LegalizeDAG.cpp revision 7a58099f0a4c9503f400f6b81590a5f6b73d4b97
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/CodeGen/Analysis.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineJumpTableInfo.h"
21#include "llvm/DebugInfo.h"
22#include "llvm/IR/CallingConv.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/LLVMContext.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Target/TargetFrameLowering.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetMachine.h"
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
39/// hacks on it until the target machine can handle it.  This involves
40/// eliminating value sizes the machine cannot handle (promoting small sizes to
41/// large sizes or splitting up large values into small values) as well as
42/// eliminating operations the machine cannot handle.
43///
44/// This code also does a small amount of optimization and recognition of idioms
45/// as part of its processing.  For example, if a target does not support a
46/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
47/// will attempt merge setcc and brc instructions into brcc's.
48///
49namespace {
50class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
51  const TargetMachine &TM;
52  const TargetLowering &TLI;
53  SelectionDAG &DAG;
54
55  /// LegalizePosition - The iterator for walking through the node list.
56  SelectionDAG::allnodes_iterator LegalizePosition;
57
58  /// LegalizedNodes - The set of nodes which have already been legalized.
59  SmallPtrSet<SDNode *, 16> LegalizedNodes;
60
61  // Libcall insertion helpers.
62
63public:
64  explicit SelectionDAGLegalize(SelectionDAG &DAG);
65
66  void LegalizeDAG();
67
68private:
69  /// LegalizeOp - Legalizes the given operation.
70  void LegalizeOp(SDNode *Node);
71
72  SDValue OptimizeFloatStore(StoreSDNode *ST);
73
74  void LegalizeLoadOps(SDNode *Node);
75  void LegalizeStoreOps(SDNode *Node);
76
77  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
78  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
79  /// is necessary to spill the vector being inserted into to memory, perform
80  /// the insert there, and then read the result back.
81  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
82                                         SDValue Idx, DebugLoc dl);
83  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
84                                  SDValue Idx, DebugLoc dl);
85
86  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
87  /// performs the same shuffe in terms of order or result bytes, but on a type
88  /// whose vector element type is narrower than the original shuffle type.
89  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
90  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
91                                     SDValue N1, SDValue N2,
92                                     ArrayRef<int> Mask) const;
93
94  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
95                             DebugLoc dl);
96
97  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
98  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
99                        unsigned NumOps, bool isSigned, DebugLoc dl);
100
101  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
102                                                 SDNode *Node, bool isSigned);
103  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
104                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
105                          RTLIB::Libcall Call_F128,
106                          RTLIB::Libcall Call_PPCF128);
107  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
108                           RTLIB::Libcall Call_I8,
109                           RTLIB::Libcall Call_I16,
110                           RTLIB::Libcall Call_I32,
111                           RTLIB::Libcall Call_I64,
112                           RTLIB::Libcall Call_I128);
113  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
114  void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
115
116  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
117  SDValue ExpandBUILD_VECTOR(SDNode *Node);
118  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
119  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
120                                SmallVectorImpl<SDValue> &Results);
121  SDValue ExpandFCOPYSIGN(SDNode *Node);
122  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
123                               DebugLoc dl);
124  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
125                                DebugLoc dl);
126  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
127                                DebugLoc dl);
128
129  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
130  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
131
132  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
133  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
134  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
135
136  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
137
138  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
139
140  void ExpandNode(SDNode *Node);
141  void PromoteNode(SDNode *Node);
142
143  void ForgetNode(SDNode *N) {
144    LegalizedNodes.erase(N);
145    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
146      ++LegalizePosition;
147  }
148
149public:
150  // DAGUpdateListener implementation.
151  virtual void NodeDeleted(SDNode *N, SDNode *E) {
152    ForgetNode(N);
153  }
154  virtual void NodeUpdated(SDNode *N) {}
155
156  // Node replacement helpers
157  void ReplacedNode(SDNode *N) {
158    if (N->use_empty()) {
159      DAG.RemoveDeadNode(N);
160    } else {
161      ForgetNode(N);
162    }
163  }
164  void ReplaceNode(SDNode *Old, SDNode *New) {
165    DAG.ReplaceAllUsesWith(Old, New);
166    ReplacedNode(Old);
167  }
168  void ReplaceNode(SDValue Old, SDValue New) {
169    DAG.ReplaceAllUsesWith(Old, New);
170    ReplacedNode(Old.getNode());
171  }
172  void ReplaceNode(SDNode *Old, const SDValue *New) {
173    DAG.ReplaceAllUsesWith(Old, New);
174    ReplacedNode(Old);
175  }
176};
177}
178
179/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
180/// performs the same shuffe in terms of order or result bytes, but on a type
181/// whose vector element type is narrower than the original shuffle type.
182/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
183SDValue
184SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
185                                                 SDValue N1, SDValue N2,
186                                                 ArrayRef<int> Mask) const {
187  unsigned NumMaskElts = VT.getVectorNumElements();
188  unsigned NumDestElts = NVT.getVectorNumElements();
189  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
190
191  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
192
193  if (NumEltsGrowth == 1)
194    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
195
196  SmallVector<int, 8> NewMask;
197  for (unsigned i = 0; i != NumMaskElts; ++i) {
198    int Idx = Mask[i];
199    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
200      if (Idx < 0)
201        NewMask.push_back(-1);
202      else
203        NewMask.push_back(Idx * NumEltsGrowth + j);
204    }
205  }
206  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
207  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
208  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
209}
210
211SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
212  : SelectionDAG::DAGUpdateListener(dag),
213    TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
214    DAG(dag) {
215}
216
217void SelectionDAGLegalize::LegalizeDAG() {
218  DAG.AssignTopologicalOrder();
219
220  // Visit all the nodes. We start in topological order, so that we see
221  // nodes with their original operands intact. Legalization can produce
222  // new nodes which may themselves need to be legalized. Iterate until all
223  // nodes have been legalized.
