LegalizeDAG.cpp revision 5ecfab6436cffabe6e039b8c9e090b3b4ca05a46
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalVariable.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class SelectionDAGLegalize {
56  const TargetMachine &TM;
57  const TargetLowering &TLI;
58  SelectionDAG &DAG;
59  CodeGenOpt::Level OptLevel;
60
61  // Libcall insertion helpers.
62
63  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64  /// legalized.  We use this to ensure that calls are properly serialized
65  /// against each other, including inserted libcalls.
66  SDValue LastCALLSEQ_END;
67
68  /// IsLegalizingCall - This member is used *only* for purposes of providing
69  /// helpful assertions that a libcall isn't created while another call is
70  /// being legalized (which could lead to non-serialized call sequences).
71  bool IsLegalizingCall;
72
73  enum LegalizeAction {
74    Legal,      // The target natively supports this operation.
75    Promote,    // This operation should be executed in a larger type.
76    Expand      // Try to expand this to other ops, otherwise use a libcall.
77  };
78
79  /// ValueTypeActions - This is a bitvector that contains two bits for each
80  /// value type, where the two bits correspond to the LegalizeAction enum.
81  /// This can be queried with "getTypeAction(VT)".
82  TargetLowering::ValueTypeActionImpl ValueTypeActions;
83
84  /// LegalizedNodes - For nodes that are of legal width, and that have more
85  /// than one use, this map indicates what regularized operand to use.  This
86  /// allows us to avoid legalizing the same thing more than once.
87  DenseMap<SDValue, SDValue> LegalizedNodes;
88
89  void AddLegalizedOperand(SDValue From, SDValue To) {
90    LegalizedNodes.insert(std::make_pair(From, To));
91    // If someone requests legalization of the new node, return itself.
92    if (From != To)
93      LegalizedNodes.insert(std::make_pair(To, To));
94  }
95
96public:
97  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
98
99  /// getTypeAction - Return how we should legalize values of this type, either
100  /// it is already legal or we need to expand it into multiple registers of
101  /// smaller integer type, or we need to promote it to a larger type.
102  LegalizeAction getTypeAction(EVT VT) const {
103    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
104  }
105
106  /// isTypeLegal - Return true if this type is legal on this target.
107  ///
108  bool isTypeLegal(EVT VT) const {
109    return getTypeAction(VT) == Legal;
110  }
111
112  void LegalizeDAG();
113
114private:
115  /// LegalizeOp - We know that the specified value has a legal type.
116  /// Recursively ensure that the operands have legal types, then return the
117  /// result.
118  SDValue LegalizeOp(SDValue O);
119
120  SDValue OptimizeFloatStore(StoreSDNode *ST);
121
122  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
123  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
124  /// is necessary to spill the vector being inserted into to memory, perform
125  /// the insert there, and then read the result back.
126  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
127                                         SDValue Idx, DebugLoc dl);
128  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
129                                  SDValue Idx, DebugLoc dl);
130
131  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
132  /// performs the same shuffe in terms of order or result bytes, but on a type
133  /// whose vector element type is narrower than the original shuffle type.
134  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
135  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
136                                     SDValue N1, SDValue N2,
137                                     SmallVectorImpl<int> &Mask) const;
138
139  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
140                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
141
142  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
143                             DebugLoc dl);
144
145  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
146  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
147                                                 SDNode *Node, bool isSigned);
148  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
149                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
150                          RTLIB::Libcall Call_PPCF128);
151  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
152                           RTLIB::Libcall Call_I8,
153                           RTLIB::Libcall Call_I16,
154                           RTLIB::Libcall Call_I32,
155                           RTLIB::Libcall Call_I64,
156                           RTLIB::Libcall Call_I128);
157
158  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
159  SDValue ExpandBUILD_VECTOR(SDNode *Node);
160  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
161  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
162                                SmallVectorImpl<SDValue> &Results);
163  SDValue ExpandFCOPYSIGN(SDNode *Node);
164  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
165                               DebugLoc dl);
166  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
169                                DebugLoc dl);
170
171  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
172  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
173
174  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
175  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
176
177  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
178
179  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
180  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181};
182}
183
184/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
185/// performs the same shuffe in terms of order or result bytes, but on a type
186/// whose vector element type is narrower than the original shuffle type.
187/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
188SDValue
189SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
190                                                 SDValue N1, SDValue N2,
191                                             SmallVectorImpl<int> &Mask) const {
192  unsigned NumMaskElts = VT.getVectorNumElements();
193  unsigned NumDestElts = NVT.getVectorNumElements();
194  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
195
196  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
197
198  if (NumEltsGrowth == 1)
199    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
200
201  SmallVector<int, 8> NewMask;
202  for (unsigned i = 0; i != NumMaskElts; ++i) {
203    int Idx = Mask[i];
204    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
205      if (Idx < 0)
206        NewMask.push_back(-1);
207      else
208        NewMask.push_back(Idx * NumEltsGrowth + j);
209    }
210  }
211  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
212  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
213  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
214}
215
216SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
217                                           CodeGenOpt::Level ol)
218  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
219    DAG(dag), OptLevel(ol),
220    ValueTypeActions(TLI.getValueTypeActions()) {
221  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
222         "Too many value types for ValueTypeActions to hold!");
223}
224
225void SelectionDAGLegalize::LegalizeDAG() {
226  LastCALLSEQ_END = DAG.getEntryNode();
227  IsLegalizingCall = false;
228
229  // The legalize process is inherently a bottom-up recursive process (users
230  // legalize their uses before themselves).  Given infinite stack space, we
231  // could just start legalizing on the root and traverse the whole graph.  In
232  // practice however, this causes us to run out of stack space on large basic
233  // blocks.  To avoid this problem, compute an ordering of the nodes where each
234  // node is only legalized after all of its operands are legalized.
235  DAG.AssignTopologicalOrder();
236  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
237       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
238    LegalizeOp(SDValue(I, 0));
239
240  // Finally, it's possible the root changed.  Get the new root.
241  SDValue OldRoot = DAG.getRoot();
242  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
243  DAG.setRoot(LegalizedNodes[OldRoot]);
244
245  LegalizedNodes.clear();
246
247  // Remove dead nodes now.
248  DAG.RemoveDeadNodes();
249}
250
251
252/// FindCallEndFromCallStart - Given a chained node that is part of a call
253/// sequence, find the CALLSEQ_END node that terminates the call sequence.
254static SDNode *FindCallEndFromCallStart(SDNode *Node) {
255  if (Node->getOpcode() == ISD::CALLSEQ_END)
256    return Node;
257  if (Node->use_empty())
258    return 0;   // No CallSeqEnd
259
260  // The chain is usually at the end.
261  SDValue TheChain(Node, Node->getNumValues()-1);
262  if (TheChain.getValueType() != MVT::Other) {
263    // Sometimes it's at the beginning.
264    TheChain = SDValue(Node, 0);
265    if (TheChain.getValueType() != MVT::Other) {
266      // Otherwise, hunt for it.
267      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
268        if (Node->getValueType(i) == MVT::Other) {
269          TheChain = SDValue(Node, i);
270          break;
271        }
272
273      // Otherwise, we walked into a node without a chain.
274      if (TheChain.getValueType() != MVT::Other)
275        return 0;
276    }
277  }
278
279  for (SDNode::use_iterator UI = Node->use_begin(),
280       E = Node->use_end(); UI != E; ++UI) {
281
282    // Make sure to only follow users of our token chain.
283    SDNode *User = *UI;
284    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
285      if (User->getOperand(i) == TheChain)
286        if (SDNode *Result = FindCallEndFromCallStart(User))
287          return Result;
288  }
289  return 0;
290}
291
292/// FindCallStartFromCallEnd - Given a chained node that is part of a call
293/// sequence, find the CALLSEQ_START node that initiates the call sequence.
294static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
295  assert(Node && "Didn't find callseq_start for a call??");
296  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
297
298  assert(Node->getOperand(0).getValueType() == MVT::Other &&
299         "Node doesn't have a token chain argument!");
300  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
301}
302
303/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
304/// see if any uses can reach Dest.  If no dest operands can get to dest,
305/// legalize them, legalize ourself, and return false, otherwise, return true.
306///
307/// Keep track of the nodes we fine that actually do lead to Dest in
308/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
309///
310bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
311                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
312  if (N == Dest) return true;  // N certainly leads to Dest :)
313
314  // If we've already processed this node and it does lead to Dest, there is no
315  // need to reprocess it.
316  if (NodesLeadingTo.count(N)) return true;
317
318  // If the first result of this node has been already legalized, then it cannot
319  // reach N.
320  if (LegalizedNodes.count(SDValue(N, 0))) return false;
321
322  // Okay, this node has not already been legalized.  Check and legalize all
323  // operands.  If none lead to Dest, then we can legalize this node.
324  bool OperandsLeadToDest = false;
325  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
326    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
327      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
328                                   NodesLeadingTo);
329
330  if (OperandsLeadToDest) {
331    NodesLeadingTo.insert(N);
332    return true;
333  }
334
335  // Okay, this node looks safe, legalize it and return false.
336  LegalizeOp(SDValue(N, 0));
337  return false;
338}
339
340/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
341/// a load from the constant pool.
342static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
343                                SelectionDAG &DAG, const TargetLowering &TLI) {
344  bool Extend = false;
345  DebugLoc dl = CFP->getDebugLoc();
346
347  // If a FP immediate is precise when represented as a float and if the
348  // target can do an extending load from float to double, we put it into
349  // the constant pool as a float, even if it's is statically typed as a
350  // double.  This shrinks FP constants and canonicalizes them for targets where
351  // an FP extending load is the same cost as a normal load (such as on the x87
352  // fp stack or PPC FP unit).
353  EVT VT = CFP->getValueType(0);
354  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
355  if (!UseCP) {
356    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
357    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
358                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
359  }
360
361  EVT OrigVT = VT;
362  EVT SVT = VT;
363  while (SVT != MVT::f32) {
364    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
365    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
366        // Only do this if the target has a native EXTLOAD instruction from
367        // smaller type.
368        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
369        TLI.ShouldShrinkFPConstant(OrigVT)) {
370      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
371      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
372      VT = SVT;
373      Extend = true;
374    }
375  }
376
377  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
378  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
379  if (Extend)
380    return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, dl,
381                          DAG.getEntryNode(),
382                          CPIdx, MachinePointerInfo::getConstantPool(),
383                          VT, false, false, Alignment);
384  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
385                     MachinePointerInfo::getConstantPool(), false, false,
386                     Alignment);
387}
388
389/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
390static
391SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
392                             const TargetLowering &TLI) {
393  SDValue Chain = ST->getChain();
394  SDValue Ptr = ST->getBasePtr();
395  SDValue Val = ST->getValue();
396  EVT VT = Val.getValueType();
397  int Alignment = ST->getAlignment();
398  DebugLoc dl = ST->getDebugLoc();
399  if (ST->getMemoryVT().isFloatingPoint() ||
400      ST->getMemoryVT().isVector()) {
401    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
402    if (TLI.isTypeLegal(intVT)) {
403      // Expand to a bitconvert of the value to the integer type of the
404      // same size, then a (misaligned) int store.
405      // FIXME: Does not handle truncating floating point stores!
406      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
407      return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
408                          ST->isVolatile(), ST->isNonTemporal(), Alignment);
409    } else {
410      // Do a (aligned) store to a stack slot, then copy from the stack slot
411      // to the final destination using (unaligned) integer loads and stores.
412      EVT StoredVT = ST->getMemoryVT();
413      EVT RegVT =
414        TLI.getRegisterType(*DAG.getContext(),
415                            EVT::getIntegerVT(*DAG.getContext(),
416                                              StoredVT.getSizeInBits()));
417      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
418      unsigned RegBytes = RegVT.getSizeInBits() / 8;
419      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
420
421      // Make sure the stack slot is also aligned for the register type.
422      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
423
424      // Perform the original store, only redirected to the stack slot.
425      SDValue Store = DAG.getTruncStore(Chain, dl,
426                                        Val, StackPtr, MachinePointerInfo(),
427                                        StoredVT, false, false, 0);
428      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
429      SmallVector<SDValue, 8> Stores;
430      unsigned Offset = 0;
431
432      // Do all but one copies using the full register width.
433      for (unsigned i = 1; i < NumRegs; i++) {
434        // Load one integer register's worth from the stack slot.
435        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
436                                   MachinePointerInfo(),
437                                   false, false, 0);
438        // Store it to the final location.  Remember the store.
439        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
440                                    ST->getPointerInfo().getWithOffset(Offset),
441                                      ST->isVolatile(), ST->isNonTemporal(),
442                                      MinAlign(ST->getAlignment(), Offset)));
443        // Increment the pointers.
444        Offset += RegBytes;
445        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
446                               Increment);
447        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
448      }
449
450      // The last store may be partial.  Do a truncating store.  On big-endian
451      // machines this requires an extending load from the stack slot to ensure
452      // that the bits are in the right place.
453      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
454                                    8 * (StoredBytes - Offset));
455
456      // Load from the stack slot.
457      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Store, StackPtr,
458                                    MachinePointerInfo(),
459                                    MemVT, false, false, 0);
460
461      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
462                                         ST->getPointerInfo()
463                                           .getWithOffset(Offset),
464                                         MemVT, ST->isVolatile(),
465                                         ST->isNonTemporal(),
466                                         MinAlign(ST->getAlignment(), Offset)));
467      // The order of the stores doesn't matter - say it with a TokenFactor.
