LegalizeDAG.cpp revision 714efc63d4319b771d89a95aa7a42d400f03d8c9
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include <map>
42using namespace llvm;
43
44//===----------------------------------------------------------------------===//
45/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
46/// hacks on it until the target machine can handle it.  This involves
47/// eliminating value sizes the machine cannot handle (promoting small sizes to
48/// large sizes or splitting up large values into small values) as well as
49/// eliminating operations the machine cannot handle.
50///
51/// This code also does a small amount of optimization and recognition of idioms
52/// as part of its processing.  For example, if a target does not support a
53/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
54/// will attempt merge setcc and brc instructions into brcc's.
55///
56namespace {
57class SelectionDAGLegalize {
58  TargetLowering &TLI;
59  SelectionDAG &DAG;
60  CodeGenOpt::Level OptLevel;
61
62  // Libcall insertion helpers.
63
64  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65  /// legalized.  We use this to ensure that calls are properly serialized
66  /// against each other, including inserted libcalls.
67  SDValue LastCALLSEQ_END;
68
69  /// IsLegalizingCall - This member is used *only* for purposes of providing
70  /// helpful assertions that a libcall isn't created while another call is
71  /// being legalized (which could lead to non-serialized call sequences).
72  bool IsLegalizingCall;
73
74  enum LegalizeAction {
75    Legal,      // The target natively supports this operation.
76    Promote,    // This operation should be executed in a larger type.
77    Expand      // Try to expand this to other ops, otherwise use a libcall.
78  };
79
80  /// ValueTypeActions - This is a bitvector that contains two bits for each
81  /// value type, where the two bits correspond to the LegalizeAction enum.
82  /// This can be queried with "getTypeAction(VT)".
83  TargetLowering::ValueTypeActionImpl ValueTypeActions;
84
85  /// LegalizedNodes - For nodes that are of legal width, and that have more
86  /// than one use, this map indicates what regularized operand to use.  This
87  /// allows us to avoid legalizing the same thing more than once.
88  DenseMap<SDValue, SDValue> LegalizedNodes;
89
90  void AddLegalizedOperand(SDValue From, SDValue To) {
91    LegalizedNodes.insert(std::make_pair(From, To));
92    // If someone requests legalization of the new node, return itself.
93    if (From != To)
94      LegalizedNodes.insert(std::make_pair(To, To));
95  }
96
97public:
98  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
99
100  /// getTypeAction - Return how we should legalize values of this type, either
101  /// it is already legal or we need to expand it into multiple registers of
102  /// smaller integer type, or we need to promote it to a larger type.
103  LegalizeAction getTypeAction(EVT VT) const {
104    return
105        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
106  }
107
108  /// isTypeLegal - Return true if this type is legal on this target.
109  ///
110  bool isTypeLegal(EVT VT) const {
111    return getTypeAction(VT) == Legal;
112  }
113
114  void LegalizeDAG();
115
116private:
117  /// LegalizeOp - We know that the specified value has a legal type.
118  /// Recursively ensure that the operands have legal types, then return the
119  /// result.
120  SDValue LegalizeOp(SDValue O);
121
122  SDValue OptimizeFloatStore(StoreSDNode *ST);
123
124  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
125  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
126  /// is necessary to spill the vector being inserted into to memory, perform
127  /// the insert there, and then read the result back.
128  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
129                                         SDValue Idx, DebugLoc dl);
130  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
131                                  SDValue Idx, DebugLoc dl);
132
133  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
134  /// performs the same shuffe in terms of order or result bytes, but on a type
135  /// whose vector element type is narrower than the original shuffle type.
136  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
137  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
138                                     SDValue N1, SDValue N2,
139                                     SmallVectorImpl<int> &Mask) const;
140
141  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
142                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
143
144  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
145                             DebugLoc dl);
146
147  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
148  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
149                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
150                          RTLIB::Libcall Call_PPCF128);
151  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
152                           RTLIB::Libcall Call_I8,
153                           RTLIB::Libcall Call_I16,
154                           RTLIB::Libcall Call_I32,
155                           RTLIB::Libcall Call_I64,
156                           RTLIB::Libcall Call_I128);
157
158  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
159  SDValue ExpandBUILD_VECTOR(SDNode *Node);
160  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
161  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
162                                SmallVectorImpl<SDValue> &Results);
163  SDValue ExpandFCOPYSIGN(SDNode *Node);
164  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
165                               DebugLoc dl);
166  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
169                                DebugLoc dl);
170
171  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
172  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
173
174  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
175  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
176
177  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
178  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
179};
180}
181
182/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
183/// performs the same shuffe in terms of order or result bytes, but on a type
184/// whose vector element type is narrower than the original shuffle type.
185/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
186SDValue
187SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
188                                                 SDValue N1, SDValue N2,
189                                             SmallVectorImpl<int> &Mask) const {
190  EVT EltVT = NVT.getVectorElementType();
191  unsigned NumMaskElts = VT.getVectorNumElements();
192  unsigned NumDestElts = NVT.getVectorNumElements();
193  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
194
195  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
196
197  if (NumEltsGrowth == 1)
198    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
199
200  SmallVector<int, 8> NewMask;
201  for (unsigned i = 0; i != NumMaskElts; ++i) {
202    int Idx = Mask[i];
203    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
204      if (Idx < 0)
205        NewMask.push_back(-1);
206      else
207        NewMask.push_back(Idx * NumEltsGrowth + j);
208    }
209  }
210  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
211  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
212  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
213}
214
215SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
216                                           CodeGenOpt::Level ol)
217  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
218    ValueTypeActions(TLI.getValueTypeActions()) {
219  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
220         "Too many value types for ValueTypeActions to hold!");
221}
222
223void SelectionDAGLegalize::LegalizeDAG() {
224  LastCALLSEQ_END = DAG.getEntryNode();
225  IsLegalizingCall = false;
226
227  // The legalize process is inherently a bottom-up recursive process (users
228  // legalize their uses before themselves).  Given infinite stack space, we
229  // could just start legalizing on the root and traverse the whole graph.  In
230  // practice however, this causes us to run out of stack space on large basic
231  // blocks.  To avoid this problem, compute an ordering of the nodes where each
232  // node is only legalized after all of its operands are legalized.
233  DAG.AssignTopologicalOrder();
234  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
235       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
236    LegalizeOp(SDValue(I, 0));
237
238  // Finally, it's possible the root changed.  Get the new root.
239  SDValue OldRoot = DAG.getRoot();
240  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
241  DAG.setRoot(LegalizedNodes[OldRoot]);
242
243  LegalizedNodes.clear();
244
245  // Remove dead nodes now.
246  DAG.RemoveDeadNodes();
247}
248
249
250/// FindCallEndFromCallStart - Given a chained node that is part of a call
251/// sequence, find the CALLSEQ_END node that terminates the call sequence.
252static SDNode *FindCallEndFromCallStart(SDNode *Node) {
253  if (Node->getOpcode() == ISD::CALLSEQ_END)
254    return Node;
255  if (Node->use_empty())
256    return 0;   // No CallSeqEnd
257
258  // The chain is usually at the end.
259  SDValue TheChain(Node, Node->getNumValues()-1);
260  if (TheChain.getValueType() != MVT::Other) {
261    // Sometimes it's at the beginning.
262    TheChain = SDValue(Node, 0);
263    if (TheChain.getValueType() != MVT::Other) {
264      // Otherwise, hunt for it.
265      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
266        if (Node->getValueType(i) == MVT::Other) {
267          TheChain = SDValue(Node, i);
268          break;
269        }
270
271      // Otherwise, we walked into a node without a chain.
272      if (TheChain.getValueType() != MVT::Other)
273        return 0;
274    }
275  }
276
277  for (SDNode::use_iterator UI = Node->use_begin(),
278       E = Node->use_end(); UI != E; ++UI) {
279
280    // Make sure to only follow users of our token chain.
281    SDNode *User = *UI;
282    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
283      if (User->getOperand(i) == TheChain)
284        if (SDNode *Result = FindCallEndFromCallStart(User))
285          return Result;
286  }
287  return 0;
288}
289
290/// FindCallStartFromCallEnd - Given a chained node that is part of a call
291/// sequence, find the CALLSEQ_START node that initiates the call sequence.
292static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
293  assert(Node && "Didn't find callseq_start for a call??");
294  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
295
296  assert(Node->getOperand(0).getValueType() == MVT::Other &&
297         "Node doesn't have a token chain argument!");
298  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
299}
300
301/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
302/// see if any uses can reach Dest.  If no dest operands can get to dest,
303/// legalize them, legalize ourself, and return false, otherwise, return true.
304///
305/// Keep track of the nodes we fine that actually do lead to Dest in
306/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
307///
308bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
309                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
310  if (N == Dest) return true;  // N certainly leads to Dest :)
311
312  // If we've already processed this node and it does lead to Dest, there is no
313  // need to reprocess it.
314  if (NodesLeadingTo.count(N)) return true;
315
316  // If the first result of this node has been already legalized, then it cannot
317  // reach N.
318  if (LegalizedNodes.count(SDValue(N, 0))) return false;
319
320  // Okay, this node has not already been legalized.  Check and legalize all
321  // operands.  If none lead to Dest, then we can legalize this node.
322  bool OperandsLeadToDest = false;
323  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
324    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
325      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
326
327  if (OperandsLeadToDest) {
328    NodesLeadingTo.insert(N);
329    return true;
330  }
331
332  // Okay, this node looks safe, legalize it and return false.
333  LegalizeOp(SDValue(N, 0));
334  return false;
335}
336
337/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
338/// a load from the constant pool.
339static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
340                                SelectionDAG &DAG, const TargetLowering &TLI) {
341  bool Extend = false;
342  DebugLoc dl = CFP->getDebugLoc();
343
344  // If a FP immediate is precise when represented as a float and if the
345  // target can do an extending load from float to double, we put it into
346  // the constant pool as a float, even if it's is statically typed as a
347  // double.  This shrinks FP constants and canonicalizes them for targets where
348  // an FP extending load is the same cost as a normal load (such as on the x87
349  // fp stack or PPC FP unit).
350  EVT VT = CFP->getValueType(0);
351  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
352  if (!UseCP) {
353    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
354    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
355                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
356  }
357
358  EVT OrigVT = VT;
359  EVT SVT = VT;
360  while (SVT != MVT::f32) {
361    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
362    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
363        // Only do this if the target has a native EXTLOAD instruction from
364        // smaller type.
365        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
366        TLI.ShouldShrinkFPConstant(OrigVT)) {
367      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
368      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
369      VT = SVT;
370      Extend = true;
371    }
372  }
373
374  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
375  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
376  if (Extend)
377    return DAG.getExtLoad(ISD::EXTLOAD, dl,
378                          OrigVT, DAG.getEntryNode(),
379                          CPIdx, PseudoSourceValue::getConstantPool(),
380                          0, VT, false, Alignment);
381  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
382                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
383}
384
385/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
386static
387SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
388                             const TargetLowering &TLI) {
389  SDValue Chain = ST->getChain();
390  SDValue Ptr = ST->getBasePtr();
391  SDValue Val = ST->getValue();
392  EVT VT = Val.getValueType();
393  int Alignment = ST->getAlignment();
394  int SVOffset = ST->getSrcValueOffset();
395  DebugLoc dl = ST->getDebugLoc();
396  if (ST->getMemoryVT().isFloatingPoint() ||
397      ST->getMemoryVT().isVector()) {
398    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
399    if (TLI.isTypeLegal(intVT)) {
400      // Expand to a bitconvert of the value to the integer type of the
401      // same size, then a (misaligned) int store.
402      // FIXME: Does not handle truncating floating point stores!
403      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
404      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
405                          SVOffset, ST->isVolatile(), Alignment);
406    } else {
407      // Do a (aligned) store to a stack slot, then copy from the stack slot
408      // to the final destination using (unaligned) integer loads and stores.