224  for (;;) {
225    bool AnyLegalized = false;
226    for (LegalizePosition = DAG.allnodes_end();
227         LegalizePosition != DAG.allnodes_begin(); ) {
228      --LegalizePosition;
229
230      SDNode *N = LegalizePosition;
231      if (LegalizedNodes.insert(N)) {
232        AnyLegalized = true;
233        LegalizeOp(N);
234      }
235    }
236    if (!AnyLegalized)
237      break;
238
239  }
240
241  // Remove dead nodes now.
242  DAG.RemoveDeadNodes();
243}
244
245/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
246/// a load from the constant pool.
247SDValue
248SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
249  bool Extend = false;
250  DebugLoc dl = CFP->getDebugLoc();
251
252  // If a FP immediate is precise when represented as a float and if the
253  // target can do an extending load from float to double, we put it into
254  // the constant pool as a float, even if it's is statically typed as a
255  // double.  This shrinks FP constants and canonicalizes them for targets where
256  // an FP extending load is the same cost as a normal load (such as on the x87
257  // fp stack or PPC FP unit).
258  EVT VT = CFP->getValueType(0);
259  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
260  if (!UseCP) {
261    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
262    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
263                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
264  }
265
266  EVT OrigVT = VT;
267  EVT SVT = VT;
268  while (SVT != MVT::f32) {
269    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
270    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
271        // Only do this if the target has a native EXTLOAD instruction from
272        // smaller type.
273        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
274        TLI.ShouldShrinkFPConstant(OrigVT)) {
275      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
276      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
277      VT = SVT;
278      Extend = true;
279    }
280  }
281
282  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
283  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
284  if (Extend) {
285    SDValue Result =
286      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
287                     DAG.getEntryNode(),
288                     CPIdx, MachinePointerInfo::getConstantPool(),
289                     VT, false, false, Alignment);
290    return Result;
291  }
292  SDValue Result =
293    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
294                MachinePointerInfo::getConstantPool(), false, false, false,
295                Alignment);
296  return Result;
297}
298
299/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
300static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
301                                 const TargetLowering &TLI,
302                                 SelectionDAGLegalize *DAGLegalize) {
303  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
304         "unaligned indexed stores not implemented!");
305  SDValue Chain = ST->getChain();
306  SDValue Ptr = ST->getBasePtr();
307  SDValue Val = ST->getValue();
308  EVT VT = Val.getValueType();
309  int Alignment = ST->getAlignment();
310  DebugLoc dl = ST->getDebugLoc();
311  if (ST->getMemoryVT().isFloatingPoint() ||
312      ST->getMemoryVT().isVector()) {
313    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
314    if (TLI.isTypeLegal(intVT)) {
315      // Expand to a bitconvert of the value to the integer type of the
316      // same size, then a (misaligned) int store.
317      // FIXME: Does not handle truncating floating point stores!
318      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
319      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
320                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
321      DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
322      return;
323    }
324    // Do a (aligned) store to a stack slot, then copy from the stack slot
325    // to the final destination using (unaligned) integer loads and stores.
326    EVT StoredVT = ST->getMemoryVT();
327    MVT RegVT =
328      TLI.getRegisterType(*DAG.getContext(),
329                          EVT::getIntegerVT(*DAG.getContext(),
330                                            StoredVT.getSizeInBits()));
331    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
332    unsigned RegBytes = RegVT.getSizeInBits() / 8;
333    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
334
335    // Make sure the stack slot is also aligned for the register type.
336    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
337
338    // Perform the original store, only redirected to the stack slot.
339    SDValue Store = DAG.getTruncStore(Chain, dl,
340                                      Val, StackPtr, MachinePointerInfo(),
341                                      StoredVT, false, false, 0);
342    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
343    SmallVector<SDValue, 8> Stores;
344    unsigned Offset = 0;
345
346    // Do all but one copies using the full register width.
347    for (unsigned i = 1; i < NumRegs; i++) {
348      // Load one integer register's worth from the stack slot.
349      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
350                                 MachinePointerInfo(),
351                                 false, false, false, 0);
352      // Store it to the final location.  Remember the store.
353      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
354                                  ST->getPointerInfo().getWithOffset(Offset),
355                                    ST->isVolatile(), ST->isNonTemporal(),
356                                    MinAlign(ST->getAlignment(), Offset)));
357      // Increment the pointers.
358      Offset += RegBytes;
359      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
360                             Increment);
361      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
362    }
363
364    // The last store may be partial.  Do a truncating store.  On big-endian
365    // machines this requires an extending load from the stack slot to ensure
366    // that the bits are in the right place.
367    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
368                                  8 * (StoredBytes - Offset));
369
370    // Load from the stack slot.
371    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
372                                  MachinePointerInfo(),
373                                  MemVT, false, false, 0);
374
375    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
376                                       ST->getPointerInfo()
377                                         .getWithOffset(Offset),
378                                       MemVT, ST->isVolatile(),
379                                       ST->isNonTemporal(),
380                                       MinAlign(ST->getAlignment(), Offset)));
381    // The order of the stores doesn't matter - say it with a TokenFactor.
