MVT::f32)
2195    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2196                             MachinePointerInfo::getConstantPool(),
2197                             false, false, false, Alignment);
2198  else {
2199    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2200                                  DAG.getEntryNode(), CPIdx,
2201                                  MachinePointerInfo::getConstantPool(),
2202                                  MVT::f32, false, false, Alignment);
2203    HandleSDNode Handle(Load);
2204    LegalizeOp(Load.getNode());
2205    FudgeInReg = Handle.getValue();
2206  }
2207
2208  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2209}
2210
2211/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2212/// *INT_TO_FP operation of the specified operand when the target requests that
2213/// we promote it.  At this point, we know that the result and operand types are
2214/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2215/// operation that takes a larger input.
2216SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2217                                                    EVT DestVT,
2218                                                    bool isSigned,
2219                                                    DebugLoc dl) {
2220  // First step, figure out the appropriate *INT_TO_FP operation to use.
2221  EVT NewInTy = LegalOp.getValueType();
2222
2223  unsigned OpToUse = 0;
2224
2225  // Scan for the appropriate larger type to use.
2226  while (1) {
2227    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2228    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2229
2230    // If the target supports SINT_TO_FP of this type, use it.
2231    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2232      OpToUse = ISD::SINT_TO_FP;
2233      break;
2234    }
2235    if (isSigned) continue;
2236
2237    // If the target supports UINT_TO_FP of this type, use it.
2238    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2239      OpToUse = ISD::UINT_TO_FP;
2240      break;
2241    }
2242
2243    // Otherwise, try a larger type.
2244  }
2245
2246  // Okay, we found the operation and type to use.  Zero extend our input to the
2247  // desired type then run the operation on it.
2248  return DAG.getNode(OpToUse, dl, DestVT,
2249                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2250                                 dl, NewInTy, LegalOp));
2251}
2252
2253/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2254/// FP_TO_*INT operation of the specified operand when the target requests that
2255/// we promote it.  At this point, we know that the result and operand types are
2256/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2257/// operation that returns a larger result.
2258SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2259                                                    EVT DestVT,
2260                                                    bool isSigned,
2261                                                    DebugLoc dl) {
2262  // First step, figure out the appropriate FP_TO*INT operation to use.
2263  EVT NewOutTy = DestVT;
2264
2265  unsigned OpToUse = 0;
2266
2267  // Scan for the appropriate larger type to use.
2268  while (1) {
2269    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2270    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2271
2272    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2273      OpToUse = ISD::FP_TO_SINT;
2274      break;
2275    }
2276
2277    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2278      OpToUse = ISD::FP_TO_UINT;
2279      break;
2280    }
2281
2282    // Otherwise, try a larger type.
2283  }
2284
2285
2286  // Okay, we found the operation and type to use.
2287  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2288
2289  // Truncate the result of the extended FP_TO_*INT operation to the desired
2290  // size.
2291  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2292}
2293
2294/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2295///
2296SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2297  EVT VT = Op.getValueType();
2298  EVT SHVT = TLI.getShiftAmountTy(VT);
2299  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2300  switch (VT.getSimpleVT().SimpleTy) {
2301  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2302  case MVT::i16:
2303    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2304    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2305    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2306  case MVT::i32:
2307    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2308    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2309    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2310    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2311    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2312    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2313    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2314    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2315    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2316  case MVT::i64:
2317    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2318    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2319    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2320    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2321    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2322    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2323    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2324    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2325    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2326    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2327    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2328    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2329    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2330    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2331    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2332    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2333    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2334    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2335    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2336    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2337    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2338  }
2339}
2340
2341/// SplatByte - Distribute ByteVal over NumBits bits.
2342// FIXME: Move this helper to a common place.
2343static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2344  APInt Val = APInt(NumBits, ByteVal);
2345  unsigned Shift = 8;
2346  for (unsigned i = NumBits; i > 8; i >>= 1) {
2347    Val = (Val << Shift) | Val;
2348    Shift <<= 1;
2349  }
2350  return Val;
2351}
2352
2353/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2354///
2355SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2356                                             DebugLoc dl) {
2357  switch (Opc) {
2358  default: llvm_unreachable("Cannot expand this yet!");
2359  case ISD::CTPOP: {
2360    EVT VT = Op.getValueType();
2361    EVT ShVT = TLI.getShiftAmountTy(VT);
2362    unsigned Len = VT.getSizeInBits();
2363
2364    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2365           "CTPOP not implemented for this type.");
2366
2367    // This is the "best" algorithm from
2368    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2369
2370    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2371    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2372    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2373    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2374
2375    // v = v - ((v >> 1) & 0x55555555...)
2376    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2377                     DAG.getNode(ISD::AND, dl, VT,
2378                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2379                                             DAG.getConstant(1, ShVT)),
2380                                 Mask55));
2381    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2382    Op = DAG.getNode(ISD::ADD, dl, VT,
2383                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2384                     DAG.getNode(ISD::AND, dl, VT,
2385                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2386                                             DAG.getConstant(2, ShVT)),
2387                                 Mask33));
2388    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2389    Op = DAG.getNode(ISD::AND, dl, VT,
2390                     DAG.getNode(ISD::ADD, dl, VT, Op,
2391                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2392                                             DAG.getConstant(4, ShVT))),
2393                     Mask0F);
2394    // v = (v * 0x01010101...) >> (Len - 8)
2395    Op = DAG.getNode(ISD::SRL, dl, VT,
2396                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2397                     DAG.getConstant(Len - 8, ShVT));
2398
2399    return Op;
2400  }
2401  case ISD::CTLZ_ZERO_UNDEF:
2402    // This trivially expands to CTLZ.
2403    return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2404  case ISD::CTLZ: {
2405    // for now, we do this:
2406    // x = x | (x >> 1);
2407    // x = x | (x >> 2);
2408    // ...