409      EVT StoredVT = ST->getMemoryVT();
410      EVT RegVT =
411        TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits()));
412      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
413      unsigned RegBytes = RegVT.getSizeInBits() / 8;
414      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
415
416      // Make sure the stack slot is also aligned for the register type.
417      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
418
419      // Perform the original store, only redirected to the stack slot.
420      SDValue Store = DAG.getTruncStore(Chain, dl,
421                                        Val, StackPtr, NULL, 0, StoredVT);
422      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
423      SmallVector<SDValue, 8> Stores;
424      unsigned Offset = 0;
425
426      // Do all but one copies using the full register width.
427      for (unsigned i = 1; i < NumRegs; i++) {
428        // Load one integer register's worth from the stack slot.
429        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
430        // Store it to the final location.  Remember the store.
431        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
432                                      ST->getSrcValue(), SVOffset + Offset,
433                                      ST->isVolatile(),
434                                      MinAlign(ST->getAlignment(), Offset)));
435        // Increment the pointers.
436        Offset += RegBytes;
437        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
438                               Increment);
439        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
440      }
441
442      // The last store may be partial.  Do a truncating store.  On big-endian
443      // machines this requires an extending load from the stack slot to ensure
444      // that the bits are in the right place.
445      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
446
447      // Load from the stack slot.
448      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
449                                    NULL, 0, MemVT);
450
451      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
452                                         ST->getSrcValue(), SVOffset + Offset,
453                                         MemVT, ST->isVolatile(),
454                                         MinAlign(ST->getAlignment(), Offset)));
455      // The order of the stores doesn't matter - say it with a TokenFactor.
456      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
457                         Stores.size());
458    }
459  }
460  assert(ST->getMemoryVT().isInteger() &&
461         !ST->getMemoryVT().isVector() &&
462         "Unaligned store of unknown type.");
463  // Get the half-size VT
464  EVT NewStoredVT =
465    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT().SimpleTy - 1);
466  int NumBits = NewStoredVT.getSizeInBits();
467  int IncrementSize = NumBits / 8;
468
469  // Divide the stored value in two parts.
470  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
471  SDValue Lo = Val;
472  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
473
474  // Store the two parts
475  SDValue Store1, Store2;
476  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
477                             ST->getSrcValue(), SVOffset, NewStoredVT,
478                             ST->isVolatile(), Alignment);
479  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
480                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
481  Alignment = MinAlign(Alignment, IncrementSize);
482  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
483                             ST->getSrcValue(), SVOffset + IncrementSize,
484                             NewStoredVT, ST->isVolatile(), Alignment);
485
486  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
487}
488
489/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
490static
491SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
492                            const TargetLowering &TLI) {
493  int SVOffset = LD->getSrcValueOffset();
494  SDValue Chain = LD->getChain();
495  SDValue Ptr = LD->getBasePtr();
496  EVT VT = LD->getValueType(0);
497  EVT LoadedVT = LD->getMemoryVT();
498  DebugLoc dl = LD->getDebugLoc();
499  if (VT.isFloatingPoint() || VT.isVector()) {
500    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
501    if (TLI.isTypeLegal(intVT)) {
502      // Expand to a (misaligned) integer load of the same size,
503      // then bitconvert to floating point or vector.
504      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
505                                    SVOffset, LD->isVolatile(),
506                                    LD->getAlignment());
507      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
508      if (VT.isFloatingPoint() && LoadedVT != VT)
509        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
510
511      SDValue Ops[] = { Result, Chain };
512      return DAG.getMergeValues(Ops, 2, dl);
513    } else {
514      // Copy the value to a (aligned) stack slot using (unaligned) integer
515      // loads and stores, then do a (aligned) load from the stack slot.
516      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
517      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
518      unsigned RegBytes = RegVT.getSizeInBits() / 8;
519      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
520
521      // Make sure the stack slot is also aligned for the register type.
522      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
523
524      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
525      SmallVector<SDValue, 8> Stores;
526      SDValue StackPtr = StackBase;
527      unsigned Offset = 0;
528
529      // Do all but one copies using the full register width.
530      for (unsigned i = 1; i < NumRegs; i++) {
531        // Load one integer register's worth from the original location.
532        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
533                                   SVOffset + Offset, LD->isVolatile(),
534                                   MinAlign(LD->getAlignment(), Offset));
535        // Follow the load with a store to the stack slot.  Remember the store.
536        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
537                                      NULL, 0));
538        // Increment the pointers.
539        Offset += RegBytes;
540        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
541        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
542                               Increment);
543      }
544
545      // The last copy may be partial.  Do an extending load.
546      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset));
547      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
548                                    LD->getSrcValue(), SVOffset + Offset,
549                                    MemVT, LD->isVolatile(),
550                                    MinAlign(LD->getAlignment(), Offset));
551      // Follow the load with a store to the stack slot.  Remember the store.
552      // On big-endian machines this requires a truncating store to ensure
553      // that the bits end up in the right place.
554      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
555                                         NULL, 0, MemVT));
556
557      // The order of the stores doesn't matter - say it with a TokenFactor.
558      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
559                               Stores.size());
560
561      // Finally, perform the original load only redirected to the stack slot.
562      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
563                            NULL, 0, LoadedVT);
564
565      // Callers expect a MERGE_VALUES node.
566      SDValue Ops[] = { Load, TF };
567      return DAG.getMergeValues(Ops, 2, dl);
568    }
569  }
570  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
571         "Unaligned load of unsupported type.");
572
573  // Compute the new VT that is half the size of the old one.  This is an
574  // integer MVT.
575  unsigned NumBits = LoadedVT.getSizeInBits();
576  EVT NewLoadedVT;
577  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
578  NumBits >>= 1;
579
580  unsigned Alignment = LD->getAlignment();
581  unsigned IncrementSize = NumBits / 8;
582  ISD::LoadExtType HiExtType = LD->getExtensionType();
583
584  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
585  if (HiExtType == ISD::NON_EXTLOAD)
586    HiExtType = ISD::ZEXTLOAD;
587
588  // Load the value in two parts
589  SDValue Lo, Hi;
590  if (TLI.isLittleEndian()) {
591    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
592                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
593    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
594                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
595    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
596                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
597                        MinAlign(Alignment, IncrementSize));
598  } else {
599    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
600                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
601    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
602                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
603    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
604                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
605                        MinAlign(Alignment, IncrementSize));
606  }
607
608  // aggregate the two parts
609  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
610  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
611  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
612
613  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
614                             Hi.getValue(1));
615
616  SDValue Ops[] = { Result, TF };
617  return DAG.getMergeValues(Ops, 2, dl);
618}
619
620/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
621/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
622/// is necessary to spill the vector being inserted into to memory, perform
623/// the insert there, and then read the result back.
624SDValue SelectionDAGLegalize::
625PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
626                               DebugLoc dl) {
627  SDValue Tmp1 = Vec;
628  SDValue Tmp2 = Val;
629  SDValue Tmp3 = Idx;
630
631  // If the target doesn't support this, we have to spill the input vector
632  // to a temporary stack slot, update the element, then reload it.  This is
633  // badness.  We could also load the value into a vector register (either
634  // with a "move to register" or "extload into register" instruction, then
635  // permute it into place, if the idx is a constant and if the idx is
636  // supported by the target.
637  EVT VT    = Tmp1.getValueType();
638  EVT EltVT = VT.getVectorElementType();
639  EVT IdxVT = Tmp3.getValueType();
640  EVT PtrVT = TLI.getPointerTy();
641  SDValue StackPtr = DAG.CreateStackTemporary(VT);
642
643  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
644
645  // Store the vector.
646  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
647                            PseudoSourceValue::getFixedStack(SPFI), 0);
648
649  // Truncate or zero extend offset to target pointer type.
650  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
651  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
652  // Add the offset to the index.
653  unsigned EltSize = EltVT.getSizeInBits()/8;
654  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
655  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
656  // Store the scalar value.
657  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
658                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
659  // Load the updated vector.
660  return DAG.getLoad(VT, dl, Ch, StackPtr,
661                     PseudoSourceValue::getFixedStack(SPFI), 0);
662}
663
664
665SDValue SelectionDAGLegalize::
666ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
667  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
668    // SCALAR_TO_VECTOR requires that the type of the value being inserted
669    // match the element type of the vector being created, except for
670    // integers in which case the inserted value can be over width.
671    EVT EltVT = Vec.getValueType().getVectorElementType();
672    if (Val.getValueType() == EltVT ||
673        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
674      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
675                                  Vec.getValueType(), Val);
676
677      unsigned NumElts = Vec.getValueType().getVectorNumElements();
678      // We generate a shuffle of InVec and ScVec, so the shuffle mask
679      // should be 0,1,2,3,4,5... with the appropriate element replaced with
680      // elt 0 of the RHS.
681      SmallVector<int, 8> ShufOps;
682      for (unsigned i = 0; i != NumElts; ++i)
683        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
684
685      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
686                                  &ShufOps[0]);
687    }
688  }
689  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
690}
691
692SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
693  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
694  // FIXME: We shouldn't do this for TargetConstantFP's.
695  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
696  // to phase ordering between legalized code and the dag combiner.  This
697  // probably means that we need to integrate dag combiner and legalizer
698  // together.
699  // We generally can't do this one for long doubles.
700  SDValue Tmp1 = ST->getChain();
701  SDValue Tmp2 = ST->getBasePtr();
702  SDValue Tmp3;
703  int SVOffset = ST->getSrcValueOffset();
704  unsigned Alignment = ST->getAlignment();
705  bool isVolatile = ST->isVolatile();
706  DebugLoc dl = ST->getDebugLoc();
707  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
708    if (CFP->getValueType(0) == MVT::f32 &&
709        getTypeAction(MVT::i32) == Legal) {
710      Tmp3 = DAG.getConstant(CFP->getValueAPF().
711                                      bitcastToAPInt().zextOrTrunc(32),
712                              MVT::i32);
713      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
714                          SVOffset, isVolatile, Alignment);
715    } else if (CFP->getValueType(0) == MVT::f64) {
716      // If this target supports 64-bit registers, do a single 64-bit store.
717      if (getTypeAction(MVT::i64) == Legal) {
718        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
719                                  zextOrTrunc(64), MVT::i64);
720        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
721                            SVOffset, isVolatile, Alignment);
722      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
723        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
724        // stores.  If the target supports neither 32- nor 64-bits, this
725        // xform is certainly not worth it.
726        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
727        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
728        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
729        if (TLI.isBigEndian()) std::swap(Lo, Hi);
730
731        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
732                          SVOffset, isVolatile, Alignment);
733        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
734                            DAG.getIntPtrConstant(4));
735        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
736                          isVolatile, MinAlign(Alignment, 4U));
737
738        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
739      }
740    }
741  }
742  return SDValue();
743}
744
745/// LegalizeOp - We know that the specified value has a legal type, and
746/// that its operands are legal.  Now ensure that the operation itself
747/// is legal, recursively ensuring that the operands' operations remain
748/// legal.
749SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
750  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
751    return Op;
752
753  SDNode *Node = Op.getNode();
754  DebugLoc dl = Node->getDebugLoc();
755
756  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
757    assert(getTypeAction(Node->getValueType(i)) == Legal &&
758           "Unexpected illegal type!");
759
760  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
761    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
762            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
763           "Unexpected illegal type!");
764
765  // Note that LegalizeOp may be reentered even from single-use nodes, which
766  // means that we always must cache transformed nodes.
