LegalizeDAG.cpp revision 5666e684f4a22393526786ce6cd8c354b0a30ced
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include <map>
42using namespace llvm;
43
44//===----------------------------------------------------------------------===//
45/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
46/// hacks on it until the target machine can handle it.  This involves
47/// eliminating value sizes the machine cannot handle (promoting small sizes to
48/// large sizes or splitting up large values into small values) as well as
49/// eliminating operations the machine cannot handle.
50///
51/// This code also does a small amount of optimization and recognition of idioms
52/// as part of its processing.  For example, if a target does not support a
53/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
54/// will attempt merge setcc and brc instructions into brcc's.
55///
56namespace {
57class VISIBILITY_HIDDEN SelectionDAGLegalize {
58  TargetLowering &TLI;
59  SelectionDAG &DAG;
60  CodeGenOpt::Level OptLevel;
61
62  // Libcall insertion helpers.
63
64  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65  /// legalized.  We use this to ensure that calls are properly serialized
66  /// against each other, including inserted libcalls.
67  SDValue LastCALLSEQ_END;
68
69  /// IsLegalizingCall - This member is used *only* for purposes of providing
70  /// helpful assertions that a libcall isn't created while another call is
71  /// being legalized (which could lead to non-serialized call sequences).
72  bool IsLegalizingCall;
73
74  enum LegalizeAction {
75    Legal,      // The target natively supports this operation.
76    Promote,    // This operation should be executed in a larger type.
77    Expand      // Try to expand this to other ops, otherwise use a libcall.
78  };
79
80  /// ValueTypeActions - This is a bitvector that contains two bits for each
81  /// value type, where the two bits correspond to the LegalizeAction enum.
82  /// This can be queried with "getTypeAction(VT)".
83  TargetLowering::ValueTypeActionImpl ValueTypeActions;
84
85  /// LegalizedNodes - For nodes that are of legal width, and that have more
86  /// than one use, this map indicates what regularized operand to use.  This
87  /// allows us to avoid legalizing the same thing more than once.
88  DenseMap<SDValue, SDValue> LegalizedNodes;
89
90  void AddLegalizedOperand(SDValue From, SDValue To) {
91    LegalizedNodes.insert(std::make_pair(From, To));
92    // If someone requests legalization of the new node, return itself.
93    if (From != To)
94      LegalizedNodes.insert(std::make_pair(To, To));
95  }
96
97public:
98  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
99
100  /// getTypeAction - Return how we should legalize values of this type, either
101  /// it is already legal or we need to expand it into multiple registers of
102  /// smaller integer type, or we need to promote it to a larger type.
103  LegalizeAction getTypeAction(MVT VT) const {
104    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
105  }
106
107  /// isTypeLegal - Return true if this type is legal on this target.
108  ///
109  bool isTypeLegal(MVT VT) const {
110    return getTypeAction(VT) == Legal;
111  }
112
113  void LegalizeDAG();
114
115private:
116  /// LegalizeOp - We know that the specified value has a legal type.
117  /// Recursively ensure that the operands have legal types, then return the
118  /// result.
119  SDValue LegalizeOp(SDValue O);
120
121  SDValue OptimizeFloatStore(StoreSDNode *ST);
122
123  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
124  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
125  /// is necessary to spill the vector being inserted into to memory, perform
126  /// the insert there, and then read the result back.
127  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
128                                         SDValue Idx, DebugLoc dl);
129  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
130                                  SDValue Idx, DebugLoc dl);
131
132  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
133  /// performs the same shuffe in terms of order or result bytes, but on a type
134  /// whose vector element type is narrower than the original shuffle type.
135  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
136  SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
137                                     SDValue N1, SDValue N2,
138                                     SmallVectorImpl<int> &Mask) const;
139
140  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
141                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
142
143  void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
144                             DebugLoc dl);
145
146  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
147  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
148                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
149                          RTLIB::Libcall Call_PPCF128);
150  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
151                           RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
152                           RTLIB::Libcall Call_I128);
153
154  SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
155  SDValue ExpandBUILD_VECTOR(SDNode *Node);
156  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
157  SDValue ExpandDBG_STOPPOINT(SDNode *Node);
158  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
159                                SmallVectorImpl<SDValue> &Results);
160  SDValue ExpandFCOPYSIGN(SDNode *Node);
161  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
162                               DebugLoc dl);
163  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
164                                DebugLoc dl);
165  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
166                                DebugLoc dl);
167
168  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
169  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
170
171  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
172  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
173
174  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
175  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
176};
177}
178
179/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
180/// performs the same shuffe in terms of order or result bytes, but on a type
181/// whose vector element type is narrower than the original shuffle type.
182/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
183SDValue
184SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT,  DebugLoc dl,
185                                                 SDValue N1, SDValue N2,
186                                             SmallVectorImpl<int> &Mask) const {
187  MVT EltVT = NVT.getVectorElementType();
188  unsigned NumMaskElts = VT.getVectorNumElements();
189  unsigned NumDestElts = NVT.getVectorNumElements();
190  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
191
192  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
193
194  if (NumEltsGrowth == 1)
195    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
196
197  SmallVector<int, 8> NewMask;
198  for (unsigned i = 0; i != NumMaskElts; ++i) {
199    int Idx = Mask[i];
200    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
201      if (Idx < 0)
202        NewMask.push_back(-1);
203      else
204        NewMask.push_back(Idx * NumEltsGrowth + j);
205    }
206  }
207  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
208  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
209  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
210}
211
212SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
213                                           CodeGenOpt::Level ol)
214  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
215    ValueTypeActions(TLI.getValueTypeActions()) {
216  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
217         "Too many value types for ValueTypeActions to hold!");
218}
219
220void SelectionDAGLegalize::LegalizeDAG() {
221  LastCALLSEQ_END = DAG.getEntryNode();
222  IsLegalizingCall = false;
223
224  // The legalize process is inherently a bottom-up recursive process (users
225  // legalize their uses before themselves).  Given infinite stack space, we
226  // could just start legalizing on the root and traverse the whole graph.  In
227  // practice however, this causes us to run out of stack space on large basic
228  // blocks.  To avoid this problem, compute an ordering of the nodes where each
229  // node is only legalized after all of its operands are legalized.
230  DAG.AssignTopologicalOrder();
231  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
232       E = prior(DAG.allnodes_end()); I != next(E); ++I)
233    LegalizeOp(SDValue(I, 0));
234
235  // Finally, it's possible the root changed.  Get the new root.
236  SDValue OldRoot = DAG.getRoot();
237  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
238  DAG.setRoot(LegalizedNodes[OldRoot]);
239
240  LegalizedNodes.clear();
241
242  // Remove dead nodes now.
243  DAG.RemoveDeadNodes();
244}
245
246
247/// FindCallEndFromCallStart - Given a chained node that is part of a call
248/// sequence, find the CALLSEQ_END node that terminates the call sequence.
249static SDNode *FindCallEndFromCallStart(SDNode *Node) {
250  if (Node->getOpcode() == ISD::CALLSEQ_END)
251    return Node;
252  if (Node->use_empty())
253    return 0;   // No CallSeqEnd
254
255  // The chain is usually at the end.
256  SDValue TheChain(Node, Node->getNumValues()-1);
257  if (TheChain.getValueType() != MVT::Other) {
258    // Sometimes it's at the beginning.
259    TheChain = SDValue(Node, 0);
260    if (TheChain.getValueType() != MVT::Other) {
261      // Otherwise, hunt for it.
262      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
263        if (Node->getValueType(i) == MVT::Other) {
264          TheChain = SDValue(Node, i);
265          break;
266        }
267
268      // Otherwise, we walked into a node without a chain.
269      if (TheChain.getValueType() != MVT::Other)
270        return 0;
271    }
272  }
273
274  for (SDNode::use_iterator UI = Node->use_begin(),
275       E = Node->use_end(); UI != E; ++UI) {
276
277    // Make sure to only follow users of our token chain.
278    SDNode *User = *UI;
279    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
280      if (User->getOperand(i) == TheChain)
281        if (SDNode *Result = FindCallEndFromCallStart(User))
282          return Result;
283  }
284  return 0;
285}
286
287/// FindCallStartFromCallEnd - Given a chained node that is part of a call
288/// sequence, find the CALLSEQ_START node that initiates the call sequence.
289static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
290  assert(Node && "Didn't find callseq_start for a call??");
291  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
292
293  assert(Node->getOperand(0).getValueType() == MVT::Other &&
294         "Node doesn't have a token chain argument!");
295  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
296}
297
298/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
299/// see if any uses can reach Dest.  If no dest operands can get to dest,
300/// legalize them, legalize ourself, and return false, otherwise, return true.
301///
302/// Keep track of the nodes we fine that actually do lead to Dest in
303/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
304///
305bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
306                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
307  if (N == Dest) return true;  // N certainly leads to Dest :)
308
309  // If we've already processed this node and it does lead to Dest, there is no
310  // need to reprocess it.
311  if (NodesLeadingTo.count(N)) return true;
312
313  // If the first result of this node has been already legalized, then it cannot
314  // reach N.
315  if (LegalizedNodes.count(SDValue(N, 0))) return false;
316
317  // Okay, this node has not already been legalized.  Check and legalize all
318  // operands.  If none lead to Dest, then we can legalize this node.
319  bool OperandsLeadToDest = false;
320  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
321    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
322      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
323
324  if (OperandsLeadToDest) {
325    NodesLeadingTo.insert(N);
326    return true;
327  }
328
329  // Okay, this node looks safe, legalize it and return false.
330  LegalizeOp(SDValue(N, 0));
331  return false;
332}
333
334/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
335/// a load from the constant pool.
336static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
337                                SelectionDAG &DAG, const TargetLowering &TLI) {
338  bool Extend = false;
339  DebugLoc dl = CFP->getDebugLoc();
340
341  // If a FP immediate is precise when represented as a float and if the
342  // target can do an extending load from float to double, we put it into
343  // the constant pool as a float, even if it's is statically typed as a
344  // double.  This shrinks FP constants and canonicalizes them for targets where
345  // an FP extending load is the same cost as a normal load (such as on the x87
346  // fp stack or PPC FP unit).
347  MVT VT = CFP->getValueType(0);
348  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
349  if (!UseCP) {
350    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
351    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
352                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
353  }
354
355  MVT OrigVT = VT;
356  MVT SVT = VT;
357  while (SVT != MVT::f32) {
358    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
359    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
360        // Only do this if the target has a native EXTLOAD instruction from
361        // smaller type.
362        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
363        TLI.ShouldShrinkFPConstant(OrigVT)) {
364      const Type *SType = SVT.getTypeForMVT(*DAG.getContext());
365      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
366      VT = SVT;
367      Extend = true;
368    }
369  }
370
371  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
372  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
373  if (Extend)
374    return DAG.getExtLoad(ISD::EXTLOAD, dl,
375                          OrigVT, DAG.getEntryNode(),
376                          CPIdx, PseudoSourceValue::getConstantPool(),
377                          0, VT, false, Alignment);
378  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
379                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
380}
381
382/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
383static
384SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
385                             const TargetLowering &TLI) {
386  SDValue Chain = ST->getChain();
387  SDValue Ptr = ST->getBasePtr();
388  SDValue Val = ST->getValue();
389  MVT VT = Val.getValueType();
390  int Alignment = ST->getAlignment();
391  int SVOffset = ST->getSrcValueOffset();
392  DebugLoc dl = ST->getDebugLoc();
393  if (ST->getMemoryVT().isFloatingPoint() ||
394      ST->getMemoryVT().isVector()) {
395    MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
396    if (TLI.isTypeLegal(intVT)) {
397      // Expand to a bitconvert of the value to the integer type of the
398      // same size, then a (misaligned) int store.
399      // FIXME: Does not handle truncating floating point stores!
400      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
401      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
402                          SVOffset, ST->isVolatile(), Alignment);
403    } else {
404      // Do a (aligned) store to a stack slot, then copy from the stack slot
405      // to the final destination using (unaligned) integer loads and stores.
406      MVT StoredVT = ST->getMemoryVT();
407      MVT RegVT =
408        TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
409      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
410      unsigned RegBytes = RegVT.getSizeInBits() / 8;
411      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
412
413      // Make sure the stack slot is also aligned for the register type.