468      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
469                         Stores.size());
470    }
471  }
472  assert(ST->getMemoryVT().isInteger() &&
473         !ST->getMemoryVT().isVector() &&
474         "Unaligned store of unknown type.");
475  // Get the half-size VT
476  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
477  int NumBits = NewStoredVT.getSizeInBits();
478  int IncrementSize = NumBits / 8;
479
480  // Divide the stored value in two parts.
481  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
482  SDValue Lo = Val;
483  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
484
485  // Store the two parts
486  SDValue Store1, Store2;
487  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
488                             ST->getPointerInfo(), NewStoredVT,
489                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
490  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
491                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
492  Alignment = MinAlign(Alignment, IncrementSize);
493  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
494                             ST->getPointerInfo().getWithOffset(IncrementSize),
495                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
496                             Alignment);
497
498  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
499}
500
501/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
502static
503SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
504                            const TargetLowering &TLI) {
505  SDValue Chain = LD->getChain();
506  SDValue Ptr = LD->getBasePtr();
507  EVT VT = LD->getValueType(0);
508  EVT LoadedVT = LD->getMemoryVT();
509  DebugLoc dl = LD->getDebugLoc();
510  if (VT.isFloatingPoint() || VT.isVector()) {
511    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
512    if (TLI.isTypeLegal(intVT)) {
513      // Expand to a (misaligned) integer load of the same size,
514      // then bitconvert to floating point or vector.
515      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
516                                    LD->isVolatile(),
517                                    LD->isNonTemporal(), LD->getAlignment());
518      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
519      if (VT.isFloatingPoint() && LoadedVT != VT)
520        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
521
522      SDValue Ops[] = { Result, Chain };
523      return DAG.getMergeValues(Ops, 2, dl);
524    }
525
526    // Copy the value to a (aligned) stack slot using (unaligned) integer
527    // loads and stores, then do a (aligned) load from the stack slot.
528    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
529    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
530    unsigned RegBytes = RegVT.getSizeInBits() / 8;
531    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
532
533    // Make sure the stack slot is also aligned for the register type.
534    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
535
536    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
537    SmallVector<SDValue, 8> Stores;
538    SDValue StackPtr = StackBase;
539    unsigned Offset = 0;
540
541    // Do all but one copies using the full register width.
542    for (unsigned i = 1; i < NumRegs; i++) {
543      // Load one integer register's worth from the original location.
544      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
545                                 LD->getPointerInfo().getWithOffset(Offset),
546                                 LD->isVolatile(), LD->isNonTemporal(),
547                                 MinAlign(LD->getAlignment(), Offset));
548      // Follow the load with a store to the stack slot.  Remember the store.
549      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
550                                    MachinePointerInfo(), false, false, 0));
551      // Increment the pointers.
552      Offset += RegBytes;
553      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
554      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
555                             Increment);
556    }
557
558    // The last copy may be partial.  Do an extending load.
559    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
560                                  8 * (LoadedBytes - Offset));
561    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Chain, Ptr,
562                                  LD->getPointerInfo().getWithOffset(Offset),
563                                  MemVT, LD->isVolatile(),
564                                  LD->isNonTemporal(),
565                                  MinAlign(LD->getAlignment(), Offset));
566    // Follow the load with a store to the stack slot.  Remember the store.
567    // On big-endian machines this requires a truncating store to ensure
568    // that the bits end up in the right place.
569    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
570                                       MachinePointerInfo(), MemVT,
571                                       false, false, 0));
572
573    // The order of the stores doesn't matter - say it with a TokenFactor.
574    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
575                             Stores.size());
576
577    // Finally, perform the original load only redirected to the stack slot.
578    Load = DAG.getExtLoad(LD->getExtensionType(), VT, dl, TF, StackBase,
579                          MachinePointerInfo(), LoadedVT, false, false, 0);
580
581    // Callers expect a MERGE_VALUES node.
582    SDValue Ops[] = { Load, TF };
583    return DAG.getMergeValues(Ops, 2, dl);
584  }
585  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
586         "Unaligned load of unsupported type.");
587
588  // Compute the new VT that is half the size of the old one.  This is an
589  // integer MVT.
590  unsigned NumBits = LoadedVT.getSizeInBits();
591  EVT NewLoadedVT;
592  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
593  NumBits >>= 1;
594
595  unsigned Alignment = LD->getAlignment();
596  unsigned IncrementSize = NumBits / 8;
597  ISD::LoadExtType HiExtType = LD->getExtensionType();
598
599  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
600  if (HiExtType == ISD::NON_EXTLOAD)
601    HiExtType = ISD::ZEXTLOAD;
602
603  // Load the value in two parts
604  SDValue Lo, Hi;
605  if (TLI.isLittleEndian()) {
606    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr, LD->getPointerInfo(),
607                        NewLoadedVT, LD->isVolatile(),
608                        LD->isNonTemporal(), Alignment);
609    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
610                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
611    Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr,
612                        LD->getPointerInfo().getWithOffset(IncrementSize),
613                        NewLoadedVT, LD->isVolatile(),
614                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
615  } else {
616    Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr, LD->getPointerInfo(),
617                        NewLoadedVT, LD->isVolatile(),
618                        LD->isNonTemporal(), Alignment);
619    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
620                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
621    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr,
622                        LD->getPointerInfo().getWithOffset(IncrementSize),
623                        NewLoadedVT, LD->isVolatile(),
624                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
625  }
626
627  // aggregate the two parts
628  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
629  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
630  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
631
632  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
633                             Hi.getValue(1));
634
635  SDValue Ops[] = { Result, TF };
636  return DAG.getMergeValues(Ops, 2, dl);
637}
638
639/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
640/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
641/// is necessary to spill the vector being inserted into to memory, perform
642/// the insert there, and then read the result back.
643SDValue SelectionDAGLegalize::
644PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
645                               DebugLoc dl) {
646  SDValue Tmp1 = Vec;
647  SDValue Tmp2 = Val;
648  SDValue Tmp3 = Idx;
649
650  // If the target doesn't support this, we have to spill the input vector
651  // to a temporary stack slot, update the element, then reload it.  This is
652  // badness.  We could also load the value into a vector register (either
653  // with a "move to register" or "extload into register" instruction, then
654  // permute it into place, if the idx is a constant and if the idx is
655  // supported by the target.
656  EVT VT    = Tmp1.getValueType();
657  EVT EltVT = VT.getVectorElementType();
658  EVT IdxVT = Tmp3.getValueType();
659  EVT PtrVT = TLI.getPointerTy();
660  SDValue StackPtr = DAG.CreateStackTemporary(VT);
661
662  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
663
664  // Store the vector.
665  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
666                            MachinePointerInfo::getFixedStack(SPFI),
667                            false, false, 0);
668
669  // Truncate or zero extend offset to target pointer type.
670  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
671  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
672  // Add the offset to the index.
673  unsigned EltSize = EltVT.getSizeInBits()/8;
674  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
675  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
676  // Store the scalar value.
677  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
678                         false, false, 0);
679  // Load the updated vector.
680  return DAG.getLoad(VT, dl, Ch, StackPtr,
681                     MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
682}
683
684
685SDValue SelectionDAGLegalize::
686ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
687  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
688    // SCALAR_TO_VECTOR requires that the type of the value being inserted
689    // match the element type of the vector being created, except for
690    // integers in which case the inserted value can be over width.
691    EVT EltVT = Vec.getValueType().getVectorElementType();
692    if (Val.getValueType() == EltVT ||
693        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
694      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
695                                  Vec.getValueType(), Val);
696
697      unsigned NumElts = Vec.getValueType().getVectorNumElements();
698      // We generate a shuffle of InVec and ScVec, so the shuffle mask
699      // should be 0,1,2,3,4,5... with the appropriate element replaced with
700      // elt 0 of the RHS.
701      SmallVector<int, 8> ShufOps;
702      for (unsigned i = 0; i != NumElts; ++i)
703        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
704
705      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
706                                  &ShufOps[0]);
707    }
708  }
709  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
710}
711
712SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
713  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
714  // FIXME: We shouldn't do this for TargetConstantFP's.
715  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
716  // to phase ordering between legalized code and the dag combiner.  This
717  // probably means that we need to integrate dag combiner and legalizer
718  // together.
719  // We generally can't do this one for long doubles.
720  SDValue Tmp1 = ST->getChain();
721  SDValue Tmp2 = ST->getBasePtr();
722  SDValue Tmp3;
723  unsigned Alignment = ST->getAlignment();
724  bool isVolatile = ST->isVolatile();
725  bool isNonTemporal = ST->isNonTemporal();
726  DebugLoc dl = ST->getDebugLoc();
727  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
728    if (CFP->getValueType(0) == MVT::f32 &&
729        getTypeAction(MVT::i32) == Legal) {
730      Tmp3 = DAG.getConstant(CFP->getValueAPF().
731                                      bitcastToAPInt().zextOrTrunc(32),
732                              MVT::i32);
733      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
734                          isVolatile, isNonTemporal, Alignment);
735    }
736
737    if (CFP->getValueType(0) == MVT::f64) {
738      // If this target supports 64-bit registers, do a single 64-bit store.
739      if (getTypeAction(MVT::i64) == Legal) {
740        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
741                                  zextOrTrunc(64), MVT::i64);
742        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
743                            isVolatile, isNonTemporal, Alignment);
744      }
745
746      if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
747        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
748        // stores.  If the target supports neither 32- nor 64-bits, this
749        // xform is certainly not worth it.
750        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
751        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
752        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
753        if (TLI.isBigEndian()) std::swap(Lo, Hi);
754
755        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
756                          isNonTemporal, Alignment);
757        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
758                            DAG.getIntPtrConstant(4));
759        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
760                          ST->getPointerInfo().getWithOffset(4),
761                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
762
763        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
764      }
765    }
766  }
767  return SDValue();
768}
769
770/// LegalizeOp - We know that the specified value has a legal type, and
771/// that its operands are legal.  Now ensure that the operation itself
772/// is legal, recursively ensuring that the operands' operations remain
773/// legal.
774SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
775  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
776    return Op;
777
778  SDNode *Node = Op.getNode();
779  DebugLoc dl = Node->getDebugLoc();
780
781  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
782    assert(getTypeAction(Node->getValueType(i)) == Legal &&
783           "Unexpected illegal type!");
784
785  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
786    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
787            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
788           "Unexpected illegal type!");
789
790  // Note that LegalizeOp may be reentered even from single-use nodes, which
791  // means that we always must cache transformed nodes.
792  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
793  if (I != LegalizedNodes.end()) return I->second;
794
795  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
796  SDValue Result = Op;
797  bool isCustom = false;
798
799  // Figure out the correct action; the way to query this varies by opcode
800  TargetLowering::LegalizeAction Action;
801  bool SimpleFinishLegalizing = true;
802  switch (Node->getOpcode()) {
803  case ISD::INTRINSIC_W_CHAIN:
804  case ISD::INTRINSIC_WO_CHAIN:
805  case ISD::INTRINSIC_VOID:
806  case ISD::VAARG:
807  case ISD::STACKSAVE:
808    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
809    break;
810  case ISD::SINT_TO_FP:
811  case ISD::UINT_TO_FP:
812  case ISD::EXTRACT_VECTOR_ELT:
813    Action = TLI.getOperationAction(Node->getOpcode(),
814                                    Node->getOperand(0).getValueType());
815    break;
816  case ISD::FP_ROUND_INREG:
817  case ISD::SIGN_EXTEND_INREG: {
818    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
819    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
820    break;
821  }
822  case ISD::SELECT_CC:
823  case ISD::SETCC:
824  case ISD::BR_CC: {
825    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
826                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
827    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
828    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
829    ISD::CondCode CCCode =
830        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
831    Action = TLI.getCondCodeAction(CCCode, OpVT);
832    if (Action == TargetLowering::Legal) {
833      if (Node->getOpcode() == ISD::SELECT_CC)
834        Action = TLI.getOperationAction(Node->getOpcode(),
835                                        Node->getValueType(0));
836      else
837        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
838    }
839    break;
840  }
841  case ISD::LOAD:
842  case ISD::STORE:
843    // FIXME: Model these properly.  LOAD and STORE are complicated, and
844    // STORE expects the unlegalized operand in some cases.
845    SimpleFinishLegalizing = false;
846    break;
847  case ISD::CALLSEQ_START:
848  case ISD::CALLSEQ_END:
849    // FIXME: This shouldn't be necessary.  These nodes have special properties
850    // dealing with the recursive nature of legalization.  Removing this
851    // special case should be done as part of making LegalizeDAG non-recursive.
852    SimpleFinishLegalizing = false;
853    break;
854  case ISD::EXTRACT_ELEMENT:
855  case ISD::FLT_ROUNDS_:
856  case ISD::SADDO:
857  case ISD::SSUBO:
858  case ISD::UADDO:
859  case ISD::USUBO:
860  case ISD::SMULO:
861  case ISD::UMULO:
862  case ISD::FPOWI:
863  case ISD::MERGE_VALUES:
864  case ISD::EH_RETURN:
865  case ISD::FRAME_TO_ARGS_OFFSET:
866  case ISD::EH_SJLJ_SETJMP:
867  case ISD::EH_SJLJ_LONGJMP:
868    // These operations lie about being legal: when they claim to be legal,
869    // they should actually be expanded.