767  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
768  if (I != LegalizedNodes.end()) return I->second;
769
770  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
771  SDValue Result = Op;
772  bool isCustom = false;
773
774  // Figure out the correct action; the way to query this varies by opcode
775  TargetLowering::LegalizeAction Action;
776  bool SimpleFinishLegalizing = true;
777  switch (Node->getOpcode()) {
778  case ISD::INTRINSIC_W_CHAIN:
779  case ISD::INTRINSIC_WO_CHAIN:
780  case ISD::INTRINSIC_VOID:
781  case ISD::VAARG:
782  case ISD::STACKSAVE:
783    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
784    break;
785  case ISD::SINT_TO_FP:
786  case ISD::UINT_TO_FP:
787  case ISD::EXTRACT_VECTOR_ELT:
788    Action = TLI.getOperationAction(Node->getOpcode(),
789                                    Node->getOperand(0).getValueType());
790    break;
791  case ISD::FP_ROUND_INREG:
792  case ISD::SIGN_EXTEND_INREG: {
793    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
794    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
795    break;
796  }
797  case ISD::SELECT_CC:
798  case ISD::SETCC:
799  case ISD::BR_CC: {
800    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
801                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
802    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
803    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
804    ISD::CondCode CCCode =
805        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
806    Action = TLI.getCondCodeAction(CCCode, OpVT);
807    if (Action == TargetLowering::Legal) {
808      if (Node->getOpcode() == ISD::SELECT_CC)
809        Action = TLI.getOperationAction(Node->getOpcode(),
810                                        Node->getValueType(0));
811      else
812        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
813    }
814    break;
815  }
816  case ISD::LOAD:
817  case ISD::STORE:
818    // FIXME: Model these properly.  LOAD and STORE are complicated, and
819    // STORE expects the unlegalized operand in some cases.
820    SimpleFinishLegalizing = false;
821    break;
822  case ISD::CALLSEQ_START:
823  case ISD::CALLSEQ_END:
824    // FIXME: This shouldn't be necessary.  These nodes have special properties
825    // dealing with the recursive nature of legalization.  Removing this
826    // special case should be done as part of making LegalizeDAG non-recursive.
827    SimpleFinishLegalizing = false;
828    break;
829  case ISD::EXTRACT_ELEMENT:
830  case ISD::FLT_ROUNDS_:
831  case ISD::SADDO:
832  case ISD::SSUBO:
833  case ISD::UADDO:
834  case ISD::USUBO:
835  case ISD::SMULO:
836  case ISD::UMULO:
837  case ISD::FPOWI:
838  case ISD::MERGE_VALUES:
839  case ISD::EH_RETURN:
840  case ISD::FRAME_TO_ARGS_OFFSET:
841    // These operations lie about being legal: when they claim to be legal,
842    // they should actually be expanded.
843    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
844    if (Action == TargetLowering::Legal)
845      Action = TargetLowering::Expand;
846    break;
847  case ISD::TRAMPOLINE:
848  case ISD::FRAMEADDR:
849  case ISD::RETURNADDR:
850    // These operations lie about being legal: when they claim to be legal,
851    // they should actually be custom-lowered.
852    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
853    if (Action == TargetLowering::Legal)
854      Action = TargetLowering::Custom;
855    break;
856  case ISD::BUILD_VECTOR:
857    // A weird case: legalization for BUILD_VECTOR never legalizes the
858    // operands!
859    // FIXME: This really sucks... changing it isn't semantically incorrect,
860    // but it massively pessimizes the code for floating-point BUILD_VECTORs
861    // because ConstantFP operands get legalized into constant pool loads
862    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
863    // though, because BUILD_VECTORS usually get lowered into other nodes
864    // which get legalized properly.
865    SimpleFinishLegalizing = false;
866    break;
867  default:
868    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
869      Action = TargetLowering::Legal;
870    } else {
871      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
872    }
873    break;
874  }
875
876  if (SimpleFinishLegalizing) {
877    SmallVector<SDValue, 8> Ops, ResultVals;
878    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
879      Ops.push_back(LegalizeOp(Node->getOperand(i)));
880    switch (Node->getOpcode()) {
881    default: break;
882    case ISD::BR:
883    case ISD::BRIND:
884    case ISD::BR_JT:
885    case ISD::BR_CC:
886    case ISD::BRCOND:
887      // Branches tweak the chain to include LastCALLSEQ_END
888      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
889                            LastCALLSEQ_END);
890      Ops[0] = LegalizeOp(Ops[0]);
891      LastCALLSEQ_END = DAG.getEntryNode();
892      break;
893    case ISD::SHL:
894    case ISD::SRL:
895    case ISD::SRA:
896    case ISD::ROTL:
897    case ISD::ROTR:
898      // Legalizing shifts/rotates requires adjusting the shift amount
899      // to the appropriate width.
900      if (!Ops[1].getValueType().isVector())
901        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
902      break;
903    case ISD::SRL_PARTS:
904    case ISD::SRA_PARTS:
905    case ISD::SHL_PARTS:
906      // Legalizing shifts/rotates requires adjusting the shift amount
907      // to the appropriate width.
908      if (!Ops[2].getValueType().isVector())
909        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
910      break;
911    }
912
913    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
914                                    Ops.size());
915    switch (Action) {
916    case TargetLowering::Legal:
917      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
918        ResultVals.push_back(Result.getValue(i));
919      break;
920    case TargetLowering::Custom:
921      // FIXME: The handling for custom lowering with multiple results is
922      // a complete mess.
923      Tmp1 = TLI.LowerOperation(Result, DAG);
924      if (Tmp1.getNode()) {
925        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
926          if (e == 1)
927            ResultVals.push_back(Tmp1);
928          else
929            ResultVals.push_back(Tmp1.getValue(i));
930        }
931        break;
932      }
933
934      // FALL THROUGH
935    case TargetLowering::Expand:
936      ExpandNode(Result.getNode(), ResultVals);
937      break;
938    case TargetLowering::Promote:
939      PromoteNode(Result.getNode(), ResultVals);
940      break;
941    }
942    if (!ResultVals.empty()) {
943      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
944        if (ResultVals[i] != SDValue(Node, i))
945          ResultVals[i] = LegalizeOp(ResultVals[i]);
946        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
947      }
948      return ResultVals[Op.getResNo()];
949    }
950  }
951
952  switch (Node->getOpcode()) {
953  default:
954#ifndef NDEBUG
955    errs() << "NODE: ";
956    Node->dump(&DAG);
957    errs() << "\n";
958#endif
959    llvm_unreachable("Do not know how to legalize this operator!");
960
961  case ISD::BUILD_VECTOR:
962    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
963    default: llvm_unreachable("This action is not supported yet!");
964    case TargetLowering::Custom:
965      Tmp3 = TLI.LowerOperation(Result, DAG);
966      if (Tmp3.getNode()) {
967        Result = Tmp3;
968        break;
969      }
970      // FALLTHROUGH
971    case TargetLowering::Expand:
972      Result = ExpandBUILD_VECTOR(Result.getNode());
973      break;
974    }
975    break;
976  case ISD::CALLSEQ_START: {
977    SDNode *CallEnd = FindCallEndFromCallStart(Node);
978
979    // Recursively Legalize all of the inputs of the call end that do not lead
980    // to this call start.  This ensures that any libcalls that need be inserted
981    // are inserted *before* the CALLSEQ_START.
982    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
983    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
984      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
985                                   NodesLeadingTo);
986    }
987
988    // Now that we legalized all of the inputs (which may have inserted
989    // libcalls) create the new CALLSEQ_START node.
990    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
991
992    // Merge in the last call, to ensure that this call start after the last
993    // call ended.
994    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
995      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
996                         Tmp1, LastCALLSEQ_END);
997      Tmp1 = LegalizeOp(Tmp1);
998    }
999
1000    // Do not try to legalize the target-specific arguments (#1+).
1001    if (Tmp1 != Node->getOperand(0)) {
1002      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1003      Ops[0] = Tmp1;
1004      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1005    }
1006
1007    // Remember that the CALLSEQ_START is legalized.
1008    AddLegalizedOperand(Op.getValue(0), Result);
1009    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1010      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1011
1012    // Now that the callseq_start and all of the non-call nodes above this call
1013    // sequence have been legalized, legalize the call itself.  During this
1014    // process, no libcalls can/will be inserted, guaranteeing that no calls
1015    // can overlap.
1016    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1017    // Note that we are selecting this call!
1018    LastCALLSEQ_END = SDValue(CallEnd, 0);
1019    IsLegalizingCall = true;
1020
1021    // Legalize the call, starting from the CALLSEQ_END.
1022    LegalizeOp(LastCALLSEQ_END);
1023    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1024    return Result;
1025  }
1026  case ISD::CALLSEQ_END:
1027    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1028    // will cause this node to be legalized as well as handling libcalls right.
1029    if (LastCALLSEQ_END.getNode() != Node) {
1030      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1031      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1032      assert(I != LegalizedNodes.end() &&
1033             "Legalizing the call start should have legalized this node!");
1034      return I->second;
1035    }
1036
1037    // Otherwise, the call start has been legalized and everything is going
1038    // according to plan.  Just legalize ourselves normally here.
1039    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1040    // Do not try to legalize the target-specific arguments (#1+), except for
1041    // an optional flag input.
1042    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1043      if (Tmp1 != Node->getOperand(0)) {
1044        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1045        Ops[0] = Tmp1;
1046        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1047      }
1048    } else {
1049      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1050      if (Tmp1 != Node->getOperand(0) ||
1051          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1052        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1053        Ops[0] = Tmp1;
1054        Ops.back() = Tmp2;
1055        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1056      }
1057    }
1058    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1059    // This finishes up call legalization.
1060    IsLegalizingCall = false;
1061
1062    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1063    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1064    if (Node->getNumValues() == 2)
1065      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1066    return Result.getValue(Op.getResNo());
1067  case ISD::LOAD: {
1068    LoadSDNode *LD = cast<LoadSDNode>(Node);
1069    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1070    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1071
1072    ISD::LoadExtType ExtType = LD->getExtensionType();
1073    if (ExtType == ISD::NON_EXTLOAD) {
1074      EVT VT = Node->getValueType(0);
1075      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1076      Tmp3 = Result.getValue(0);
1077      Tmp4 = Result.getValue(1);
1078
1079      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1080      default: llvm_unreachable("This action is not supported yet!");
1081      case TargetLowering::Legal:
1082        // If this is an unaligned load and the target doesn't support it,
1083        // expand it.
1084        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1085          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1086          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1087          if (LD->getAlignment() < ABIAlignment){
1088            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1089                                         DAG, TLI);
1090            Tmp3 = Result.getOperand(0);
1091            Tmp4 = Result.getOperand(1);
1092            Tmp3 = LegalizeOp(Tmp3);
1093            Tmp4 = LegalizeOp(Tmp4);
1094          }
1095        }
1096        break;
1097      case TargetLowering::Custom:
1098        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1099        if (Tmp1.getNode()) {
1100          Tmp3 = LegalizeOp(Tmp1);
1101          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1102        }
1103        break;
1104      case TargetLowering::Promote: {
1105        // Only promote a load of vector type to another.
1106        assert(VT.isVector() && "Cannot promote this load!");
1107        // Change base type to a different vector type.
1108        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1109
1110        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1111                           LD->getSrcValueOffset(),
1112                           LD->isVolatile(), LD->getAlignment());
1113        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1114        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1115        break;
1116      }
1117      }
1118      // Since loads produce two values, make sure to remember that we
1119      // legalized both of them.
1120      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1121      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1122      return Op.getResNo() ? Tmp4 : Tmp3;
1123    } else {
1124      EVT SrcVT = LD->getMemoryVT();
1125      unsigned SrcWidth = SrcVT.getSizeInBits();
1126      int SVOffset = LD->getSrcValueOffset();
1127      unsigned Alignment = LD->getAlignment();
1128      bool isVolatile = LD->isVolatile();
1129
1130      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1131          // Some targets pretend to have an i1 loading operation, and actually
1132          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1133          // bits are guaranteed to be zero; it helps the optimizers understand
1134          // that these bits are zero.  It is also useful for EXTLOAD, since it
1135          // tells the optimizers that those bits are undefined.  It would be
1136          // nice to have an effective generic way of getting these benefits...
1137          // Until such a way is found, don't insist on promoting i1 here.