2409    // x = x | (x >>16);
2410    // x = x | (x >>32); // for 64-bit input
2411    // return popcount(~x);
2412    //
2413    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2414    EVT VT = Op.getValueType();
2415    EVT ShVT = TLI.getShiftAmountTy(VT);
2416    unsigned len = VT.getSizeInBits();
2417    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2418      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2419      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2420                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2421    }
2422    Op = DAG.getNOT(dl, Op, VT);
2423    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2424  }
2425  case ISD::CTTZ_ZERO_UNDEF:
2426    // This trivially expands to CTTZ.
2427    return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2428  case ISD::CTTZ: {
2429    // for now, we use: { return popcount(~x & (x - 1)); }
2430    // unless the target has ctlz but not ctpop, in which case we use:
2431    // { return 32 - nlz(~x & (x-1)); }
2432    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2433    EVT VT = Op.getValueType();
2434    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2435                               DAG.getNOT(dl, Op, VT),
2436                               DAG.getNode(ISD::SUB, dl, VT, Op,
2437                                           DAG.getConstant(1, VT)));
2438    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2439    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2440        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2441      return DAG.getNode(ISD::SUB, dl, VT,
2442                         DAG.getConstant(VT.getSizeInBits(), VT),
2443                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2444    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2445  }
2446  }
2447}
2448
2449std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2450  unsigned Opc = Node->getOpcode();
2451  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2452  RTLIB::Libcall LC;
2453
2454  switch (Opc) {
2455  default:
2456    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2457  case ISD::ATOMIC_SWAP:
2458    switch (VT.SimpleTy) {
2459    default: llvm_unreachable("Unexpected value type for atomic!");
2460    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2461    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2462    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2463    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2464    }
2465    break;
2466  case ISD::ATOMIC_CMP_SWAP:
2467    switch (VT.SimpleTy) {
2468    default: llvm_unreachable("Unexpected value type for atomic!");
2469    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2470    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2471    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2472    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2473    }
2474    break;
2475  case ISD::ATOMIC_LOAD_ADD:
2476    switch (VT.SimpleTy) {
2477    default: llvm_unreachable("Unexpected value type for atomic!");
2478    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2479    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2480    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2481    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2482    }
2483    break;
2484  case ISD::ATOMIC_LOAD_SUB:
2485    switch (VT.SimpleTy) {
2486    default: llvm_unreachable("Unexpected value type for atomic!");
2487    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2488    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2489    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2490    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2491    }
2492    break;
2493  case ISD::ATOMIC_LOAD_AND:
2494    switch (VT.SimpleTy) {
2495    default: llvm_unreachable("Unexpected value type for atomic!");
2496    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2497    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2498    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2499    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2500    }
2501    break;
2502  case ISD::ATOMIC_LOAD_OR:
2503    switch (VT.SimpleTy) {
2504    default: llvm_unreachable("Unexpected value type for atomic!");
2505    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2506    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2507    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2508    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2509    }
2510    break;
2511  case ISD::ATOMIC_LOAD_XOR:
2512    switch (VT.SimpleTy) {
2513    default: llvm_unreachable("Unexpected value type for atomic!");
2514    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2515    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2516    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2517    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2518    }
2519    break;
2520  case ISD::ATOMIC_LOAD_NAND:
2521    switch (VT.SimpleTy) {
2522    default: llvm_unreachable("Unexpected value type for atomic!");
2523    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2524    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2525    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2526    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2527    }
2528    break;
2529  }
2530
2531  return ExpandChainLibCall(LC, Node, false);
2532}
2533
2534void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2535  SmallVector<SDValue, 8> Results;
2536  DebugLoc dl = Node->getDebugLoc();
2537  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2538  switch (Node->getOpcode()) {
2539  case ISD::CTPOP:
2540  case ISD::CTLZ:
2541  case ISD::CTLZ_ZERO_UNDEF:
2542  case ISD::CTTZ:
2543  case ISD::CTTZ_ZERO_UNDEF:
2544    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2545    Results.push_back(Tmp1);
2546    break;
2547  case ISD::BSWAP:
2548    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2549    break;
2550  case ISD::FRAMEADDR:
2551  case ISD::RETURNADDR:
2552  case ISD::FRAME_TO_ARGS_OFFSET:
2553    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2554    break;
2555  case ISD::FLT_ROUNDS_:
2556    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2557    break;
2558  case ISD::EH_RETURN:
2559  case ISD::EH_LABEL:
2560  case ISD::PREFETCH:
2561  case ISD::VAEND:
2562  case ISD::EH_SJLJ_LONGJMP:
2563    // If the target didn't expand these, there's nothing to do, so just
2564    // preserve the chain and be done.
2565    Results.push_back(Node->getOperand(0));
2566    break;
2567  case ISD::EH_SJLJ_SETJMP:
2568    // If the target didn't expand this, just return 'zero' and preserve the
2569    // chain.
2570    Results.push_back(DAG.getConstant(0, MVT::i32));
2571    Results.push_back(Node->getOperand(0));
2572    break;
2573  case ISD::ATOMIC_FENCE:
2574  case ISD::MEMBARRIER: {
2575    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2576    // FIXME: handle "fence singlethread" more efficiently.