382    SDValue Result =
383      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
384                  Stores.size());
385    DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
386    return;
387  }
388  assert(ST->getMemoryVT().isInteger() &&
389         !ST->getMemoryVT().isVector() &&
390         "Unaligned store of unknown type.");
391  // Get the half-size VT
392  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
393  int NumBits = NewStoredVT.getSizeInBits();
394  int IncrementSize = NumBits / 8;
395
396  // Divide the stored value in two parts.
397  SDValue ShiftAmount = DAG.getConstant(NumBits,
398                                      TLI.getShiftAmountTy(Val.getValueType()));
399  SDValue Lo = Val;
400  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
401
402  // Store the two parts
403  SDValue Store1, Store2;
404  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
405                             ST->getPointerInfo(), NewStoredVT,
406                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
407  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
408                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
409  Alignment = MinAlign(Alignment, IncrementSize);
410  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
411                             ST->getPointerInfo().getWithOffset(IncrementSize),
412                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
413                             Alignment);
414
415  SDValue Result =
416    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
417  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
418}
419
420/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
421static void
422ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
423                    const TargetLowering &TLI,
424                    SDValue &ValResult, SDValue &ChainResult) {
425  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
426         "unaligned indexed loads not implemented!");
427  SDValue Chain = LD->getChain();
428  SDValue Ptr = LD->getBasePtr();
429  EVT VT = LD->getValueType(0);
430  EVT LoadedVT = LD->getMemoryVT();
431  DebugLoc dl = LD->getDebugLoc();
432  if (VT.isFloatingPoint() || VT.isVector()) {
433    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
434    if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
435      // Expand to a (misaligned) integer load of the same size,
436      // then bitconvert to floating point or vector.
437      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
438                                    LD->isVolatile(),
439                                    LD->isNonTemporal(),
440                                    LD->isInvariant(), LD->getAlignment());
441      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
442      if (LoadedVT != VT)
443        Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
444                             ISD::ANY_EXTEND, dl, VT, Result);
445
446      ValResult = Result;
447      ChainResult = Chain;
448      return;
449    }
450
451    // Copy the value to a (aligned) stack slot using (unaligned) integer
452    // loads and stores, then do a (aligned) load from the stack slot.
453    MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
454    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
455    unsigned RegBytes = RegVT.getSizeInBits() / 8;
456    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
457
458    // Make sure the stack slot is also aligned for the register type.
459    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
460
461    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
462    SmallVector<SDValue, 8> Stores;
463    SDValue StackPtr = StackBase;
464    unsigned Offset = 0;
465
466    // Do all but one copies using the full register width.
467    for (unsigned i = 1; i < NumRegs; i++) {
468      // Load one integer register's worth from the original location.
469      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
470                                 LD->getPointerInfo().getWithOffset(Offset),
471                                 LD->isVolatile(), LD->isNonTemporal(),
472                                 LD->isInvariant(),
473                                 MinAlign(LD->getAlignment(), Offset));
474      // Follow the load with a store to the stack slot.  Remember the store.
475      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
476                                    MachinePointerInfo(), false, false, 0));
477      // Increment the pointers.
478      Offset += RegBytes;
479      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
480      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
481                             Increment);
482    }
483
484    // The last copy may be partial.  Do an extending load.
485    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
486                                  8 * (LoadedBytes - Offset));
487    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
488                                  LD->getPointerInfo().getWithOffset(Offset),
489                                  MemVT, LD->isVolatile(),
490                                  LD->isNonTemporal(),
491                                  MinAlign(LD->getAlignment(), Offset));
492    // Follow the load with a store to the stack slot.  Remember the store.
493    // On big-endian machines this requires a truncating store to ensure
494    // that the bits end up in the right place.
495    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
496                                       MachinePointerInfo(), MemVT,
497                                       false, false, 0));
498
499    // The order of the stores doesn't matter - say it with a TokenFactor.
500    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
501                             Stores.size());
502
503    // Finally, perform the original load only redirected to the stack slot.
504    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
505                          MachinePointerInfo(), LoadedVT, false, false, 0);
506
507    // Callers expect a MERGE_VALUES node.
508    ValResult = Load;
509    ChainResult = TF;
510    return;
511  }
512  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
513         "Unaligned load of unsupported type.");
514
515  // Compute the new VT that is half the size of the old one.  This is an
516  // integer MVT.
517  unsigned NumBits = LoadedVT.getSizeInBits();
518  EVT NewLoadedVT;
519  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
520  NumBits >>= 1;
521
522  unsigned Alignment = LD->getAlignment();
523  unsigned IncrementSize = NumBits / 8;
524  ISD::LoadExtType HiExtType = LD->getExtensionType();
525
526  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
527  if (HiExtType == ISD::NON_EXTLOAD)
528    HiExtType = ISD::ZEXTLOAD;
529
530  // Load the value in two parts
531  SDValue Lo, Hi;
532  if (TLI.isLittleEndian()) {
533    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
534                        NewLoadedVT, LD->isVolatile(),
535                        LD->isNonTemporal(), Alignment);
536    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
537                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
538    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
539                        LD->getPointerInfo().getWithOffset(IncrementSize),
540                        NewLoadedVT, LD->isVolatile(),
541                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
542  } else {
543    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
544                        NewLoadedVT, LD->isVolatile(),
545                        LD->isNonTemporal(), Alignment);
546    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
547                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
548    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
549                        LD->getPointerInfo().getWithOffset(IncrementSize),
550                        NewLoadedVT, LD->isVolatile(),
551                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
552  }
553
554  // aggregate the two parts
555  SDValue ShiftAmount = DAG.getConstant(NumBits,
556                                       TLI.getShiftAmountTy(Hi.getValueType()));
557  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
558  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
559
560  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
561                             Hi.getValue(1));
562
563  ValResult = Result;
564  ChainResult = TF;
565}
566
567/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
568/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
569/// is necessary to spill the vector being inserted into to memory, perform
570/// the insert there, and then read the result back.