1138          (SrcVT != MVT::i1 ||
1139           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1140        // Promote to a byte-sized load if not loading an integral number of
1141        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1142        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1143        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1144        SDValue Ch;
1145
1146        // The extra bits are guaranteed to be zero, since we stored them that
1147        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1148
1149        ISD::LoadExtType NewExtType =
1150          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1151
1152        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1153                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1154                                NVT, isVolatile, Alignment);
1155
1156        Ch = Result.getValue(1); // The chain.
1157
1158        if (ExtType == ISD::SEXTLOAD)
1159          // Having the top bits zero doesn't help when sign extending.
1160          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1161                               Result.getValueType(),
1162                               Result, DAG.getValueType(SrcVT));
1163        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1164          // All the top bits are guaranteed to be zero - inform the optimizers.
1165          Result = DAG.getNode(ISD::AssertZext, dl,
1166                               Result.getValueType(), Result,
1167                               DAG.getValueType(SrcVT));
1168
1169        Tmp1 = LegalizeOp(Result);
1170        Tmp2 = LegalizeOp(Ch);
1171      } else if (SrcWidth & (SrcWidth - 1)) {
1172        // If not loading a power-of-2 number of bits, expand as two loads.
1173        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1174               "Unsupported extload!");
1175        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1176        assert(RoundWidth < SrcWidth);
1177        unsigned ExtraWidth = SrcWidth - RoundWidth;
1178        assert(ExtraWidth < RoundWidth);
1179        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1180               "Load size not an integral number of bytes!");
1181        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1182        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1183        SDValue Lo, Hi, Ch;
1184        unsigned IncrementSize;
1185
1186        if (TLI.isLittleEndian()) {
1187          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1188          // Load the bottom RoundWidth bits.
1189          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1190                              Node->getValueType(0), Tmp1, Tmp2,
1191                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1192                              Alignment);
1193
1194          // Load the remaining ExtraWidth bits.
1195          IncrementSize = RoundWidth / 8;
1196          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1197                             DAG.getIntPtrConstant(IncrementSize));
1198          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1199                              LD->getSrcValue(), SVOffset + IncrementSize,
1200                              ExtraVT, isVolatile,
1201                              MinAlign(Alignment, IncrementSize));
1202
1203          // Build a factor node to remember that this load is independent of the
1204          // other one.
1205          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1206                           Hi.getValue(1));
1207
1208          // Move the top bits to the right place.
1209          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1210                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1211
1212          // Join the hi and lo parts.
1213          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1214        } else {
1215          // Big endian - avoid unaligned loads.
1216          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1217          // Load the top RoundWidth bits.
1218          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1219                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1220                              Alignment);
1221
1222          // Load the remaining ExtraWidth bits.
1223          IncrementSize = RoundWidth / 8;
1224          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1225                             DAG.getIntPtrConstant(IncrementSize));
1226          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1227                              Node->getValueType(0), Tmp1, Tmp2,
1228                              LD->getSrcValue(), SVOffset + IncrementSize,
1229                              ExtraVT, isVolatile,
1230                              MinAlign(Alignment, IncrementSize));
1231
1232          // Build a factor node to remember that this load is independent of the
1233          // other one.
1234          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1235                           Hi.getValue(1));
1236
1237          // Move the top bits to the right place.
1238          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1239                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1240
1241          // Join the hi and lo parts.
1242          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1243        }
1244
1245        Tmp1 = LegalizeOp(Result);
1246        Tmp2 = LegalizeOp(Ch);
1247      } else {
1248        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1249        default: llvm_unreachable("This action is not supported yet!");
1250        case TargetLowering::Custom:
1251          isCustom = true;
1252          // FALLTHROUGH
1253        case TargetLowering::Legal:
1254          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1255          Tmp1 = Result.getValue(0);
1256          Tmp2 = Result.getValue(1);
1257
1258          if (isCustom) {
1259            Tmp3 = TLI.LowerOperation(Result, DAG);
1260            if (Tmp3.getNode()) {
1261              Tmp1 = LegalizeOp(Tmp3);
1262              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1263            }
1264          } else {
1265            // If this is an unaligned load and the target doesn't support it,
1266            // expand it.
1267            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1268              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1269              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1270              if (LD->getAlignment() < ABIAlignment){
1271                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1272                                             DAG, TLI);
1273                Tmp1 = Result.getOperand(0);
1274                Tmp2 = Result.getOperand(1);
1275                Tmp1 = LegalizeOp(Tmp1);
1276                Tmp2 = LegalizeOp(Tmp2);
1277              }
1278            }
1279          }
1280          break;
1281        case TargetLowering::Expand:
1282          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1283          // f128 = EXTLOAD {f32,f64} too
1284          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1285                                     Node->getValueType(0) == MVT::f128)) ||
1286              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1287            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1288                                       LD->getSrcValueOffset(),
1289                                       LD->isVolatile(), LD->getAlignment());
1290            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1291                                 Node->getValueType(0), Load);
1292            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1293            Tmp2 = LegalizeOp(Load.getValue(1));
1294            break;
1295          }
1296          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1297          // Turn the unsupported load into an EXTLOAD followed by an explicit
1298          // zero/sign extend inreg.
1299          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1300                                  Tmp1, Tmp2, LD->getSrcValue(),
1301                                  LD->getSrcValueOffset(), SrcVT,
1302                                  LD->isVolatile(), LD->getAlignment());
1303          SDValue ValRes;
1304          if (ExtType == ISD::SEXTLOAD)
1305            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1306                                 Result.getValueType(),
1307                                 Result, DAG.getValueType(SrcVT));
1308          else
1309            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1310          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1311          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1312          break;
1313        }
1314      }
1315
1316      // Since loads produce two values, make sure to remember that we legalized
1317      // both of them.
1318      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1319      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1320      return Op.getResNo() ? Tmp2 : Tmp1;
1321    }
1322  }
1323  case ISD::STORE: {
1324    StoreSDNode *ST = cast<StoreSDNode>(Node);
1325    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1326    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1327    int SVOffset = ST->getSrcValueOffset();
1328    unsigned Alignment = ST->getAlignment();
1329    bool isVolatile = ST->isVolatile();
1330
1331    if (!ST->isTruncatingStore()) {
1332      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1333        Result = SDValue(OptStore, 0);
1334        break;
1335      }
1336
1337      {
1338        Tmp3 = LegalizeOp(ST->getValue());
1339        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1340                                        ST->getOffset());
1341
1342        EVT VT = Tmp3.getValueType();
1343        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1344        default: llvm_unreachable("This action is not supported yet!");
1345        case TargetLowering::Legal:
1346          // If this is an unaligned store and the target doesn't support it,
1347          // expand it.
1348          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1349            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1350            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1351            if (ST->getAlignment() < ABIAlignment)
1352              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1353                                            DAG, TLI);
1354          }
1355          break;
1356        case TargetLowering::Custom:
1357          Tmp1 = TLI.LowerOperation(Result, DAG);
1358          if (Tmp1.getNode()) Result = Tmp1;
1359          break;
1360        case TargetLowering::Promote:
1361          assert(VT.isVector() && "Unknown legal promote case!");
1362          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1363                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1364          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1365                                ST->getSrcValue(), SVOffset, isVolatile,
1366                                Alignment);
1367          break;
1368        }
1369        break;
1370      }
1371    } else {
1372      Tmp3 = LegalizeOp(ST->getValue());
1373
1374      EVT StVT = ST->getMemoryVT();
1375      unsigned StWidth = StVT.getSizeInBits();
1376
1377      if (StWidth != StVT.getStoreSizeInBits()) {
1378        // Promote to a byte-sized store with upper bits zero if not
1379        // storing an integral number of bytes.  For example, promote
1380        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1381        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits());
1382        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1383        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1384                                   SVOffset, NVT, isVolatile, Alignment);
1385      } else if (StWidth & (StWidth - 1)) {
1386        // If not storing a power-of-2 number of bits, expand as two stores.
1387        assert(StVT.isExtended() && !StVT.isVector() &&
1388               "Unsupported truncstore!");
1389        unsigned RoundWidth = 1 << Log2_32(StWidth);
1390        assert(RoundWidth < StWidth);
1391        unsigned ExtraWidth = StWidth - RoundWidth;
1392        assert(ExtraWidth < RoundWidth);
1393        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1394               "Store size not an integral number of bytes!");
1395        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1396        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1397        SDValue Lo, Hi;
1398        unsigned IncrementSize;
1399
1400        if (TLI.isLittleEndian()) {
1401          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1402          // Store the bottom RoundWidth bits.
1403          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1404                                 SVOffset, RoundVT,
1405                                 isVolatile, Alignment);
1406
1407          // Store the remaining ExtraWidth bits.
1408          IncrementSize = RoundWidth / 8;
1409          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1410                             DAG.getIntPtrConstant(IncrementSize));
1411          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1412                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1413          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1414                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1415                                 MinAlign(Alignment, IncrementSize));
1416        } else {
1417          // Big endian - avoid unaligned stores.
1418          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1419          // Store the top RoundWidth bits.
1420          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1421                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1422          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1423                                 SVOffset, RoundVT, isVolatile, Alignment);
1424
1425          // Store the remaining ExtraWidth bits.
1426          IncrementSize = RoundWidth / 8;
1427          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1428                             DAG.getIntPtrConstant(IncrementSize));
1429          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1430                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1431                                 MinAlign(Alignment, IncrementSize));
1432        }
1433
1434        // The order of the stores doesn't matter.
1435        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1436      } else {
1437        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1438            Tmp2 != ST->getBasePtr())
1439          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1440                                          ST->getOffset());
1441
1442        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1443        default: llvm_unreachable("This action is not supported yet!");
1444        case TargetLowering::Legal:
1445          // If this is an unaligned store and the target doesn't support it,
1446          // expand it.
1447          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1448            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1449            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1450            if (ST->getAlignment() < ABIAlignment)
1451              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1452                                            DAG, TLI);
1453          }
1454          break;
1455        case TargetLowering::Custom:
1456          Result = TLI.LowerOperation(Result, DAG);
1457          break;
1458        case Expand:
1459          // TRUNCSTORE:i16 i32 -> STORE i16
1460          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1461          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1462          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1463                                SVOffset, isVolatile, Alignment);
1464          break;
1465        }
1466      }
1467    }
1468    break;
1469  }
1470  }
1471  assert(Result.getValueType() == Op.getValueType() &&
1472         "Bad legalization!");
1473
1474  // Make sure that the generated code is itself legal.
1475  if (Result != Op)
1476    Result = LegalizeOp(Result);
1477
1478  // Note that LegalizeOp may be reentered even from single-use nodes, which
1479  // means that we always must cache transformed nodes.
1480  AddLegalizedOperand(Op, Result);
1481  return Result;
1482}
1483
1484SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1485  SDValue Vec = Op.getOperand(0);
1486  SDValue Idx = Op.getOperand(1);
1487  DebugLoc dl = Op.getDebugLoc();
1488  // Store the value to a temporary stack slot, then LOAD the returned part.
1489  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1490  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1491
1492  // Add the offset to the index.
1493  unsigned EltSize =
1494      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1495  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1496                    DAG.getConstant(EltSize, Idx.getValueType()));
1497
1498  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1499    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1500  else
1501    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1502
1503  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1504
1505  if (Op.getValueType().isVector())
1506    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1507  else
1508    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1509                          NULL, 0, Vec.getValueType().getVectorElementType());
1510}
1511
1512SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1513  // We can't handle this case efficiently.  Allocate a sufficiently
1514  // aligned object on the stack, store each element into it, then load
1515  // the result as a vector.
1516  // Create the stack frame object.
1517  EVT VT = Node->getValueType(0);
1518  EVT OpVT = Node->getOperand(0).getValueType();
1519  EVT EltVT = VT.getVectorElementType();
1520  DebugLoc dl = Node->getDebugLoc();
1521  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1522  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1523  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1524
1525  // Emit a store of each element to the stack slot.