414      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
415
416      // Perform the original store, only redirected to the stack slot.
417      SDValue Store = DAG.getTruncStore(Chain, dl,
418                                        Val, StackPtr, NULL, 0, StoredVT);
419      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
420      SmallVector<SDValue, 8> Stores;
421      unsigned Offset = 0;
422
423      // Do all but one copies using the full register width.
424      for (unsigned i = 1; i < NumRegs; i++) {
425        // Load one integer register's worth from the stack slot.
426        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
427        // Store it to the final location.  Remember the store.
428        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
429                                      ST->getSrcValue(), SVOffset + Offset,
430                                      ST->isVolatile(),
431                                      MinAlign(ST->getAlignment(), Offset)));
432        // Increment the pointers.
433        Offset += RegBytes;
434        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
435                               Increment);
436        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
437      }
438
439      // The last store may be partial.  Do a truncating store.  On big-endian
440      // machines this requires an extending load from the stack slot to ensure
441      // that the bits are in the right place.
442      MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
443
444      // Load from the stack slot.
445      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
446                                    NULL, 0, MemVT);
447
448      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
449                                         ST->getSrcValue(), SVOffset + Offset,
450                                         MemVT, ST->isVolatile(),
451                                         MinAlign(ST->getAlignment(), Offset)));
452      // The order of the stores doesn't matter - say it with a TokenFactor.
453      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
454                         Stores.size());
455    }
456  }
457  assert(ST->getMemoryVT().isInteger() &&
458         !ST->getMemoryVT().isVector() &&
459         "Unaligned store of unknown type.");
460  // Get the half-size VT
461  MVT NewStoredVT =
462    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
463  int NumBits = NewStoredVT.getSizeInBits();
464  int IncrementSize = NumBits / 8;
465
466  // Divide the stored value in two parts.
467  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
468  SDValue Lo = Val;
469  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
470
471  // Store the two parts
472  SDValue Store1, Store2;
473  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
474                             ST->getSrcValue(), SVOffset, NewStoredVT,
475                             ST->isVolatile(), Alignment);
476  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
477                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
478  Alignment = MinAlign(Alignment, IncrementSize);
479  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
480                             ST->getSrcValue(), SVOffset + IncrementSize,
481                             NewStoredVT, ST->isVolatile(), Alignment);
482
483  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
484}
485
486/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
487static
488SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
489                            const TargetLowering &TLI) {
490  int SVOffset = LD->getSrcValueOffset();
491  SDValue Chain = LD->getChain();
492  SDValue Ptr = LD->getBasePtr();
493  MVT VT = LD->getValueType(0);
494  MVT LoadedVT = LD->getMemoryVT();
495  DebugLoc dl = LD->getDebugLoc();
496  if (VT.isFloatingPoint() || VT.isVector()) {
497    MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
498    if (TLI.isTypeLegal(intVT)) {
499      // Expand to a (misaligned) integer load of the same size,
500      // then bitconvert to floating point or vector.
501      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
502                                    SVOffset, LD->isVolatile(),
503                                    LD->getAlignment());
504      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
505      if (VT.isFloatingPoint() && LoadedVT != VT)
506        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
507
508      SDValue Ops[] = { Result, Chain };
509      return DAG.getMergeValues(Ops, 2, dl);
510    } else {
511      // Copy the value to a (aligned) stack slot using (unaligned) integer
512      // loads and stores, then do a (aligned) load from the stack slot.
513      MVT RegVT = TLI.getRegisterType(intVT);
514      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
515      unsigned RegBytes = RegVT.getSizeInBits() / 8;
516      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
517
518      // Make sure the stack slot is also aligned for the register type.
519      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
520
521      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
522      SmallVector<SDValue, 8> Stores;
523      SDValue StackPtr = StackBase;
524      unsigned Offset = 0;
525
526      // Do all but one copies using the full register width.
527      for (unsigned i = 1; i < NumRegs; i++) {
528        // Load one integer register's worth from the original location.
529        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
530                                   SVOffset + Offset, LD->isVolatile(),
531                                   MinAlign(LD->getAlignment(), Offset));
532        // Follow the load with a store to the stack slot.  Remember the store.
533        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
534                                      NULL, 0));
535        // Increment the pointers.
536        Offset += RegBytes;
537        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
538        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
539                               Increment);
540      }
541
542      // The last copy may be partial.  Do an extending load.
543      MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
544      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
545                                    LD->getSrcValue(), SVOffset + Offset,
546                                    MemVT, LD->isVolatile(),
547                                    MinAlign(LD->getAlignment(), Offset));
548      // Follow the load with a store to the stack slot.  Remember the store.
549      // On big-endian machines this requires a truncating store to ensure
550      // that the bits end up in the right place.
551      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
552                                         NULL, 0, MemVT));
553
554      // The order of the stores doesn't matter - say it with a TokenFactor.
555      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
556                               Stores.size());
557
558      // Finally, perform the original load only redirected to the stack slot.
559      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
560                            NULL, 0, LoadedVT);
561
562      // Callers expect a MERGE_VALUES node.
563      SDValue Ops[] = { Load, TF };
564      return DAG.getMergeValues(Ops, 2, dl);
565    }
566  }
567  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
568         "Unaligned load of unsupported type.");
569
570  // Compute the new VT that is half the size of the old one.  This is an
571  // integer MVT.
572  unsigned NumBits = LoadedVT.getSizeInBits();
573  MVT NewLoadedVT;
574  NewLoadedVT = MVT::getIntegerVT(NumBits/2);
575  NumBits >>= 1;
576
577  unsigned Alignment = LD->getAlignment();
578  unsigned IncrementSize = NumBits / 8;
579  ISD::LoadExtType HiExtType = LD->getExtensionType();
580
581  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
582  if (HiExtType == ISD::NON_EXTLOAD)
583    HiExtType = ISD::ZEXTLOAD;
584
585  // Load the value in two parts
586  SDValue Lo, Hi;
587  if (TLI.isLittleEndian()) {
588    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
589                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
590    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
591                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
592    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
593                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
594                        MinAlign(Alignment, IncrementSize));
595  } else {
596    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
597                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
598    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
599                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
600    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
601                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
602                        MinAlign(Alignment, IncrementSize));
603  }
604
605  // aggregate the two parts
606  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
607  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
608  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
609
610  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
611                             Hi.getValue(1));
612
613  SDValue Ops[] = { Result, TF };
614  return DAG.getMergeValues(Ops, 2, dl);
615}
616
617/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
618/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
619/// is necessary to spill the vector being inserted into to memory, perform
620/// the insert there, and then read the result back.
621SDValue SelectionDAGLegalize::
622PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
623                               DebugLoc dl) {
624  SDValue Tmp1 = Vec;
625  SDValue Tmp2 = Val;
626  SDValue Tmp3 = Idx;
627
628  // If the target doesn't support this, we have to spill the input vector
629  // to a temporary stack slot, update the element, then reload it.  This is
630  // badness.  We could also load the value into a vector register (either
631  // with a "move to register" or "extload into register" instruction, then
632  // permute it into place, if the idx is a constant and if the idx is
633  // supported by the target.
634  MVT VT    = Tmp1.getValueType();
635  MVT EltVT = VT.getVectorElementType();
636  MVT IdxVT = Tmp3.getValueType();
637  MVT PtrVT = TLI.getPointerTy();
638  SDValue StackPtr = DAG.CreateStackTemporary(VT);
639
640  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
641
642  // Store the vector.
643  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
644                            PseudoSourceValue::getFixedStack(SPFI), 0);
645
646  // Truncate or zero extend offset to target pointer type.
647  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
648  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
649  // Add the offset to the index.
650  unsigned EltSize = EltVT.getSizeInBits()/8;
651  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
652  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
653  // Store the scalar value.
654  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
655                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
656  // Load the updated vector.
657  return DAG.getLoad(VT, dl, Ch, StackPtr,
658                     PseudoSourceValue::getFixedStack(SPFI), 0);
659}
660
661
662SDValue SelectionDAGLegalize::
663ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
664  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
665    // SCALAR_TO_VECTOR requires that the type of the value being inserted
666    // match the element type of the vector being created, except for
667    // integers in which case the inserted value can be over width.
668    MVT EltVT = Vec.getValueType().getVectorElementType();
669    if (Val.getValueType() == EltVT ||
670        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
671      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
672                                  Vec.getValueType(), Val);
673
674      unsigned NumElts = Vec.getValueType().getVectorNumElements();
675      // We generate a shuffle of InVec and ScVec, so the shuffle mask
676      // should be 0,1,2,3,4,5... with the appropriate element replaced with
677      // elt 0 of the RHS.
678      SmallVector<int, 8> ShufOps;
679      for (unsigned i = 0; i != NumElts; ++i)
680        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
681
682      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
683                                  &ShufOps[0]);
684    }
685  }
686  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
687}
688
689SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
690  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
691  // FIXME: We shouldn't do this for TargetConstantFP's.
692  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
693  // to phase ordering between legalized code and the dag combiner.  This
694  // probably means that we need to integrate dag combiner and legalizer
695  // together.
696  // We generally can't do this one for long doubles.
697  SDValue Tmp1 = ST->getChain();
698  SDValue Tmp2 = ST->getBasePtr();
699  SDValue Tmp3;
700  int SVOffset = ST->getSrcValueOffset();
701  unsigned Alignment = ST->getAlignment();
702  bool isVolatile = ST->isVolatile();
703  DebugLoc dl = ST->getDebugLoc();
704  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
705    if (CFP->getValueType(0) == MVT::f32 &&
706        getTypeAction(MVT::i32) == Legal) {
707      Tmp3 = DAG.getConstant(CFP->getValueAPF().
708                                      bitcastToAPInt().zextOrTrunc(32),
709                              MVT::i32);
710      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
711                          SVOffset, isVolatile, Alignment);
712    } else if (CFP->getValueType(0) == MVT::f64) {
713      // If this target supports 64-bit registers, do a single 64-bit store.
714      if (getTypeAction(MVT::i64) == Legal) {
715        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
716                                  zextOrTrunc(64), MVT::i64);
717        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
718                            SVOffset, isVolatile, Alignment);
719      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
720        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
721        // stores.  If the target supports neither 32- nor 64-bits, this
722        // xform is certainly not worth it.
723        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
724        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
725        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
726        if (TLI.isBigEndian()) std::swap(Lo, Hi);
727
728        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
729                          SVOffset, isVolatile, Alignment);
730        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
731                            DAG.getIntPtrConstant(4));
732        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
733                          isVolatile, MinAlign(Alignment, 4U));
734
735        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
736      }
737    }
738  }
739  return SDValue();
740}
741
742/// LegalizeOp - We know that the specified value has a legal type, and
743/// that its operands are legal.  Now ensure that the operation itself
744/// is legal, recursively ensuring that the operands' operations remain
745/// legal.
746SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
747  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
748    return Op;
749
750  SDNode *Node = Op.getNode();
751  DebugLoc dl = Node->getDebugLoc();
752
753  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
754    assert(getTypeAction(Node->getValueType(i)) == Legal &&
755           "Unexpected illegal type!");
756
757  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
758    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
759            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
760           "Unexpected illegal type!");
761
762  // Note that LegalizeOp may be reentered even from single-use nodes, which
763  // means that we always must cache transformed nodes.