870    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
871    if (Action == TargetLowering::Legal)
872      Action = TargetLowering::Expand;
873    break;
874  case ISD::TRAMPOLINE:
875  case ISD::FRAMEADDR:
876  case ISD::RETURNADDR:
877    // These operations lie about being legal: when they claim to be legal,
878    // they should actually be custom-lowered.
879    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
880    if (Action == TargetLowering::Legal)
881      Action = TargetLowering::Custom;
882    break;
883  case ISD::BUILD_VECTOR:
884    // A weird case: legalization for BUILD_VECTOR never legalizes the
885    // operands!
886    // FIXME: This really sucks... changing it isn't semantically incorrect,
887    // but it massively pessimizes the code for floating-point BUILD_VECTORs
888    // because ConstantFP operands get legalized into constant pool loads
889    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
890    // though, because BUILD_VECTORS usually get lowered into other nodes
891    // which get legalized properly.
892    SimpleFinishLegalizing = false;
893    break;
894  default:
895    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
896      Action = TargetLowering::Legal;
897    } else {
898      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
899    }
900    break;
901  }
902
903  if (SimpleFinishLegalizing) {
904    SmallVector<SDValue, 8> Ops, ResultVals;
905    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
906      Ops.push_back(LegalizeOp(Node->getOperand(i)));
907    switch (Node->getOpcode()) {
908    default: break;
909    case ISD::BR:
910    case ISD::BRIND:
911    case ISD::BR_JT:
912    case ISD::BR_CC:
913    case ISD::BRCOND:
914      // Branches tweak the chain to include LastCALLSEQ_END
915      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
916                            LastCALLSEQ_END);
917      Ops[0] = LegalizeOp(Ops[0]);
918      LastCALLSEQ_END = DAG.getEntryNode();
919      break;
920    case ISD::SHL:
921    case ISD::SRL:
922    case ISD::SRA:
923    case ISD::ROTL:
924    case ISD::ROTR:
925      // Legalizing shifts/rotates requires adjusting the shift amount
926      // to the appropriate width.
927      if (!Ops[1].getValueType().isVector())
928        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
929      break;
930    case ISD::SRL_PARTS:
931    case ISD::SRA_PARTS:
932    case ISD::SHL_PARTS:
933      // Legalizing shifts/rotates requires adjusting the shift amount
934      // to the appropriate width.
935      if (!Ops[2].getValueType().isVector())
936        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
937      break;
938    }
939
940    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
941                                            Ops.size()), 0);
942    switch (Action) {
943    case TargetLowering::Legal:
944      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
945        ResultVals.push_back(Result.getValue(i));
946      break;
947    case TargetLowering::Custom:
948      // FIXME: The handling for custom lowering with multiple results is
949      // a complete mess.
950      Tmp1 = TLI.LowerOperation(Result, DAG);
951      if (Tmp1.getNode()) {
952        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
953          if (e == 1)
954            ResultVals.push_back(Tmp1);
955          else
956            ResultVals.push_back(Tmp1.getValue(i));
957        }
958        break;
959      }
960
961      // FALL THROUGH
962    case TargetLowering::Expand:
963      ExpandNode(Result.getNode(), ResultVals);
964      break;
965    case TargetLowering::Promote:
966      PromoteNode(Result.getNode(), ResultVals);
967      break;
968    }
969    if (!ResultVals.empty()) {
970      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
971        if (ResultVals[i] != SDValue(Node, i))
972          ResultVals[i] = LegalizeOp(ResultVals[i]);
973        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
974      }
975      return ResultVals[Op.getResNo()];
976    }
977  }
978
979  switch (Node->getOpcode()) {
980  default:
981#ifndef NDEBUG
982    dbgs() << "NODE: ";
983    Node->dump( &DAG);
984    dbgs() << "\n";
985#endif
986    assert(0 && "Do not know how to legalize this operator!");
987
988  case ISD::BUILD_VECTOR:
989    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
990    default: assert(0 && "This action is not supported yet!");
991    case TargetLowering::Custom:
992      Tmp3 = TLI.LowerOperation(Result, DAG);
993      if (Tmp3.getNode()) {
994        Result = Tmp3;
995        break;
996      }
997      // FALLTHROUGH
998    case TargetLowering::Expand:
999      Result = ExpandBUILD_VECTOR(Result.getNode());
1000      break;
1001    }
1002    break;
1003  case ISD::CALLSEQ_START: {
1004    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1005
1006    // Recursively Legalize all of the inputs of the call end that do not lead
1007    // to this call start.  This ensures that any libcalls that need be inserted
1008    // are inserted *before* the CALLSEQ_START.
1009    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1010    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1011      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1012                                   NodesLeadingTo);
1013    }
1014
1015    // Now that we have legalized all of the inputs (which may have inserted
1016    // libcalls), create the new CALLSEQ_START node.
1017    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1018
1019    // Merge in the last call to ensure that this call starts after the last
1020    // call ended.
1021    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1022      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1023                         Tmp1, LastCALLSEQ_END);
1024      Tmp1 = LegalizeOp(Tmp1);
1025    }
1026
1027    // Do not try to legalize the target-specific arguments (#1+).
1028    if (Tmp1 != Node->getOperand(0)) {
1029      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1030      Ops[0] = Tmp1;
1031      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1032                                              Ops.size()), Result.getResNo());
1033    }
1034
1035    // Remember that the CALLSEQ_START is legalized.
1036    AddLegalizedOperand(Op.getValue(0), Result);
1037    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1038      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1039
1040    // Now that the callseq_start and all of the non-call nodes above this call
1041    // sequence have been legalized, legalize the call itself.  During this
1042    // process, no libcalls can/will be inserted, guaranteeing that no calls
1043    // can overlap.
1044    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1045    // Note that we are selecting this call!
1046    LastCALLSEQ_END = SDValue(CallEnd, 0);
1047    IsLegalizingCall = true;
1048
1049    // Legalize the call, starting from the CALLSEQ_END.
1050    LegalizeOp(LastCALLSEQ_END);
1051    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1052    return Result;
1053  }
1054  case ISD::CALLSEQ_END:
1055    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1056    // will cause this node to be legalized as well as handling libcalls right.
1057    if (LastCALLSEQ_END.getNode() != Node) {
1058      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1059      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1060      assert(I != LegalizedNodes.end() &&
1061             "Legalizing the call start should have legalized this node!");
1062      return I->second;
1063    }
1064
1065    // Otherwise, the call start has been legalized and everything is going
1066    // according to plan.  Just legalize ourselves normally here.
1067    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1068    // Do not try to legalize the target-specific arguments (#1+), except for
1069    // an optional flag input.
1070    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1071      if (Tmp1 != Node->getOperand(0)) {
1072        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1073        Ops[0] = Tmp1;
1074        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1075                                                &Ops[0], Ops.size()),
1076                         Result.getResNo());
1077      }
1078    } else {
1079      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1080      if (Tmp1 != Node->getOperand(0) ||
1081          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1082        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1083        Ops[0] = Tmp1;
1084        Ops.back() = Tmp2;
1085        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1086                                                &Ops[0], Ops.size()),
1087                         Result.getResNo());
1088      }
1089    }
1090    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1091    // This finishes up call legalization.
1092    IsLegalizingCall = false;
1093
1094    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1095    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1096    if (Node->getNumValues() == 2)
1097      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1098    return Result.getValue(Op.getResNo());
1099  case ISD::LOAD: {
1100    LoadSDNode *LD = cast<LoadSDNode>(Node);
1101    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1102    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1103
1104    ISD::LoadExtType ExtType = LD->getExtensionType();
1105    if (ExtType == ISD::NON_EXTLOAD) {
1106      EVT VT = Node->getValueType(0);
1107      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1108                                              Tmp1, Tmp2, LD->getOffset()),
1109                       Result.getResNo());
1110      Tmp3 = Result.getValue(0);
1111      Tmp4 = Result.getValue(1);
1112
1113      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1114      default: assert(0 && "This action is not supported yet!");
1115      case TargetLowering::Legal:
1116        // If this is an unaligned load and the target doesn't support it,
1117        // expand it.
1118        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1119          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1120          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1121          if (LD->getAlignment() < ABIAlignment){
1122            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1123                                         DAG, TLI);
1124            Tmp3 = Result.getOperand(0);
1125            Tmp4 = Result.getOperand(1);
1126            Tmp3 = LegalizeOp(Tmp3);
1127            Tmp4 = LegalizeOp(Tmp4);
1128          }
1129        }
1130        break;
1131      case TargetLowering::Custom:
1132        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1133        if (Tmp1.getNode()) {
1134          Tmp3 = LegalizeOp(Tmp1);
1135          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1136        }
1137        break;
1138      case TargetLowering::Promote: {
1139        // Only promote a load of vector type to another.
1140        assert(VT.isVector() && "Cannot promote this load!");
1141        // Change base type to a different vector type.
1142        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1143
1144        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
1145                           LD->isVolatile(), LD->isNonTemporal(),
1146                           LD->getAlignment());
1147        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1148        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1149        break;
1150      }
1151      }
1152      // Since loads produce two values, make sure to remember that we
1153      // legalized both of them.
1154      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1155      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1156      return Op.getResNo() ? Tmp4 : Tmp3;
1157    }
1158
1159    EVT SrcVT = LD->getMemoryVT();
1160    unsigned SrcWidth = SrcVT.getSizeInBits();
1161    unsigned Alignment = LD->getAlignment();
1162    bool isVolatile = LD->isVolatile();
1163    bool isNonTemporal = LD->isNonTemporal();
1164
1165    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1166        // Some targets pretend to have an i1 loading operation, and actually
1167        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1168        // bits are guaranteed to be zero; it helps the optimizers understand
1169        // that these bits are zero.  It is also useful for EXTLOAD, since it
1170        // tells the optimizers that those bits are undefined.  It would be
1171        // nice to have an effective generic way of getting these benefits...
1172        // Until such a way is found, don't insist on promoting i1 here.
1173        (SrcVT != MVT::i1 ||
1174         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1175      // Promote to a byte-sized load if not loading an integral number of
1176      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1177      unsigned NewWidth = SrcVT.getStoreSizeInBits();
1178      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1179      SDValue Ch;
1180
1181      // The extra bits are guaranteed to be zero, since we stored them that
1182      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1183
1184      ISD::LoadExtType NewExtType =
1185        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1186
1187      Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), dl,
1188                              Tmp1, Tmp2, LD->getPointerInfo(),
1189                              NVT, isVolatile, isNonTemporal, Alignment);
1190
1191      Ch = Result.getValue(1); // The chain.
1192
1193      if (ExtType == ISD::SEXTLOAD)
1194        // Having the top bits zero doesn't help when sign extending.
1195        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1196                             Result.getValueType(),
1197                             Result, DAG.getValueType(SrcVT));
1198      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1199        // All the top bits are guaranteed to be zero - inform the optimizers.
1200        Result = DAG.getNode(ISD::AssertZext, dl,
1201                             Result.getValueType(), Result,
1202                             DAG.getValueType(SrcVT));
1203
1204      Tmp1 = LegalizeOp(Result);
1205      Tmp2 = LegalizeOp(Ch);
1206    } else if (SrcWidth & (SrcWidth - 1)) {
1207      // If not loading a power-of-2 number of bits, expand as two loads.
1208      assert(!SrcVT.isVector() && "Unsupported extload!");
1209      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1210      assert(RoundWidth < SrcWidth);
1211      unsigned ExtraWidth = SrcWidth - RoundWidth;
1212      assert(ExtraWidth < RoundWidth);
1213      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1214             "Load size not an integral number of bytes!");
1215      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1216      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1217      SDValue Lo, Hi, Ch;
1218      unsigned IncrementSize;
1219
1220      if (TLI.isLittleEndian()) {
1221        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1222        // Load the bottom RoundWidth bits.
1223        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), dl,
1224                            Tmp1, Tmp2,
1225                            LD->getPointerInfo(), RoundVT, isVolatile,
1226                            isNonTemporal, Alignment);
1227
1228        // Load the remaining ExtraWidth bits.
1229        IncrementSize = RoundWidth / 8;
1230        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1231                           DAG.getIntPtrConstant(IncrementSize));
1232        Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1233                            LD->getPointerInfo().getWithOffset(IncrementSize),
1234                            ExtraVT, isVolatile, isNonTemporal,
1235                            MinAlign(Alignment, IncrementSize));
1236
1237        // Build a factor node to remember that this load is independent of
1238        // the other one.
1239        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1240                         Hi.getValue(1));
1241
1242        // Move the top bits to the right place.
1243        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1244                         DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1245
1246        // Join the hi and lo parts.
1247        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1248      } else {
1249        // Big endian - avoid unaligned loads.
1250        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1251        // Load the top RoundWidth bits.
1252        Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1253                            LD->getPointerInfo(), RoundVT, isVolatile,
1254                            isNonTemporal, Alignment);
1255
1256        // Load the remaining ExtraWidth bits.
1257        IncrementSize = RoundWidth / 8;
1258        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1259                           DAG.getIntPtrConstant(IncrementSize));
1260        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1261                            Node->getValueType(0), dl, Tmp1, Tmp2,
1262                            LD->getPointerInfo().getWithOffset(IncrementSize),
1263                            ExtraVT, isVolatile, isNonTemporal,
1264                            MinAlign(Alignment, IncrementSize));
1265
1266        // Build a factor node to remember that this load is independent of
1267        // the other one.