2577    TargetLowering::ArgListTy Args;
2578    std::pair<SDValue, SDValue> CallResult =
2579      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2580                      false, false, false, false, 0, CallingConv::C,
2581                      /*isTailCall=*/false,
2582                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2583                      DAG.getExternalSymbol("__sync_synchronize",
2584                                            TLI.getPointerTy()),
2585                      Args, DAG, dl);
2586    Results.push_back(CallResult.second);
2587    break;
2588  }
2589  case ISD::ATOMIC_LOAD: {
2590    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2591    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2592    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2593                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2594                                 Node->getOperand(0),
2595                                 Node->getOperand(1), Zero, Zero,
2596                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2597                                 cast<AtomicSDNode>(Node)->getOrdering(),
2598                                 cast<AtomicSDNode>(Node)->getSynchScope());
2599    Results.push_back(Swap.getValue(0));
2600    Results.push_back(Swap.getValue(1));
2601    break;
2602  }
2603  case ISD::ATOMIC_STORE: {
2604    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2605    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2606                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2607                                 Node->getOperand(0),
2608                                 Node->getOperand(1), Node->getOperand(2),
2609                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2610                                 cast<AtomicSDNode>(Node)->getOrdering(),
2611                                 cast<AtomicSDNode>(Node)->getSynchScope());
2612    Results.push_back(Swap.getValue(1));
2613    break;
2614  }
2615  // By default, atomic intrinsics are marked Legal and lowered. Targets
2616  // which don't support them directly, however, may want libcalls, in which
2617  // case they mark them Expand, and we get here.
2618  case ISD::ATOMIC_SWAP:
2619  case ISD::ATOMIC_LOAD_ADD:
2620  case ISD::ATOMIC_LOAD_SUB:
2621  case ISD::ATOMIC_LOAD_AND:
2622  case ISD::ATOMIC_LOAD_OR:
2623  case ISD::ATOMIC_LOAD_XOR:
2624  case ISD::ATOMIC_LOAD_NAND:
2625  case ISD::ATOMIC_LOAD_MIN:
2626  case ISD::ATOMIC_LOAD_MAX:
2627  case ISD::ATOMIC_LOAD_UMIN:
2628  case ISD::ATOMIC_LOAD_UMAX:
2629  case ISD::ATOMIC_CMP_SWAP: {
2630    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2631    Results.push_back(Tmp.first);
2632    Results.push_back(Tmp.second);
2633    break;
2634  }
2635  case ISD::DYNAMIC_STACKALLOC:
2636    ExpandDYNAMIC_STACKALLOC(Node, Results);
2637    break;
2638  case ISD::MERGE_VALUES:
2639    for (unsigned i = 0; i < Node->getNumValues(); i++)
2640      Results.push_back(Node->getOperand(i));
2641    break;
2642  case ISD::UNDEF: {
2643    EVT VT = Node->getValueType(0);
2644    if (VT.isInteger())
2645      Results.push_back(DAG.getConstant(0, VT));
2646    else {
2647      assert(VT.isFloatingPoint() && "Unknown value type!");
2648      Results.push_back(DAG.getConstantFP(0, VT));
2649    }
2650    break;
2651  }
2652  case ISD::TRAP: {
2653    // If this operation is not supported, lower it to 'abort()' call
2654    TargetLowering::ArgListTy Args;
2655    std::pair<SDValue, SDValue> CallResult =
2656      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2657                      false, false, false, false, 0, CallingConv::C,
2658                      /*isTailCall=*/false,
2659                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2660                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2661                      Args, DAG, dl);
2662    Results.push_back(CallResult.second);
2663    break;
2664  }
2665  case ISD::FP_ROUND:
2666  case ISD::BITCAST:
2667    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2668                            Node->getValueType(0), dl);
2669    Results.push_back(Tmp1);
2670    break;
2671  case ISD::FP_EXTEND:
2672    Tmp1 = EmitStackConvert(Node->getOperand(0),
2673                            Node->getOperand(0).getValueType(),
2674                            Node->getValueType(0), dl);
2675    Results.push_back(Tmp1);
2676    break;
2677  case ISD::SIGN_EXTEND_INREG: {
2678    // NOTE: we could fall back on load/store here too for targets without
2679    // SAR.  However, it is doubtful that any exist.
2680    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2681    EVT VT = Node->getValueType(0);
2682    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2683    if (VT.isVector())
2684      ShiftAmountTy = VT;
2685    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2686                        ExtraVT.getScalarType().getSizeInBits();
2687    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2688    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2689                       Node->getOperand(0), ShiftCst);
2690    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2691    Results.push_back(Tmp1);
2692    break;
2693  }
2694  case ISD::FP_ROUND_INREG: {
2695    // The only way we can lower this is to turn it into a TRUNCSTORE,
2696    // EXTLOAD pair, targeting a temporary location (a stack slot).
2697
2698    // NOTE: there is a choice here between constantly creating new stack
2699    // slots and always reusing the same one.  We currently always create
2700    // new ones, as reuse may inhibit scheduling.
2701    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2702    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2703                            Node->getValueType(0), dl);
2704    Results.push_back(Tmp1);
2705    break;
2706  }
2707  case ISD::SINT_TO_FP:
2708  case ISD::UINT_TO_FP:
2709    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2710                                Node->getOperand(0), Node->getValueType(0), dl);
2711    Results.push_back(Tmp1);
2712    break;
2713  case ISD::FP_TO_UINT: {
2714    SDValue True, False;
2715    EVT VT =  Node->getOperand(0).getValueType();
2716    EVT NVT = Node->getValueType(0);
2717    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2718    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2719    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2720    Tmp1 = DAG.getConstantFP(apf, VT);
2721    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2722                        Node->getOperand(0),
2723                        Tmp1, ISD::SETLT);
2724    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2725    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2726                        DAG.getNode(ISD::FSUB, dl, VT,
2727                                    Node->getOperand(0), Tmp1));
2728    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2729                        DAG.getConstant(x, NVT));
2730    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2731    Results.push_back(Tmp1);
2732    break;
2733  }
2734  case ISD::VAARG: {
2735    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2736    EVT VT = Node->getValueType(0);
2737    Tmp1 = Node->getOperand(0);
2738    Tmp2 = Node->getOperand(1);
2739    unsigned Align = Node->getConstantOperandVal(3);
2740
2741    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2742                                     MachinePointerInfo(V),
2743                                     false, false, false, 0);
2744    SDValue VAList = VAListLoad;
2745
2746    if (Align > TLI.getMinStackArgumentAlignment()) {
2747      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2748
2749      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2750                           DAG.getConstant(Align - 1,
2751                                           TLI.getPointerTy()));
2752
2753      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2754                           DAG.getConstant(-(int64_t)Align,
2755                                           TLI.getPointerTy()));
2756    }
2757
2758    // Increment the pointer, VAList, to the next vaarg
2759    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2760                       DAG.getConstant(TLI.getTargetData()->
2761                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2762                                       TLI.getPointerTy()));
2763    // Store the incremented VAList to the legalized pointer
2764    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2765                        MachinePointerInfo(V), false, false, 0);
2766    // Load the actual argument out of the pointer VAList
2767    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2768                                  false, false, false, 0));
2769    Results.push_back(Results[0].getValue(1));
2770    break;
2771  }
2772  case ISD::VACOPY: {
2773    // This defaults to loading a pointer from the input and storing it to the
2774    // output, returning the chain.