764  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
765  if (I != LegalizedNodes.end()) return I->second;
766
767  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
768  SDValue Result = Op;
769  bool isCustom = false;
770
771  // Figure out the correct action; the way to query this varies by opcode
772  TargetLowering::LegalizeAction Action;
773  bool SimpleFinishLegalizing = true;
774  switch (Node->getOpcode()) {
775  case ISD::INTRINSIC_W_CHAIN:
776  case ISD::INTRINSIC_WO_CHAIN:
777  case ISD::INTRINSIC_VOID:
778  case ISD::VAARG:
779  case ISD::STACKSAVE:
780    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
781    break;
782  case ISD::SINT_TO_FP:
783  case ISD::UINT_TO_FP:
784  case ISD::EXTRACT_VECTOR_ELT:
785    Action = TLI.getOperationAction(Node->getOpcode(),
786                                    Node->getOperand(0).getValueType());
787    break;
788  case ISD::FP_ROUND_INREG:
789  case ISD::SIGN_EXTEND_INREG: {
790    MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
791    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
792    break;
793  }
794  case ISD::SELECT_CC:
795  case ISD::SETCC:
796  case ISD::BR_CC: {
797    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
798                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
799    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
800    MVT OpVT = Node->getOperand(CompareOperand).getValueType();
801    ISD::CondCode CCCode =
802        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
803    Action = TLI.getCondCodeAction(CCCode, OpVT);
804    if (Action == TargetLowering::Legal) {
805      if (Node->getOpcode() == ISD::SELECT_CC)
806        Action = TLI.getOperationAction(Node->getOpcode(),
807                                        Node->getValueType(0));
808      else
809        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
810    }
811    break;
812  }
813  case ISD::LOAD:
814  case ISD::STORE:
815    // FIXME: Model these properly.  LOAD and STORE are complicated, and
816    // STORE expects the unlegalized operand in some cases.
817    SimpleFinishLegalizing = false;
818    break;
819  case ISD::CALLSEQ_START:
820  case ISD::CALLSEQ_END:
821    // FIXME: This shouldn't be necessary.  These nodes have special properties
822    // dealing with the recursive nature of legalization.  Removing this
823    // special case should be done as part of making LegalizeDAG non-recursive.
824    SimpleFinishLegalizing = false;
825    break;
826  case ISD::CALL:
827    // FIXME: Legalization for calls requires custom-lowering the call before
828    // legalizing the operands!  (I haven't looked into precisely why.)
829    SimpleFinishLegalizing = false;
830    break;
831  case ISD::EXTRACT_ELEMENT:
832  case ISD::FLT_ROUNDS_:
833  case ISD::SADDO:
834  case ISD::SSUBO:
835  case ISD::UADDO:
836  case ISD::USUBO:
837  case ISD::SMULO:
838  case ISD::UMULO:
839  case ISD::FPOWI:
840  case ISD::MERGE_VALUES:
841  case ISD::EH_RETURN:
842  case ISD::FRAME_TO_ARGS_OFFSET:
843    // These operations lie about being legal: when they claim to be legal,
844    // they should actually be expanded.
845    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
846    if (Action == TargetLowering::Legal)
847      Action = TargetLowering::Expand;
848    break;
849  case ISD::TRAMPOLINE:
850  case ISD::FRAMEADDR:
851  case ISD::RETURNADDR:
852  case ISD::FORMAL_ARGUMENTS:
853    // These operations lie about being legal: when they claim to be legal,
854    // they should actually be custom-lowered.
855    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
856    if (Action == TargetLowering::Legal)
857      Action = TargetLowering::Custom;
858    break;
859  case ISD::BUILD_VECTOR:
860    // A weird case: legalization for BUILD_VECTOR never legalizes the
861    // operands!
862    // FIXME: This really sucks... changing it isn't semantically incorrect,
863    // but it massively pessimizes the code for floating-point BUILD_VECTORs
864    // because ConstantFP operands get legalized into constant pool loads
865    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
866    // though, because BUILD_VECTORS usually get lowered into other nodes
867    // which get legalized properly.
868    SimpleFinishLegalizing = false;
869    break;
870  default:
871    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
872      Action = TargetLowering::Legal;
873    } else {
874      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
875    }
876    break;
877  }
878
879  if (SimpleFinishLegalizing) {
880    SmallVector<SDValue, 8> Ops, ResultVals;
881    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
882      Ops.push_back(LegalizeOp(Node->getOperand(i)));
883    switch (Node->getOpcode()) {
884    default: break;
885    case ISD::BR:
886    case ISD::BRIND:
887    case ISD::BR_JT:
888    case ISD::BR_CC:
889    case ISD::BRCOND:
890    case ISD::RET:
891      // Branches tweak the chain to include LastCALLSEQ_END
892      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
893                            LastCALLSEQ_END);
894      Ops[0] = LegalizeOp(Ops[0]);
895      LastCALLSEQ_END = DAG.getEntryNode();
896      break;
897    case ISD::SHL:
898    case ISD::SRL:
899    case ISD::SRA:
900    case ISD::ROTL:
901    case ISD::ROTR:
902      // Legalizing shifts/rotates requires adjusting the shift amount
903      // to the appropriate width.
904      if (!Ops[1].getValueType().isVector())
905        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
906      break;
907    }
908
909    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
910                                    Ops.size());
911    switch (Action) {
912    case TargetLowering::Legal:
913      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
914        ResultVals.push_back(Result.getValue(i));
915      break;
916    case TargetLowering::Custom:
917      // FIXME: The handling for custom lowering with multiple results is
918      // a complete mess.
919      Tmp1 = TLI.LowerOperation(Result, DAG);
920      if (Tmp1.getNode()) {
921        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
922          if (e == 1)
923            ResultVals.push_back(Tmp1);
924          else
925            ResultVals.push_back(Tmp1.getValue(i));
926        }
927        break;
928      }
929
930      // FALL THROUGH
931    case TargetLowering::Expand:
932      ExpandNode(Result.getNode(), ResultVals);
933      break;
934    case TargetLowering::Promote:
935      PromoteNode(Result.getNode(), ResultVals);
936      break;
937    }
938    if (!ResultVals.empty()) {
939      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
940        if (ResultVals[i] != SDValue(Node, i))
941          ResultVals[i] = LegalizeOp(ResultVals[i]);
942        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
943      }
944      return ResultVals[Op.getResNo()];
945    }
946  }
947
948  switch (Node->getOpcode()) {
949  default:
950#ifndef NDEBUG
951    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
952#endif
953    llvm_unreachable("Do not know how to legalize this operator!");
954  case ISD::CALL:
955    // The only option for this is to custom lower it.
956    Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
957    assert(Tmp3.getNode() && "Target didn't custom lower this node!");
958    // A call within a calling sequence must be legalized to something
959    // other than the normal CALLSEQ_END.  Violating this gets Legalize
960    // into an infinite loop.
961    assert ((!IsLegalizingCall ||
962             Node->getOpcode() != ISD::CALL ||
963             Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
964            "Nested CALLSEQ_START..CALLSEQ_END not supported.");
965
966    // The number of incoming and outgoing values should match; unless the final
967    // outgoing value is a flag.
968    assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
969            (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
970             Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
971               MVT::Flag)) &&
972           "Lowering call/formal_arguments produced unexpected # results!");
973
974    // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
975    // remember that we legalized all of them, so it doesn't get relegalized.
976    for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
977      if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
978        continue;
979      Tmp1 = LegalizeOp(Tmp3.getValue(i));
980      if (Op.getResNo() == i)
981        Tmp2 = Tmp1;
982      AddLegalizedOperand(SDValue(Node, i), Tmp1);
983    }
984    return Tmp2;
985  case ISD::BUILD_VECTOR:
986    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
987    default: llvm_unreachable("This action is not supported yet!");
988    case TargetLowering::Custom:
989      Tmp3 = TLI.LowerOperation(Result, DAG);
990      if (Tmp3.getNode()) {
991        Result = Tmp3;
992        break;
993      }
994      // FALLTHROUGH
995    case TargetLowering::Expand:
996      Result = ExpandBUILD_VECTOR(Result.getNode());
997      break;
998    }
999    break;
1000  case ISD::CALLSEQ_START: {
1001    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1002
1003    // Recursively Legalize all of the inputs of the call end that do not lead
1004    // to this call start.  This ensures that any libcalls that need be inserted
1005    // are inserted *before* the CALLSEQ_START.
1006    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1007    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1008      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1009                                   NodesLeadingTo);
1010    }
1011
1012    // Now that we legalized all of the inputs (which may have inserted
1013    // libcalls) create the new CALLSEQ_START node.
1014    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1015
1016    // Merge in the last call, to ensure that this call start after the last
1017    // call ended.
1018    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1019      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1020                         Tmp1, LastCALLSEQ_END);
1021      Tmp1 = LegalizeOp(Tmp1);
1022    }
1023
1024    // Do not try to legalize the target-specific arguments (#1+).
1025    if (Tmp1 != Node->getOperand(0)) {
1026      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1027      Ops[0] = Tmp1;
1028      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1029    }
1030
1031    // Remember that the CALLSEQ_START is legalized.
1032    AddLegalizedOperand(Op.getValue(0), Result);
1033    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1034      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1035
1036    // Now that the callseq_start and all of the non-call nodes above this call
1037    // sequence have been legalized, legalize the call itself.  During this
1038    // process, no libcalls can/will be inserted, guaranteeing that no calls
1039    // can overlap.
1040    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1041    // Note that we are selecting this call!
1042    LastCALLSEQ_END = SDValue(CallEnd, 0);
1043    IsLegalizingCall = true;
1044
1045    // Legalize the call, starting from the CALLSEQ_END.
1046    LegalizeOp(LastCALLSEQ_END);
1047    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1048    return Result;
1049  }
1050  case ISD::CALLSEQ_END:
1051    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1052    // will cause this node to be legalized as well as handling libcalls right.
1053    if (LastCALLSEQ_END.getNode() != Node) {
1054      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1055      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1056      assert(I != LegalizedNodes.end() &&
1057             "Legalizing the call start should have legalized this node!");
1058      return I->second;
1059    }
1060
1061    // Otherwise, the call start has been legalized and everything is going
1062    // according to plan.  Just legalize ourselves normally here.
1063    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1064    // Do not try to legalize the target-specific arguments (#1+), except for
1065    // an optional flag input.
1066    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1067      if (Tmp1 != Node->getOperand(0)) {
1068        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1069        Ops[0] = Tmp1;
1070        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1071      }
1072    } else {
1073      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1074      if (Tmp1 != Node->getOperand(0) ||
1075          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1076        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1077        Ops[0] = Tmp1;
1078        Ops.back() = Tmp2;
1079        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1080      }
1081    }
1082    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1083    // This finishes up call legalization.
1084    IsLegalizingCall = false;
1085
1086    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1087    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1088    if (Node->getNumValues() == 2)
1089      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1090    return Result.getValue(Op.getResNo());
1091  case ISD::LOAD: {
1092    LoadSDNode *LD = cast<LoadSDNode>(Node);
1093    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1094    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1095
1096    ISD::LoadExtType ExtType = LD->getExtensionType();
1097    if (ExtType == ISD::NON_EXTLOAD) {
1098      MVT VT = Node->getValueType(0);
1099      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1100      Tmp3 = Result.getValue(0);
1101      Tmp4 = Result.getValue(1);
1102
1103      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1104      default: llvm_unreachable("This action is not supported yet!");
1105      case TargetLowering::Legal:
1106        // If this is an unaligned load and the target doesn't support it,
1107        // expand it.
1108        if (!TLI.allowsUnalignedMemoryAccesses()) {
1109          unsigned ABIAlignment = TLI.getTargetData()->
1110            getABITypeAlignment(LD->getMemoryVT().getTypeForMVT(
1111                                                            *DAG.getContext()));
1112          if (LD->getAlignment() < ABIAlignment){
1113            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1114                                         TLI);
1115            Tmp3 = Result.getOperand(0);
1116            Tmp4 = Result.getOperand(1);
1117            Tmp3 = LegalizeOp(Tmp3);
1118            Tmp4 = LegalizeOp(Tmp4);
1119          }
1120        }
1121        break;
1122      case TargetLowering::Custom:
1123        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1124        if (Tmp1.getNode()) {
1125          Tmp3 = LegalizeOp(Tmp1);
1126          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1127        }
1128        break;
1129      case TargetLowering::Promote: {
1130        // Only promote a load of vector type to another.
1131        assert(VT.isVector() && "Cannot promote this load!");
1132        // Change base type to a different vector type.
1133        MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1134
1135        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1136                           LD->getSrcValueOffset(),
1137                           LD->isVolatile(), LD->getAlignment());
1138        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1139        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1140        break;
1141      }
1142      }
1143      // Since loads produce two values, make sure to remember that we
1144      // legalized both of them.