571SDValue SelectionDAGLegalize::
572PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
573                               DebugLoc dl) {
574  SDValue Tmp1 = Vec;
575  SDValue Tmp2 = Val;
576  SDValue Tmp3 = Idx;
577
578  // If the target doesn't support this, we have to spill the input vector
579  // to a temporary stack slot, update the element, then reload it.  This is
580  // badness.  We could also load the value into a vector register (either
581  // with a "move to register" or "extload into register" instruction, then
582  // permute it into place, if the idx is a constant and if the idx is
583  // supported by the target.
584  EVT VT    = Tmp1.getValueType();
585  EVT EltVT = VT.getVectorElementType();
586  EVT IdxVT = Tmp3.getValueType();
587  EVT PtrVT = TLI.getPointerTy();
588  SDValue StackPtr = DAG.CreateStackTemporary(VT);
589
590  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
591
592  // Store the vector.
593  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
594                            MachinePointerInfo::getFixedStack(SPFI),
595                            false, false, 0);
596
597  // Truncate or zero extend offset to target pointer type.
598  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
599  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
600  // Add the offset to the index.
601  unsigned EltSize = EltVT.getSizeInBits()/8;
602  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
603  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
604  // Store the scalar value.
605  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
606                         false, false, 0);
607  // Load the updated vector.
608  return DAG.getLoad(VT, dl, Ch, StackPtr,
609                     MachinePointerInfo::getFixedStack(SPFI), false, false,
610                     false, 0);
611}
612
613
614SDValue SelectionDAGLegalize::
615ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
616  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
617    // SCALAR_TO_VECTOR requires that the type of the value being inserted
618    // match the element type of the vector being created, except for
619    // integers in which case the inserted value can be over width.
620    EVT EltVT = Vec.getValueType().getVectorElementType();
621    if (Val.getValueType() == EltVT ||
622        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
623      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
624                                  Vec.getValueType(), Val);
625
626      unsigned NumElts = Vec.getValueType().getVectorNumElements();
627      // We generate a shuffle of InVec and ScVec, so the shuffle mask
628      // should be 0,1,2,3,4,5... with the appropriate element replaced with
629      // elt 0 of the RHS.
630      SmallVector<int, 8> ShufOps;
631      for (unsigned i = 0; i != NumElts; ++i)
632        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
633
634      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
635                                  &ShufOps[0]);
636    }
637  }
638  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
639}
640
641SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
642  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
643  // FIXME: We shouldn't do this for TargetConstantFP's.
644  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
645  // to phase ordering between legalized code and the dag combiner.  This
646  // probably means that we need to integrate dag combiner and legalizer
647  // together.
648  // We generally can't do this one for long doubles.
649  SDValue Chain = ST->getChain();
650  SDValue Ptr = ST->getBasePtr();
651  unsigned Alignment = ST->getAlignment();
652  bool isVolatile = ST->isVolatile();
653  bool isNonTemporal = ST->isNonTemporal();
654  DebugLoc dl = ST->getDebugLoc();
655  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
656    if (CFP->getValueType(0) == MVT::f32 &&
657        TLI.isTypeLegal(MVT::i32)) {
658      SDValue Con = DAG.getConstant(CFP->getValueAPF().
659                                      bitcastToAPInt().zextOrTrunc(32),
660                              MVT::i32);
661      return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
662                          isVolatile, isNonTemporal, Alignment);
663    }
664
665    if (CFP->getValueType(0) == MVT::f64) {
666      // If this target supports 64-bit registers, do a single 64-bit store.
667      if (TLI.isTypeLegal(MVT::i64)) {
668        SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
669                                  zextOrTrunc(64), MVT::i64);
670        return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
671                            isVolatile, isNonTemporal, Alignment);
672      }
673
674      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
675        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
676        // stores.  If the target supports neither 32- nor 64-bits, this
677        // xform is certainly not worth it.
678        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
679        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
680        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
681        if (TLI.isBigEndian()) std::swap(Lo, Hi);
682
683        Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
684                          isNonTemporal, Alignment);
685        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
686                            DAG.getIntPtrConstant(4));
687        Hi = DAG.getStore(Chain, dl, Hi, Ptr,
688                          ST->getPointerInfo().getWithOffset(4),
689                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
690
691        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
692      }
693    }
694  }
695  return SDValue(0, 0);
696}
697
698void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
699    StoreSDNode *ST = cast<StoreSDNode>(Node);
700    SDValue Chain = ST->getChain();
701    SDValue Ptr = ST->getBasePtr();
702    DebugLoc dl = Node->getDebugLoc();
703
704    unsigned Alignment = ST->getAlignment();
705    bool isVolatile = ST->isVolatile();
706    bool isNonTemporal = ST->isNonTemporal();
707
708    if (!ST->isTruncatingStore()) {
709      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
710        ReplaceNode(ST, OptStore);
711        return;
712      }
713
714      {
715        SDValue Value = ST->getValue();
716        MVT VT = Value.getSimpleValueType();
717        switch (TLI.getOperationAction(ISD::STORE, VT)) {
718        default: llvm_unreachable("This action is not supported yet!");
719        case TargetLowering::Legal:
720          // If this is an unaligned store and the target doesn't support it,
721          // expand it.