2775    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2776    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2777    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2778                       Node->getOperand(2), MachinePointerInfo(VS),
2779                       false, false, false, 0);
2780    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2781                        MachinePointerInfo(VD), false, false, 0);
2782    Results.push_back(Tmp1);
2783    break;
2784  }
2785  case ISD::EXTRACT_VECTOR_ELT:
2786    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2787      // This must be an access of the only element.  Return it.
2788      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2789                         Node->getOperand(0));
2790    else
2791      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2792    Results.push_back(Tmp1);
2793    break;
2794  case ISD::EXTRACT_SUBVECTOR:
2795    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2796    break;
2797  case ISD::INSERT_SUBVECTOR:
2798    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2799    break;
2800  case ISD::CONCAT_VECTORS: {
2801    Results.push_back(ExpandVectorBuildThroughStack(Node));
2802    break;
2803  }
2804  case ISD::SCALAR_TO_VECTOR:
2805    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2806    break;
2807  case ISD::INSERT_VECTOR_ELT:
2808    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2809                                              Node->getOperand(1),
2810                                              Node->getOperand(2), dl));
2811    break;
2812  case ISD::VECTOR_SHUFFLE: {
2813    SmallVector<int, 32> NewMask;
2814    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2815
2816    EVT VT = Node->getValueType(0);
2817    EVT EltVT = VT.getVectorElementType();
2818    SDValue Op0 = Node->getOperand(0);
2819    SDValue Op1 = Node->getOperand(1);
2820    if (!TLI.isTypeLegal(EltVT)) {
2821
2822      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2823
2824      // BUILD_VECTOR operands are allowed to be wider than the element type.
2825      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
2826      if (NewEltVT.bitsLT(EltVT)) {
2827
2828        // Convert shuffle node.
2829        // If original node was v4i64 and the new EltVT is i32,
2830        // cast operands to v8i32 and re-build the mask.
2831
2832        // Calculate new VT, the size of the new VT should be equal to original.
2833        EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
2834                                      VT.getSizeInBits()/NewEltVT.getSizeInBits());
2835        assert(NewVT.bitsEq(VT));
2836
2837        // cast operands to new VT
2838        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2839        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2840
2841        // Convert the shuffle mask
2842        unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
2843
2844        // EltVT gets smaller
2845        assert(factor > 0);
2846
2847        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
2848          if (Mask[i] < 0) {
2849            for (unsigned fi = 0; fi < factor; ++fi)
2850              NewMask.push_back(Mask[i]);
2851          }
2852          else {
2853            for (unsigned fi = 0; fi < factor; ++fi)
2854              NewMask.push_back(Mask[i]*factor+fi);
2855          }
2856        }
2857        Mask = NewMask;
2858        VT = NewVT;
2859      }
2860      EltVT = NewEltVT;
2861    }
2862    unsigned NumElems = VT.getVectorNumElements();
2863    SmallVector<SDValue, 16> Ops;
2864    for (unsigned i = 0; i != NumElems; ++i) {
2865      if (Mask[i] < 0) {
2866        Ops.push_back(DAG.getUNDEF(EltVT));
2867        continue;
2868      }
2869      unsigned Idx = Mask[i];
2870      if (Idx < NumElems)
2871        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2872                                  Op0,
2873                                  DAG.getIntPtrConstant(Idx)));
2874      else
2875        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2876                                  Op1,
2877                                  DAG.getIntPtrConstant(Idx - NumElems)));
2878    }
2879
2880    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2881    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
2882    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
2883    Results.push_back(Tmp1);
2884    break;
2885  }
2886  case ISD::EXTRACT_ELEMENT: {
2887    EVT OpTy = Node->getOperand(0).getValueType();
2888    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2889      // 1 -> Hi
2890      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2891                         DAG.getConstant(OpTy.getSizeInBits()/2,
2892                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
2893      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2894    } else {
2895      // 0 -> Lo
2896      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2897                         Node->getOperand(0));
2898    }
2899    Results.push_back(Tmp1);
2900    break;
2901  }
2902  case ISD::STACKSAVE:
2903    // Expand to CopyFromReg if the target set
2904    // StackPointerRegisterToSaveRestore.
2905    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2906      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2907                                           Node->getValueType(0)));
2908      Results.push_back(Results[0].getValue(1));
2909    } else {
2910      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2911      Results.push_back(Node->getOperand(0));
2912    }
2913    break;
2914  case ISD::STACKRESTORE:
2915    // Expand to CopyToReg if the target set
2916    // StackPointerRegisterToSaveRestore.