1145      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1146      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1147      return Op.getResNo() ? Tmp4 : Tmp3;
1148    } else {
1149      MVT SrcVT = LD->getMemoryVT();
1150      unsigned SrcWidth = SrcVT.getSizeInBits();
1151      int SVOffset = LD->getSrcValueOffset();
1152      unsigned Alignment = LD->getAlignment();
1153      bool isVolatile = LD->isVolatile();
1154
1155      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1156          // Some targets pretend to have an i1 loading operation, and actually
1157          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1158          // bits are guaranteed to be zero; it helps the optimizers understand
1159          // that these bits are zero.  It is also useful for EXTLOAD, since it
1160          // tells the optimizers that those bits are undefined.  It would be
1161          // nice to have an effective generic way of getting these benefits...
1162          // Until such a way is found, don't insist on promoting i1 here.
1163          (SrcVT != MVT::i1 ||
1164           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1165        // Promote to a byte-sized load if not loading an integral number of
1166        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1167        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1168        MVT NVT = MVT::getIntegerVT(NewWidth);
1169        SDValue Ch;
1170
1171        // The extra bits are guaranteed to be zero, since we stored them that
1172        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1173
1174        ISD::LoadExtType NewExtType =
1175          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1176
1177        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1178                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1179                                NVT, isVolatile, Alignment);
1180
1181        Ch = Result.getValue(1); // The chain.
1182
1183        if (ExtType == ISD::SEXTLOAD)
1184          // Having the top bits zero doesn't help when sign extending.
1185          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1186                               Result.getValueType(),
1187                               Result, DAG.getValueType(SrcVT));
1188        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1189          // All the top bits are guaranteed to be zero - inform the optimizers.
1190          Result = DAG.getNode(ISD::AssertZext, dl,
1191                               Result.getValueType(), Result,
1192                               DAG.getValueType(SrcVT));
1193
1194        Tmp1 = LegalizeOp(Result);
1195        Tmp2 = LegalizeOp(Ch);
1196      } else if (SrcWidth & (SrcWidth - 1)) {
1197        // If not loading a power-of-2 number of bits, expand as two loads.
1198        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1199               "Unsupported extload!");
1200        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1201        assert(RoundWidth < SrcWidth);
1202        unsigned ExtraWidth = SrcWidth - RoundWidth;
1203        assert(ExtraWidth < RoundWidth);
1204        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1205               "Load size not an integral number of bytes!");
1206        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1207        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1208        SDValue Lo, Hi, Ch;
1209        unsigned IncrementSize;
1210
1211        if (TLI.isLittleEndian()) {
1212          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1213          // Load the bottom RoundWidth bits.
1214          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1215                              Node->getValueType(0), Tmp1, Tmp2,
1216                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1217                              Alignment);
1218
1219          // Load the remaining ExtraWidth bits.
1220          IncrementSize = RoundWidth / 8;
1221          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1222                             DAG.getIntPtrConstant(IncrementSize));
1223          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1224                              LD->getSrcValue(), SVOffset + IncrementSize,
1225                              ExtraVT, isVolatile,
1226                              MinAlign(Alignment, IncrementSize));
1227
1228          // Build a factor node to remember that this load is independent of the
1229          // other one.
1230          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1231                           Hi.getValue(1));
1232
1233          // Move the top bits to the right place.
1234          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1235                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1236
1237          // Join the hi and lo parts.
1238          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1239        } else {
1240          // Big endian - avoid unaligned loads.
1241          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1242          // Load the top RoundWidth bits.
1243          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1244                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1245                              Alignment);
1246
1247          // Load the remaining ExtraWidth bits.
1248          IncrementSize = RoundWidth / 8;
1249          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1250                             DAG.getIntPtrConstant(IncrementSize));
1251          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1252                              Node->getValueType(0), Tmp1, Tmp2,
1253                              LD->getSrcValue(), SVOffset + IncrementSize,
1254                              ExtraVT, isVolatile,
1255                              MinAlign(Alignment, IncrementSize));
1256
1257          // Build a factor node to remember that this load is independent of the
1258          // other one.
1259          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1260                           Hi.getValue(1));
1261
1262          // Move the top bits to the right place.
1263          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1264                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1265
1266          // Join the hi and lo parts.
1267          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1268        }
1269
1270        Tmp1 = LegalizeOp(Result);
1271        Tmp2 = LegalizeOp(Ch);
1272      } else {
1273        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1274        default: llvm_unreachable("This action is not supported yet!");
1275        case TargetLowering::Custom:
1276          isCustom = true;
1277          // FALLTHROUGH
1278        case TargetLowering::Legal:
1279          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1280          Tmp1 = Result.getValue(0);
1281          Tmp2 = Result.getValue(1);
1282
1283          if (isCustom) {
1284            Tmp3 = TLI.LowerOperation(Result, DAG);
1285            if (Tmp3.getNode()) {
1286              Tmp1 = LegalizeOp(Tmp3);
1287              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1288            }
1289          } else {
1290            // If this is an unaligned load and the target doesn't support it,
1291            // expand it.
1292            if (!TLI.allowsUnalignedMemoryAccesses()) {
1293              unsigned ABIAlignment = TLI.getTargetData()->
1294                getABITypeAlignment(LD->getMemoryVT().getTypeForMVT(
1295                                                            *DAG.getContext()));
1296              if (LD->getAlignment() < ABIAlignment){
1297                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1298                                             TLI);
1299                Tmp1 = Result.getOperand(0);
1300                Tmp2 = Result.getOperand(1);
1301                Tmp1 = LegalizeOp(Tmp1);
1302                Tmp2 = LegalizeOp(Tmp2);
1303              }
1304            }
1305          }
1306          break;
1307        case TargetLowering::Expand:
1308          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1309          if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1310            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1311                                         LD->getSrcValueOffset(),
1312                                         LD->isVolatile(), LD->getAlignment());
1313            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1314                                 Node->getValueType(0), Load);
1315            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1316            Tmp2 = LegalizeOp(Load.getValue(1));
1317            break;
1318          }
1319          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1320          // Turn the unsupported load into an EXTLOAD followed by an explicit
1321          // zero/sign extend inreg.
1322          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1323                                  Tmp1, Tmp2, LD->getSrcValue(),
1324                                  LD->getSrcValueOffset(), SrcVT,
1325                                  LD->isVolatile(), LD->getAlignment());
1326          SDValue ValRes;
1327          if (ExtType == ISD::SEXTLOAD)
1328            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1329                                 Result.getValueType(),
1330                                 Result, DAG.getValueType(SrcVT));
1331          else
1332            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1333          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1334          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1335          break;
1336        }
1337      }
1338
1339      // Since loads produce two values, make sure to remember that we legalized
1340      // both of them.
1341      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1342      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1343      return Op.getResNo() ? Tmp2 : Tmp1;
1344    }
1345  }
1346  case ISD::STORE: {
1347    StoreSDNode *ST = cast<StoreSDNode>(Node);
1348    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1349    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1350    int SVOffset = ST->getSrcValueOffset();
1351    unsigned Alignment = ST->getAlignment();
1352    bool isVolatile = ST->isVolatile();
1353
1354    if (!ST->isTruncatingStore()) {
1355      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1356        Result = SDValue(OptStore, 0);
1357        break;
1358      }
1359
1360      {
1361        Tmp3 = LegalizeOp(ST->getValue());
1362        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1363                                        ST->getOffset());
1364
1365        MVT VT = Tmp3.getValueType();
1366        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1367        default: llvm_unreachable("This action is not supported yet!");
1368        case TargetLowering::Legal:
1369          // If this is an unaligned store and the target doesn't support it,
1370          // expand it.
1371          if (!TLI.allowsUnalignedMemoryAccesses()) {
1372            unsigned ABIAlignment = TLI.getTargetData()->
1373              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT(
1374                                                            *DAG.getContext()));
1375            if (ST->getAlignment() < ABIAlignment)
1376              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1377                                            TLI);
1378          }
1379          break;
1380        case TargetLowering::Custom:
1381          Tmp1 = TLI.LowerOperation(Result, DAG);
1382          if (Tmp1.getNode()) Result = Tmp1;
1383          break;
1384        case TargetLowering::Promote:
1385          assert(VT.isVector() && "Unknown legal promote case!");
1386          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1387                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1388          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1389                                ST->getSrcValue(), SVOffset, isVolatile,
1390                                Alignment);
1391          break;
1392        }
1393        break;
1394      }
1395    } else {
1396      Tmp3 = LegalizeOp(ST->getValue());
1397
1398      MVT StVT = ST->getMemoryVT();
1399      unsigned StWidth = StVT.getSizeInBits();
1400
1401      if (StWidth != StVT.getStoreSizeInBits()) {
1402        // Promote to a byte-sized store with upper bits zero if not
1403        // storing an integral number of bytes.  For example, promote
1404        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1405        MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
1406        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1407        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1408                                   SVOffset, NVT, isVolatile, Alignment);
1409      } else if (StWidth & (StWidth - 1)) {
1410        // If not storing a power-of-2 number of bits, expand as two stores.
1411        assert(StVT.isExtended() && !StVT.isVector() &&
1412               "Unsupported truncstore!");
1413        unsigned RoundWidth = 1 << Log2_32(StWidth);
1414        assert(RoundWidth < StWidth);
1415        unsigned ExtraWidth = StWidth - RoundWidth;
1416        assert(ExtraWidth < RoundWidth);
1417        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1418               "Store size not an integral number of bytes!");
1419        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1420        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1421        SDValue Lo, Hi;
1422        unsigned IncrementSize;
1423
1424        if (TLI.isLittleEndian()) {
1425          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1426          // Store the bottom RoundWidth bits.
1427          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1428                                 SVOffset, RoundVT,
1429                                 isVolatile, Alignment);
1430
1431          // Store the remaining ExtraWidth bits.
1432          IncrementSize = RoundWidth / 8;
1433          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1434                             DAG.getIntPtrConstant(IncrementSize));
1435          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1436                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1437          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1438                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1439                                 MinAlign(Alignment, IncrementSize));
1440        } else {
1441          // Big endian - avoid unaligned stores.
1442          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1443          // Store the top RoundWidth bits.
1444          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1445                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1446          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1447                                 SVOffset, RoundVT, isVolatile, Alignment);
1448
1449          // Store the remaining ExtraWidth bits.
1450          IncrementSize = RoundWidth / 8;
1451          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1452                             DAG.getIntPtrConstant(IncrementSize));
1453          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1454                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1455                                 MinAlign(Alignment, IncrementSize));
1456        }
1457
1458        // The order of the stores doesn't matter.
1459        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1460      } else {
1461        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1462            Tmp2 != ST->getBasePtr())
1463          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1464                                          ST->getOffset());
1465
1466        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1467        default: llvm_unreachable("This action is not supported yet!");
1468        case TargetLowering::Legal:
1469          // If this is an unaligned store and the target doesn't support it,
1470          // expand it.
1471          if (!TLI.allowsUnalignedMemoryAccesses()) {
1472            unsigned ABIAlignment = TLI.getTargetData()->
1473              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT(
1474                                                            *DAG.getContext()));
1475            if (ST->getAlignment() < ABIAlignment)
1476              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1477                                            TLI);
1478          }
1479          break;
1480        case TargetLowering::Custom:
1481          Result = TLI.LowerOperation(Result, DAG);
1482          break;
1483        case Expand:
1484          // TRUNCSTORE:i16 i32 -> STORE i16
1485          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1486          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1487          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1488                                SVOffset, isVolatile, Alignment);
1489          break;
1490        }
1491      }
1492    }
1493    break;
1494  }
1495  }
1496  assert(Result.getValueType() == Op.getValueType() &&
1497         "Bad legalization!");
1498
1499  // Make sure that the generated code is itself legal.
1500  if (Result != Op)
1501    Result = LegalizeOp(Result);
1502
1503  // Note that LegalizeOp may be reentered even from single-use nodes, which
1504  // means that we always must cache transformed nodes.
1505  AddLegalizedOperand(Op, Result);
1506  return Result;
1507}
1508
1509SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1510  SDValue Vec = Op.getOperand(0);
1511  SDValue Idx = Op.getOperand(1);
1512  DebugLoc dl = Op.getDebugLoc();
1513  // Store the value to a temporary stack slot, then LOAD the returned part.
1514  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1515  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1516
1517  // Add the offset to the index.