722          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
723            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
724            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
725            if (ST->getAlignment() < ABIAlignment)
726              ExpandUnalignedStore(cast<StoreSDNode>(Node),
727                                   DAG, TLI, this);
728          }
729          break;
730        case TargetLowering::Custom: {
731          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
732          if (Res.getNode())
733            ReplaceNode(SDValue(Node, 0), Res);
734          return;
735        }
736        case TargetLowering::Promote: {
737          MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
738          assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
739                 "Can only promote stores to same size type");
740          Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
741          SDValue Result =
742            DAG.getStore(Chain, dl, Value, Ptr,
743                         ST->getPointerInfo(), isVolatile,
744                         isNonTemporal, Alignment);
745          ReplaceNode(SDValue(Node, 0), Result);
746          break;
747        }
748        }
749        return;
750      }
751    } else {
752      SDValue Value = ST->getValue();
753
754      EVT StVT = ST->getMemoryVT();
755      unsigned StWidth = StVT.getSizeInBits();
756
757      if (StWidth != StVT.getStoreSizeInBits()) {
758        // Promote to a byte-sized store with upper bits zero if not
759        // storing an integral number of bytes.  For example, promote
760        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
761        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
762                                    StVT.getStoreSizeInBits());
763        Value = DAG.getZeroExtendInReg(Value, dl, StVT);
764        SDValue Result =
765          DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
766                            NVT, isVolatile, isNonTemporal, Alignment);
767        ReplaceNode(SDValue(Node, 0), Result);
768      } else if (StWidth & (StWidth - 1)) {
769        // If not storing a power-of-2 number of bits, expand as two stores.
770        assert(!StVT.isVector() && "Unsupported truncstore!");
771        unsigned RoundWidth = 1 << Log2_32(StWidth);
772        assert(RoundWidth < StWidth);
773        unsigned ExtraWidth = StWidth - RoundWidth;
774        assert(ExtraWidth < RoundWidth);
775        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
776               "Store size not an integral number of bytes!");
777        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
778        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
779        SDValue Lo, Hi;
780        unsigned IncrementSize;
781
782        if (TLI.isLittleEndian()) {
783          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
784          // Store the bottom RoundWidth bits.
785          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
786                                 RoundVT,
787                                 isVolatile, isNonTemporal, Alignment);
788
789          // Store the remaining ExtraWidth bits.
790          IncrementSize = RoundWidth / 8;
791          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
792                             DAG.getIntPtrConstant(IncrementSize));
793          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
794                           DAG.getConstant(RoundWidth,
795                                    TLI.getShiftAmountTy(Value.getValueType())));
796          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
797                             ST->getPointerInfo().getWithOffset(IncrementSize),
798                                 ExtraVT, isVolatile, isNonTemporal,
799                                 MinAlign(Alignment, IncrementSize));
800        } else {
801          // Big endian - avoid unaligned stores.
802          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
803          // Store the top RoundWidth bits.
804          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
805                           DAG.getConstant(ExtraWidth,
806                                    TLI.getShiftAmountTy(Value.getValueType())));
807          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
808                                 RoundVT, isVolatile, isNonTemporal, Alignment);
809
810          // Store the remaining ExtraWidth bits.
811          IncrementSize = RoundWidth / 8;
812          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
813                             DAG.getIntPtrConstant(IncrementSize));
814          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
815                              ST->getPointerInfo().getWithOffset(IncrementSize),
816                                 ExtraVT, isVolatile, isNonTemporal,
817                                 MinAlign(Alignment, IncrementSize));
818        }
819
820        // The order of the stores doesn't matter.
821        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
822        ReplaceNode(SDValue(Node, 0), Result);
823      } else {
824        switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(),
825                                        StVT.getSimpleVT())) {
826        default: llvm_unreachable("This action is not supported yet!");
827        case TargetLowering::Legal:
828          // If this is an unaligned store and the target doesn't support it,
829          // expand it.
830          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
831            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
832            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
833            if (ST->getAlignment() < ABIAlignment)
834              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
835          }
836          break;
837        case TargetLowering::Custom: {
838          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
839          if (Res.getNode())
840            ReplaceNode(SDValue(Node, 0), Res);
841          return;
842        }
843        case TargetLowering::Expand:
844          assert(!StVT.isVector() &&
845                 "Vector Stores are handled in LegalizeVectorOps");
846
847          // TRUNCSTORE:i16 i32 -> STORE i16
848          assert(TLI.isTypeLegal(StVT) &&
849                 "Do not know how to expand this store!");
850          Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
851          SDValue Result =
852            DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
853                         isVolatile, isNonTemporal, Alignment);
854          ReplaceNode(SDValue(Node, 0), Result);
855          break;
856        }
857      }
858    }
859}
860
861void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
862  LoadSDNode *LD = cast<LoadSDNode>(Node);
863  SDValue Chain = LD->getChain();  // The chain.
864  SDValue Ptr = LD->getBasePtr();  // The base pointer.
865  SDValue Value;                   // The value returned by the load op.
866  DebugLoc dl = Node->getDebugLoc();
867
868  ISD::LoadExtType ExtType = LD->getExtensionType();
869  if (ExtType == ISD::NON_EXTLOAD) {
870    MVT VT = Node->getSimpleValueType(0);
871    SDValue RVal = SDValue(Node, 0);
872    SDValue RChain = SDValue(Node, 1);
873
874    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
875    default: llvm_unreachable("This action is not supported yet!");
876    case TargetLowering::Legal:
877      // If this is an unaligned load and the target doesn't support it,
878      // expand it.