2917    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2918      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2919                                         Node->getOperand(1)));
2920    } else {
2921      Results.push_back(Node->getOperand(0));
2922    }
2923    break;
2924  case ISD::FCOPYSIGN:
2925    Results.push_back(ExpandFCOPYSIGN(Node));
2926    break;
2927  case ISD::FNEG:
2928    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2929    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2930    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2931                       Node->getOperand(0));
2932    Results.push_back(Tmp1);
2933    break;
2934  case ISD::FABS: {
2935    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2936    EVT VT = Node->getValueType(0);
2937    Tmp1 = Node->getOperand(0);
2938    Tmp2 = DAG.getConstantFP(0.0, VT);
2939    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2940                        Tmp1, Tmp2, ISD::SETUGT);
2941    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2942    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2943    Results.push_back(Tmp1);
2944    break;
2945  }
2946  case ISD::FSQRT:
2947    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2948                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2949    break;
2950  case ISD::FSIN:
2951    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2952                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2953    break;
2954  case ISD::FCOS:
2955    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2956                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2957    break;
2958  case ISD::FLOG:
2959    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2960                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2961    break;
2962  case ISD::FLOG2:
2963    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2964                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2965    break;
2966  case ISD::FLOG10:
2967    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2968                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2969    break;
2970  case ISD::FEXP:
2971    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2972                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2973    break;
2974  case ISD::FEXP2:
2975    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2976                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2977    break;
2978  case ISD::FTRUNC:
2979    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2980                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2981    break;
2982  case ISD::FFLOOR:
2983    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2984                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2985    break;
2986  case ISD::FCEIL:
2987    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2988                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2989    break;
2990  case ISD::FRINT:
2991    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2992                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2993    break;
2994  case ISD::FNEARBYINT:
2995    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2996                                      RTLIB::NEARBYINT_F64,
2997                                      RTLIB::NEARBYINT_F80,
2998                                      RTLIB::NEARBYINT_PPCF128));
2999    break;
3000  case ISD::FPOWI:
3001    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3002                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3003    break;
3004  case ISD::FPOW:
3005    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3006                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
3007    break;
3008  case ISD::FDIV:
3009    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3010                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3011    break;
3012  case ISD::FREM:
3013    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3014                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3015    break;
3016  case ISD::FMA:
3017    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3018                                      RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
3019    break;
3020  case ISD::FP16_TO_FP32:
3021    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3022    break;
3023  case ISD::FP32_TO_FP16:
3024    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3025    break;
3026  case ISD::ConstantFP: {
3027    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3028    // Check to see if this FP immediate is already legal.
3029    // If this is a legal constant, turn it into a TargetConstantFP node.
3030    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3031      Results.push_back(ExpandConstantFP(CFP, true));
3032    break;
3033  }
3034  case ISD::EHSELECTION: {
3035    unsigned Reg = TLI.getExceptionSelectorRegister();
3036    assert(Reg && "Can't expand to unknown register!");
3037    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3038                                         Node->getValueType(0)));
3039    Results.push_back(Results[0].getValue(1));
3040    break;
3041  }
3042  case ISD::EXCEPTIONADDR: {
3043    unsigned Reg = TLI.getExceptionPointerRegister();
3044    assert(Reg && "Can't expand to unknown register!");
3045    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3046                                         Node->getValueType(0)));
3047    Results.push_back(Results[0].getValue(1));
3048    break;
3049  }
3050  case ISD::FSUB: {
3051    EVT VT = Node->getValueType(0);
3052    assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3053           TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
3054           "Don't know how to expand this FP subtraction!");
3055    Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3056    Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3057    Results.push_back(Tmp1);
3058    break;
3059  }
3060  case ISD::SUB: {
3061    EVT VT = Node->getValueType(0);
3062    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3063           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3064           "Don't know how to expand this subtraction!");
3065    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3066               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3067    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
3068    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3069    break;
3070  }
3071  case ISD::UREM:
3072  case ISD::SREM: {
3073    EVT VT = Node->getValueType(0);
3074    SDVTList VTs = DAG.getVTList(VT, VT);
3075    bool isSigned = Node->getOpcode() == ISD::SREM;
3076    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3077    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3078    Tmp2 = Node->getOperand(0);
3079    Tmp3 = Node->getOperand(1);
3080    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3081        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3082         UseDivRem(Node, isSigned, false))) {
3083      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3084    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3085      // X % Y -> X-X/Y*Y
3086      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3087      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3088      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3089    } else if (isSigned)
3090      Tmp1 = ExpandIntLibCall(Node, true,
3091                              RTLIB::SREM_I8,
3092                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3093                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3094    else
3095      Tmp1 = ExpandIntLibCall(Node, false,
3096                              RTLIB::UREM_I8,
3097                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3098                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3099    Results.push_back(Tmp1);
3100    break;
3101  }
3102  case ISD::UDIV:
3103  case ISD::SDIV: {
3104    bool isSigned = Node->getOpcode() == ISD::SDIV;
3105    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3106    EVT VT = Node->getValueType(0);
3107    SDVTList VTs = DAG.getVTList(VT, VT);
3108    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3109        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3110         UseDivRem(Node, isSigned, true)))
3111      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3112                         Node->getOperand(1));
3113    else if (isSigned)
3114      Tmp1 = ExpandIntLibCall(Node, true,
3115                              RTLIB::SDIV_I8,
3116                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3117                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3118    else
3119      Tmp1 = ExpandIntLibCall(Node, false,
3120                              RTLIB::UDIV_I8,
3121                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3122                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3123    Results.push_back(Tmp1);
3124    break;
3125  }
3126  case ISD::MULHU:
3127  case ISD::MULHS: {
3128    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3129                                                              ISD::SMUL_LOHI;
3130    EVT VT = Node->getValueType(0);
3131    SDVTList VTs = DAG.getVTList(VT, VT);
3132    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3133           "If this wasn't legal, it shouldn't have been created!");
3134    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3135                       Node->getOperand(1));
3136    Results.push_back(Tmp1.getValue(1));
3137    break;
3138  }
3139  case ISD::SDIVREM:
3140  case ISD::UDIVREM:
3141    // Expand into divrem libcall
3142    ExpandDivRemLibCall(Node, Results);
3143    break;
3144  case ISD::MUL: {
3145    EVT VT = Node->getValueType(0);
3146    SDVTList VTs = DAG.getVTList(VT, VT);
3147    // See if multiply or divide can be lowered using two-result operations.