1518  unsigned EltSize =
1519      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1520  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1521                    DAG.getConstant(EltSize, Idx.getValueType()));
1522
1523  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1524    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1525  else
1526    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1527
1528  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1529
1530  if (Op.getValueType().isVector())
1531    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1532  else
1533    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1534                          NULL, 0, Vec.getValueType().getVectorElementType());
1535}
1536
1537SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1538  // We can't handle this case efficiently.  Allocate a sufficiently
1539  // aligned object on the stack, store each element into it, then load
1540  // the result as a vector.
1541  // Create the stack frame object.
1542  MVT VT = Node->getValueType(0);
1543  MVT OpVT = Node->getOperand(0).getValueType();
1544  DebugLoc dl = Node->getDebugLoc();
1545  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1546  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1547  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1548
1549  // Emit a store of each element to the stack slot.
1550  SmallVector<SDValue, 8> Stores;
1551  unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1552  // Store (in the right endianness) the elements to memory.
1553  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1554    // Ignore undef elements.
1555    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1556
1557    unsigned Offset = TypeByteSize*i;
1558
1559    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1560    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1561
1562    Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1563                                  Idx, SV, Offset));
1564  }
1565
1566  SDValue StoreChain;
1567  if (!Stores.empty())    // Not all undef elements?
1568    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1569                             &Stores[0], Stores.size());
1570  else
1571    StoreChain = DAG.getEntryNode();
1572
1573  // Result is a load from the stack slot.
1574  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1575}
1576
1577SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1578  DebugLoc dl = Node->getDebugLoc();
1579  SDValue Tmp1 = Node->getOperand(0);
1580  SDValue Tmp2 = Node->getOperand(1);
1581  assert((Tmp2.getValueType() == MVT::f32 ||
1582          Tmp2.getValueType() == MVT::f64) &&
1583          "Ugly special-cased code!");
1584  // Get the sign bit of the RHS.
1585  SDValue SignBit;
1586  MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1587  if (isTypeLegal(IVT)) {
1588    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1589  } else {
1590    assert(isTypeLegal(TLI.getPointerTy()) &&
1591            (TLI.getPointerTy() == MVT::i32 ||
1592            TLI.getPointerTy() == MVT::i64) &&
1593            "Legal type for load?!");
1594    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1595    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1596    SDValue Ch =
1597        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1598    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1599      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1600                            LoadPtr, DAG.getIntPtrConstant(4));
1601    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1602                              Ch, LoadPtr, NULL, 0, MVT::i32);
1603  }
1604  SignBit =
1605      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1606                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1607                    ISD::SETLT);
1608  // Get the absolute value of the result.
1609  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1610  // Select between the nabs and abs value based on the sign bit of
1611  // the input.
1612  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1613                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1614                     AbsVal);
1615}
1616
1617SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1618  DebugLoc dl = Node->getDebugLoc();
1619  DwarfWriter *DW = DAG.getDwarfWriter();
1620  bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1621                                                    MVT::Other);
1622  bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1623
1624  const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1625  GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1626  if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1627    DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1628
1629    unsigned Line = DSP->getLine();
1630    unsigned Col = DSP->getColumn();
1631
1632    if (OptLevel == CodeGenOpt::None) {
1633      // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1634      // won't hurt anything.
1635      if (useDEBUG_LOC) {
1636        return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1637                           DAG.getConstant(Line, MVT::i32),
1638                           DAG.getConstant(Col, MVT::i32),
1639                           DAG.getSrcValue(CU.getGV()));
1640      } else {
1641        unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1642        return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1643      }
1644    }
1645  }
1646  return Node->getOperand(0);
1647}
1648
1649void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1650                                           SmallVectorImpl<SDValue> &Results) {
1651  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1652  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1653          " not tell us which reg is the stack pointer!");
1654  DebugLoc dl = Node->getDebugLoc();
1655  MVT VT = Node->getValueType(0);
1656  SDValue Tmp1 = SDValue(Node, 0);
1657  SDValue Tmp2 = SDValue(Node, 1);
1658  SDValue Tmp3 = Node->getOperand(2);
1659  SDValue Chain = Tmp1.getOperand(0);
1660
1661  // Chain the dynamic stack allocation so that it doesn't modify the stack
1662  // pointer when other instructions are using the stack.
1663  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1664
1665  SDValue Size  = Tmp2.getOperand(1);
1666  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1667  Chain = SP.getValue(1);
1668  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1669  unsigned StackAlign =
1670    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1671  if (Align > StackAlign)
1672    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1673                      DAG.getConstant(-(uint64_t)Align, VT));
1674  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1675  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1676
1677  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1678                            DAG.getIntPtrConstant(0, true), SDValue());
1679
1680  Results.push_back(Tmp1);
1681  Results.push_back(Tmp2);
1682}
1683
1684/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1685/// condition code CC on the current target. This routine assumes LHS and rHS
1686/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1687/// illegal condition code into AND / OR of multiple SETCC values.
1688void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
1689                                                 SDValue &LHS, SDValue &RHS,
1690                                                 SDValue &CC,
1691                                                 DebugLoc dl) {
1692  MVT OpVT = LHS.getValueType();
1693  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1694  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1695  default: llvm_unreachable("Unknown condition code action!");
1696  case TargetLowering::Legal:
1697    // Nothing to do.
1698    break;
1699  case TargetLowering::Expand: {
1700    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1701    unsigned Opc = 0;
1702    switch (CCCode) {
1703    default: llvm_unreachable("Don't know how to expand this condition!");
1704    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1705    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1706    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1707    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1708    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1709    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1710    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1711    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1712    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1713    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1714    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1715    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1716    // FIXME: Implement more expansions.
1717    }
1718
1719    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1720    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1721    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1722    RHS = SDValue();
1723    CC  = SDValue();
1724    break;
1725  }
1726  }
1727}
1728
1729/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1730/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1731/// a load from the stack slot to DestVT, extending it if needed.
1732/// The resultant code need not be legal.
1733SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1734                                               MVT SlotVT,
1735                                               MVT DestVT,
1736                                               DebugLoc dl) {
1737  // Create the stack frame object.
1738  unsigned SrcAlign =
1739    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1740                                              getTypeForMVT(*DAG.getContext()));
1741  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1742
1743  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1744  int SPFI = StackPtrFI->getIndex();
1745  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1746
1747  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1748  unsigned SlotSize = SlotVT.getSizeInBits();
1749  unsigned DestSize = DestVT.getSizeInBits();
1750  unsigned DestAlign =
1751    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT(
1752                                                            *DAG.getContext()));
1753
1754  // Emit a store to the stack slot.  Use a truncstore if the input value is
1755  // later than DestVT.
1756  SDValue Store;
1757
1758  if (SrcSize > SlotSize)
1759    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1760                              SV, 0, SlotVT, false, SrcAlign);
1761  else {
1762    assert(SrcSize == SlotSize && "Invalid store");
1763    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1764                         SV, 0, false, SrcAlign);
1765  }
1766
1767  // Result is a load from the stack slot.
1768  if (SlotSize == DestSize)
1769    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1770
1771  assert(SlotSize < DestSize && "Unknown extension!");
1772  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1773                        false, DestAlign);
1774}
1775
1776SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1777  DebugLoc dl = Node->getDebugLoc();
1778  // Create a vector sized/aligned stack slot, store the value to element #0,
1779  // then load the whole vector back out.
1780  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1781
1782  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1783  int SPFI = StackPtrFI->getIndex();
1784
1785  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1786                                 StackPtr,
1787                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1788                                 Node->getValueType(0).getVectorElementType());
1789  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1790                     PseudoSourceValue::getFixedStack(SPFI), 0);
1791}
1792
1793
1794/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1795/// support the operation, but do support the resultant vector type.
1796SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1797  LLVMContext *Context = DAG.getContext();
1798  unsigned NumElems = Node->getNumOperands();
1799  SDValue Value1, Value2;
1800  DebugLoc dl = Node->getDebugLoc();
1801  MVT VT = Node->getValueType(0);
1802  MVT OpVT = Node->getOperand(0).getValueType();
1803  MVT EltVT = VT.getVectorElementType();
1804
1805  // If the only non-undef value is the low element, turn this into a
1806  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1807  bool isOnlyLowElement = true;
1808  bool MoreThanTwoValues = false;
1809  bool isConstant = true;
1810  for (unsigned i = 0; i < NumElems; ++i) {
1811    SDValue V = Node->getOperand(i);
1812    if (V.getOpcode() == ISD::UNDEF)
1813      continue;
1814    if (i > 0)
1815      isOnlyLowElement = false;
1816    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1817      isConstant = false;
1818
1819    if (!Value1.getNode()) {
1820      Value1 = V;
1821    } else if (!Value2.getNode()) {
1822      if (V != Value1)
1823        Value2 = V;
1824    } else if (V != Value1 && V != Value2) {
1825      MoreThanTwoValues = true;
1826    }
1827  }
1828
1829  if (!Value1.getNode())
1830    return DAG.getUNDEF(VT);
1831
1832  if (isOnlyLowElement)
1833    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1834
1835  // If all elements are constants, create a load from the constant pool.
1836  if (isConstant) {
1837    std::vector<Constant*> CV;
1838    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1839      if (ConstantFPSDNode *V =
1840          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1841        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1842      } else if (ConstantSDNode *V =
1843                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1844        CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1845      } else {
1846        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1847        const Type *OpNTy = OpVT.getTypeForMVT(*DAG.getContext());
1848        CV.push_back(Context->getUndef(OpNTy));
1849      }
1850    }
1851    Constant *CP = ConstantVector::get(CV);
1852    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1853    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1854    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1855                       PseudoSourceValue::getConstantPool(), 0,
1856                       false, Alignment);
1857  }
1858
1859  if (!MoreThanTwoValues) {
1860    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1861    for (unsigned i = 0; i < NumElems; ++i) {
1862      SDValue V = Node->getOperand(i);
1863      if (V.getOpcode() == ISD::UNDEF)
1864        continue;
1865      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1866    }
1867    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1868      // Get the splatted value into the low element of a vector register.
1869      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1870      SDValue Vec2;
1871      if (Value2.getNode())
1872        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1873      else
1874        Vec2 = DAG.getUNDEF(VT);
1875
1876      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1877      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1878    }
1879  }
1880
1881  // Otherwise, we can't handle this case efficiently.
1882  return ExpandVectorBuildThroughStack(Node);
1883}
1884
1885// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1886// does not fit into a register, return the lo part and set the hi part to the
1887// by-reg argument.  If it does fit into a single register, return the result
1888// and leave the Hi part unset.
1889SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1890                                            bool isSigned) {
1891  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1892  // The input chain to this libcall is the entry node of the function.
1893  // Legalizing the call will automatically add the previous call to the
1894  // dependence.
1895  SDValue InChain = DAG.getEntryNode();
1896
1897  TargetLowering::ArgListTy Args;
1898  TargetLowering::ArgListEntry Entry;
1899  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1900    MVT ArgVT = Node->getOperand(i).getValueType();
1901    const Type *ArgTy = ArgVT.getTypeForMVT(*DAG.getContext());
1902    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1903    Entry.isSExt = isSigned;
1904    Entry.isZExt = !isSigned;
1905    Args.push_back(Entry);
1906  }
1907  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1908                                         TLI.getPointerTy());
1909
1910  // Splice the libcall in wherever FindInputOutputChains tells us to.