879      if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
880        Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
881        unsigned ABIAlignment =
882          TLI.getDataLayout()->getABITypeAlignment(Ty);
883        if (LD->getAlignment() < ABIAlignment){
884          ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
885        }
886      }
887      break;
888    case TargetLowering::Custom: {
889      SDValue Res = TLI.LowerOperation(RVal, DAG);
890      if (Res.getNode()) {
891        RVal = Res;
892        RChain = Res.getValue(1);
893      }
894      break;
895    }
896    case TargetLowering::Promote: {
897      MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
898      assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
899             "Can only promote loads to same size type");
900
901      SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(),
902                         LD->isVolatile(), LD->isNonTemporal(),
903                         LD->isInvariant(), LD->getAlignment());
904      RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
905      RChain = Res.getValue(1);
906      break;
907    }
908    }
909    if (RChain.getNode() != Node) {
910      assert(RVal.getNode() != Node && "Load must be completely replaced");
911      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
912      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
913      ReplacedNode(Node);
914    }
915    return;
916  }
917
918  EVT SrcVT = LD->getMemoryVT();
919  unsigned SrcWidth = SrcVT.getSizeInBits();
920  unsigned Alignment = LD->getAlignment();
921  bool isVolatile = LD->isVolatile();
922  bool isNonTemporal = LD->isNonTemporal();
923
924  if (SrcWidth != SrcVT.getStoreSizeInBits() &&
925      // Some targets pretend to have an i1 loading operation, and actually
926      // load an i8.  This trick is correct for ZEXTLOAD because the top 7
927      // bits are guaranteed to be zero; it helps the optimizers understand
928      // that these bits are zero.  It is also useful for EXTLOAD, since it
929      // tells the optimizers that those bits are undefined.  It would be
930      // nice to have an effective generic way of getting these benefits...
931      // Until such a way is found, don't insist on promoting i1 here.
932      (SrcVT != MVT::i1 ||
933       TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
934    // Promote to a byte-sized load if not loading an integral number of
935    // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
936    unsigned NewWidth = SrcVT.getStoreSizeInBits();
937    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
938    SDValue Ch;
939
940    // The extra bits are guaranteed to be zero, since we stored them that
941    // way.  A zext load from NVT thus automatically gives zext from SrcVT.
942
943    ISD::LoadExtType NewExtType =
944      ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
945
946    SDValue Result =
947      DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
948                     Chain, Ptr, LD->getPointerInfo(),
949                     NVT, isVolatile, isNonTemporal, Alignment);
950
951    Ch = Result.getValue(1); // The chain.
952
953    if (ExtType == ISD::SEXTLOAD)
954      // Having the top bits zero doesn't help when sign extending.
955      Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
956                           Result.getValueType(),
957                           Result, DAG.getValueType(SrcVT));
958    else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
959      // All the top bits are guaranteed to be zero - inform the optimizers.
960      Result = DAG.getNode(ISD::AssertZext, dl,
961                           Result.getValueType(), Result,
962                           DAG.getValueType(SrcVT));
963
964    Value = Result;
965    Chain = Ch;
966  } else if (SrcWidth & (SrcWidth - 1)) {
967    // If not loading a power-of-2 number of bits, expand as two loads.
968    assert(!SrcVT.isVector() && "Unsupported extload!");
969    unsigned RoundWidth = 1 << Log2_32(SrcWidth);
970    assert(RoundWidth < SrcWidth);
971    unsigned ExtraWidth = SrcWidth - RoundWidth;
972    assert(ExtraWidth < RoundWidth);
973    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
974           "Load size not an integral number of bytes!");
975    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
976    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
977    SDValue Lo, Hi, Ch;
978    unsigned IncrementSize;
979
980    if (TLI.isLittleEndian()) {
981      // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
982      // Load the bottom RoundWidth bits.
983      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
984                          Chain, Ptr,
985                          LD->getPointerInfo(), RoundVT, isVolatile,
986                          isNonTemporal, Alignment);
987
988      // Load the remaining ExtraWidth bits.
989      IncrementSize = RoundWidth / 8;
990      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
991                         DAG.getIntPtrConstant(IncrementSize));
992      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
993                          LD->getPointerInfo().getWithOffset(IncrementSize),
994                          ExtraVT, isVolatile, isNonTemporal,
995                          MinAlign(Alignment, IncrementSize));
996
997      // Build a factor node to remember that this load is independent of
998      // the other one.
999      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1000                       Hi.getValue(1));
1001
1002      // Move the top bits to the right place.
1003      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1004                       DAG.getConstant(RoundWidth,
1005                                       TLI.getShiftAmountTy(Hi.getValueType())));
1006
1007      // Join the hi and lo parts.
1008      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1009    } else {
1010      // Big endian - avoid unaligned loads.
1011      // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1012      // Load the top RoundWidth bits.
1013      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1014                          LD->getPointerInfo(), RoundVT, isVolatile,
1015                          isNonTemporal, Alignment);
1016
1017      // Load the remaining ExtraWidth bits.
1018      IncrementSize = RoundWidth / 8;
1019      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1020                         DAG.getIntPtrConstant(IncrementSize));
1021      Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1022                          dl, Node->getValueType(0), Chain, Ptr,
1023                          LD->getPointerInfo().getWithOffset(IncrementSize),
1024                          ExtraVT, isVolatile, isNonTemporal,
1025                          MinAlign(Alignment, IncrementSize));
1026
1027      // Build a factor node to remember that this load is independent of
1028      // the other one.
1029      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1030                       Hi.getValue(1));
1031
1032      // Move the top bits to the right place.
1033      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1034                       DAG.getConstant(ExtraWidth,
1035                                       TLI.getShiftAmountTy(Hi.getValueType())));
1036
1037      // Join the hi and lo parts.