1268        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1269                         Hi.getValue(1));
1270
1271        // Move the top bits to the right place.
1272        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1273                         DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1274
1275        // Join the hi and lo parts.
1276        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1277      }
1278
1279      Tmp1 = LegalizeOp(Result);
1280      Tmp2 = LegalizeOp(Ch);
1281    } else {
1282      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1283      default: assert(0 && "This action is not supported yet!");
1284      case TargetLowering::Custom:
1285        isCustom = true;
1286        // FALLTHROUGH
1287      case TargetLowering::Legal:
1288        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1289                                                Tmp1, Tmp2, LD->getOffset()),
1290                         Result.getResNo());
1291        Tmp1 = Result.getValue(0);
1292        Tmp2 = Result.getValue(1);
1293
1294        if (isCustom) {
1295          Tmp3 = TLI.LowerOperation(Result, DAG);
1296          if (Tmp3.getNode()) {
1297            Tmp1 = LegalizeOp(Tmp3);
1298            Tmp2 = LegalizeOp(Tmp3.getValue(1));
1299          }
1300        } else {
1301          // If this is an unaligned load and the target doesn't support it,
1302          // expand it.
1303          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1304            const Type *Ty =
1305              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1306            unsigned ABIAlignment =
1307              TLI.getTargetData()->getABITypeAlignment(Ty);
1308            if (LD->getAlignment() < ABIAlignment){
1309              Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1310                                           DAG, TLI);
1311              Tmp1 = Result.getOperand(0);
1312              Tmp2 = Result.getOperand(1);
1313              Tmp1 = LegalizeOp(Tmp1);
1314              Tmp2 = LegalizeOp(Tmp2);
1315            }
1316          }
1317        }
1318        break;
1319      case TargetLowering::Expand:
1320        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && isTypeLegal(SrcVT)) {
1321          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1322                                     LD->getPointerInfo(),
1323                                     LD->isVolatile(), LD->isNonTemporal(),
1324                                     LD->getAlignment());
1325          unsigned ExtendOp;
1326          switch (ExtType) {
1327          case ISD::EXTLOAD:
1328            ExtendOp = (SrcVT.isFloatingPoint() ?
1329                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1330            break;
1331          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1332          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1333          default: llvm_unreachable("Unexpected extend load type!");
1334          }
1335          Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1336          Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1337          Tmp2 = LegalizeOp(Load.getValue(1));
1338          break;
1339        }
1340        // FIXME: This does not work for vectors on most targets.  Sign- and
1341        // zero-extend operations are currently folded into extending loads,
1342        // whether they are legal or not, and then we end up here without any
1343        // support for legalizing them.
1344        assert(ExtType != ISD::EXTLOAD &&
1345               "EXTLOAD should always be supported!");
1346        // Turn the unsupported load into an EXTLOAD followed by an explicit
1347        // zero/sign extend inreg.
1348        Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), dl,
1349                                Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1350                                LD->isVolatile(), LD->isNonTemporal(),
1351                                LD->getAlignment());
1352        SDValue ValRes;
1353        if (ExtType == ISD::SEXTLOAD)
1354          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1355                               Result.getValueType(),
1356                               Result, DAG.getValueType(SrcVT));
1357        else
1358          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1359        Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1360        Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1361        break;
1362      }
1363    }
1364
1365    // Since loads produce two values, make sure to remember that we legalized
1366    // both of them.
1367    AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1368    AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1369    return Op.getResNo() ? Tmp2 : Tmp1;
1370  }
1371  case ISD::STORE: {
1372    StoreSDNode *ST = cast<StoreSDNode>(Node);
1373    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1374    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1375    unsigned Alignment = ST->getAlignment();
1376    bool isVolatile = ST->isVolatile();
1377    bool isNonTemporal = ST->isNonTemporal();
1378
1379    if (!ST->isTruncatingStore()) {
1380      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1381        Result = SDValue(OptStore, 0);
1382        break;
1383      }
1384
1385      {
1386        Tmp3 = LegalizeOp(ST->getValue());
1387        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1388                                                Tmp1, Tmp3, Tmp2,
1389                                                ST->getOffset()),
1390                         Result.getResNo());
1391
1392        EVT VT = Tmp3.getValueType();
1393        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1394        default: assert(0 && "This action is not supported yet!");
1395        case TargetLowering::Legal:
1396          // If this is an unaligned store and the target doesn't support it,
1397          // expand it.
1398          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1399            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1400            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1401            if (ST->getAlignment() < ABIAlignment)
1402              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1403                                            DAG, TLI);
1404          }
1405          break;
1406        case TargetLowering::Custom:
1407          Tmp1 = TLI.LowerOperation(Result, DAG);
1408          if (Tmp1.getNode()) Result = Tmp1;
1409          break;
1410        case TargetLowering::Promote:
1411          assert(VT.isVector() && "Unknown legal promote case!");
1412          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1413                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1414          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1415                                ST->getPointerInfo(), isVolatile,
1416                                isNonTemporal, Alignment);
1417          break;
1418        }
1419        break;
1420      }
1421    } else {
1422      Tmp3 = LegalizeOp(ST->getValue());
1423
1424      EVT StVT = ST->getMemoryVT();
1425      unsigned StWidth = StVT.getSizeInBits();
1426
1427      if (StWidth != StVT.getStoreSizeInBits()) {
1428        // Promote to a byte-sized store with upper bits zero if not
1429        // storing an integral number of bytes.  For example, promote
1430        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1431        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1432                                    StVT.getStoreSizeInBits());
1433        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1434        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1435                                   NVT, isVolatile, isNonTemporal, Alignment);
1436      } else if (StWidth & (StWidth - 1)) {
1437        // If not storing a power-of-2 number of bits, expand as two stores.
1438        assert(!StVT.isVector() && "Unsupported truncstore!");
1439        unsigned RoundWidth = 1 << Log2_32(StWidth);
1440        assert(RoundWidth < StWidth);
1441        unsigned ExtraWidth = StWidth - RoundWidth;
1442        assert(ExtraWidth < RoundWidth);
1443        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1444               "Store size not an integral number of bytes!");
1445        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1446        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1447        SDValue Lo, Hi;
1448        unsigned IncrementSize;
1449
1450        if (TLI.isLittleEndian()) {
1451          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1452          // Store the bottom RoundWidth bits.
1453          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1454                                 RoundVT,
1455                                 isVolatile, isNonTemporal, Alignment);
1456
1457          // Store the remaining ExtraWidth bits.
1458          IncrementSize = RoundWidth / 8;
1459          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1460                             DAG.getIntPtrConstant(IncrementSize));
1461          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1462                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1463          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1464                             ST->getPointerInfo().getWithOffset(IncrementSize),
1465                                 ExtraVT, isVolatile, isNonTemporal,
1466                                 MinAlign(Alignment, IncrementSize));
1467        } else {
1468          // Big endian - avoid unaligned stores.
1469          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1470          // Store the top RoundWidth bits.
1471          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1472                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1473          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1474                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1475
1476          // Store the remaining ExtraWidth bits.
1477          IncrementSize = RoundWidth / 8;
1478          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1479                             DAG.getIntPtrConstant(IncrementSize));
1480          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1481                              ST->getPointerInfo().getWithOffset(IncrementSize),
1482                                 ExtraVT, isVolatile, isNonTemporal,
1483                                 MinAlign(Alignment, IncrementSize));
1484        }
1485
1486        // The order of the stores doesn't matter.
1487        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1488      } else {
1489        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1490            Tmp2 != ST->getBasePtr())
1491          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1492                                                  Tmp1, Tmp3, Tmp2,
1493                                                  ST->getOffset()),
1494                           Result.getResNo());
1495
1496        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1497        default: assert(0 && "This action is not supported yet!");
1498        case TargetLowering::Legal:
1499          // If this is an unaligned store and the target doesn't support it,
1500          // expand it.
1501          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1502            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1503            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1504            if (ST->getAlignment() < ABIAlignment)
1505              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1506                                            DAG, TLI);
1507          }
1508          break;
1509        case TargetLowering::Custom:
1510          Result = TLI.LowerOperation(Result, DAG);
1511          break;
1512        case Expand:
1513          // TRUNCSTORE:i16 i32 -> STORE i16
1514          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1515          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1516          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1517                                isVolatile, isNonTemporal, Alignment);
1518          break;
1519        }
1520      }
1521    }
1522    break;
1523  }
1524  }
1525  assert(Result.getValueType() == Op.getValueType() &&
1526         "Bad legalization!");
1527
1528  // Make sure that the generated code is itself legal.
1529  if (Result != Op)
1530    Result = LegalizeOp(Result);
1531
1532  // Note that LegalizeOp may be reentered even from single-use nodes, which
1533  // means that we always must cache transformed nodes.
1534  AddLegalizedOperand(Op, Result);
1535  return Result;
1536}
1537
1538SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1539  SDValue Vec = Op.getOperand(0);
1540  SDValue Idx = Op.getOperand(1);
1541  DebugLoc dl = Op.getDebugLoc();
1542  // Store the value to a temporary stack slot, then LOAD the returned part.
1543  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1544  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1545                            MachinePointerInfo(), false, false, 0);
1546
1547  // Add the offset to the index.
1548  unsigned EltSize =
1549      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1550  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1551                    DAG.getConstant(EltSize, Idx.getValueType()));
1552
1553  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1554    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1555  else
1556    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1557
1558  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1559
1560  if (Op.getValueType().isVector())
1561    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1562                       false, false, 0);
1563  return DAG.getExtLoad(ISD::EXTLOAD, Op.getValueType(), dl, Ch, StackPtr,
1564                        MachinePointerInfo(),
1565                        Vec.getValueType().getVectorElementType(),
1566                        false, false, 0);
1567}
1568
1569SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1570  // We can't handle this case efficiently.  Allocate a sufficiently
1571  // aligned object on the stack, store each element into it, then load
1572  // the result as a vector.
1573  // Create the stack frame object.
1574  EVT VT = Node->getValueType(0);
1575  EVT EltVT = VT.getVectorElementType();
1576  DebugLoc dl = Node->getDebugLoc();
1577  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1578  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1579  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1580
1581  // Emit a store of each element to the stack slot.
1582  SmallVector<SDValue, 8> Stores;
1583  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1584  // Store (in the right endianness) the elements to memory.
1585  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1586    // Ignore undef elements.
1587    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1588
1589    unsigned Offset = TypeByteSize*i;
1590
1591    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1592    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1593
1594    // If the destination vector element type is narrower than the source
1595    // element type, only store the bits necessary.
1596    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1597      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1598                                         Node->getOperand(i), Idx,
1599                                         PtrInfo.getWithOffset(Offset),
1600                                         EltVT, false, false, 0));
1601    } else
1602      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1603                                    Node->getOperand(i), Idx,
1604                                    PtrInfo.getWithOffset(Offset),
1605                                    false, false, 0));
1606  }
1607
1608  SDValue StoreChain;
1609  if (!Stores.empty())    // Not all undef elements?
1610    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1611                             &Stores[0], Stores.size());
1612  else
1613    StoreChain = DAG.getEntryNode();
1614
1615  // Result is a load from the stack slot.
1616  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1617}
1618
1619SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1620  DebugLoc dl = Node->getDebugLoc();
1621  SDValue Tmp1 = Node->getOperand(0);
1622  SDValue Tmp2 = Node->getOperand(1);
1623
1624  // Get the sign bit of the RHS.  First obtain a value that has the same
1625  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1626  SDValue SignBit;
1627  EVT FloatVT = Tmp2.getValueType();
1628  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1629  if (isTypeLegal(IVT)) {
1630    // Convert to an integer with the same sign bit.
1631    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1632  } else {
1633    // Store the float to memory, then load the sign part out as an integer.
1634    MVT LoadTy = TLI.getPointerTy();
1635    // First create a temporary that is aligned for both the load and store.
1636    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1637    // Then store the float to it.
1638    SDValue Ch =
1639      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1640                   false, false, 0);
1641    if (TLI.isBigEndian()) {
1642      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1643      // Load out a legal integer with the same sign bit as the float.
1644      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1645                            false, false, 0);
1646    } else { // Little endian
1647      SDValue LoadPtr = StackPtr;
1648      // The float may be wider than the integer we are going to load.  Advance
1649      // the pointer so that the loaded integer will contain the sign bit.
1650      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1651      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1652      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1653                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1654      // Load a legal integer containing the sign bit.
1655      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1656                            false, false, 0);
1657      // Move the sign bit to the top bit of the loaded integer.
1658      unsigned BitShift = LoadTy.getSizeInBits() -
1659        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1660      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1661      if (BitShift)
1662        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1663                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1664    }
1665  }
1666  // Now get the sign bit proper, by seeing whether the value is negative.
1667  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1668                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1669                         ISD::SETLT);
1670  // Get the absolute value of the result.
1671  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1672  // Select between the nabs and abs value based on the sign bit of
1673  // the input.
1674  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1675                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1676                     AbsVal);
1677}
1678
1679void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1680                                           SmallVectorImpl<SDValue> &Results) {
1681  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1682  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1683          " not tell us which reg is the stack pointer!");
1684  DebugLoc dl = Node->getDebugLoc();
1685  EVT VT = Node->getValueType(0);
1686  SDValue Tmp1 = SDValue(Node, 0);
1687  SDValue Tmp2 = SDValue(Node, 1);
1688  SDValue Tmp3 = Node->getOperand(2);
1689  SDValue Chain = Tmp1.getOperand(0);
1690
1691  // Chain the dynamic stack allocation so that it doesn't modify the stack
1692  // pointer when other instructions are using the stack.