1911  const Type *RetTy = Node->getValueType(0).getTypeForMVT(*DAG.getContext());
1912  std::pair<SDValue, SDValue> CallInfo =
1913    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1914                    0, CallingConv::C, false, Callee, Args, DAG,
1915                    Node->getDebugLoc());
1916
1917  // Legalize the call sequence, starting with the chain.  This will advance
1918  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1919  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1920  LegalizeOp(CallInfo.second);
1921  return CallInfo.first;
1922}
1923
1924SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1925                                              RTLIB::Libcall Call_F32,
1926                                              RTLIB::Libcall Call_F64,
1927                                              RTLIB::Libcall Call_F80,
1928                                              RTLIB::Libcall Call_PPCF128) {
1929  RTLIB::Libcall LC;
1930  switch (Node->getValueType(0).getSimpleVT()) {
1931  default: llvm_unreachable("Unexpected request for libcall!");
1932  case MVT::f32: LC = Call_F32; break;
1933  case MVT::f64: LC = Call_F64; break;
1934  case MVT::f80: LC = Call_F80; break;
1935  case MVT::ppcf128: LC = Call_PPCF128; break;
1936  }
1937  return ExpandLibCall(LC, Node, false);
1938}
1939
1940SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1941                                               RTLIB::Libcall Call_I16,
1942                                               RTLIB::Libcall Call_I32,
1943                                               RTLIB::Libcall Call_I64,
1944                                               RTLIB::Libcall Call_I128) {
1945  RTLIB::Libcall LC;
1946  switch (Node->getValueType(0).getSimpleVT()) {
1947  default: llvm_unreachable("Unexpected request for libcall!");
1948  case MVT::i16: LC = Call_I16; break;
1949  case MVT::i32: LC = Call_I32; break;
1950  case MVT::i64: LC = Call_I64; break;
1951  case MVT::i128: LC = Call_I128; break;
1952  }
1953  return ExpandLibCall(LC, Node, isSigned);
1954}
1955
1956/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1957/// INT_TO_FP operation of the specified operand when the target requests that
1958/// we expand it.  At this point, we know that the result and operand types are
1959/// legal for the target.
1960SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1961                                                   SDValue Op0,
1962                                                   MVT DestVT,
1963                                                   DebugLoc dl) {
1964  if (Op0.getValueType() == MVT::i32) {
1965    // simple 32-bit [signed|unsigned] integer to float/double expansion
1966
1967    // Get the stack frame index of a 8 byte buffer.
1968    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1969
1970    // word offset constant for Hi/Lo address computation
1971    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1972    // set up Hi and Lo (into buffer) address based on endian
1973    SDValue Hi = StackSlot;
1974    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1975                             TLI.getPointerTy(), StackSlot, WordOff);
1976    if (TLI.isLittleEndian())
1977      std::swap(Hi, Lo);
1978
1979    // if signed map to unsigned space
1980    SDValue Op0Mapped;
1981    if (isSigned) {
1982      // constant used to invert sign bit (signed to unsigned mapping)
1983      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1984      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1985    } else {
1986      Op0Mapped = Op0;
1987    }
1988    // store the lo of the constructed double - based on integer input
1989    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1990                                  Op0Mapped, Lo, NULL, 0);
1991    // initial hi portion of constructed double
1992    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1993    // store the hi of the constructed double - biased exponent
1994    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1995    // load the constructed double
1996    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1997    // FP constant to bias correct the final result
1998    SDValue Bias = DAG.getConstantFP(isSigned ?
1999                                     BitsToDouble(0x4330000080000000ULL) :
2000                                     BitsToDouble(0x4330000000000000ULL),
2001                                     MVT::f64);
2002    // subtract the bias
2003    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2004    // final result
2005    SDValue Result;
2006    // handle final rounding
2007    if (DestVT == MVT::f64) {
2008      // do nothing
2009      Result = Sub;
2010    } else if (DestVT.bitsLT(MVT::f64)) {
2011      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2012                           DAG.getIntPtrConstant(0));
2013    } else if (DestVT.bitsGT(MVT::f64)) {
2014      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2015    }
2016    return Result;
2017  }
2018  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2019  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2020
2021  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2022                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2023                                 ISD::SETLT);
2024  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2025  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2026                                    SignSet, Four, Zero);
2027
2028  // If the sign bit of the integer is set, the large number will be treated
2029  // as a negative number.  To counteract this, the dynamic code adds an
2030  // offset depending on the data type.
2031  uint64_t FF;
2032  switch (Op0.getValueType().getSimpleVT()) {
2033  default: llvm_unreachable("Unsupported integer type!");
2034  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2035  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2036  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2037  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2038  }
2039  if (TLI.isLittleEndian()) FF <<= 32;
2040  Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
2041
2042  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2043  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2044  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2045  Alignment = std::min(Alignment, 4u);
2046  SDValue FudgeInReg;
2047  if (DestVT == MVT::f32)
2048    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2049                             PseudoSourceValue::getConstantPool(), 0,
2050                             false, Alignment);
2051  else {
2052    FudgeInReg =
2053      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2054                                DAG.getEntryNode(), CPIdx,
2055                                PseudoSourceValue::getConstantPool(), 0,
2056                                MVT::f32, false, Alignment));
2057  }
2058
2059  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2060}
2061
2062/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2063/// *INT_TO_FP operation of the specified operand when the target requests that
2064/// we promote it.  At this point, we know that the result and operand types are
2065/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2066/// operation that takes a larger input.
2067SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2068                                                    MVT DestVT,
2069                                                    bool isSigned,
2070                                                    DebugLoc dl) {
2071  // First step, figure out the appropriate *INT_TO_FP operation to use.
2072  MVT NewInTy = LegalOp.getValueType();
2073
2074  unsigned OpToUse = 0;
2075
2076  // Scan for the appropriate larger type to use.
2077  while (1) {
2078    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
2079    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2080
2081    // If the target supports SINT_TO_FP of this type, use it.
2082    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2083      OpToUse = ISD::SINT_TO_FP;
2084      break;
2085    }
2086    if (isSigned) continue;
2087
2088    // If the target supports UINT_TO_FP of this type, use it.
2089    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2090      OpToUse = ISD::UINT_TO_FP;
2091      break;
2092    }
2093
2094    // Otherwise, try a larger type.
2095  }
2096
2097  // Okay, we found the operation and type to use.  Zero extend our input to the
2098  // desired type then run the operation on it.
2099  return DAG.getNode(OpToUse, dl, DestVT,
2100                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2101                                 dl, NewInTy, LegalOp));
2102}
2103
2104/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2105/// FP_TO_*INT operation of the specified operand when the target requests that
2106/// we promote it.  At this point, we know that the result and operand types are
2107/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2108/// operation that returns a larger result.
2109SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2110                                                    MVT DestVT,
2111                                                    bool isSigned,
2112                                                    DebugLoc dl) {
2113  // First step, figure out the appropriate FP_TO*INT operation to use.
2114  MVT NewOutTy = DestVT;
2115
2116  unsigned OpToUse = 0;
2117
2118  // Scan for the appropriate larger type to use.
2119  while (1) {
2120    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
2121    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2122
2123    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2124      OpToUse = ISD::FP_TO_SINT;
2125      break;
2126    }
2127
2128    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2129      OpToUse = ISD::FP_TO_UINT;
2130      break;
2131    }
2132
2133    // Otherwise, try a larger type.
2134  }
2135
2136
2137  // Okay, we found the operation and type to use.
2138  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2139
2140  // Truncate the result of the extended FP_TO_*INT operation to the desired
2141  // size.
2142  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2143}
2144
2145/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2146///
2147SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2148  MVT VT = Op.getValueType();
2149  MVT SHVT = TLI.getShiftAmountTy();
2150  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2151  switch (VT.getSimpleVT()) {
2152  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2153  case MVT::i16:
2154    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2155    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2156    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2157  case MVT::i32:
2158    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2159    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2160    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2161    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2162    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2163    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2164    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2165    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2166    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2167  case MVT::i64:
2168    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2169    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2170    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2171    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2172    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2173    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2174    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2175    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2176    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2177    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2178    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2179    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2180    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2181    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2182    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2183    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2184    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2185    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2186    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2187    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2188    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2189  }
2190}
2191
2192/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2193///
2194SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2195                                             DebugLoc dl) {
2196  switch (Opc) {
2197  default: llvm_unreachable("Cannot expand this yet!");
2198  case ISD::CTPOP: {
2199    static const uint64_t mask[6] = {
2200      0x5555555555555555ULL, 0x3333333333333333ULL,
2201      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2202      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2203    };
2204    MVT VT = Op.getValueType();
2205    MVT ShVT = TLI.getShiftAmountTy();
2206    unsigned len = VT.getSizeInBits();
2207    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2208      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2209      unsigned EltSize = VT.isVector() ?
2210        VT.getVectorElementType().getSizeInBits() : len;
2211      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2212      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2213      Op = DAG.getNode(ISD::ADD, dl, VT,
2214                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2215                       DAG.getNode(ISD::AND, dl, VT,
2216                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2217                                   Tmp2));
2218    }
2219    return Op;
2220  }
2221  case ISD::CTLZ: {
2222    // for now, we do this:
2223    // x = x | (x >> 1);
2224    // x = x | (x >> 2);
2225    // ...
2226    // x = x | (x >>16);
2227    // x = x | (x >>32); // for 64-bit input
2228    // return popcount(~x);
2229    //
2230    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2231    MVT VT = Op.getValueType();
2232    MVT ShVT = TLI.getShiftAmountTy();
2233    unsigned len = VT.getSizeInBits();
2234    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2235      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2236      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2237                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2238    }
2239    Op = DAG.getNOT(dl, Op, VT);
2240    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2241  }
2242  case ISD::CTTZ: {
2243    // for now, we use: { return popcount(~x & (x - 1)); }
2244    // unless the target has ctlz but not ctpop, in which case we use:
2245    // { return 32 - nlz(~x & (x-1)); }
2246    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2247    MVT VT = Op.getValueType();
2248    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2249                               DAG.getNOT(dl, Op, VT),
2250                               DAG.getNode(ISD::SUB, dl, VT, Op,
2251                                           DAG.getConstant(1, VT)));
2252    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2253    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2254        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2255      return DAG.getNode(ISD::SUB, dl, VT,
2256                         DAG.getConstant(VT.getSizeInBits(), VT),
2257                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2258    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2259  }
2260  }
2261}
2262
2263void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2264                                      SmallVectorImpl<SDValue> &Results) {
2265  DebugLoc dl = Node->getDebugLoc();
2266  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2267  switch (Node->getOpcode()) {
2268  case ISD::CTPOP:
2269  case ISD::CTLZ:
2270  case ISD::CTTZ:
2271    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2272    Results.push_back(Tmp1);
2273    break;
2274  case ISD::BSWAP:
2275    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2276    break;
2277  case ISD::FRAMEADDR:
2278  case ISD::RETURNADDR:
2279  case ISD::FRAME_TO_ARGS_OFFSET:
2280    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2281    break;
2282  case ISD::FLT_ROUNDS_:
2283    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2284    break;
2285  case ISD::EH_RETURN:
2286  case ISD::DECLARE:
2287  case ISD::DBG_LABEL:
2288  case ISD::EH_LABEL:
2289  case ISD::PREFETCH:
2290  case ISD::MEMBARRIER:
2291  case ISD::VAEND:
2292    Results.push_back(Node->getOperand(0));
2293    break;
2294  case ISD::DBG_STOPPOINT:
2295    Results.push_back(ExpandDBG_STOPPOINT(Node));
2296    break;
2297  case ISD::DYNAMIC_STACKALLOC:
2298    ExpandDYNAMIC_STACKALLOC(Node, Results);
2299    break;
2300  case ISD::MERGE_VALUES:
2301    for (unsigned i = 0; i < Node->getNumValues(); i++)
2302      Results.push_back(Node->getOperand(i));
2303    break;
2304  case ISD::UNDEF: {
2305    MVT VT = Node->getValueType(0);
2306    if (VT.isInteger())
2307      Results.push_back(DAG.getConstant(0, VT));
2308    else if (VT.isFloatingPoint())
2309      Results.push_back(DAG.getConstantFP(0, VT));
2310    else
2311      llvm_unreachable("Unknown value type!");
2312    break;
2313  }
2314  case ISD::TRAP: {
2315    // If this operation is not supported, lower it to 'abort()' call
2316    TargetLowering::ArgListTy Args;
2317    std::pair<SDValue, SDValue> CallResult =
2318      TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
2319                      false, false, false, false, 0, CallingConv::C, false,
2320                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2321                      Args, DAG, dl);
2322    Results.push_back(CallResult.second);
2323    break;
2324  }
2325  case ISD::FP_ROUND:
2326  case ISD::BIT_CONVERT:
2327    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2328                            Node->getValueType(0), dl);
2329    Results.push_back(Tmp1);
2330    break;
2331  case ISD::FP_EXTEND:
2332    Tmp1 = EmitStackConvert(Node->getOperand(0),
2333                            Node->getOperand(0).getValueType(),
2334                            Node->getValueType(0), dl);
2335    Results.push_back(Tmp1);
2336    break;
2337  case ISD::SIGN_EXTEND_INREG: {
2338    // NOTE: we could fall back on load/store here too for targets without
2339    // SAR.  However, it is doubtful that any exist.