1526  SmallVector<SDValue, 8> Stores;
1527  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1528  // Store (in the right endianness) the elements to memory.
1529  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1530    // Ignore undef elements.
1531    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1532
1533    unsigned Offset = TypeByteSize*i;
1534
1535    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1536    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1537
1538    // If EltVT smaller than OpVT, only store the bits necessary.
1539    if (EltVT.bitsLT(OpVT))
1540      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1541                          Node->getOperand(i), Idx, SV, Offset, EltVT));
1542    else
1543      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1544                                    Node->getOperand(i), Idx, SV, Offset));
1545  }
1546
1547  SDValue StoreChain;
1548  if (!Stores.empty())    // Not all undef elements?
1549    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1550                             &Stores[0], Stores.size());
1551  else
1552    StoreChain = DAG.getEntryNode();
1553
1554  // Result is a load from the stack slot.
1555  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1556}
1557
1558SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1559  DebugLoc dl = Node->getDebugLoc();
1560  SDValue Tmp1 = Node->getOperand(0);
1561  SDValue Tmp2 = Node->getOperand(1);
1562  assert((Tmp2.getValueType() == MVT::f32 ||
1563          Tmp2.getValueType() == MVT::f64) &&
1564          "Ugly special-cased code!");
1565  // Get the sign bit of the RHS.
1566  SDValue SignBit;
1567  EVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1568  if (isTypeLegal(IVT)) {
1569    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1570  } else {
1571    assert(isTypeLegal(TLI.getPointerTy()) &&
1572            (TLI.getPointerTy() == MVT::i32 ||
1573            TLI.getPointerTy() == MVT::i64) &&
1574            "Legal type for load?!");
1575    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1576    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1577    SDValue Ch =
1578        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1579    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1580      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1581                            LoadPtr, DAG.getIntPtrConstant(4));
1582    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1583                              Ch, LoadPtr, NULL, 0, MVT::i32);
1584  }
1585  SignBit =
1586      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1587                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1588                    ISD::SETLT);
1589  // Get the absolute value of the result.
1590  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1591  // Select between the nabs and abs value based on the sign bit of
1592  // the input.
1593  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1594                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1595                     AbsVal);
1596}
1597
1598void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1599                                           SmallVectorImpl<SDValue> &Results) {
1600  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1601  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1602          " not tell us which reg is the stack pointer!");
1603  DebugLoc dl = Node->getDebugLoc();
1604  EVT VT = Node->getValueType(0);
1605  SDValue Tmp1 = SDValue(Node, 0);
1606  SDValue Tmp2 = SDValue(Node, 1);
1607  SDValue Tmp3 = Node->getOperand(2);
1608  SDValue Chain = Tmp1.getOperand(0);
1609
1610  // Chain the dynamic stack allocation so that it doesn't modify the stack
1611  // pointer when other instructions are using the stack.
1612  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1613
1614  SDValue Size  = Tmp2.getOperand(1);
1615  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1616  Chain = SP.getValue(1);
1617  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1618  unsigned StackAlign =
1619    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1620  if (Align > StackAlign)
1621    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1622                      DAG.getConstant(-(uint64_t)Align, VT));
1623  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1624  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1625
1626  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1627                            DAG.getIntPtrConstant(0, true), SDValue());
1628
1629  Results.push_back(Tmp1);
1630  Results.push_back(Tmp2);
1631}
1632
1633/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1634/// condition code CC on the current target. This routine expands SETCC with
1635/// illegal condition code into AND / OR of multiple SETCC values.
1636void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1637                                                 SDValue &LHS, SDValue &RHS,
1638                                                 SDValue &CC,
1639                                                 DebugLoc dl) {
1640  EVT OpVT = LHS.getValueType();
1641  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1642  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1643  default: llvm_unreachable("Unknown condition code action!");
1644  case TargetLowering::Legal:
1645    // Nothing to do.
1646    break;
1647  case TargetLowering::Expand: {
1648    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1649    unsigned Opc = 0;
1650    switch (CCCode) {
1651    default: llvm_unreachable("Don't know how to expand this condition!");
1652    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1653    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1654    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1655    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1656    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1657    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1658    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1659    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1660    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1661    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1662    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1663    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1664    // FIXME: Implement more expansions.
1665    }
1666
1667    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1668    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1669    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1670    RHS = SDValue();
1671    CC  = SDValue();
1672    break;
1673  }
1674  }
1675}
1676
1677/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1678/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1679/// a load from the stack slot to DestVT, extending it if needed.
1680/// The resultant code need not be legal.
1681SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1682                                               EVT SlotVT,
1683                                               EVT DestVT,
1684                                               DebugLoc dl) {
1685  // Create the stack frame object.
1686  unsigned SrcAlign =
1687    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1688                                              getTypeForEVT(*DAG.getContext()));
1689  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1690
1691  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1692  int SPFI = StackPtrFI->getIndex();
1693  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1694
1695  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1696  unsigned SlotSize = SlotVT.getSizeInBits();
1697  unsigned DestSize = DestVT.getSizeInBits();
1698  unsigned DestAlign =
1699    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext()));
1700
1701  // Emit a store to the stack slot.  Use a truncstore if the input value is
1702  // later than DestVT.
1703  SDValue Store;
1704
1705  if (SrcSize > SlotSize)
1706    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1707                              SV, 0, SlotVT, false, SrcAlign);
1708  else {
1709    assert(SrcSize == SlotSize && "Invalid store");
1710    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1711                         SV, 0, false, SrcAlign);
1712  }
1713
1714  // Result is a load from the stack slot.
1715  if (SlotSize == DestSize)
1716    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1717
1718  assert(SlotSize < DestSize && "Unknown extension!");
1719  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1720                        false, DestAlign);
1721}
1722
1723SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1724  DebugLoc dl = Node->getDebugLoc();
1725  // Create a vector sized/aligned stack slot, store the value to element #0,
1726  // then load the whole vector back out.
1727  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1728
1729  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1730  int SPFI = StackPtrFI->getIndex();
1731
1732  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1733                                 StackPtr,
1734                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1735                                 Node->getValueType(0).getVectorElementType());
1736  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1737                     PseudoSourceValue::getFixedStack(SPFI), 0);
1738}
1739
1740
1741/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1742/// support the operation, but do support the resultant vector type.
1743SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1744  unsigned NumElems = Node->getNumOperands();
1745  SDValue Value1, Value2;
1746  DebugLoc dl = Node->getDebugLoc();
1747  EVT VT = Node->getValueType(0);
1748  EVT OpVT = Node->getOperand(0).getValueType();
1749  EVT EltVT = VT.getVectorElementType();
1750
1751  // If the only non-undef value is the low element, turn this into a
1752  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1753  bool isOnlyLowElement = true;
1754  bool MoreThanTwoValues = false;
1755  bool isConstant = true;
1756  for (unsigned i = 0; i < NumElems; ++i) {
1757    SDValue V = Node->getOperand(i);
1758    if (V.getOpcode() == ISD::UNDEF)
1759      continue;
1760    if (i > 0)
1761      isOnlyLowElement = false;
1762    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1763      isConstant = false;
1764
1765    if (!Value1.getNode()) {
1766      Value1 = V;
1767    } else if (!Value2.getNode()) {
1768      if (V != Value1)
1769        Value2 = V;
1770    } else if (V != Value1 && V != Value2) {
1771      MoreThanTwoValues = true;
1772    }
1773  }
1774
1775  if (!Value1.getNode())
1776    return DAG.getUNDEF(VT);
1777
1778  if (isOnlyLowElement)
1779    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1780
1781  // If all elements are constants, create a load from the constant pool.
1782  if (isConstant) {
1783    std::vector<Constant*> CV;
1784    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1785      if (ConstantFPSDNode *V =
1786          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1787        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1788      } else if (ConstantSDNode *V =
1789                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1790        if (OpVT==EltVT)
1791          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1792        else {
1793          // If OpVT and EltVT don't match, EltVT is not legal and the
1794          // element values have been promoted/truncated earlier.  Undo this;
1795          // we don't want a v16i8 to become a v16i32 for example.
1796          const ConstantInt *CI = V->getConstantIntValue();
1797          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1798                                        CI->getZExtValue()));
1799        }
1800      } else {
1801        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1802        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1803        CV.push_back(UndefValue::get(OpNTy));
1804      }
1805    }
1806    Constant *CP = ConstantVector::get(CV);
1807    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1808    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1809    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1810                       PseudoSourceValue::getConstantPool(), 0,
1811                       false, Alignment);
1812  }
1813
1814  if (!MoreThanTwoValues) {
1815    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1816    for (unsigned i = 0; i < NumElems; ++i) {
1817      SDValue V = Node->getOperand(i);
1818      if (V.getOpcode() == ISD::UNDEF)
1819        continue;
1820      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1821    }
1822    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1823      // Get the splatted value into the low element of a vector register.
1824      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1825      SDValue Vec2;
1826      if (Value2.getNode())
1827        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1828      else
1829        Vec2 = DAG.getUNDEF(VT);
1830
1831      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1832      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1833    }
1834  }
1835
1836  // Otherwise, we can't handle this case efficiently.
1837  return ExpandVectorBuildThroughStack(Node);
1838}
1839
1840// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1841// does not fit into a register, return the lo part and set the hi part to the
1842// by-reg argument.  If it does fit into a single register, return the result
1843// and leave the Hi part unset.
1844SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1845                                            bool isSigned) {
1846  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1847  // The input chain to this libcall is the entry node of the function.
1848  // Legalizing the call will automatically add the previous call to the
1849  // dependence.
1850  SDValue InChain = DAG.getEntryNode();
1851
1852  TargetLowering::ArgListTy Args;
1853  TargetLowering::ArgListEntry Entry;
1854  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1855    EVT ArgVT = Node->getOperand(i).getValueType();
1856    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1857    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1858    Entry.isSExt = isSigned;
1859    Entry.isZExt = !isSigned;
1860    Args.push_back(Entry);
1861  }
1862  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1863                                         TLI.getPointerTy());
1864
1865  // Splice the libcall in wherever FindInputOutputChains tells us to.
1866  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1867  std::pair<SDValue, SDValue> CallInfo =
1868    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1869                    0, TLI.getLibcallCallingConv(LC), false,
1870                    /*isReturnValueUsed=*/true,
1871                    Callee, Args, DAG,
1872                    Node->getDebugLoc());
1873
1874  // Legalize the call sequence, starting with the chain.  This will advance
1875  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1876  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1877  LegalizeOp(CallInfo.second);
1878  return CallInfo.first;
1879}
1880
1881SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1882                                              RTLIB::Libcall Call_F32,
1883                                              RTLIB::Libcall Call_F64,
1884                                              RTLIB::Libcall Call_F80,
1885                                              RTLIB::Libcall Call_PPCF128) {
1886  RTLIB::Libcall LC;
1887  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1888  default: llvm_unreachable("Unexpected request for libcall!");
1889  case MVT::f32: LC = Call_F32; break;
1890  case MVT::f64: LC = Call_F64; break;
1891  case MVT::f80: LC = Call_F80; break;
1892  case MVT::ppcf128: LC = Call_PPCF128; break;
1893  }
1894  return ExpandLibCall(LC, Node, false);
1895}
1896
1897SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1898                                               RTLIB::Libcall Call_I8,
1899                                               RTLIB::Libcall Call_I16,
1900                                               RTLIB::Libcall Call_I32,
1901                                               RTLIB::Libcall Call_I64,
1902                                               RTLIB::Libcall Call_I128) {
1903  RTLIB::Libcall LC;
1904  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1905  default: llvm_unreachable("Unexpected request for libcall!");
1906  case MVT::i8:   LC = Call_I8; break;
1907  case MVT::i16:  LC = Call_I16; break;
1908  case MVT::i32:  LC = Call_I32; break;
1909  case MVT::i64:  LC = Call_I64; break;
1910  case MVT::i128: LC = Call_I128; break;
1911  }
1912  return ExpandLibCall(LC, Node, isSigned);
1913}
1914
1915/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1916/// INT_TO_FP operation of the specified operand when the target requests that
1917/// we expand it.  At this point, we know that the result and operand types are
1918/// legal for the target.