3148    // We just need the low half of the multiply; try both the signed
3149    // and unsigned forms. If the target supports both SMUL_LOHI and
3150    // UMUL_LOHI, form a preference by checking which forms of plain
3151    // MULH it supports.
3152    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3153    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3154    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3155    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3156    unsigned OpToUse = 0;
3157    if (HasSMUL_LOHI && !HasMULHS) {
3158      OpToUse = ISD::SMUL_LOHI;
3159    } else if (HasUMUL_LOHI && !HasMULHU) {
3160      OpToUse = ISD::UMUL_LOHI;
3161    } else if (HasSMUL_LOHI) {
3162      OpToUse = ISD::SMUL_LOHI;
3163    } else if (HasUMUL_LOHI) {
3164      OpToUse = ISD::UMUL_LOHI;
3165    }
3166    if (OpToUse) {
3167      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3168                                    Node->getOperand(1)));
3169      break;
3170    }
3171    Tmp1 = ExpandIntLibCall(Node, false,
3172                            RTLIB::MUL_I8,
3173                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3174                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3175    Results.push_back(Tmp1);
3176    break;
3177  }
3178  case ISD::SADDO:
3179  case ISD::SSUBO: {
3180    SDValue LHS = Node->getOperand(0);
3181    SDValue RHS = Node->getOperand(1);
3182    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3183                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3184                              LHS, RHS);
3185    Results.push_back(Sum);
3186    EVT OType = Node->getValueType(1);
3187
3188    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3189
3190    //   LHSSign -> LHS >= 0
3191    //   RHSSign -> RHS >= 0
3192    //   SumSign -> Sum >= 0
3193    //
3194    //   Add:
3195    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3196    //   Sub:
3197    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3198    //
3199    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3200    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3201    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3202                                      Node->getOpcode() == ISD::SADDO ?
3203                                      ISD::SETEQ : ISD::SETNE);
3204
3205    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3206    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3207
3208    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3209    Results.push_back(Cmp);
3210    break;
3211  }
3212  case ISD::UADDO:
3213  case ISD::USUBO: {
3214    SDValue LHS = Node->getOperand(0);
3215    SDValue RHS = Node->getOperand(1);
3216    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3217                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3218                              LHS, RHS);
3219    Results.push_back(Sum);
3220    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3221                                   Node->getOpcode () == ISD::UADDO ?
3222                                   ISD::SETULT : ISD::SETUGT));
3223    break;
3224  }
3225  case ISD::UMULO:
3226  case ISD::SMULO: {
3227    EVT VT = Node->getValueType(0);
3228    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3229    SDValue LHS = Node->getOperand(0);
3230    SDValue RHS = Node->getOperand(1);
3231    SDValue BottomHalf;
3232    SDValue TopHalf;
3233    static const unsigned Ops[2][3] =
3234        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3235          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3236    bool isSigned = Node->getOpcode() == ISD::SMULO;
3237    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3238      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3239      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3240    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3241      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3242                               RHS);
3243      TopHalf = BottomHalf.getValue(1);
3244    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3245                                                 VT.getSizeInBits() * 2))) {
3246      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3247      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3248      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3249      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3250                               DAG.getIntPtrConstant(0));
3251      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3252                            DAG.getIntPtrConstant(1));
3253    } else {
3254      // We can fall back to a libcall with an illegal type for the MUL if we
3255      // have a libcall big enough.
3256      // Also, we can fall back to a division in some cases, but that's a big
3257      // performance hit in the general case.
3258      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3259      if (WideVT == MVT::i16)
3260        LC = RTLIB::MUL_I16;
3261      else if (WideVT == MVT::i32)
3262        LC = RTLIB::MUL_I32;
3263      else if (WideVT == MVT::i64)
3264        LC = RTLIB::MUL_I64;
3265      else if (WideVT == MVT::i128)
3266        LC = RTLIB::MUL_I128;
3267      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3268
3269      // The high part is obtained by SRA'ing all but one of the bits of low
3270      // part.
3271      unsigned LoSize = VT.getSizeInBits();
3272      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3273                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3274      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3275                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3276
3277      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3278      // pre-lowered to the correct types. This all depends upon WideVT not
3279      // being a legal type for the architecture and thus has to be split to
3280      // two arguments.
3281      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3282      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3283      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3284                               DAG.getIntPtrConstant(0));
3285      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3286                            DAG.getIntPtrConstant(1));
3287      // Ret is a node with an illegal type. Because such things are not
3288      // generally permitted during this phase of legalization, delete the
3289      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3290      DAG.DeleteNode(Ret.getNode());
3291    }
3292
3293    if (isSigned) {
3294      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3295                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3296      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3297      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3298                             ISD::SETNE);
3299    } else {
3300      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3301                             DAG.getConstant(0, VT), ISD::SETNE);
3302    }
3303    Results.push_back(BottomHalf);
3304    Results.push_back(TopHalf);
3305    break;
3306  }
3307  case ISD::BUILD_PAIR: {
3308    EVT PairTy = Node->getValueType(0);
3309    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3310    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3311    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3312                       DAG.getConstant(PairTy.getSizeInBits()/2,
3313                                       TLI.getShiftAmountTy(PairTy)));
3314    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3315    break;
3316  }
3317  case ISD::SELECT:
3318    Tmp1 = Node->getOperand(0);
3319    Tmp2 = Node->getOperand(1);
3320    Tmp3 = Node->getOperand(2);
3321    if (Tmp1.getOpcode() == ISD::SETCC) {
3322      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3323                             Tmp2, Tmp3,
3324                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3325    } else {
3326      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3327                             DAG.getConstant(0, Tmp1.getValueType()),
3328                             Tmp2, Tmp3, ISD::SETNE);
3329    }
3330    Results.push_back(Tmp1);
3331    break;
3332  case ISD::BR_JT: {
3333    SDValue Chain = Node->getOperand(0);
3334    SDValue Table = Node->getOperand(1);
3335    SDValue Index = Node->getOperand(2);
3336
3337    EVT PTy = TLI.getPointerTy();
3338
3339    const TargetData &TD = *TLI.getTargetData();
3340    unsigned EntrySize =
3341      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3342
3343    Index = DAG.getNode(ISD::MUL, dl, PTy,
3344                        Index, DAG.getConstant(EntrySize, PTy));
3345    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3346
3347    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3348    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3349                                MachinePointerInfo::getJumpTable(), MemVT,
3350                                false, false, 0);
3351    Addr = LD;
3352    if (TM.getRelocationModel() == Reloc::PIC_) {
3353      // For PIC, the sequence is:
3354      // BRIND(load(Jumptable + index) + RelocBase)
3355      // RelocBase can be JumpTable, GOT or some sort of global base.