2340    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2341    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2342                        ExtraVT.getSizeInBits();
2343    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2344    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2345                       Node->getOperand(0), ShiftCst);
2346    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2347    Results.push_back(Tmp1);
2348    break;
2349  }
2350  case ISD::FP_ROUND_INREG: {
2351    // The only way we can lower this is to turn it into a TRUNCSTORE,
2352    // EXTLOAD pair, targetting a temporary location (a stack slot).
2353
2354    // NOTE: there is a choice here between constantly creating new stack
2355    // slots and always reusing the same one.  We currently always create
2356    // new ones, as reuse may inhibit scheduling.
2357    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2358    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2359                            Node->getValueType(0), dl);
2360    Results.push_back(Tmp1);
2361    break;
2362  }
2363  case ISD::SINT_TO_FP:
2364  case ISD::UINT_TO_FP:
2365    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2366                                Node->getOperand(0), Node->getValueType(0), dl);
2367    Results.push_back(Tmp1);
2368    break;
2369  case ISD::FP_TO_UINT: {
2370    SDValue True, False;
2371    MVT VT =  Node->getOperand(0).getValueType();
2372    MVT NVT = Node->getValueType(0);
2373    const uint64_t zero[] = {0, 0};
2374    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2375    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2376    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2377    Tmp1 = DAG.getConstantFP(apf, VT);
2378    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2379                        Node->getOperand(0),
2380                        Tmp1, ISD::SETLT);
2381    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2382    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2383                        DAG.getNode(ISD::FSUB, dl, VT,
2384                                    Node->getOperand(0), Tmp1));
2385    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2386                        DAG.getConstant(x, NVT));
2387    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2388    Results.push_back(Tmp1);
2389    break;
2390  }
2391  case ISD::VAARG: {
2392    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2393    MVT VT = Node->getValueType(0);
2394    Tmp1 = Node->getOperand(0);
2395    Tmp2 = Node->getOperand(1);
2396    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2397    // Increment the pointer, VAList, to the next vaarg
2398    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2399                       DAG.getConstant(TLI.getTargetData()->
2400                                       getTypeAllocSize(VT.getTypeForMVT(
2401                                                            *DAG.getContext())),
2402                                       TLI.getPointerTy()));
2403    // Store the incremented VAList to the legalized pointer
2404    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2405    // Load the actual argument out of the pointer VAList
2406    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2407    Results.push_back(Results[0].getValue(1));
2408    break;
2409  }
2410  case ISD::VACOPY: {
2411    // This defaults to loading a pointer from the input and storing it to the
2412    // output, returning the chain.
2413    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2414    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2415    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2416                       Node->getOperand(2), VS, 0);
2417    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2418    Results.push_back(Tmp1);
2419    break;
2420  }
2421  case ISD::EXTRACT_VECTOR_ELT:
2422    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2423      // This must be an access of the only element.  Return it.
2424      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2425                         Node->getOperand(0));
2426    else
2427      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2428    Results.push_back(Tmp1);
2429    break;
2430  case ISD::EXTRACT_SUBVECTOR:
2431    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2432    break;
2433  case ISD::CONCAT_VECTORS: {
2434    Results.push_back(ExpandVectorBuildThroughStack(Node));
2435    break;
2436  }
2437  case ISD::SCALAR_TO_VECTOR:
2438    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2439    break;
2440  case ISD::INSERT_VECTOR_ELT:
2441    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2442                                              Node->getOperand(1),
2443                                              Node->getOperand(2), dl));
2444    break;
2445  case ISD::VECTOR_SHUFFLE: {
2446    SmallVector<int, 8> Mask;
2447    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2448
2449    MVT VT = Node->getValueType(0);
2450    MVT EltVT = VT.getVectorElementType();
2451    unsigned NumElems = VT.getVectorNumElements();
2452    SmallVector<SDValue, 8> Ops;
2453    for (unsigned i = 0; i != NumElems; ++i) {
2454      if (Mask[i] < 0) {
2455        Ops.push_back(DAG.getUNDEF(EltVT));
2456        continue;
2457      }
2458      unsigned Idx = Mask[i];
2459      if (Idx < NumElems)
2460        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2461                                  Node->getOperand(0),
2462                                  DAG.getIntPtrConstant(Idx)));
2463      else
2464        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2465                                  Node->getOperand(1),
2466                                  DAG.getIntPtrConstant(Idx - NumElems)));
2467    }
2468    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2469    Results.push_back(Tmp1);
2470    break;
2471  }
2472  case ISD::EXTRACT_ELEMENT: {
2473    MVT OpTy = Node->getOperand(0).getValueType();
2474    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2475      // 1 -> Hi
2476      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2477                         DAG.getConstant(OpTy.getSizeInBits()/2,
2478                                         TLI.getShiftAmountTy()));
2479      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2480    } else {
2481      // 0 -> Lo
2482      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2483                         Node->getOperand(0));
2484    }
2485    Results.push_back(Tmp1);
2486    break;
2487  }
2488  case ISD::STACKSAVE:
2489    // Expand to CopyFromReg if the target set
2490    // StackPointerRegisterToSaveRestore.
2491    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2492      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2493                                           Node->getValueType(0)));
2494      Results.push_back(Results[0].getValue(1));
2495    } else {
2496      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2497      Results.push_back(Node->getOperand(0));
2498    }
2499    break;
2500  case ISD::STACKRESTORE:
2501    // Expand to CopyToReg if the target set
2502    // StackPointerRegisterToSaveRestore.
2503    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2504      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2505                                         Node->getOperand(1)));
2506    } else {
2507      Results.push_back(Node->getOperand(0));
2508    }
2509    break;
2510  case ISD::FCOPYSIGN:
2511    Results.push_back(ExpandFCOPYSIGN(Node));
2512    break;
2513  case ISD::FNEG:
2514    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2515    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2516    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2517                       Node->getOperand(0));
2518    Results.push_back(Tmp1);
2519    break;
2520  case ISD::FABS: {
2521    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2522    MVT VT = Node->getValueType(0);
2523    Tmp1 = Node->getOperand(0);
2524    Tmp2 = DAG.getConstantFP(0.0, VT);
2525    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2526                        Tmp1, Tmp2, ISD::SETUGT);
2527    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2528    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2529    Results.push_back(Tmp1);
2530    break;
2531  }
2532  case ISD::FSQRT:
2533    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2534                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2535    break;
2536  case ISD::FSIN:
2537    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2538                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2539    break;
2540  case ISD::FCOS:
2541    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2542                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2543    break;
2544  case ISD::FLOG:
2545    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2546                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2547    break;
2548  case ISD::FLOG2:
2549    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2550                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2551    break;
2552  case ISD::FLOG10:
2553    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2554                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2555    break;
2556  case ISD::FEXP:
2557    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2558                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2559    break;
2560  case ISD::FEXP2:
2561    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2562                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2563    break;
2564  case ISD::FTRUNC:
2565    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2566                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2567    break;
2568  case ISD::FFLOOR:
2569    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2570                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2571    break;
2572  case ISD::FCEIL:
2573    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2574                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2575    break;
2576  case ISD::FRINT:
2577    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2578                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2579    break;
2580  case ISD::FNEARBYINT:
2581    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2582                                      RTLIB::NEARBYINT_F64,
2583                                      RTLIB::NEARBYINT_F80,
2584                                      RTLIB::NEARBYINT_PPCF128));
2585    break;
2586  case ISD::FPOWI:
2587    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2588                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2589    break;
2590  case ISD::FPOW:
2591    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2592                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2593    break;
2594  case ISD::FDIV:
2595    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2596                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2597    break;
2598  case ISD::FREM:
2599    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2600                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2601    break;
2602  case ISD::ConstantFP: {
2603    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2604    // Check to see if this FP immediate is already legal.
2605    bool isLegal = false;
2606    for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2607            E = TLI.legal_fpimm_end(); I != E; ++I) {
2608      if (CFP->isExactlyValue(*I)) {
2609        isLegal = true;
2610        break;
2611      }
2612    }
2613    // If this is a legal constant, turn it into a TargetConstantFP node.
2614    if (isLegal)
2615      Results.push_back(SDValue(Node, 0));
2616    else
2617      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2618    break;
2619  }
2620  case ISD::EHSELECTION: {
2621    unsigned Reg = TLI.getExceptionSelectorRegister();
2622    assert(Reg && "Can't expand to unknown register!");
2623    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2624                                         Node->getValueType(0)));
2625    Results.push_back(Results[0].getValue(1));
2626    break;
2627  }
2628  case ISD::EXCEPTIONADDR: {
2629    unsigned Reg = TLI.getExceptionAddressRegister();
2630    assert(Reg && "Can't expand to unknown register!");
2631    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2632                                         Node->getValueType(0)));
2633    Results.push_back(Results[0].getValue(1));
2634    break;
2635  }
2636  case ISD::SUB: {
2637    MVT VT = Node->getValueType(0);
2638    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2639           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2640           "Don't know how to expand this subtraction!");
2641    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2642               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2643    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2644    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2645    break;
2646  }
2647  case ISD::UREM:
2648  case ISD::SREM: {
2649    MVT VT = Node->getValueType(0);
2650    SDVTList VTs = DAG.getVTList(VT, VT);
2651    bool isSigned = Node->getOpcode() == ISD::SREM;
2652    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2653    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2654    Tmp2 = Node->getOperand(0);
2655    Tmp3 = Node->getOperand(1);
2656    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2657      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2658    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2659      // X % Y -> X-X/Y*Y
2660      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2661      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2662      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2663    } else if (isSigned) {
2664      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2665                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2666    } else {
2667      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2668                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2669    }
2670    Results.push_back(Tmp1);
2671    break;
2672  }
2673  case ISD::UDIV:
2674  case ISD::SDIV: {
2675    bool isSigned = Node->getOpcode() == ISD::SDIV;
2676    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2677    MVT VT = Node->getValueType(0);
2678    SDVTList VTs = DAG.getVTList(VT, VT);
2679    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2680      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2681                         Node->getOperand(1));
2682    else if (isSigned)
2683      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2684                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2685    else
2686      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2687                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2688    Results.push_back(Tmp1);
2689    break;
2690  }
2691  case ISD::MULHU:
2692  case ISD::MULHS: {
2693    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2694                                                              ISD::SMUL_LOHI;
2695    MVT VT = Node->getValueType(0);
2696    SDVTList VTs = DAG.getVTList(VT, VT);
2697    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2698           "If this wasn't legal, it shouldn't have been created!");
2699    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2700                       Node->getOperand(1));
2701    Results.push_back(Tmp1.getValue(1));
2702    break;
2703  }
2704  case ISD::MUL: {
2705    MVT VT = Node->getValueType(0);
2706    SDVTList VTs = DAG.getVTList(VT, VT);
2707    // See if multiply or divide can be lowered using two-result operations.
2708    // We just need the low half of the multiply; try both the signed
2709    // and unsigned forms. If the target supports both SMUL_LOHI and
2710    // UMUL_LOHI, form a preference by checking which forms of plain
2711    // MULH it supports.
2712    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2713    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2714    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2715    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2716    unsigned OpToUse = 0;
2717    if (HasSMUL_LOHI && !HasMULHS) {
2718      OpToUse = ISD::SMUL_LOHI;
2719    } else if (HasUMUL_LOHI && !HasMULHU) {
2720      OpToUse = ISD::UMUL_LOHI;
2721    } else if (HasSMUL_LOHI) {
2722      OpToUse = ISD::SMUL_LOHI;
2723    } else if (HasUMUL_LOHI) {
2724      OpToUse = ISD::UMUL_LOHI;
2725    }
2726    if (OpToUse) {
2727      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2728                                    Node->getOperand(1)));
2729      break;
2730    }
2731    Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2732                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2733    Results.push_back(Tmp1);
2734    break;
2735  }
2736  case ISD::SADDO:
2737  case ISD::SSUBO: {
2738    SDValue LHS = Node->getOperand(0);
2739    SDValue RHS = Node->getOperand(1);
2740    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2741                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2742                              LHS, RHS);
2743    Results.push_back(Sum);
2744    MVT OType = Node->getValueType(1);
2745
2746    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2747
2748    //   LHSSign -> LHS >= 0
2749    //   RHSSign -> RHS >= 0
2750    //   SumSign -> Sum >= 0
2751    //
2752    //   Add:
2753    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2754    //   Sub:
2755    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2756    //
2757    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2758    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2759    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2760                                      Node->getOpcode() == ISD::SADDO ?