1038      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1039    }
1040
1041    Chain = Ch;
1042  } else {
1043    bool isCustom = false;
1044    switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) {
1045    default: llvm_unreachable("This action is not supported yet!");
1046    case TargetLowering::Custom:
1047             isCustom = true;
1048             // FALLTHROUGH
1049    case TargetLowering::Legal: {
1050             Value = SDValue(Node, 0);
1051             Chain = SDValue(Node, 1);
1052
1053             if (isCustom) {
1054               SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1055               if (Res.getNode()) {
1056                 Value = Res;
1057                 Chain = Res.getValue(1);
1058               }
1059             } else {
1060               // If this is an unaligned load and the target doesn't support it,
1061               // expand it.
1062               if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1063                 Type *Ty =
1064                   LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1065                 unsigned ABIAlignment =
1066                   TLI.getDataLayout()->getABITypeAlignment(Ty);
1067                 if (LD->getAlignment() < ABIAlignment){
1068                   ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1069                                       DAG, TLI, Value, Chain);
1070                 }
1071               }
1072             }
1073             break;
1074    }
1075    case TargetLowering::Expand:
1076             if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1077               SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
1078                                          LD->getPointerInfo(),
1079                                          LD->isVolatile(), LD->isNonTemporal(),
1080                                          LD->isInvariant(), LD->getAlignment());
1081               unsigned ExtendOp;
1082               switch (ExtType) {
1083               case ISD::EXTLOAD:
1084                 ExtendOp = (SrcVT.isFloatingPoint() ?
1085                             ISD::FP_EXTEND : ISD::ANY_EXTEND);
1086                 break;
1087               case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1088               case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1089               default: llvm_unreachable("Unexpected extend load type!");
1090               }
1091               Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1092               Chain = Load.getValue(1);
1093               break;
1094             }
1095
1096             assert(!SrcVT.isVector() &&
1097                    "Vector Loads are handled in LegalizeVectorOps");
1098
1099             // FIXME: This does not work for vectors on most targets.  Sign- and
1100             // zero-extend operations are currently folded into extending loads,
1101             // whether they are legal or not, and then we end up here without any
1102             // support for legalizing them.
1103             assert(ExtType != ISD::EXTLOAD &&
1104                    "EXTLOAD should always be supported!");
1105             // Turn the unsupported load into an EXTLOAD followed by an explicit
1106             // zero/sign extend inreg.
1107             SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1108                                             Chain, Ptr, LD->getPointerInfo(), SrcVT,
1109                                             LD->isVolatile(), LD->isNonTemporal(),
1110                                             LD->getAlignment());
1111             SDValue ValRes;
1112             if (ExtType == ISD::SEXTLOAD)
1113               ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1114                                    Result.getValueType(),
1115                                    Result, DAG.getValueType(SrcVT));
1116             else
1117               ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1118             Value = ValRes;
1119             Chain = Result.getValue(1);
1120             break;
1121    }
1122  }
1123
1124  // Since loads produce two values, make sure to remember that we legalized
1125  // both of them.
1126  if (Chain.getNode() != Node) {
1127    assert(Value.getNode() != Node && "Load must be completely replaced");
1128    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
1129    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1130    ReplacedNode(Node);
1131  }
1132}
1133
1134/// LegalizeOp - Return a legal replacement for the given operation, with
1135/// all legal operands.
1136void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
1137  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
1138    return;
1139
1140  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1141    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
1142             TargetLowering::TypeLegal &&
1143           "Unexpected illegal type!");
1144
1145  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1146    assert((TLI.getTypeAction(*DAG.getContext(),
1147                              Node->getOperand(i).getValueType()) ==
1148              TargetLowering::TypeLegal ||
1149            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
1150           "Unexpected illegal type!");
1151
1152  // Figure out the correct action; the way to query this varies by opcode
1153  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
1154  bool SimpleFinishLegalizing = true;
1155  switch (Node->getOpcode()) {
1156  case ISD::INTRINSIC_W_CHAIN:
1157  case ISD::INTRINSIC_WO_CHAIN:
1158  case ISD::INTRINSIC_VOID:
1159  case ISD::STACKSAVE:
1160    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1161    break;
1162  case ISD::VAARG:
1163    Action = TLI.getOperationAction(Node->getOpcode(),
1164                                    Node->getValueType(0));
1165    if (Action != TargetLowering::Promote)
1166      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1167    break;
1168  case ISD::SINT_TO_FP:
1169  case ISD::UINT_TO_FP:
1170  case ISD::EXTRACT_VECTOR_ELT:
1171    Action = TLI.getOperationAction(Node->getOpcode(),
1172                                    Node->getOperand(0).getValueType());
1173    break;
1174  case ISD::FP_ROUND_INREG:
1175  case ISD::SIGN_EXTEND_INREG: {
1176    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1177    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1178    break;
1179  }
1180  case ISD::ATOMIC_STORE: {
1181    Action = TLI.getOperationAction(Node->getOpcode(),
1182                                    Node->getOperand(2).getValueType());
1183    break;
1184  }
1185  case ISD::SELECT_CC:
1186  case ISD::SETCC:
1187  case ISD::BR_CC: {
1188    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1189                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
1190    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1191    MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1192    ISD::CondCode CCCode =
1193        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1194    Action = TLI.getCondCodeAction(CCCode, OpVT);
1195    if (Action == TargetLowering::Legal) {
1196      if (Node->getOpcode() == ISD::SELECT_CC)
1197        Action = TLI.getOperationAction(Node->getOpcode(),
1198                                        Node->getValueType(0));
1199      else
1200        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1201    }
1202    break;
1203  }
1204  case ISD::LOAD:
1205  case ISD::STORE:
1206    // FIXME: Model these properly.  LOAD and STORE are complicated, and
1207    // STORE expects the unlegalized operand in some cases.