1693  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1694
1695  SDValue Size  = Tmp2.getOperand(1);
1696  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1697  Chain = SP.getValue(1);
1698  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1699  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1700  if (Align > StackAlign)
1701    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1702                      DAG.getConstant(-(uint64_t)Align, VT));
1703  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1704  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1705
1706  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1707                            DAG.getIntPtrConstant(0, true), SDValue());
1708
1709  Results.push_back(Tmp1);
1710  Results.push_back(Tmp2);
1711}
1712
1713/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1714/// condition code CC on the current target. This routine expands SETCC with
1715/// illegal condition code into AND / OR of multiple SETCC values.
1716void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1717                                                 SDValue &LHS, SDValue &RHS,
1718                                                 SDValue &CC,
1719                                                 DebugLoc dl) {
1720  EVT OpVT = LHS.getValueType();
1721  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1722  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1723  default: assert(0 && "Unknown condition code action!");
1724  case TargetLowering::Legal:
1725    // Nothing to do.
1726    break;
1727  case TargetLowering::Expand: {
1728    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1729    unsigned Opc = 0;
1730    switch (CCCode) {
1731    default: assert(0 && "Don't know how to expand this condition!");
1732    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1733    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1734    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1735    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1736    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1737    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1738    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1739    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1740    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1741    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1742    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1743    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1744    // FIXME: Implement more expansions.
1745    }
1746
1747    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1748    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1749    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1750    RHS = SDValue();
1751    CC  = SDValue();
1752    break;
1753  }
1754  }
1755}
1756
1757/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1758/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1759/// a load from the stack slot to DestVT, extending it if needed.
1760/// The resultant code need not be legal.
1761SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1762                                               EVT SlotVT,
1763                                               EVT DestVT,
1764                                               DebugLoc dl) {
1765  // Create the stack frame object.
1766  unsigned SrcAlign =
1767    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1768                                              getTypeForEVT(*DAG.getContext()));
1769  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1770
1771  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1772  int SPFI = StackPtrFI->getIndex();
1773  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1774
1775  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1776  unsigned SlotSize = SlotVT.getSizeInBits();
1777  unsigned DestSize = DestVT.getSizeInBits();
1778  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1779  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1780
1781  // Emit a store to the stack slot.  Use a truncstore if the input value is
1782  // later than DestVT.
1783  SDValue Store;
1784
1785  if (SrcSize > SlotSize)
1786    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1787                              PtrInfo, SlotVT, false, false, SrcAlign);
1788  else {
1789    assert(SrcSize == SlotSize && "Invalid store");
1790    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1791                         PtrInfo, false, false, SrcAlign);
1792  }
1793
1794  // Result is a load from the stack slot.
1795  if (SlotSize == DestSize)
1796    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1797                       false, false, DestAlign);
1798
1799  assert(SlotSize < DestSize && "Unknown extension!");
1800  return DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl, Store, FIPtr,
1801                        PtrInfo, SlotVT, false, false, DestAlign);
1802}
1803
1804SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1805  DebugLoc dl = Node->getDebugLoc();
1806  // Create a vector sized/aligned stack slot, store the value to element #0,
1807  // then load the whole vector back out.
1808  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1809
1810  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1811  int SPFI = StackPtrFI->getIndex();
1812
1813  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1814                                 StackPtr,
1815                                 MachinePointerInfo::getFixedStack(SPFI),
1816                                 Node->getValueType(0).getVectorElementType(),
1817                                 false, false, 0);
1818  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1819                     MachinePointerInfo::getFixedStack(SPFI),
1820                     false, false, 0);
1821}
1822
1823
1824/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1825/// support the operation, but do support the resultant vector type.
1826SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1827  unsigned NumElems = Node->getNumOperands();
1828  SDValue Value1, Value2;
1829  DebugLoc dl = Node->getDebugLoc();
1830  EVT VT = Node->getValueType(0);
1831  EVT OpVT = Node->getOperand(0).getValueType();
1832  EVT EltVT = VT.getVectorElementType();
1833
1834  // If the only non-undef value is the low element, turn this into a
1835  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1836  bool isOnlyLowElement = true;
1837  bool MoreThanTwoValues = false;
1838  bool isConstant = true;
1839  for (unsigned i = 0; i < NumElems; ++i) {
1840    SDValue V = Node->getOperand(i);
1841    if (V.getOpcode() == ISD::UNDEF)
1842      continue;
1843    if (i > 0)
1844      isOnlyLowElement = false;
1845    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1846      isConstant = false;
1847
1848    if (!Value1.getNode()) {
1849      Value1 = V;
1850    } else if (!Value2.getNode()) {
1851      if (V != Value1)
1852        Value2 = V;
1853    } else if (V != Value1 && V != Value2) {
1854      MoreThanTwoValues = true;
1855    }
1856  }
1857
1858  if (!Value1.getNode())
1859    return DAG.getUNDEF(VT);
1860
1861  if (isOnlyLowElement)
1862    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1863
1864  // If all elements are constants, create a load from the constant pool.
1865  if (isConstant) {
1866    std::vector<Constant*> CV;
1867    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1868      if (ConstantFPSDNode *V =
1869          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1870        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1871      } else if (ConstantSDNode *V =
1872                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1873        if (OpVT==EltVT)
1874          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1875        else {
1876          // If OpVT and EltVT don't match, EltVT is not legal and the
1877          // element values have been promoted/truncated earlier.  Undo this;
1878          // we don't want a v16i8 to become a v16i32 for example.
1879          const ConstantInt *CI = V->getConstantIntValue();
1880          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1881                                        CI->getZExtValue()));
1882        }
1883      } else {
1884        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1885        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1886        CV.push_back(UndefValue::get(OpNTy));
1887      }
1888    }
1889    Constant *CP = ConstantVector::get(CV);
1890    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1891    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1892    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1893                       MachinePointerInfo::getConstantPool(),
1894                       false, false, Alignment);
1895  }
1896
1897  if (!MoreThanTwoValues) {
1898    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1899    for (unsigned i = 0; i < NumElems; ++i) {
1900      SDValue V = Node->getOperand(i);
1901      if (V.getOpcode() == ISD::UNDEF)
1902        continue;
1903      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1904    }
1905    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1906      // Get the splatted value into the low element of a vector register.
1907      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1908      SDValue Vec2;
1909      if (Value2.getNode())
1910        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1911      else
1912        Vec2 = DAG.getUNDEF(VT);
1913
1914      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1915      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1916    }
1917  }
1918
1919  // Otherwise, we can't handle this case efficiently.
1920  return ExpandVectorBuildThroughStack(Node);
1921}
1922
1923// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1924// does not fit into a register, return the lo part and set the hi part to the
1925// by-reg argument.  If it does fit into a single register, return the result
1926// and leave the Hi part unset.
1927SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1928                                            bool isSigned) {
1929  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1930  // The input chain to this libcall is the entry node of the function.
1931  // Legalizing the call will automatically add the previous call to the
1932  // dependence.
1933  SDValue InChain = DAG.getEntryNode();
1934
1935  TargetLowering::ArgListTy Args;
1936  TargetLowering::ArgListEntry Entry;
1937  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1938    EVT ArgVT = Node->getOperand(i).getValueType();
1939    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1940    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1941    Entry.isSExt = isSigned;
1942    Entry.isZExt = !isSigned;
1943    Args.push_back(Entry);
1944  }
1945  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1946                                         TLI.getPointerTy());
1947
1948  // Splice the libcall in wherever FindInputOutputChains tells us to.
1949  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1950  std::pair<SDValue, SDValue> CallInfo =
1951    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1952                    0, TLI.getLibcallCallingConv(LC), false,
1953                    /*isReturnValueUsed=*/true,
1954                    Callee, Args, DAG, Node->getDebugLoc());
1955
1956  // Legalize the call sequence, starting with the chain.  This will advance
1957  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1958  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1959  LegalizeOp(CallInfo.second);
1960  return CallInfo.first;
1961}
1962
1963// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1964// ExpandLibCall except that the first operand is the in-chain.
1965std::pair<SDValue, SDValue>
1966SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1967                                         SDNode *Node,
1968                                         bool isSigned) {
1969  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1970  SDValue InChain = Node->getOperand(0);
1971
1972  TargetLowering::ArgListTy Args;
1973  TargetLowering::ArgListEntry Entry;
1974  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1975    EVT ArgVT = Node->getOperand(i).getValueType();
1976    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1977    Entry.Node = Node->getOperand(i);
1978    Entry.Ty = ArgTy;
1979    Entry.isSExt = isSigned;
1980    Entry.isZExt = !isSigned;
1981    Args.push_back(Entry);
1982  }
1983  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1984                                         TLI.getPointerTy());
1985
1986  // Splice the libcall in wherever FindInputOutputChains tells us to.
1987  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1988  std::pair<SDValue, SDValue> CallInfo =
1989    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1990                    0, TLI.getLibcallCallingConv(LC), false,
1991                    /*isReturnValueUsed=*/true,
1992                    Callee, Args, DAG, Node->getDebugLoc());
1993
1994  // Legalize the call sequence, starting with the chain.  This will advance
1995  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1996  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1997  LegalizeOp(CallInfo.second);
1998  return CallInfo;
1999}
2000
2001SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2002                                              RTLIB::Libcall Call_F32,
2003                                              RTLIB::Libcall Call_F64,
2004                                              RTLIB::Libcall Call_F80,
2005                                              RTLIB::Libcall Call_PPCF128) {
2006  RTLIB::Libcall LC;
2007  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2008  default: assert(0 && "Unexpected request for libcall!");
2009  case MVT::f32: LC = Call_F32; break;
2010  case MVT::f64: LC = Call_F64; break;
2011  case MVT::f80: LC = Call_F80; break;
2012  case MVT::ppcf128: LC = Call_PPCF128; break;
2013  }
2014  return ExpandLibCall(LC, Node, false);
2015}
2016
2017SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2018                                               RTLIB::Libcall Call_I8,
2019                                               RTLIB::Libcall Call_I16,
2020                                               RTLIB::Libcall Call_I32,
2021                                               RTLIB::Libcall Call_I64,
2022                                               RTLIB::Libcall Call_I128) {
2023  RTLIB::Libcall LC;
2024  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2025  default: assert(0 && "Unexpected request for libcall!");
2026  case MVT::i8:   LC = Call_I8; break;
2027  case MVT::i16:  LC = Call_I16; break;
2028  case MVT::i32:  LC = Call_I32; break;
2029  case MVT::i64:  LC = Call_I64; break;
2030  case MVT::i128: LC = Call_I128; break;
2031  }
2032  return ExpandLibCall(LC, Node, isSigned);
2033}
2034
2035/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2036/// INT_TO_FP operation of the specified operand when the target requests that
2037/// we expand it.  At this point, we know that the result and operand types are
2038/// legal for the target.
2039SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2040                                                   SDValue Op0,
2041                                                   EVT DestVT,
2042                                                   DebugLoc dl) {
2043  if (Op0.getValueType() == MVT::i32) {
2044    // simple 32-bit [signed|unsigned] integer to float/double expansion
2045
2046    // Get the stack frame index of a 8 byte buffer.
2047    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2048
2049    // word offset constant for Hi/Lo address computation
2050    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2051    // set up Hi and Lo (into buffer) address based on endian
2052    SDValue Hi = StackSlot;
2053    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2054                             TLI.getPointerTy(), StackSlot, WordOff);
2055    if (TLI.isLittleEndian())
2056      std::swap(Hi, Lo);
2057
2058    // if signed map to unsigned space
2059    SDValue Op0Mapped;
2060    if (isSigned) {
2061      // constant used to invert sign bit (signed to unsigned mapping)
2062      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2063      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2064    } else {
2065      Op0Mapped = Op0;
2066    }
2067    // store the lo of the constructed double - based on integer input
2068    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2069                                  Op0Mapped, Lo, MachinePointerInfo(),
2070                                  false, false, 0);
2071    // initial hi portion of constructed double
2072    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2073    // store the hi of the constructed double - biased exponent
2074    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2075                                  MachinePointerInfo(),
2076                                  false, false, 0);
2077    // load the constructed double
2078    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2079                               MachinePointerInfo(), false, false, 0);
2080    // FP constant to bias correct the final result
2081    SDValue Bias = DAG.getConstantFP(isSigned ?
2082                                     BitsToDouble(0x4330000080000000ULL) :
2083                                     BitsToDouble(0x4330000000000000ULL),
2084                                     MVT::f64);
2085    // subtract the bias
2086    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2087    // final result
2088    SDValue Result;
2089    // handle final rounding
2090    if (DestVT == MVT::f64) {
2091      // do nothing
2092      Result = Sub;
2093    } else if (DestVT.bitsLT(MVT::f64)) {
2094      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2095                           DAG.getIntPtrConstant(0));
2096    } else if (DestVT.bitsGT(MVT::f64)) {
2097      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2098    }
2099    return Result;
2100  }
2101  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2102  // Code below here assumes !isSigned without checking again.
2103
2104  // Implementation of unsigned i64 to f64 following the algorithm in
2105  // __floatundidf in compiler_rt. This implementation has the advantage
2106  // of performing rounding correctly, both in the default rounding mode
2107  // and in all alternate rounding modes.