3356      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3357                          TLI.getPICJumpTableRelocBase(Table, DAG));
3358    }
3359    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3360    Results.push_back(Tmp1);
3361    break;
3362  }
3363  case ISD::BRCOND:
3364    // Expand brcond's setcc into its constituent parts and create a BR_CC
3365    // Node.
3366    Tmp1 = Node->getOperand(0);
3367    Tmp2 = Node->getOperand(1);
3368    if (Tmp2.getOpcode() == ISD::SETCC) {
3369      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3370                         Tmp1, Tmp2.getOperand(2),
3371                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3372                         Node->getOperand(2));
3373    } else {
3374      // We test only the i1 bit.  Skip the AND if UNDEF.
3375      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3376        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3377                    DAG.getConstant(1, Tmp2.getValueType()));
3378      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3379                         DAG.getCondCode(ISD::SETNE), Tmp3,
3380                         DAG.getConstant(0, Tmp3.getValueType()),
3381                         Node->getOperand(2));
3382    }
3383    Results.push_back(Tmp1);
3384    break;
3385  case ISD::SETCC: {
3386    Tmp1 = Node->getOperand(0);
3387    Tmp2 = Node->getOperand(1);
3388    Tmp3 = Node->getOperand(2);
3389    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3390
3391    // If we expanded the SETCC into an AND/OR, return the new node
3392    if (Tmp2.getNode() == 0) {
3393      Results.push_back(Tmp1);
3394      break;
3395    }
3396
3397    // Otherwise, SETCC for the given comparison type must be completely
3398    // illegal; expand it into a SELECT_CC.
3399    EVT VT = Node->getValueType(0);
3400    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3401                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3402    Results.push_back(Tmp1);
3403    break;
3404  }
3405  case ISD::SELECT_CC: {
3406    Tmp1 = Node->getOperand(0);   // LHS
3407    Tmp2 = Node->getOperand(1);   // RHS
3408    Tmp3 = Node->getOperand(2);   // True
3409    Tmp4 = Node->getOperand(3);   // False
3410    SDValue CC = Node->getOperand(4);
3411
3412    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3413                          Tmp1, Tmp2, CC, dl);
3414
3415    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3416    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3417    CC = DAG.getCondCode(ISD::SETNE);
3418    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3419                       Tmp3, Tmp4, CC);
3420    Results.push_back(Tmp1);
3421    break;
3422  }
3423  case ISD::BR_CC: {
3424    Tmp1 = Node->getOperand(0);              // Chain
3425    Tmp2 = Node->getOperand(2);              // LHS
3426    Tmp3 = Node->getOperand(3);              // RHS
3427    Tmp4 = Node->getOperand(1);              // CC
3428
3429    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3430                          Tmp2, Tmp3, Tmp4, dl);
3431
3432    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3433    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3434    Tmp4 = DAG.getCondCode(ISD::SETNE);
3435    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3436                       Tmp3, Node->getOperand(4));
3437    Results.push_back(Tmp1);
3438    break;
3439  }
3440  case ISD::BUILD_VECTOR:
3441    Results.push_back(ExpandBUILD_VECTOR(Node));
3442    break;
3443  case ISD::SRA:
3444  case ISD::SRL:
3445  case ISD::SHL: {
3446    // Scalarize vector SRA/SRL/SHL.
3447    EVT VT = Node->getValueType(0);
3448    assert(VT.isVector() && "Unable to legalize non-vector shift");
3449    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3450    unsigned NumElem = VT.getVectorNumElements();
3451
3452    SmallVector<SDValue, 8> Scalars;
3453    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3454      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3455                               VT.getScalarType(),
3456                               Node->getOperand(0), DAG.getIntPtrConstant(Idx));
3457      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3458                               VT.getScalarType(),
3459                               Node->getOperand(1), DAG.getIntPtrConstant(Idx));
3460      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3461                                    VT.getScalarType(), Ex, Sh));
3462    }
3463    SDValue Result =
3464      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3465                  &Scalars[0], Scalars.size());
3466    ReplaceNode(SDValue(Node, 0), Result);
3467    break;
3468  }
3469  case ISD::GLOBAL_OFFSET_TABLE:
3470  case ISD::GlobalAddress:
3471  case ISD::GlobalTLSAddress:
3472  case ISD::ExternalSymbol:
3473  case ISD::ConstantPool:
3474  case ISD::JumpTable:
3475  case ISD::INTRINSIC_W_CHAIN:
3476  case ISD::INTRINSIC_WO_CHAIN:
3477  case ISD::INTRINSIC_VOID:
3478    // FIXME: Custom lowering for these operations shouldn't return null!
3479    break;
3480  }
3481
3482  // Replace the original node with the legalized result.