1919SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1920                                                   SDValue Op0,
1921                                                   EVT DestVT,
1922                                                   DebugLoc dl) {
1923  if (Op0.getValueType() == MVT::i32) {
1924    // simple 32-bit [signed|unsigned] integer to float/double expansion
1925
1926    // Get the stack frame index of a 8 byte buffer.
1927    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1928
1929    // word offset constant for Hi/Lo address computation
1930    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1931    // set up Hi and Lo (into buffer) address based on endian
1932    SDValue Hi = StackSlot;
1933    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1934                             TLI.getPointerTy(), StackSlot, WordOff);
1935    if (TLI.isLittleEndian())
1936      std::swap(Hi, Lo);
1937
1938    // if signed map to unsigned space
1939    SDValue Op0Mapped;
1940    if (isSigned) {
1941      // constant used to invert sign bit (signed to unsigned mapping)
1942      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1943      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1944    } else {
1945      Op0Mapped = Op0;
1946    }
1947    // store the lo of the constructed double - based on integer input
1948    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1949                                  Op0Mapped, Lo, NULL, 0);
1950    // initial hi portion of constructed double
1951    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1952    // store the hi of the constructed double - biased exponent
1953    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1954    // load the constructed double
1955    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1956    // FP constant to bias correct the final result
1957    SDValue Bias = DAG.getConstantFP(isSigned ?
1958                                     BitsToDouble(0x4330000080000000ULL) :
1959                                     BitsToDouble(0x4330000000000000ULL),
1960                                     MVT::f64);
1961    // subtract the bias
1962    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
1963    // final result
1964    SDValue Result;
1965    // handle final rounding
1966    if (DestVT == MVT::f64) {
1967      // do nothing
1968      Result = Sub;
1969    } else if (DestVT.bitsLT(MVT::f64)) {
1970      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
1971                           DAG.getIntPtrConstant(0));
1972    } else if (DestVT.bitsGT(MVT::f64)) {
1973      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
1974    }
1975    return Result;
1976  }
1977  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
1978  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
1979
1980  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
1981                                 Op0, DAG.getConstant(0, Op0.getValueType()),
1982                                 ISD::SETLT);
1983  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
1984  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
1985                                    SignSet, Four, Zero);
1986
1987  // If the sign bit of the integer is set, the large number will be treated
1988  // as a negative number.  To counteract this, the dynamic code adds an
1989  // offset depending on the data type.
1990  uint64_t FF;
1991  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
1992  default: llvm_unreachable("Unsupported integer type!");
1993  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
1994  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
1995  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
1996  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
1997  }
1998  if (TLI.isLittleEndian()) FF <<= 32;
1999  Constant *FudgeFactor = ConstantInt::get(
2000                                       Type::getInt64Ty(*DAG.getContext()), FF);
2001
2002  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2003  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2004  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2005  Alignment = std::min(Alignment, 4u);
2006  SDValue FudgeInReg;
2007  if (DestVT == MVT::f32)
2008    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2009                             PseudoSourceValue::getConstantPool(), 0,
2010                             false, Alignment);
2011  else {
2012    FudgeInReg =
2013      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2014                                DAG.getEntryNode(), CPIdx,
2015                                PseudoSourceValue::getConstantPool(), 0,
2016                                MVT::f32, false, Alignment));
2017  }
2018
2019  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2020}
2021
2022/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2023/// *INT_TO_FP operation of the specified operand when the target requests that
2024/// we promote it.  At this point, we know that the result and operand types are
2025/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2026/// operation that takes a larger input.
2027SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2028                                                    EVT DestVT,
2029                                                    bool isSigned,
2030                                                    DebugLoc dl) {
2031  // First step, figure out the appropriate *INT_TO_FP operation to use.
2032  EVT NewInTy = LegalOp.getValueType();
2033
2034  unsigned OpToUse = 0;
2035
2036  // Scan for the appropriate larger type to use.
2037  while (1) {
2038    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2039    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2040
2041    // If the target supports SINT_TO_FP of this type, use it.
2042    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2043      OpToUse = ISD::SINT_TO_FP;
2044      break;
2045    }
2046    if (isSigned) continue;
2047
2048    // If the target supports UINT_TO_FP of this type, use it.
2049    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2050      OpToUse = ISD::UINT_TO_FP;
2051      break;
2052    }
2053
2054    // Otherwise, try a larger type.
2055  }
2056
2057  // Okay, we found the operation and type to use.  Zero extend our input to the
2058  // desired type then run the operation on it.
2059  return DAG.getNode(OpToUse, dl, DestVT,
2060                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2061                                 dl, NewInTy, LegalOp));
2062}
2063
2064/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2065/// FP_TO_*INT operation of the specified operand when the target requests that
2066/// we promote it.  At this point, we know that the result and operand types are
2067/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2068/// operation that returns a larger result.
2069SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2070                                                    EVT DestVT,
2071                                                    bool isSigned,
2072                                                    DebugLoc dl) {
2073  // First step, figure out the appropriate FP_TO*INT operation to use.
2074  EVT NewOutTy = DestVT;
2075
2076  unsigned OpToUse = 0;
2077
2078  // Scan for the appropriate larger type to use.
2079  while (1) {
2080    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2081    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2082
2083    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2084      OpToUse = ISD::FP_TO_SINT;
2085      break;
2086    }
2087
2088    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2089      OpToUse = ISD::FP_TO_UINT;
2090      break;
2091    }
2092
2093    // Otherwise, try a larger type.
2094  }
2095
2096
2097  // Okay, we found the operation and type to use.
2098  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2099
2100  // Truncate the result of the extended FP_TO_*INT operation to the desired
2101  // size.
2102  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2103}
2104
2105/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2106///
2107SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2108  EVT VT = Op.getValueType();
2109  EVT SHVT = TLI.getShiftAmountTy();
2110  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2111  switch (VT.getSimpleVT().SimpleTy) {
2112  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2113  case MVT::i16:
2114    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2115    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2116    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2117  case MVT::i32:
2118    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2119    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2120    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2121    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2122    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2123    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2124    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2125    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2126    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2127  case MVT::i64:
2128    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2129    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2130    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2131    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2132    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2133    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2134    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2135    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2136    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2137    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2138    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2139    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2140    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2141    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2142    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2143    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2144    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2145    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2146    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2147    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2148    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2149  }
2150}
2151
2152/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2153///
2154SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2155                                             DebugLoc dl) {
2156  switch (Opc) {
2157  default: llvm_unreachable("Cannot expand this yet!");
2158  case ISD::CTPOP: {
2159    static const uint64_t mask[6] = {
2160      0x5555555555555555ULL, 0x3333333333333333ULL,
2161      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2162      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2163    };
2164    EVT VT = Op.getValueType();
2165    EVT ShVT = TLI.getShiftAmountTy();
2166    unsigned len = VT.getSizeInBits();
2167    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2168      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2169      unsigned EltSize = VT.isVector() ?
2170        VT.getVectorElementType().getSizeInBits() : len;
2171      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2172      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2173      Op = DAG.getNode(ISD::ADD, dl, VT,
2174                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2175                       DAG.getNode(ISD::AND, dl, VT,
2176                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2177                                   Tmp2));
2178    }
2179    return Op;
2180  }
2181  case ISD::CTLZ: {
2182    // for now, we do this:
2183    // x = x | (x >> 1);
2184    // x = x | (x >> 2);
2185    // ...
2186    // x = x | (x >>16);
2187    // x = x | (x >>32); // for 64-bit input
2188    // return popcount(~x);
2189    //
2190    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2191    EVT VT = Op.getValueType();
2192    EVT ShVT = TLI.getShiftAmountTy();
2193    unsigned len = VT.getSizeInBits();
2194    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2195      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2196      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2197                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2198    }
2199    Op = DAG.getNOT(dl, Op, VT);
2200    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2201  }
2202  case ISD::CTTZ: {
2203    // for now, we use: { return popcount(~x & (x - 1)); }
2204    // unless the target has ctlz but not ctpop, in which case we use:
2205    // { return 32 - nlz(~x & (x-1)); }
2206    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2207    EVT VT = Op.getValueType();
2208    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2209                               DAG.getNOT(dl, Op, VT),
2210                               DAG.getNode(ISD::SUB, dl, VT, Op,
2211                                           DAG.getConstant(1, VT)));
2212    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2213    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2214        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2215      return DAG.getNode(ISD::SUB, dl, VT,
2216                         DAG.getConstant(VT.getSizeInBits(), VT),
2217                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2218    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2219  }
2220  }
2221}
2222
2223void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2224                                      SmallVectorImpl<SDValue> &Results) {
2225  DebugLoc dl = Node->getDebugLoc();
2226  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2227  switch (Node->getOpcode()) {
2228  case ISD::CTPOP:
2229  case ISD::CTLZ:
2230  case ISD::CTTZ:
2231    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2232    Results.push_back(Tmp1);
2233    break;
2234  case ISD::BSWAP:
2235    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2236    break;
2237  case ISD::FRAMEADDR:
2238  case ISD::RETURNADDR:
2239  case ISD::FRAME_TO_ARGS_OFFSET:
2240    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2241    break;
2242  case ISD::FLT_ROUNDS_:
2243    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2244    break;
2245  case ISD::EH_RETURN:
2246  case ISD::EH_LABEL:
2247  case ISD::PREFETCH:
2248  case ISD::MEMBARRIER:
2249  case ISD::VAEND:
2250    Results.push_back(Node->getOperand(0));
2251    break;
2252  case ISD::DYNAMIC_STACKALLOC:
2253    ExpandDYNAMIC_STACKALLOC(Node, Results);
2254    break;
2255  case ISD::MERGE_VALUES:
2256    for (unsigned i = 0; i < Node->getNumValues(); i++)
2257      Results.push_back(Node->getOperand(i));
2258    break;
2259  case ISD::UNDEF: {
2260    EVT VT = Node->getValueType(0);
2261    if (VT.isInteger())
2262      Results.push_back(DAG.getConstant(0, VT));
2263    else if (VT.isFloatingPoint())
2264      Results.push_back(DAG.getConstantFP(0, VT));
2265    else
2266      llvm_unreachable("Unknown value type!");
2267    break;
2268  }
2269  case ISD::TRAP: {
2270    // If this operation is not supported, lower it to 'abort()' call
2271    TargetLowering::ArgListTy Args;
2272    std::pair<SDValue, SDValue> CallResult =
2273      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2274                      false, false, false, false, 0, CallingConv::C, false,
2275                      /*isReturnValueUsed=*/true,
2276                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2277                      Args, DAG, dl);
2278    Results.push_back(CallResult.second);
2279    break;
2280  }
2281  case ISD::FP_ROUND:
2282  case ISD::BIT_CONVERT:
2283    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2284                            Node->getValueType(0), dl);
2285    Results.push_back(Tmp1);
2286    break;
2287  case ISD::FP_EXTEND:
2288    Tmp1 = EmitStackConvert(Node->getOperand(0),
2289                            Node->getOperand(0).getValueType(),
2290                            Node->getValueType(0), dl);
2291    Results.push_back(Tmp1);
2292    break;
2293  case ISD::SIGN_EXTEND_INREG: {
2294    // NOTE: we could fall back on load/store here too for targets without
2295    // SAR.  However, it is doubtful that any exist.
2296    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2297    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2298                        ExtraVT.getSizeInBits();
2299    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2300    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2301                       Node->getOperand(0), ShiftCst);
2302    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2303    Results.push_back(Tmp1);
2304    break;
2305  }
2306  case ISD::FP_ROUND_INREG: {
2307    // The only way we can lower this is to turn it into a TRUNCSTORE,
2308    // EXTLOAD pair, targetting a temporary location (a stack slot).