2108  // TODO: Generalize this for use with other types.
2109  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2110    SDValue TwoP52 =
2111      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2112    SDValue TwoP84PlusTwoP52 =
2113      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2114    SDValue TwoP84 =
2115      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2116
2117    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2118    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2119                             DAG.getConstant(32, MVT::i64));
2120    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2121    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2122    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2123    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2124    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2125                                TwoP84PlusTwoP52);
2126    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2127  }
2128
2129  // Implementation of unsigned i64 to f32.
2130  // TODO: Generalize this for use with other types.
2131  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2132    // For unsigned conversions, convert them to signed conversions using the
2133    // algorithm from the x86_64 __floatundidf in compiler_rt.
2134    if (!isSigned) {
2135      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2136
2137      SDValue ShiftConst = DAG.getConstant(1, TLI.getShiftAmountTy());
2138      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2139      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2140      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2141      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2142
2143      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2144      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2145
2146      // TODO: This really should be implemented using a branch rather than a
2147      // select.  We happen to get lucky and machinesink does the right
2148      // thing most of the time.  This would be a good candidate for a
2149      //pseudo-op, or, even better, for whole-function isel.
2150      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2151        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2152      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2153    }
2154
2155    // Otherwise, implement the fully general conversion.
2156    EVT SHVT = TLI.getShiftAmountTy();
2157
2158    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2159         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2160    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2161         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2162    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2163         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2164    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2165                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2166    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2167    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2168                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2169                   ISD::SETUGE);
2170    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2171
2172    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2173                             DAG.getConstant(32, SHVT));
2174    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2175    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2176    SDValue TwoP32 =
2177      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2178    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2179    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2180    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2181    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2182    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2183                       DAG.getIntPtrConstant(0));
2184  }
2185
2186  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2187
2188  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2189                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2190                                 ISD::SETLT);
2191  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2192  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2193                                    SignSet, Four, Zero);
2194
2195  // If the sign bit of the integer is set, the large number will be treated
2196  // as a negative number.  To counteract this, the dynamic code adds an
2197  // offset depending on the data type.
2198  uint64_t FF;
2199  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2200  default: assert(0 && "Unsupported integer type!");
2201  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2202  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2203  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2204  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2205  }
2206  if (TLI.isLittleEndian()) FF <<= 32;
2207  Constant *FudgeFactor = ConstantInt::get(
2208                                       Type::getInt64Ty(*DAG.getContext()), FF);
2209
2210  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2211  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2212  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2213  Alignment = std::min(Alignment, 4u);
2214  SDValue FudgeInReg;
2215  if (DestVT == MVT::f32)
2216    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2217                             MachinePointerInfo::getConstantPool(),
2218                             false, false, Alignment);
2219  else {
2220    FudgeInReg =
2221      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl,
2222                                DAG.getEntryNode(), CPIdx,
2223                                MachinePointerInfo::getConstantPool(),
2224                                MVT::f32, false, false, Alignment));
2225  }
2226
2227  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2228}
2229
2230/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2231/// *INT_TO_FP operation of the specified operand when the target requests that
2232/// we promote it.  At this point, we know that the result and operand types are
2233/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2234/// operation that takes a larger input.
2235SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2236                                                    EVT DestVT,
2237                                                    bool isSigned,
2238                                                    DebugLoc dl) {
2239  // First step, figure out the appropriate *INT_TO_FP operation to use.
2240  EVT NewInTy = LegalOp.getValueType();
2241
2242  unsigned OpToUse = 0;
2243
2244  // Scan for the appropriate larger type to use.
2245  while (1) {
2246    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2247    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2248
2249    // If the target supports SINT_TO_FP of this type, use it.
2250    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2251      OpToUse = ISD::SINT_TO_FP;
2252      break;
2253    }
2254    if (isSigned) continue;
2255
2256    // If the target supports UINT_TO_FP of this type, use it.
2257    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2258      OpToUse = ISD::UINT_TO_FP;
2259      break;
2260    }
2261
2262    // Otherwise, try a larger type.
2263  }
2264
2265  // Okay, we found the operation and type to use.  Zero extend our input to the
2266  // desired type then run the operation on it.
2267  return DAG.getNode(OpToUse, dl, DestVT,
2268                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2269                                 dl, NewInTy, LegalOp));
2270}
2271
2272/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2273/// FP_TO_*INT operation of the specified operand when the target requests that
2274/// we promote it.  At this point, we know that the result and operand types are
2275/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2276/// operation that returns a larger result.
2277SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2278                                                    EVT DestVT,
2279                                                    bool isSigned,
2280                                                    DebugLoc dl) {
2281  // First step, figure out the appropriate FP_TO*INT operation to use.
2282  EVT NewOutTy = DestVT;
2283
2284  unsigned OpToUse = 0;
2285
2286  // Scan for the appropriate larger type to use.
2287  while (1) {
2288    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2289    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2290
2291    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2292      OpToUse = ISD::FP_TO_SINT;
2293      break;
2294    }
2295
2296    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2297      OpToUse = ISD::FP_TO_UINT;
2298      break;
2299    }
2300
2301    // Otherwise, try a larger type.
2302  }
2303
2304
2305  // Okay, we found the operation and type to use.
2306  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2307
2308  // Truncate the result of the extended FP_TO_*INT operation to the desired
2309  // size.
2310  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2311}
2312
2313/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2314///
2315SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2316  EVT VT = Op.getValueType();
2317  EVT SHVT = TLI.getShiftAmountTy();
2318  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2319  switch (VT.getSimpleVT().SimpleTy) {
2320  default: assert(0 && "Unhandled Expand type in BSWAP!");
2321  case MVT::i16:
2322    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2323    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2324    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2325  case MVT::i32:
2326    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2327    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2328    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2329    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2330    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2331    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2332    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2333    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2334    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2335  case MVT::i64:
2336    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2337    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2338    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2339    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2340    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2341    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2342    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2343    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2344    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2345    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2346    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2347    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2348    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2349    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2350    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2351    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2352    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2353    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2354    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2355    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2356    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2357  }
2358}
2359
2360/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2361///
2362SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2363                                             DebugLoc dl) {
2364  switch (Opc) {
2365  default: assert(0 && "Cannot expand this yet!");
2366  case ISD::CTPOP: {
2367    static const uint64_t mask[6] = {
2368      0x5555555555555555ULL, 0x3333333333333333ULL,
2369      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2370      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2371    };
2372    EVT VT = Op.getValueType();
2373    EVT ShVT = TLI.getShiftAmountTy();
2374    unsigned len = VT.getSizeInBits();
2375    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2376      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2377      unsigned EltSize = VT.isVector() ?
2378        VT.getVectorElementType().getSizeInBits() : len;
2379      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2380      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2381      Op = DAG.getNode(ISD::ADD, dl, VT,
2382                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2383                       DAG.getNode(ISD::AND, dl, VT,
2384                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2385                                   Tmp2));
2386    }
2387    return Op;
2388  }
2389  case ISD::CTLZ: {
2390    // for now, we do this:
2391    // x = x | (x >> 1);
2392    // x = x | (x >> 2);
2393    // ...
2394    // x = x | (x >>16);
2395    // x = x | (x >>32); // for 64-bit input
2396    // return popcount(~x);
2397    //
2398    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2399    EVT VT = Op.getValueType();
2400    EVT ShVT = TLI.getShiftAmountTy();
2401    unsigned len = VT.getSizeInBits();
2402    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2403      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2404      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2405                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2406    }
2407    Op = DAG.getNOT(dl, Op, VT);
2408    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2409  }
2410  case ISD::CTTZ: {
2411    // for now, we use: { return popcount(~x & (x - 1)); }
2412    // unless the target has ctlz but not ctpop, in which case we use:
2413    // { return 32 - nlz(~x & (x-1)); }
2414    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2415    EVT VT = Op.getValueType();
2416    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2417                               DAG.getNOT(dl, Op, VT),
2418                               DAG.getNode(ISD::SUB, dl, VT, Op,
2419                                           DAG.getConstant(1, VT)));
2420    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2421    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2422        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2423      return DAG.getNode(ISD::SUB, dl, VT,
2424                         DAG.getConstant(VT.getSizeInBits(), VT),
2425                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2426    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2427  }
2428  }
2429}
2430
2431std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2432  unsigned Opc = Node->getOpcode();
2433  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2434  RTLIB::Libcall LC;
2435
2436  switch (Opc) {
2437  default:
2438    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2439    break;
2440  case ISD::ATOMIC_SWAP:
2441    switch (VT.SimpleTy) {
2442    default: llvm_unreachable("Unexpected value type for atomic!");
2443    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2444    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2445    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2446    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2447    }
2448    break;
2449  case ISD::ATOMIC_CMP_SWAP:
2450    switch (VT.SimpleTy) {
2451    default: llvm_unreachable("Unexpected value type for atomic!");
2452    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2453    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2454    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2455    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2456    }
2457    break;
2458  case ISD::ATOMIC_LOAD_ADD:
2459    switch (VT.SimpleTy) {
2460    default: llvm_unreachable("Unexpected value type for atomic!");
2461    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2462    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2463    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2464    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2465    }
2466    break;
2467  case ISD::ATOMIC_LOAD_SUB:
2468    switch (VT.SimpleTy) {
2469    default: llvm_unreachable("Unexpected value type for atomic!");
2470    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2471    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2472    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2473    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2474    }
2475    break;
2476  case ISD::ATOMIC_LOAD_AND:
2477    switch (VT.SimpleTy) {
2478    default: llvm_unreachable("Unexpected value type for atomic!");
2479    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2480    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2481    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2482    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2483    }
2484    break;
2485  case ISD::ATOMIC_LOAD_OR:
2486    switch (VT.SimpleTy) {
2487    default: llvm_unreachable("Unexpected value type for atomic!");
2488    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2489    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2490    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2491    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2492    }
2493    break;
2494  case ISD::ATOMIC_LOAD_XOR:
2495    switch (VT.SimpleTy) {
2496    default: llvm_unreachable("Unexpected value type for atomic!");
2497    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2498    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2499    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2500    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2501    }
2502    break;
2503  case ISD::ATOMIC_LOAD_NAND:
2504    switch (VT.SimpleTy) {
2505    default: llvm_unreachable("Unexpected value type for atomic!");
2506    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2507    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2508    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2509    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2510    }
2511    break;
2512  }
2513
2514  return ExpandChainLibCall(LC, Node, false);
2515}
2516
2517void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2518                                      SmallVectorImpl<SDValue> &Results) {
2519  DebugLoc dl = Node->getDebugLoc();
2520  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2521  switch (Node->getOpcode()) {
2522  case ISD::CTPOP:
2523  case ISD::CTLZ:
2524  case ISD::CTTZ:
2525    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2526    Results.push_back(Tmp1);
2527    break;
2528  case ISD::BSWAP:
2529    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2530    break;
2531  case ISD::FRAMEADDR:
2532  case ISD::RETURNADDR:
2533  case ISD::FRAME_TO_ARGS_OFFSET:
2534    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2535    break;
2536  case ISD::FLT_ROUNDS_:
2537    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2538    break;
2539  case ISD::EH_RETURN:
2540  case ISD::EH_LABEL:
2541  case ISD::PREFETCH:
2542  case ISD::VAEND:
2543  case ISD::EH_SJLJ_LONGJMP:
2544    Results.push_back(Node->getOperand(0));
2545    break;
2546  case ISD::EH_SJLJ_SETJMP:
2547    Results.push_back(DAG.getConstant(0, MVT::i32));
2548    Results.push_back(Node->getOperand(0));
2549    break;
2550  case ISD::MEMBARRIER: {
2551    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2552    TargetLowering::ArgListTy Args;
2553    std::pair<SDValue, SDValue> CallResult =
2554      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2555                      false, false, false, false, 0, CallingConv::C, false,
2556                      /*isReturnValueUsed=*/true,
2557                      DAG.getExternalSymbol("__sync_synchronize",
2558                                            TLI.getPointerTy()),
2559                      Args, DAG, dl);
2560    Results.push_back(CallResult.second);
2561    break;
2562  }
2563  // By default, atomic intrinsics are marked Legal and lowered. Targets
2564  // which don't support them directly, however, may want libcalls, in which
2565  // case they mark them Expand, and we get here.
2566  // FIXME: Unimplemented for now. Add libcalls.