3483  if (!Results.empty())
3484    ReplaceNode(Node, Results.data());
3485}
3486
3487void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3488  SmallVector<SDValue, 8> Results;
3489  EVT OVT = Node->getValueType(0);
3490  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3491      Node->getOpcode() == ISD::SINT_TO_FP ||
3492      Node->getOpcode() == ISD::SETCC) {
3493    OVT = Node->getOperand(0).getValueType();
3494  }
3495  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3496  DebugLoc dl = Node->getDebugLoc();
3497  SDValue Tmp1, Tmp2, Tmp3;
3498  switch (Node->getOpcode()) {
3499  case ISD::CTTZ:
3500  case ISD::CTTZ_ZERO_UNDEF:
3501  case ISD::CTLZ:
3502  case ISD::CTLZ_ZERO_UNDEF:
3503  case ISD::CTPOP:
3504    // Zero extend the argument.
3505    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3506    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3507    // already the correct result.
3508    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3509    if (Node->getOpcode() == ISD::CTTZ) {
3510      // FIXME: This should set a bit in the zero extended value instead.
3511      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3512                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3513                          ISD::SETEQ);
3514      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3515                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3516    } else if (Node->getOpcode() == ISD::CTLZ ||
3517               Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
3518      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3519      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3520                          DAG.getConstant(NVT.getSizeInBits() -
3521                                          OVT.getSizeInBits(), NVT));
3522    }
3523    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3524    break;
3525  case ISD::BSWAP: {
3526    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3527    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3528    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3529    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3530                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3531    Results.push_back(Tmp1);
3532    break;
3533  }
3534  case ISD::FP_TO_UINT:
3535  case ISD::FP_TO_SINT:
3536    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3537                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3538    Results.push_back(Tmp1);
3539    break;
3540  case ISD::UINT_TO_FP:
3541  case ISD::SINT_TO_FP:
3542    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3543                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3544    Results.push_back(Tmp1);
3545    break;
3546  case ISD::VAARG: {
3547    SDValue Chain = Node->getOperand(0); // Get the chain.
3548    SDValue Ptr = Node->getOperand(1); // Get the pointer.
3549
3550    unsigned TruncOp;
3551    if (OVT.isVector()) {
3552      TruncOp = ISD::BITCAST;
3553    } else {
3554      assert(OVT.isInteger()
3555        && "VAARG promotion is supported only for vectors or integer types");
3556      TruncOp = ISD::TRUNCATE;
3557    }
3558
3559    // Perform the larger operation, then convert back
3560    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
3561             Node->getConstantOperandVal(3));
3562    Chain = Tmp1.getValue(1);
3563
3564    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
3565
3566    // Modified the chain result - switch anything that used the old chain to
3567    // use the new one.
3568    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
3569    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
3570    ReplacedNode(Node);
3571    break;
3572  }
3573  case ISD::AND:
3574  case ISD::OR:
3575  case ISD::XOR: {
3576    unsigned ExtOp, TruncOp;
3577    if (OVT.isVector()) {
3578      ExtOp   = ISD::BITCAST;
3579      TruncOp = ISD::BITCAST;
3580    } else {
3581      assert(OVT.isInteger() && "Cannot promote logic operation");
3582      ExtOp   = ISD::ANY_EXTEND;
3583      TruncOp = ISD::TRUNCATE;
3584    }
3585    // Promote each of the values to the new type.
3586    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3587    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3588    // Perform the larger operation, then convert back
3589    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3590    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3591    break;
3592  }
3593  case ISD::SELECT: {
3594    unsigned ExtOp, TruncOp;
3595    if (Node->getValueType(0).isVector()) {
3596      ExtOp   = ISD::BITCAST;
3597      TruncOp = ISD::BITCAST;
3598    } else if (Node->getValueType(0).isInteger()) {
3599      ExtOp   = ISD::ANY_EXTEND;
3600      TruncOp = ISD::TRUNCATE;
3601    } else {
3602      ExtOp   = ISD::FP_EXTEND;
3603      TruncOp = ISD::FP_ROUND;
3604    }
3605    Tmp1 = Node->getOperand(0);
3606    // Promote each of the values to the new type.
3607    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3608    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3609    // Perform the larger operation, then round down.
3610    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3611    if (TruncOp != ISD::FP_ROUND)
3612      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3613    else
3614      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3615                         DAG.getIntPtrConstant(0));
3616    Results.push_back(Tmp1);
3617    break;
3618  }
3619  case ISD::VECTOR_SHUFFLE: {
3620    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3621
3622    // Cast the two input vectors.
3623    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3624    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3625
3626    // Convert the shuffle mask to the right # elements.
3627    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3628    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3629    Results.push_back(Tmp1);
3630    break;
3631  }
3632  case ISD::SETCC: {
3633    unsigned ExtOp = ISD::FP_EXTEND;
3634    if (NVT.isInteger()) {
3635      ISD::CondCode CCCode =
3636        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3637      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3638    }
3639    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3640    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3641    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3642                                  Tmp1, Tmp2, Node->getOperand(2)));
3643    break;
3644  }
3645  case ISD::FDIV:
3646  case ISD::FREM:
3647  case ISD::FPOW: {
3648    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3649    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
3650    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3651    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3652                                  Tmp3, DAG.getIntPtrConstant(0)));
3653    break;
3654  }
3655  case ISD::FLOG2:
3656  case ISD::FEXP2:
3657  case ISD::FLOG:
3658  case ISD::FEXP: {
3659    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3660    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3661    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3662                                  Tmp2, DAG.getIntPtrConstant(0)));
3663    break;
3664  }
3665  }
3666
3667  // Replace the original node with the legalized result.
3668  if (!Results.empty())
3669    ReplaceNode(Node, Results.data());
3670}
3671
3672// SelectionDAG::Legalize - This is the entry point for the file.
3673//
3674void SelectionDAG::Legalize() {
3675  /// run - This is the main entry point to this class.
3676  ///
3677  SelectionDAGLegalize(*this).LegalizeDAG();
3678}
3679