2761                                      ISD::SETEQ : ISD::SETNE);
2762
2763    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2764    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2765
2766    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2767    Results.push_back(Cmp);
2768    break;
2769  }
2770  case ISD::UADDO:
2771  case ISD::USUBO: {
2772    SDValue LHS = Node->getOperand(0);
2773    SDValue RHS = Node->getOperand(1);
2774    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2775                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2776                              LHS, RHS);
2777    Results.push_back(Sum);
2778    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2779                                   Node->getOpcode () == ISD::UADDO ?
2780                                   ISD::SETULT : ISD::SETUGT));
2781    break;
2782  }
2783  case ISD::UMULO:
2784  case ISD::SMULO: {
2785    MVT VT = Node->getValueType(0);
2786    SDValue LHS = Node->getOperand(0);
2787    SDValue RHS = Node->getOperand(1);
2788    SDValue BottomHalf;
2789    SDValue TopHalf;
2790    static unsigned Ops[2][3] =
2791        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2792          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2793    bool isSigned = Node->getOpcode() == ISD::SMULO;
2794    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2795      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2796      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2797    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2798      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2799                               RHS);
2800      TopHalf = BottomHalf.getValue(1);
2801    } else if (TLI.isTypeLegal(MVT::getIntegerVT(VT.getSizeInBits() * 2))) {
2802      MVT WideVT = MVT::getIntegerVT(VT.getSizeInBits() * 2);
2803      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2804      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2805      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2806      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2807                               DAG.getIntPtrConstant(0));
2808      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2809                            DAG.getIntPtrConstant(1));
2810    } else {
2811      // FIXME: We should be able to fall back to a libcall with an illegal
2812      // type in some cases cases.
2813      // Also, we can fall back to a division in some cases, but that's a big
2814      // performance hit in the general case.
2815      llvm_unreachable("Don't know how to expand this operation yet!");
2816    }
2817    if (isSigned) {
2818      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2819      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2820      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2821                             ISD::SETNE);
2822    } else {
2823      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2824                             DAG.getConstant(0, VT), ISD::SETNE);
2825    }
2826    Results.push_back(BottomHalf);
2827    Results.push_back(TopHalf);
2828    break;
2829  }
2830  case ISD::BUILD_PAIR: {
2831    MVT PairTy = Node->getValueType(0);
2832    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2833    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2834    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2835                       DAG.getConstant(PairTy.getSizeInBits()/2,
2836                                       TLI.getShiftAmountTy()));
2837    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2838    break;
2839  }
2840  case ISD::SELECT:
2841    Tmp1 = Node->getOperand(0);
2842    Tmp2 = Node->getOperand(1);
2843    Tmp3 = Node->getOperand(2);
2844    if (Tmp1.getOpcode() == ISD::SETCC) {
2845      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2846                             Tmp2, Tmp3,
2847                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2848    } else {
2849      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2850                             DAG.getConstant(0, Tmp1.getValueType()),
2851                             Tmp2, Tmp3, ISD::SETNE);
2852    }
2853    Results.push_back(Tmp1);
2854    break;
2855  case ISD::BR_JT: {
2856    SDValue Chain = Node->getOperand(0);
2857    SDValue Table = Node->getOperand(1);
2858    SDValue Index = Node->getOperand(2);
2859
2860    MVT PTy = TLI.getPointerTy();
2861    MachineFunction &MF = DAG.getMachineFunction();
2862    unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2863    Index= DAG.getNode(ISD::MUL, dl, PTy,
2864                        Index, DAG.getConstant(EntrySize, PTy));
2865    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2866
2867    MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
2868    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2869                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2870    Addr = LD;
2871    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2872      // For PIC, the sequence is:
2873      // BRIND(load(Jumptable + index) + RelocBase)
2874      // RelocBase can be JumpTable, GOT or some sort of global base.
2875      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2876                          TLI.getPICJumpTableRelocBase(Table, DAG));
2877    }
2878    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2879    Results.push_back(Tmp1);
2880    break;
2881  }
2882  case ISD::BRCOND:
2883    // Expand brcond's setcc into its constituent parts and create a BR_CC
2884    // Node.
2885    Tmp1 = Node->getOperand(0);
2886    Tmp2 = Node->getOperand(1);
2887    if (Tmp2.getOpcode() == ISD::SETCC) {
2888      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2889                         Tmp1, Tmp2.getOperand(2),
2890                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2891                         Node->getOperand(2));
2892    } else {
2893      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2894                         DAG.getCondCode(ISD::SETNE), Tmp2,
2895                         DAG.getConstant(0, Tmp2.getValueType()),
2896                         Node->getOperand(2));
2897    }
2898    Results.push_back(Tmp1);
2899    break;
2900  case ISD::SETCC: {
2901    Tmp1 = Node->getOperand(0);
2902    Tmp2 = Node->getOperand(1);
2903    Tmp3 = Node->getOperand(2);
2904    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2905
2906    // If we expanded the SETCC into an AND/OR, return the new node
2907    if (Tmp2.getNode() == 0) {
2908      Results.push_back(Tmp1);
2909      break;
2910    }
2911
2912    // Otherwise, SETCC for the given comparison type must be completely
2913    // illegal; expand it into a SELECT_CC.
2914    MVT VT = Node->getValueType(0);
2915    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2916                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2917    Results.push_back(Tmp1);
2918    break;
2919  }
2920  case ISD::SELECT_CC: {
2921    Tmp1 = Node->getOperand(0);   // LHS
2922    Tmp2 = Node->getOperand(1);   // RHS
2923    Tmp3 = Node->getOperand(2);   // True
2924    Tmp4 = Node->getOperand(3);   // False
2925    SDValue CC = Node->getOperand(4);
2926
2927    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2928                          Tmp1, Tmp2, CC, dl);
2929
2930    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2931    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2932    CC = DAG.getCondCode(ISD::SETNE);
2933    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2934                       Tmp3, Tmp4, CC);
2935    Results.push_back(Tmp1);
2936    break;
2937  }
2938  case ISD::BR_CC: {
2939    Tmp1 = Node->getOperand(0);              // Chain
2940    Tmp2 = Node->getOperand(2);              // LHS
2941    Tmp3 = Node->getOperand(3);              // RHS
2942    Tmp4 = Node->getOperand(1);              // CC
2943
2944    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2945                          Tmp2, Tmp3, Tmp4, dl);
2946    LastCALLSEQ_END = DAG.getEntryNode();
2947
2948    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2949    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2950    Tmp4 = DAG.getCondCode(ISD::SETNE);
2951    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2952                       Tmp3, Node->getOperand(4));
2953    Results.push_back(Tmp1);
2954    break;
2955  }
2956  case ISD::GLOBAL_OFFSET_TABLE:
2957  case ISD::GlobalAddress:
2958  case ISD::GlobalTLSAddress:
2959  case ISD::ExternalSymbol:
2960  case ISD::ConstantPool:
2961  case ISD::JumpTable:
2962  case ISD::INTRINSIC_W_CHAIN:
2963  case ISD::INTRINSIC_WO_CHAIN:
2964  case ISD::INTRINSIC_VOID:
2965    // FIXME: Custom lowering for these operations shouldn't return null!
2966    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2967      Results.push_back(SDValue(Node, i));
2968    break;
2969  }
2970}
2971void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2972                                       SmallVectorImpl<SDValue> &Results) {
2973  MVT OVT = Node->getValueType(0);
2974  if (Node->getOpcode() == ISD::UINT_TO_FP ||
2975      Node->getOpcode() == ISD::SINT_TO_FP ||
2976      Node->getOpcode() == ISD::SETCC) {
2977    OVT = Node->getOperand(0).getValueType();
2978  }
2979  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2980  DebugLoc dl = Node->getDebugLoc();
2981  SDValue Tmp1, Tmp2, Tmp3;
2982  switch (Node->getOpcode()) {
2983  case ISD::CTTZ:
2984  case ISD::CTLZ:
2985  case ISD::CTPOP:
2986    // Zero extend the argument.
2987    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2988    // Perform the larger operation.
2989    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
2990    if (Node->getOpcode() == ISD::CTTZ) {
2991      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2992      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
2993                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2994                          ISD::SETEQ);
2995      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2996                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2997    } else if (Node->getOpcode() == ISD::CTLZ) {
2998      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2999      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3000                          DAG.getConstant(NVT.getSizeInBits() -
3001                                          OVT.getSizeInBits(), NVT));
3002    }
3003    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3004    break;
3005  case ISD::BSWAP: {
3006    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3007    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
3008    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3009    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3010                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3011    Results.push_back(Tmp1);
3012    break;
3013  }
3014  case ISD::FP_TO_UINT:
3015  case ISD::FP_TO_SINT:
3016    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3017                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3018    Results.push_back(Tmp1);
3019    break;
3020  case ISD::UINT_TO_FP:
3021  case ISD::SINT_TO_FP:
3022    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3023                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3024    Results.push_back(Tmp1);
3025    break;
3026  case ISD::AND:
3027  case ISD::OR:
3028  case ISD::XOR: {
3029    unsigned ExtOp, TruncOp;
3030    if (OVT.isVector()) {
3031      ExtOp   = ISD::BIT_CONVERT;
3032      TruncOp = ISD::BIT_CONVERT;
3033    } else if (OVT.isInteger()) {
3034      ExtOp   = ISD::ANY_EXTEND;
3035      TruncOp = ISD::TRUNCATE;
3036    } else {
3037      llvm_report_error("Cannot promote logic operation");
3038    }
3039    // Promote each of the values to the new type.
3040    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3041    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3042    // Perform the larger operation, then convert back
3043    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3044    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3045    break;
3046  }
3047  case ISD::SELECT: {
3048    unsigned ExtOp, TruncOp;
3049    if (Node->getValueType(0).isVector()) {
3050      ExtOp   = ISD::BIT_CONVERT;
3051      TruncOp = ISD::BIT_CONVERT;
3052    } else if (Node->getValueType(0).isInteger()) {
3053      ExtOp   = ISD::ANY_EXTEND;
3054      TruncOp = ISD::TRUNCATE;
3055    } else {
3056      ExtOp   = ISD::FP_EXTEND;
3057      TruncOp = ISD::FP_ROUND;
3058    }
3059    Tmp1 = Node->getOperand(0);
3060    // Promote each of the values to the new type.
3061    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3062    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3063    // Perform the larger operation, then round down.
3064    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3065    if (TruncOp != ISD::FP_ROUND)
3066      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3067    else
3068      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3069                         DAG.getIntPtrConstant(0));
3070    Results.push_back(Tmp1);
3071    break;
3072  }
3073  case ISD::VECTOR_SHUFFLE: {
3074    SmallVector<int, 8> Mask;
3075    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3076
3077    // Cast the two input vectors.
3078    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3079    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3080
3081    // Convert the shuffle mask to the right # elements.
3082    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3083    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3084    Results.push_back(Tmp1);
3085    break;
3086  }
3087  case ISD::SETCC: {
3088    unsigned ExtOp = ISD::FP_EXTEND;
3089    if (NVT.isInteger()) {
3090      ISD::CondCode CCCode =
3091        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3092      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3093    }
3094    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3095    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3096    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3097                                  Tmp1, Tmp2, Node->getOperand(2)));
3098    break;
3099  }
3100  }
3101}
3102
3103// SelectionDAG::Legalize - This is the entry point for the file.
3104//
3105void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3106                            CodeGenOpt::Level OptLevel) {
3107  /// run - This is the main entry point to this class.
3108  ///
3109  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3110}
3111
3112