2567  case ISD::ATOMIC_SWAP:
2568  case ISD::ATOMIC_LOAD_ADD:
2569  case ISD::ATOMIC_LOAD_SUB:
2570  case ISD::ATOMIC_LOAD_AND:
2571  case ISD::ATOMIC_LOAD_OR:
2572  case ISD::ATOMIC_LOAD_XOR:
2573  case ISD::ATOMIC_LOAD_NAND:
2574  case ISD::ATOMIC_LOAD_MIN:
2575  case ISD::ATOMIC_LOAD_MAX:
2576  case ISD::ATOMIC_LOAD_UMIN:
2577  case ISD::ATOMIC_LOAD_UMAX:
2578  case ISD::ATOMIC_CMP_SWAP: {
2579    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2580    Results.push_back(Tmp.first);
2581    Results.push_back(Tmp.second);
2582    break;
2583  }
2584  case ISD::DYNAMIC_STACKALLOC:
2585    ExpandDYNAMIC_STACKALLOC(Node, Results);
2586    break;
2587  case ISD::MERGE_VALUES:
2588    for (unsigned i = 0; i < Node->getNumValues(); i++)
2589      Results.push_back(Node->getOperand(i));
2590    break;
2591  case ISD::UNDEF: {
2592    EVT VT = Node->getValueType(0);
2593    if (VT.isInteger())
2594      Results.push_back(DAG.getConstant(0, VT));
2595    else {
2596      assert(VT.isFloatingPoint() && "Unknown value type!");
2597      Results.push_back(DAG.getConstantFP(0, VT));
2598    }
2599    break;
2600  }
2601  case ISD::TRAP: {
2602    // If this operation is not supported, lower it to 'abort()' call
2603    TargetLowering::ArgListTy Args;
2604    std::pair<SDValue, SDValue> CallResult =
2605      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2606                      false, false, false, false, 0, CallingConv::C, false,
2607                      /*isReturnValueUsed=*/true,
2608                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2609                      Args, DAG, dl);
2610    Results.push_back(CallResult.second);
2611    break;
2612  }
2613  case ISD::FP_ROUND:
2614  case ISD::BIT_CONVERT:
2615    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2616                            Node->getValueType(0), dl);
2617    Results.push_back(Tmp1);
2618    break;
2619  case ISD::FP_EXTEND:
2620    Tmp1 = EmitStackConvert(Node->getOperand(0),
2621                            Node->getOperand(0).getValueType(),
2622                            Node->getValueType(0), dl);
2623    Results.push_back(Tmp1);
2624    break;
2625  case ISD::SIGN_EXTEND_INREG: {
2626    // NOTE: we could fall back on load/store here too for targets without
2627    // SAR.  However, it is doubtful that any exist.
2628    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2629    EVT VT = Node->getValueType(0);
2630    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2631    if (VT.isVector())
2632      ShiftAmountTy = VT;
2633    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2634                        ExtraVT.getScalarType().getSizeInBits();
2635    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2636    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2637                       Node->getOperand(0), ShiftCst);
2638    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2639    Results.push_back(Tmp1);
2640    break;
2641  }
2642  case ISD::FP_ROUND_INREG: {
2643    // The only way we can lower this is to turn it into a TRUNCSTORE,
2644    // EXTLOAD pair, targetting a temporary location (a stack slot).
2645
2646    // NOTE: there is a choice here between constantly creating new stack
2647    // slots and always reusing the same one.  We currently always create
2648    // new ones, as reuse may inhibit scheduling.
2649    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2650    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2651                            Node->getValueType(0), dl);
2652    Results.push_back(Tmp1);
2653    break;
2654  }
2655  case ISD::SINT_TO_FP:
2656  case ISD::UINT_TO_FP:
2657    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2658                                Node->getOperand(0), Node->getValueType(0), dl);
2659    Results.push_back(Tmp1);
2660    break;
2661  case ISD::FP_TO_UINT: {
2662    SDValue True, False;
2663    EVT VT =  Node->getOperand(0).getValueType();
2664    EVT NVT = Node->getValueType(0);
2665    const uint64_t zero[] = {0, 0};
2666    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2667    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2668    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2669    Tmp1 = DAG.getConstantFP(apf, VT);
2670    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2671                        Node->getOperand(0),
2672                        Tmp1, ISD::SETLT);
2673    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2674    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2675                        DAG.getNode(ISD::FSUB, dl, VT,
2676                                    Node->getOperand(0), Tmp1));
2677    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2678                        DAG.getConstant(x, NVT));
2679    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2680    Results.push_back(Tmp1);
2681    break;
2682  }
2683  case ISD::VAARG: {
2684    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2685    EVT VT = Node->getValueType(0);
2686    Tmp1 = Node->getOperand(0);
2687    Tmp2 = Node->getOperand(1);
2688    unsigned Align = Node->getConstantOperandVal(3);
2689
2690    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2691                                     MachinePointerInfo(V), false, false, 0);
2692    SDValue VAList = VAListLoad;
2693
2694    if (Align > TLI.getMinStackArgumentAlignment()) {
2695      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2696
2697      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2698                           DAG.getConstant(Align - 1,
2699                                           TLI.getPointerTy()));
2700
2701      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2702                           DAG.getConstant(-Align,
2703                                           TLI.getPointerTy()));
2704    }
2705
2706    // Increment the pointer, VAList, to the next vaarg
2707    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2708                       DAG.getConstant(TLI.getTargetData()->
2709                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2710                                       TLI.getPointerTy()));
2711    // Store the incremented VAList to the legalized pointer
2712    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2713                        MachinePointerInfo(V), false, false, 0);
2714    // Load the actual argument out of the pointer VAList
2715    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2716                                  false, false, 0));
2717    Results.push_back(Results[0].getValue(1));
2718    break;
2719  }
2720  case ISD::VACOPY: {
2721    // This defaults to loading a pointer from the input and storing it to the
2722    // output, returning the chain.
2723    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2724    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2725    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2726                       Node->getOperand(2), MachinePointerInfo(VS),
2727                       false, false, 0);
2728    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2729                        MachinePointerInfo(VD), false, false, 0);
2730    Results.push_back(Tmp1);
2731    break;
2732  }
2733  case ISD::EXTRACT_VECTOR_ELT:
2734    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2735      // This must be an access of the only element.  Return it.
2736      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2737                         Node->getOperand(0));
2738    else
2739      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2740    Results.push_back(Tmp1);
2741    break;
2742  case ISD::EXTRACT_SUBVECTOR:
2743    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2744    break;
2745  case ISD::CONCAT_VECTORS: {
2746    Results.push_back(ExpandVectorBuildThroughStack(Node));
2747    break;
2748  }
2749  case ISD::SCALAR_TO_VECTOR:
2750    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2751    break;
2752  case ISD::INSERT_VECTOR_ELT:
2753    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2754                                              Node->getOperand(1),
2755                                              Node->getOperand(2), dl));
2756    break;
2757  case ISD::VECTOR_SHUFFLE: {
2758    SmallVector<int, 8> Mask;
2759    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2760
2761    EVT VT = Node->getValueType(0);
2762    EVT EltVT = VT.getVectorElementType();
2763    if (getTypeAction(EltVT) == Promote)
2764      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2765    unsigned NumElems = VT.getVectorNumElements();
2766    SmallVector<SDValue, 8> Ops;
2767    for (unsigned i = 0; i != NumElems; ++i) {
2768      if (Mask[i] < 0) {
2769        Ops.push_back(DAG.getUNDEF(EltVT));
2770        continue;
2771      }
2772      unsigned Idx = Mask[i];
2773      if (Idx < NumElems)
2774        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2775                                  Node->getOperand(0),
2776                                  DAG.getIntPtrConstant(Idx)));
2777      else
2778        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2779                                  Node->getOperand(1),
2780                                  DAG.getIntPtrConstant(Idx - NumElems)));
2781    }
2782    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2783    Results.push_back(Tmp1);
2784    break;
2785  }
2786  case ISD::EXTRACT_ELEMENT: {
2787    EVT OpTy = Node->getOperand(0).getValueType();
2788    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2789      // 1 -> Hi
2790      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2791                         DAG.getConstant(OpTy.getSizeInBits()/2,
2792                                         TLI.getShiftAmountTy()));
2793      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2794    } else {
2795      // 0 -> Lo
2796      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2797                         Node->getOperand(0));
2798    }
2799    Results.push_back(Tmp1);
2800    break;
2801  }
2802  case ISD::STACKSAVE:
2803    // Expand to CopyFromReg if the target set
2804    // StackPointerRegisterToSaveRestore.
2805    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2806      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2807                                           Node->getValueType(0)));
2808      Results.push_back(Results[0].getValue(1));
2809    } else {
2810      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2811      Results.push_back(Node->getOperand(0));
2812    }
2813    break;
2814  case ISD::STACKRESTORE:
2815    // Expand to CopyToReg if the target set
2816    // StackPointerRegisterToSaveRestore.
2817    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2818      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2819                                         Node->getOperand(1)));
2820    } else {
2821      Results.push_back(Node->getOperand(0));
2822    }
2823    break;
2824  case ISD::FCOPYSIGN:
2825    Results.push_back(ExpandFCOPYSIGN(Node));
2826    break;
2827  case ISD::FNEG:
2828    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2829    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2830    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2831                       Node->getOperand(0));
2832    Results.push_back(Tmp1);
2833    break;
2834  case ISD::FABS: {
2835    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2836    EVT VT = Node->getValueType(0);
2837    Tmp1 = Node->getOperand(0);
2838    Tmp2 = DAG.getConstantFP(0.0, VT);
2839    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2840                        Tmp1, Tmp2, ISD::SETUGT);
2841    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2842    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2843    Results.push_back(Tmp1);
2844    break;
2845  }
2846  case ISD::FSQRT:
2847    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2848                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2849    break;
2850  case ISD::FSIN:
2851    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2852                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2853    break;
2854  case ISD::FCOS:
2855    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2856                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2857    break;
2858  case ISD::FLOG:
2859    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2860                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2861    break;
2862  case ISD::FLOG2:
2863    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2864                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2865    break;
2866  case ISD::FLOG10:
2867    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2868                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2869    break;
2870  case ISD::FEXP:
2871    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2872                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2873    break;
2874  case ISD::FEXP2:
2875    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2876                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2877    break;
2878  case ISD::FTRUNC:
2879    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2880                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2881    break;
2882  case ISD::FFLOOR:
2883    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2884                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2885    break;
2886  case ISD::FCEIL:
2887    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2888                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2889    break;
2890  case ISD::FRINT:
2891    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2892                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2893    break;
2894  case ISD::FNEARBYINT:
2895    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2896                                      RTLIB::NEARBYINT_F64,
2897                                      RTLIB::NEARBYINT_F80,
2898                                      RTLIB::NEARBYINT_PPCF128));
2899    break;
2900  case ISD::FPOWI:
2901    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2902                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2903    break;
2904  case ISD::FPOW:
2905    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2906                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2907    break;
2908  case ISD::FDIV:
2909    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2910                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2911    break;
2912  case ISD::FREM:
2913    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2914                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2915    break;
2916  case ISD::FP16_TO_FP32:
2917    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2918    break;
2919  case ISD::FP32_TO_FP16:
2920    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2921    break;
2922  case ISD::ConstantFP: {
2923    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2924    // Check to see if this FP immediate is already legal.
2925    // If this is a legal constant, turn it into a TargetConstantFP node.
2926    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2927      Results.push_back(SDValue(Node, 0));
2928    else
2929      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2930    break;
2931  }
2932  case ISD::EHSELECTION: {
2933    unsigned Reg = TLI.getExceptionSelectorRegister();
2934    assert(Reg && "Can't expand to unknown register!");
2935    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2936                                         Node->getValueType(0)));
2937    Results.push_back(Results[0].getValue(1));
2938    break;
2939  }
2940  case ISD::EXCEPTIONADDR: {
2941    unsigned Reg = TLI.getExceptionAddressRegister();
2942    assert(Reg && "Can't expand to unknown register!");
2943    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2944                                         Node->getValueType(0)));
2945    Results.push_back(Results[0].getValue(1));
2946    break;
2947  }
2948  case ISD::SUB: {
2949    EVT VT = Node->getValueType(0);
2950    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2951           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2952           "Don't know how to expand this subtraction!");
2953    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2954               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2955    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2956    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2957    break;
2958  }
2959  case ISD::UREM:
2960  case ISD::SREM: {
2961    EVT VT = Node->getValueType(0);
2962    SDVTList VTs = DAG.getVTList(VT, VT);
2963    bool isSigned = Node->getOpcode() == ISD::SREM;
2964    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2965    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2966    Tmp2 = Node->getOperand(0);
2967    Tmp3 = Node->getOperand(1);
2968    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2969      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2970    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2971      // X % Y -> X-X/Y*Y
2972      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2973      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2974      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2975    } else if (isSigned) {
2976      Tmp1 = ExpandIntLibCall(Node, true,
2977                              RTLIB::SREM_I8,
2978                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2979                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2980    } else {
2981      Tmp1 = ExpandIntLibCall(Node, false,
2982                              RTLIB::UREM_I8,
2983                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2984                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2985    }
2986    Results.push_back(Tmp1);
2987    break;
2988  }
2989  case ISD::UDIV:
2990  case ISD::SDIV: {
2991    bool isSigned = Node->getOpcode() == ISD::SDIV;
2992    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2993    EVT VT = Node->getValueType(0);
2994    SDVTList VTs = DAG.getVTList(VT, VT);
2995    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2996      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2997                         Node->getOperand(1));
2998    else if (isSigned)
2999      Tmp1 = ExpandIntLibCall(Node, true,
3000                              RTLIB::SDIV_I8,
3001                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3002                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3003    else
3004      Tmp1 = ExpandIntLibCall(Node, false,
3005                              RTLIB::UDIV_I8,
3006                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3007                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3008    Results.push_back(Tmp1);
3009    break;
3010  }
3011  case ISD::MULHU:
3012  case ISD::MULHS: {
3013    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3014                                                              ISD::SMUL_LOHI;
3015    EVT VT = Node->getValueType(0);
3016    SDVTList VTs = DAG.getVTList(VT, VT);
3017    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3018           "If this wasn't legal, it shouldn't have been created!");
3019    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3020                       Node->getOperand(1));
3021    Results.push_back(Tmp1.getValue(1));
3022    break;
3023  }
3024  case ISD::MUL: {
3025    EVT VT = Node->getValueType(0);
3026    SDVTList VTs = DAG.getVTList(VT, VT);
3027    // See if multiply or divide can be lowered using two-result operations.