2309
2310    // NOTE: there is a choice here between constantly creating new stack
2311    // slots and always reusing the same one.  We currently always create
2312    // new ones, as reuse may inhibit scheduling.
2313    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2314    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2315                            Node->getValueType(0), dl);
2316    Results.push_back(Tmp1);
2317    break;
2318  }
2319  case ISD::SINT_TO_FP:
2320  case ISD::UINT_TO_FP:
2321    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2322                                Node->getOperand(0), Node->getValueType(0), dl);
2323    Results.push_back(Tmp1);
2324    break;
2325  case ISD::FP_TO_UINT: {
2326    SDValue True, False;
2327    EVT VT =  Node->getOperand(0).getValueType();
2328    EVT NVT = Node->getValueType(0);
2329    const uint64_t zero[] = {0, 0};
2330    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2331    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2332    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2333    Tmp1 = DAG.getConstantFP(apf, VT);
2334    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2335                        Node->getOperand(0),
2336                        Tmp1, ISD::SETLT);
2337    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2338    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2339                        DAG.getNode(ISD::FSUB, dl, VT,
2340                                    Node->getOperand(0), Tmp1));
2341    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2342                        DAG.getConstant(x, NVT));
2343    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2344    Results.push_back(Tmp1);
2345    break;
2346  }
2347  case ISD::VAARG: {
2348    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2349    EVT VT = Node->getValueType(0);
2350    Tmp1 = Node->getOperand(0);
2351    Tmp2 = Node->getOperand(1);
2352    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2353    // Increment the pointer, VAList, to the next vaarg
2354    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2355                       DAG.getConstant(TLI.getTargetData()->
2356                                       getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2357                                       TLI.getPointerTy()));
2358    // Store the incremented VAList to the legalized pointer
2359    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2360    // Load the actual argument out of the pointer VAList
2361    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2362    Results.push_back(Results[0].getValue(1));
2363    break;
2364  }
2365  case ISD::VACOPY: {
2366    // This defaults to loading a pointer from the input and storing it to the
2367    // output, returning the chain.
2368    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2369    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2370    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2371                       Node->getOperand(2), VS, 0);
2372    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2373    Results.push_back(Tmp1);
2374    break;
2375  }
2376  case ISD::EXTRACT_VECTOR_ELT:
2377    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2378      // This must be an access of the only element.  Return it.
2379      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2380                         Node->getOperand(0));
2381    else
2382      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2383    Results.push_back(Tmp1);
2384    break;
2385  case ISD::EXTRACT_SUBVECTOR:
2386    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2387    break;
2388  case ISD::CONCAT_VECTORS: {
2389    Results.push_back(ExpandVectorBuildThroughStack(Node));
2390    break;
2391  }
2392  case ISD::SCALAR_TO_VECTOR:
2393    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2394    break;
2395  case ISD::INSERT_VECTOR_ELT:
2396    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2397                                              Node->getOperand(1),
2398                                              Node->getOperand(2), dl));
2399    break;
2400  case ISD::VECTOR_SHUFFLE: {
2401    SmallVector<int, 8> Mask;
2402    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2403
2404    EVT VT = Node->getValueType(0);
2405    EVT EltVT = VT.getVectorElementType();
2406    unsigned NumElems = VT.getVectorNumElements();
2407    SmallVector<SDValue, 8> Ops;
2408    for (unsigned i = 0; i != NumElems; ++i) {
2409      if (Mask[i] < 0) {
2410        Ops.push_back(DAG.getUNDEF(EltVT));
2411        continue;
2412      }
2413      unsigned Idx = Mask[i];
2414      if (Idx < NumElems)
2415        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2416                                  Node->getOperand(0),
2417                                  DAG.getIntPtrConstant(Idx)));
2418      else
2419        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2420                                  Node->getOperand(1),
2421                                  DAG.getIntPtrConstant(Idx - NumElems)));
2422    }
2423    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2424    Results.push_back(Tmp1);
2425    break;
2426  }
2427  case ISD::EXTRACT_ELEMENT: {
2428    EVT OpTy = Node->getOperand(0).getValueType();
2429    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2430      // 1 -> Hi
2431      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2432                         DAG.getConstant(OpTy.getSizeInBits()/2,
2433                                         TLI.getShiftAmountTy()));
2434      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2435    } else {
2436      // 0 -> Lo
2437      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2438                         Node->getOperand(0));
2439    }
2440    Results.push_back(Tmp1);
2441    break;
2442  }
2443  case ISD::STACKSAVE:
2444    // Expand to CopyFromReg if the target set
2445    // StackPointerRegisterToSaveRestore.
2446    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2447      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2448                                           Node->getValueType(0)));
2449      Results.push_back(Results[0].getValue(1));
2450    } else {
2451      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2452      Results.push_back(Node->getOperand(0));
2453    }
2454    break;
2455  case ISD::STACKRESTORE:
2456    // Expand to CopyToReg if the target set
2457    // StackPointerRegisterToSaveRestore.
2458    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2459      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2460                                         Node->getOperand(1)));
2461    } else {
2462      Results.push_back(Node->getOperand(0));
2463    }
2464    break;
2465  case ISD::FCOPYSIGN:
2466    Results.push_back(ExpandFCOPYSIGN(Node));
2467    break;
2468  case ISD::FNEG:
2469    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2470    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2471    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2472                       Node->getOperand(0));
2473    Results.push_back(Tmp1);
2474    break;
2475  case ISD::FABS: {
2476    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2477    EVT VT = Node->getValueType(0);
2478    Tmp1 = Node->getOperand(0);
2479    Tmp2 = DAG.getConstantFP(0.0, VT);
2480    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2481                        Tmp1, Tmp2, ISD::SETUGT);
2482    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2483    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2484    Results.push_back(Tmp1);
2485    break;
2486  }
2487  case ISD::FSQRT:
2488    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2489                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2490    break;
2491  case ISD::FSIN:
2492    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2493                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2494    break;
2495  case ISD::FCOS:
2496    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2497                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2498    break;
2499  case ISD::FLOG:
2500    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2501                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2502    break;
2503  case ISD::FLOG2:
2504    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2505                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2506    break;
2507  case ISD::FLOG10:
2508    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2509                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2510    break;
2511  case ISD::FEXP:
2512    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2513                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2514    break;
2515  case ISD::FEXP2:
2516    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2517                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2518    break;
2519  case ISD::FTRUNC:
2520    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2521                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2522    break;
2523  case ISD::FFLOOR:
2524    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2525                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2526    break;
2527  case ISD::FCEIL:
2528    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2529                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2530    break;
2531  case ISD::FRINT:
2532    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2533                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2534    break;
2535  case ISD::FNEARBYINT:
2536    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2537                                      RTLIB::NEARBYINT_F64,
2538                                      RTLIB::NEARBYINT_F80,
2539                                      RTLIB::NEARBYINT_PPCF128));
2540    break;
2541  case ISD::FPOWI:
2542    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2543                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2544    break;
2545  case ISD::FPOW:
2546    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2547                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2548    break;
2549  case ISD::FDIV:
2550    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2551                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2552    break;
2553  case ISD::FREM:
2554    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2555                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2556    break;
2557  case ISD::ConstantFP: {
2558    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2559    // Check to see if this FP immediate is already legal.
2560    // If this is a legal constant, turn it into a TargetConstantFP node.
2561    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2562      Results.push_back(SDValue(Node, 0));
2563    else
2564      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2565    break;
2566  }
2567  case ISD::EHSELECTION: {
2568    unsigned Reg = TLI.getExceptionSelectorRegister();
2569    assert(Reg && "Can't expand to unknown register!");
2570    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2571                                         Node->getValueType(0)));
2572    Results.push_back(Results[0].getValue(1));
2573    break;
2574  }
2575  case ISD::EXCEPTIONADDR: {
2576    unsigned Reg = TLI.getExceptionAddressRegister();
2577    assert(Reg && "Can't expand to unknown register!");
2578    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2579                                         Node->getValueType(0)));
2580    Results.push_back(Results[0].getValue(1));
2581    break;
2582  }
2583  case ISD::SUB: {
2584    EVT VT = Node->getValueType(0);
2585    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2586           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2587           "Don't know how to expand this subtraction!");
2588    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2589               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2590    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2591    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2592    break;
2593  }
2594  case ISD::UREM:
2595  case ISD::SREM: {
2596    EVT VT = Node->getValueType(0);
2597    SDVTList VTs = DAG.getVTList(VT, VT);
2598    bool isSigned = Node->getOpcode() == ISD::SREM;
2599    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2600    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2601    Tmp2 = Node->getOperand(0);
2602    Tmp3 = Node->getOperand(1);
2603    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2604      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2605    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2606      // X % Y -> X-X/Y*Y
2607      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2608      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2609      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2610    } else if (isSigned) {
2611      Tmp1 = ExpandIntLibCall(Node, true,
2612                              RTLIB::SREM_I8,
2613                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2614                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2615    } else {
2616      Tmp1 = ExpandIntLibCall(Node, false,
2617                              RTLIB::UREM_I8,
2618                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2619                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2620    }
2621    Results.push_back(Tmp1);
2622    break;
2623  }
2624  case ISD::UDIV:
2625  case ISD::SDIV: {
2626    bool isSigned = Node->getOpcode() == ISD::SDIV;
2627    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2628    EVT VT = Node->getValueType(0);
2629    SDVTList VTs = DAG.getVTList(VT, VT);
2630    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2631      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2632                         Node->getOperand(1));
2633    else if (isSigned)
2634      Tmp1 = ExpandIntLibCall(Node, true,
2635                              RTLIB::SDIV_I8,
2636                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2637                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2638    else
2639      Tmp1 = ExpandIntLibCall(Node, false,
2640                              RTLIB::UDIV_I8,
2641                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2642                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2643    Results.push_back(Tmp1);
2644    break;
2645  }
2646  case ISD::MULHU:
2647  case ISD::MULHS: {
2648    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2649                                                              ISD::SMUL_LOHI;
2650    EVT VT = Node->getValueType(0);
2651    SDVTList VTs = DAG.getVTList(VT, VT);
2652    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2653           "If this wasn't legal, it shouldn't have been created!");
2654    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2655                       Node->getOperand(1));
2656    Results.push_back(Tmp1.getValue(1));
2657    break;
2658  }
2659  case ISD::MUL: {
2660    EVT VT = Node->getValueType(0);
2661    SDVTList VTs = DAG.getVTList(VT, VT);
2662    // See if multiply or divide can be lowered using two-result operations.
2663    // We just need the low half of the multiply; try both the signed
2664    // and unsigned forms. If the target supports both SMUL_LOHI and
2665    // UMUL_LOHI, form a preference by checking which forms of plain
2666    // MULH it supports.
2667    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2668    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2669    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2670    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2671    unsigned OpToUse = 0;
2672    if (HasSMUL_LOHI && !HasMULHS) {
2673      OpToUse = ISD::SMUL_LOHI;
2674    } else if (HasUMUL_LOHI && !HasMULHU) {
2675      OpToUse = ISD::UMUL_LOHI;
2676    } else if (HasSMUL_LOHI) {
2677      OpToUse = ISD::SMUL_LOHI;
2678    } else if (HasUMUL_LOHI) {
2679      OpToUse = ISD::UMUL_LOHI;
2680    }
2681    if (OpToUse) {
2682      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2683                                    Node->getOperand(1)));
2684      break;
2685    }
2686    Tmp1 = ExpandIntLibCall(Node, false,
2687                            RTLIB::MUL_I8,
2688                            RTLIB::MUL_I16, RTLIB::MUL_I32,
2689                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2690    Results.push_back(Tmp1);
2691    break;
2692  }
2693  case ISD::SADDO:
2694  case ISD::SSUBO: {
2695    SDValue LHS = Node->getOperand(0);
2696    SDValue RHS = Node->getOperand(1);
2697    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2698                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2699                              LHS, RHS);
2700    Results.push_back(Sum);
2701    EVT OType = Node->getValueType(1);
2702
2703    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2704
2705    //   LHSSign -> LHS >= 0
2706    //   RHSSign -> RHS >= 0
2707    //   SumSign -> Sum >= 0
2708    //
2709    //   Add:
2710    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2711    //   Sub:
2712    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2713    //
2714    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2715    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2716    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2717                                      Node->getOpcode() == ISD::SADDO ?