3028    // We just need the low half of the multiply; try both the signed
3029    // and unsigned forms. If the target supports both SMUL_LOHI and
3030    // UMUL_LOHI, form a preference by checking which forms of plain
3031    // MULH it supports.
3032    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3033    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3034    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3035    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3036    unsigned OpToUse = 0;
3037    if (HasSMUL_LOHI && !HasMULHS) {
3038      OpToUse = ISD::SMUL_LOHI;
3039    } else if (HasUMUL_LOHI && !HasMULHU) {
3040      OpToUse = ISD::UMUL_LOHI;
3041    } else if (HasSMUL_LOHI) {
3042      OpToUse = ISD::SMUL_LOHI;
3043    } else if (HasUMUL_LOHI) {
3044      OpToUse = ISD::UMUL_LOHI;
3045    }
3046    if (OpToUse) {
3047      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3048                                    Node->getOperand(1)));
3049      break;
3050    }
3051    Tmp1 = ExpandIntLibCall(Node, false,
3052                            RTLIB::MUL_I8,
3053                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3054                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3055    Results.push_back(Tmp1);
3056    break;
3057  }
3058  case ISD::SADDO:
3059  case ISD::SSUBO: {
3060    SDValue LHS = Node->getOperand(0);
3061    SDValue RHS = Node->getOperand(1);
3062    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3063                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3064                              LHS, RHS);
3065    Results.push_back(Sum);
3066    EVT OType = Node->getValueType(1);
3067
3068    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3069
3070    //   LHSSign -> LHS >= 0
3071    //   RHSSign -> RHS >= 0
3072    //   SumSign -> Sum >= 0
3073    //
3074    //   Add:
3075    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3076    //   Sub:
3077    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3078    //
3079    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3080    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3081    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3082                                      Node->getOpcode() == ISD::SADDO ?
3083                                      ISD::SETEQ : ISD::SETNE);
3084
3085    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3086    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3087
3088    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3089    Results.push_back(Cmp);
3090    break;
3091  }
3092  case ISD::UADDO:
3093  case ISD::USUBO: {
3094    SDValue LHS = Node->getOperand(0);
3095    SDValue RHS = Node->getOperand(1);
3096    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3097                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3098                              LHS, RHS);
3099    Results.push_back(Sum);
3100    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3101                                   Node->getOpcode () == ISD::UADDO ?
3102                                   ISD::SETULT : ISD::SETUGT));
3103    break;
3104  }
3105  case ISD::UMULO:
3106  case ISD::SMULO: {
3107    EVT VT = Node->getValueType(0);
3108    SDValue LHS = Node->getOperand(0);
3109    SDValue RHS = Node->getOperand(1);
3110    SDValue BottomHalf;
3111    SDValue TopHalf;
3112    static const unsigned Ops[2][3] =
3113        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3114          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3115    bool isSigned = Node->getOpcode() == ISD::SMULO;
3116    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3117      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3118      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3119    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3120      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3121                               RHS);
3122      TopHalf = BottomHalf.getValue(1);
3123    } else {
3124      // FIXME: We should be able to fall back to a libcall with an illegal
3125      // type in some cases.
3126      // Also, we can fall back to a division in some cases, but that's a big
3127      // performance hit in the general case.
3128      assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3129                                               VT.getSizeInBits() * 2)) &&
3130             "Don't know how to expand this operation yet!");
3131      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3132      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3133      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3134      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3135      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3136                               DAG.getIntPtrConstant(0));
3137      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3138                            DAG.getIntPtrConstant(1));
3139    }
3140    if (isSigned) {
3141      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
3142      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3143      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3144                             ISD::SETNE);
3145    } else {
3146      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3147                             DAG.getConstant(0, VT), ISD::SETNE);
3148    }
3149    Results.push_back(BottomHalf);
3150    Results.push_back(TopHalf);
3151    break;
3152  }
3153  case ISD::BUILD_PAIR: {
3154    EVT PairTy = Node->getValueType(0);
3155    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3156    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3157    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3158                       DAG.getConstant(PairTy.getSizeInBits()/2,
3159                                       TLI.getShiftAmountTy()));
3160    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3161    break;
3162  }
3163  case ISD::SELECT:
3164    Tmp1 = Node->getOperand(0);
3165    Tmp2 = Node->getOperand(1);
3166    Tmp3 = Node->getOperand(2);
3167    if (Tmp1.getOpcode() == ISD::SETCC) {
3168      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3169                             Tmp2, Tmp3,
3170                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3171    } else {
3172      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3173                             DAG.getConstant(0, Tmp1.getValueType()),
3174                             Tmp2, Tmp3, ISD::SETNE);
3175    }
3176    Results.push_back(Tmp1);
3177    break;
3178  case ISD::BR_JT: {
3179    SDValue Chain = Node->getOperand(0);
3180    SDValue Table = Node->getOperand(1);
3181    SDValue Index = Node->getOperand(2);
3182
3183    EVT PTy = TLI.getPointerTy();
3184
3185    const TargetData &TD = *TLI.getTargetData();
3186    unsigned EntrySize =
3187      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3188
3189    Index = DAG.getNode(ISD::MUL, dl, PTy,
3190                        Index, DAG.getConstant(EntrySize, PTy));
3191    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3192
3193    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3194    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, PTy, dl, Chain, Addr,
3195                                MachinePointerInfo::getJumpTable(), MemVT,
3196                                false, false, 0);
3197    Addr = LD;
3198    if (TM.getRelocationModel() == Reloc::PIC_) {
3199      // For PIC, the sequence is:
3200      // BRIND(load(Jumptable + index) + RelocBase)
3201      // RelocBase can be JumpTable, GOT or some sort of global base.
3202      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3203                          TLI.getPICJumpTableRelocBase(Table, DAG));
3204    }
3205    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3206    Results.push_back(Tmp1);
3207    break;
3208  }
3209  case ISD::BRCOND:
3210    // Expand brcond's setcc into its constituent parts and create a BR_CC
3211    // Node.
3212    Tmp1 = Node->getOperand(0);
3213    Tmp2 = Node->getOperand(1);
3214    if (Tmp2.getOpcode() == ISD::SETCC) {
3215      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3216                         Tmp1, Tmp2.getOperand(2),
3217                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3218                         Node->getOperand(2));
3219    } else {
3220      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3221                         DAG.getCondCode(ISD::SETNE), Tmp2,
3222                         DAG.getConstant(0, Tmp2.getValueType()),
3223                         Node->getOperand(2));
3224    }
3225    Results.push_back(Tmp1);
3226    break;
3227  case ISD::SETCC: {
3228    Tmp1 = Node->getOperand(0);
3229    Tmp2 = Node->getOperand(1);
3230    Tmp3 = Node->getOperand(2);
3231    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3232
3233    // If we expanded the SETCC into an AND/OR, return the new node
3234    if (Tmp2.getNode() == 0) {
3235      Results.push_back(Tmp1);
3236      break;
3237    }
3238
3239    // Otherwise, SETCC for the given comparison type must be completely
3240    // illegal; expand it into a SELECT_CC.
3241    EVT VT = Node->getValueType(0);
3242    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3243                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3244    Results.push_back(Tmp1);
3245    break;
3246  }
3247  case ISD::SELECT_CC: {
3248    Tmp1 = Node->getOperand(0);   // LHS
3249    Tmp2 = Node->getOperand(1);   // RHS
3250    Tmp3 = Node->getOperand(2);   // True
3251    Tmp4 = Node->getOperand(3);   // False
3252    SDValue CC = Node->getOperand(4);
3253
3254    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3255                          Tmp1, Tmp2, CC, dl);
3256
3257    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3258    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3259    CC = DAG.getCondCode(ISD::SETNE);
3260    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3261                       Tmp3, Tmp4, CC);
3262    Results.push_back(Tmp1);
3263    break;
3264  }
3265  case ISD::BR_CC: {
3266    Tmp1 = Node->getOperand(0);              // Chain
3267    Tmp2 = Node->getOperand(2);              // LHS
3268    Tmp3 = Node->getOperand(3);              // RHS
3269    Tmp4 = Node->getOperand(1);              // CC
3270
3271    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3272                          Tmp2, Tmp3, Tmp4, dl);
3273    LastCALLSEQ_END = DAG.getEntryNode();
3274
3275    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3276    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3277    Tmp4 = DAG.getCondCode(ISD::SETNE);
3278    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3279                       Tmp3, Node->getOperand(4));
3280    Results.push_back(Tmp1);
3281    break;
3282  }
3283  case ISD::GLOBAL_OFFSET_TABLE:
3284  case ISD::GlobalAddress:
3285  case ISD::GlobalTLSAddress:
3286  case ISD::ExternalSymbol:
3287  case ISD::ConstantPool:
3288  case ISD::JumpTable:
3289  case ISD::INTRINSIC_W_CHAIN:
3290  case ISD::INTRINSIC_WO_CHAIN:
3291  case ISD::INTRINSIC_VOID:
3292    // FIXME: Custom lowering for these operations shouldn't return null!
3293    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3294      Results.push_back(SDValue(Node, i));
3295    break;
3296  }
3297}
3298void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3299                                       SmallVectorImpl<SDValue> &Results) {
3300  EVT OVT = Node->getValueType(0);
3301  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3302      Node->getOpcode() == ISD::SINT_TO_FP ||
3303      Node->getOpcode() == ISD::SETCC) {
3304    OVT = Node->getOperand(0).getValueType();
3305  }
3306  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3307  DebugLoc dl = Node->getDebugLoc();
3308  SDValue Tmp1, Tmp2, Tmp3;
3309  switch (Node->getOpcode()) {
3310  case ISD::CTTZ:
3311  case ISD::CTLZ:
3312  case ISD::CTPOP:
3313    // Zero extend the argument.
3314    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3315    // Perform the larger operation.
3316    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3317    if (Node->getOpcode() == ISD::CTTZ) {
3318      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3319      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3320                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3321                          ISD::SETEQ);
3322      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3323                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3324    } else if (Node->getOpcode() == ISD::CTLZ) {
3325      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3326      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3327                          DAG.getConstant(NVT.getSizeInBits() -
3328                                          OVT.getSizeInBits(), NVT));
3329    }
3330    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3331    break;
3332  case ISD::BSWAP: {
3333    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3334    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3335    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3336    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3337                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3338    Results.push_back(Tmp1);
3339    break;
3340  }
3341  case ISD::FP_TO_UINT:
3342  case ISD::FP_TO_SINT:
3343    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3344                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3345    Results.push_back(Tmp1);
3346    break;
3347  case ISD::UINT_TO_FP:
3348  case ISD::SINT_TO_FP:
3349    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3350                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3351    Results.push_back(Tmp1);
3352    break;
3353  case ISD::AND:
3354  case ISD::OR:
3355  case ISD::XOR: {
3356    unsigned ExtOp, TruncOp;
3357    if (OVT.isVector()) {
3358      ExtOp   = ISD::BIT_CONVERT;
3359      TruncOp = ISD::BIT_CONVERT;
3360    } else {
3361      assert(OVT.isInteger() && "Cannot promote logic operation");
3362      ExtOp   = ISD::ANY_EXTEND;
3363      TruncOp = ISD::TRUNCATE;
3364    }
3365    // Promote each of the values to the new type.
3366    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3367    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3368    // Perform the larger operation, then convert back
3369    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3370    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3371    break;
3372  }
3373  case ISD::SELECT: {
3374    unsigned ExtOp, TruncOp;
3375    if (Node->getValueType(0).isVector()) {
3376      ExtOp   = ISD::BIT_CONVERT;
3377      TruncOp = ISD::BIT_CONVERT;
3378    } else if (Node->getValueType(0).isInteger()) {
3379      ExtOp   = ISD::ANY_EXTEND;
3380      TruncOp = ISD::TRUNCATE;
3381    } else {
3382      ExtOp   = ISD::FP_EXTEND;
3383      TruncOp = ISD::FP_ROUND;
3384    }
3385    Tmp1 = Node->getOperand(0);
3386    // Promote each of the values to the new type.
3387    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3388    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3389    // Perform the larger operation, then round down.
3390    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3391    if (TruncOp != ISD::FP_ROUND)
3392      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3393    else
3394      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3395                         DAG.getIntPtrConstant(0));
3396    Results.push_back(Tmp1);
3397    break;
3398  }
3399  case ISD::VECTOR_SHUFFLE: {
3400    SmallVector<int, 8> Mask;
3401    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3402
3403    // Cast the two input vectors.
3404    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3405    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3406
3407    // Convert the shuffle mask to the right # elements.
3408    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3409    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3410    Results.push_back(Tmp1);
3411    break;
3412  }
3413  case ISD::SETCC: {
3414    unsigned ExtOp = ISD::FP_EXTEND;
3415    if (NVT.isInteger()) {
3416      ISD::CondCode CCCode =
3417        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3418      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3419    }
3420    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3421    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3422    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3423                                  Tmp1, Tmp2, Node->getOperand(2)));
3424    break;
3425  }
3426  }
3427}
3428
3429// SelectionDAG::Legalize - This is the entry point for the file.
3430//
3431void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3432  /// run - This is the main entry point to this class.
3433  ///
3434  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3435}
3436
3437