2718                                      ISD::SETEQ : ISD::SETNE);
2719
2720    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2721    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2722
2723    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2724    Results.push_back(Cmp);
2725    break;
2726  }
2727  case ISD::UADDO:
2728  case ISD::USUBO: {
2729    SDValue LHS = Node->getOperand(0);
2730    SDValue RHS = Node->getOperand(1);
2731    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2732                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2733                              LHS, RHS);
2734    Results.push_back(Sum);
2735    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2736                                   Node->getOpcode () == ISD::UADDO ?
2737                                   ISD::SETULT : ISD::SETUGT));
2738    break;
2739  }
2740  case ISD::UMULO:
2741  case ISD::SMULO: {
2742    EVT VT = Node->getValueType(0);
2743    SDValue LHS = Node->getOperand(0);
2744    SDValue RHS = Node->getOperand(1);
2745    SDValue BottomHalf;
2746    SDValue TopHalf;
2747    static unsigned Ops[2][3] =
2748        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2749          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2750    bool isSigned = Node->getOpcode() == ISD::SMULO;
2751    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2752      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2753      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2754    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2755      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2756                               RHS);
2757      TopHalf = BottomHalf.getValue(1);
2758    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) {
2759      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2760      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2761      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2762      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2763      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2764                               DAG.getIntPtrConstant(0));
2765      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2766                            DAG.getIntPtrConstant(1));
2767    } else {
2768      // FIXME: We should be able to fall back to a libcall with an illegal
2769      // type in some cases cases.
2770      // Also, we can fall back to a division in some cases, but that's a big
2771      // performance hit in the general case.
2772      llvm_unreachable("Don't know how to expand this operation yet!");
2773    }
2774    if (isSigned) {
2775      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2776      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2777      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2778                             ISD::SETNE);
2779    } else {
2780      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2781                             DAG.getConstant(0, VT), ISD::SETNE);
2782    }
2783    Results.push_back(BottomHalf);
2784    Results.push_back(TopHalf);
2785    break;
2786  }
2787  case ISD::BUILD_PAIR: {
2788    EVT PairTy = Node->getValueType(0);
2789    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2790    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2791    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2792                       DAG.getConstant(PairTy.getSizeInBits()/2,
2793                                       TLI.getShiftAmountTy()));
2794    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2795    break;
2796  }
2797  case ISD::SELECT:
2798    Tmp1 = Node->getOperand(0);
2799    Tmp2 = Node->getOperand(1);
2800    Tmp3 = Node->getOperand(2);
2801    if (Tmp1.getOpcode() == ISD::SETCC) {
2802      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2803                             Tmp2, Tmp3,
2804                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2805    } else {
2806      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2807                             DAG.getConstant(0, Tmp1.getValueType()),
2808                             Tmp2, Tmp3, ISD::SETNE);
2809    }
2810    Results.push_back(Tmp1);
2811    break;
2812  case ISD::BR_JT: {
2813    SDValue Chain = Node->getOperand(0);
2814    SDValue Table = Node->getOperand(1);
2815    SDValue Index = Node->getOperand(2);
2816
2817    EVT PTy = TLI.getPointerTy();
2818    MachineFunction &MF = DAG.getMachineFunction();
2819    unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2820    Index= DAG.getNode(ISD::MUL, dl, PTy,
2821                        Index, DAG.getConstant(EntrySize, PTy));
2822    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2823
2824    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2825    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2826                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2827    Addr = LD;
2828    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2829      // For PIC, the sequence is:
2830      // BRIND(load(Jumptable + index) + RelocBase)
2831      // RelocBase can be JumpTable, GOT or some sort of global base.
2832      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2833                          TLI.getPICJumpTableRelocBase(Table, DAG));
2834    }
2835    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2836    Results.push_back(Tmp1);
2837    break;
2838  }
2839  case ISD::BRCOND:
2840    // Expand brcond's setcc into its constituent parts and create a BR_CC
2841    // Node.
2842    Tmp1 = Node->getOperand(0);
2843    Tmp2 = Node->getOperand(1);
2844    if (Tmp2.getOpcode() == ISD::SETCC) {
2845      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2846                         Tmp1, Tmp2.getOperand(2),
2847                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2848                         Node->getOperand(2));
2849    } else {
2850      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2851                         DAG.getCondCode(ISD::SETNE), Tmp2,
2852                         DAG.getConstant(0, Tmp2.getValueType()),
2853                         Node->getOperand(2));
2854    }
2855    Results.push_back(Tmp1);
2856    break;
2857  case ISD::SETCC: {
2858    Tmp1 = Node->getOperand(0);
2859    Tmp2 = Node->getOperand(1);
2860    Tmp3 = Node->getOperand(2);
2861    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2862
2863    // If we expanded the SETCC into an AND/OR, return the new node
2864    if (Tmp2.getNode() == 0) {
2865      Results.push_back(Tmp1);
2866      break;
2867    }
2868
2869    // Otherwise, SETCC for the given comparison type must be completely
2870    // illegal; expand it into a SELECT_CC.
2871    EVT VT = Node->getValueType(0);
2872    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2873                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2874    Results.push_back(Tmp1);
2875    break;
2876  }
2877  case ISD::SELECT_CC: {
2878    Tmp1 = Node->getOperand(0);   // LHS
2879    Tmp2 = Node->getOperand(1);   // RHS
2880    Tmp3 = Node->getOperand(2);   // True
2881    Tmp4 = Node->getOperand(3);   // False
2882    SDValue CC = Node->getOperand(4);
2883
2884    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2885                          Tmp1, Tmp2, CC, dl);
2886
2887    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2888    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2889    CC = DAG.getCondCode(ISD::SETNE);
2890    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2891                       Tmp3, Tmp4, CC);
2892    Results.push_back(Tmp1);
2893    break;
2894  }
2895  case ISD::BR_CC: {
2896    Tmp1 = Node->getOperand(0);              // Chain
2897    Tmp2 = Node->getOperand(2);              // LHS
2898    Tmp3 = Node->getOperand(3);              // RHS
2899    Tmp4 = Node->getOperand(1);              // CC
2900
2901    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2902                          Tmp2, Tmp3, Tmp4, dl);
2903    LastCALLSEQ_END = DAG.getEntryNode();
2904
2905    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2906    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2907    Tmp4 = DAG.getCondCode(ISD::SETNE);
2908    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2909                       Tmp3, Node->getOperand(4));
2910    Results.push_back(Tmp1);
2911    break;
2912  }
2913  case ISD::GLOBAL_OFFSET_TABLE:
2914  case ISD::GlobalAddress:
2915  case ISD::GlobalTLSAddress:
2916  case ISD::ExternalSymbol:
2917  case ISD::ConstantPool:
2918  case ISD::JumpTable:
2919  case ISD::INTRINSIC_W_CHAIN:
2920  case ISD::INTRINSIC_WO_CHAIN:
2921  case ISD::INTRINSIC_VOID:
2922    // FIXME: Custom lowering for these operations shouldn't return null!
2923    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2924      Results.push_back(SDValue(Node, i));
2925    break;
2926  }
2927}
2928void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2929                                       SmallVectorImpl<SDValue> &Results) {
2930  EVT OVT = Node->getValueType(0);
2931  if (Node->getOpcode() == ISD::UINT_TO_FP ||
2932      Node->getOpcode() == ISD::SINT_TO_FP ||
2933      Node->getOpcode() == ISD::SETCC) {
2934    OVT = Node->getOperand(0).getValueType();
2935  }
2936  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2937  DebugLoc dl = Node->getDebugLoc();
2938  SDValue Tmp1, Tmp2, Tmp3;
2939  switch (Node->getOpcode()) {
2940  case ISD::CTTZ:
2941  case ISD::CTLZ:
2942  case ISD::CTPOP:
2943    // Zero extend the argument.
2944    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2945    // Perform the larger operation.
2946    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
2947    if (Node->getOpcode() == ISD::CTTZ) {
2948      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2949      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
2950                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2951                          ISD::SETEQ);
2952      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2953                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2954    } else if (Node->getOpcode() == ISD::CTLZ) {
2955      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2956      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
2957                          DAG.getConstant(NVT.getSizeInBits() -
2958                                          OVT.getSizeInBits(), NVT));
2959    }
2960    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
2961    break;
2962  case ISD::BSWAP: {
2963    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
2964    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
2965    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
2966    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
2967                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
2968    Results.push_back(Tmp1);
2969    break;
2970  }
2971  case ISD::FP_TO_UINT:
2972  case ISD::FP_TO_SINT:
2973    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
2974                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
2975    Results.push_back(Tmp1);
2976    break;
2977  case ISD::UINT_TO_FP:
2978  case ISD::SINT_TO_FP:
2979    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
2980                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
2981    Results.push_back(Tmp1);
2982    break;
2983  case ISD::AND:
2984  case ISD::OR:
2985  case ISD::XOR: {
2986    unsigned ExtOp, TruncOp;
2987    if (OVT.isVector()) {
2988      ExtOp   = ISD::BIT_CONVERT;
2989      TruncOp = ISD::BIT_CONVERT;
2990    } else if (OVT.isInteger()) {
2991      ExtOp   = ISD::ANY_EXTEND;
2992      TruncOp = ISD::TRUNCATE;
2993    } else {
2994      llvm_report_error("Cannot promote logic operation");
2995    }
2996    // Promote each of the values to the new type.
2997    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
2998    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
2999    // Perform the larger operation, then convert back
3000    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3001    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3002    break;
3003  }
3004  case ISD::SELECT: {
3005    unsigned ExtOp, TruncOp;
3006    if (Node->getValueType(0).isVector()) {
3007      ExtOp   = ISD::BIT_CONVERT;
3008      TruncOp = ISD::BIT_CONVERT;
3009    } else if (Node->getValueType(0).isInteger()) {
3010      ExtOp   = ISD::ANY_EXTEND;
3011      TruncOp = ISD::TRUNCATE;
3012    } else {
3013      ExtOp   = ISD::FP_EXTEND;
3014      TruncOp = ISD::FP_ROUND;
3015    }
3016    Tmp1 = Node->getOperand(0);
3017    // Promote each of the values to the new type.
3018    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3019    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3020    // Perform the larger operation, then round down.
3021    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3022    if (TruncOp != ISD::FP_ROUND)
3023      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3024    else
3025      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3026                         DAG.getIntPtrConstant(0));
3027    Results.push_back(Tmp1);
3028    break;
3029  }
3030  case ISD::VECTOR_SHUFFLE: {
3031    SmallVector<int, 8> Mask;
3032    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3033
3034    // Cast the two input vectors.
3035    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3036    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3037
3038    // Convert the shuffle mask to the right # elements.
3039    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3040    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3041    Results.push_back(Tmp1);
3042    break;
3043  }
3044  case ISD::SETCC: {
3045    unsigned ExtOp = ISD::FP_EXTEND;
3046    if (NVT.isInteger()) {
3047      ISD::CondCode CCCode =
3048        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3049      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3050    }
3051    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3052    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3053    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3054                                  Tmp1, Tmp2, Node->getOperand(2)));
3055    break;
3056  }
3057  }
3058}
3059
3060// SelectionDAG::Legalize - This is the entry point for the file.
3061//
3062void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3063  /// run - This is the main entry point to this class.
3064  ///
3065  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3066}
3067
3068