1208    SimpleFinishLegalizing = false;
1209    break;
1210  case ISD::CALLSEQ_START:
1211  case ISD::CALLSEQ_END:
1212    // FIXME: This shouldn't be necessary.  These nodes have special properties
1213    // dealing with the recursive nature of legalization.  Removing this
1214    // special case should be done as part of making LegalizeDAG non-recursive.
1215    SimpleFinishLegalizing = false;
1216    break;
1217  case ISD::EXTRACT_ELEMENT:
1218  case ISD::FLT_ROUNDS_:
1219  case ISD::SADDO:
1220  case ISD::SSUBO:
1221  case ISD::UADDO:
1222  case ISD::USUBO:
1223  case ISD::SMULO:
1224  case ISD::UMULO:
1225  case ISD::FPOWI:
1226  case ISD::MERGE_VALUES:
1227  case ISD::EH_RETURN:
1228  case ISD::FRAME_TO_ARGS_OFFSET:
1229  case ISD::EH_SJLJ_SETJMP:
1230  case ISD::EH_SJLJ_LONGJMP:
1231    // These operations lie about being legal: when they claim to be legal,
1232    // they should actually be expanded.
1233    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1234    if (Action == TargetLowering::Legal)
1235      Action = TargetLowering::Expand;
1236    break;
1237  case ISD::INIT_TRAMPOLINE:
1238  case ISD::ADJUST_TRAMPOLINE:
1239  case ISD::FRAMEADDR:
1240  case ISD::RETURNADDR:
1241    // These operations lie about being legal: when they claim to be legal,
1242    // they should actually be custom-lowered.
1243    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1244    if (Action == TargetLowering::Legal)
1245      Action = TargetLowering::Custom;
1246    break;
1247  case ISD::DEBUGTRAP:
1248    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1249    if (Action == TargetLowering::Expand) {
1250      // replace ISD::DEBUGTRAP with ISD::TRAP
1251      SDValue NewVal;
1252      NewVal = DAG.getNode(ISD::TRAP, Node->getDebugLoc(), Node->getVTList(),
1253                           Node->getOperand(0));
1254      ReplaceNode(Node, NewVal.getNode());
1255      LegalizeOp(NewVal.getNode());
1256      return;
1257    }
1258    break;
1259
1260  default:
1261    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1262      Action = TargetLowering::Legal;
1263    } else {
1264      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1265    }
1266    break;
1267  }
1268
1269  if (SimpleFinishLegalizing) {
1270    SDNode *NewNode = Node;
1271    switch (Node->getOpcode()) {
1272    default: break;
1273    case ISD::SHL:
1274    case ISD::SRL:
1275    case ISD::SRA:
1276    case ISD::ROTL:
1277    case ISD::ROTR:
1278      // Legalizing shifts/rotates requires adjusting the shift amount
1279      // to the appropriate width.
1280      if (!Node->getOperand(1).getValueType().isVector()) {
1281        SDValue SAO =
1282          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1283                                    Node->getOperand(1));
1284        HandleSDNode Handle(SAO);
1285        LegalizeOp(SAO.getNode());
1286        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1287                                         Handle.getValue());
1288      }
1289      break;
1290    case ISD::SRL_PARTS:
1291    case ISD::SRA_PARTS:
1292    case ISD::SHL_PARTS:
1293      // Legalizing shifts/rotates requires adjusting the shift amount
1294      // to the appropriate width.
1295      if (!Node->getOperand(2).getValueType().isVector()) {
1296        SDValue SAO =
1297          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1298                                    Node->getOperand(2));
1299        HandleSDNode Handle(SAO);
1300        LegalizeOp(SAO.getNode());
1301        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1302                                         Node->getOperand(1),
1303                                         Handle.getValue());
1304      }
1305      break;
1306    }
1307
1308    if (NewNode != Node) {
1309      DAG.ReplaceAllUsesWith(Node, NewNode);
1310      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1311        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
1312      ReplacedNode(Node);
1313      Node = NewNode;
1314    }
1315    switch (Action) {
1316    case TargetLowering::Legal:
1317      return;
1318    case TargetLowering::Custom: {
1319      // FIXME: The handling for custom lowering with multiple results is
1320      // a complete mess.
1321      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1322      if (Res.getNode()) {
1323        SmallVector<SDValue, 8> ResultVals;
1324        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
1325          if (e == 1)
1326            ResultVals.push_back(Res);
1327          else
1328            ResultVals.push_back(Res.getValue(i));
1329        }
1330        if (Res.getNode() != Node || Res.getResNo() != 0) {
1331          DAG.ReplaceAllUsesWith(Node, ResultVals.data());
1332          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1333            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
1334          ReplacedNode(Node);
1335        }
1336        return;
1337      }
1338    }
1339      // FALL THROUGH
1340    case TargetLowering::Expand:
1341      ExpandNode(Node);
1342      return;
1343    case TargetLowering::Promote:
1344      PromoteNode(Node);
1345      return;
1346    }
1347  }
1348
1349  switch (Node->getOpcode()) {
1350  default:
1351#ifndef NDEBUG
1352    dbgs() << "NODE: ";
1353    Node->dump( &DAG);
1354    dbgs() << "\n";
1355#endif
1356    llvm_unreachable("Do not know how to legalize this operator!");
1357
1358  case ISD::CALLSEQ_START:
1359  case ISD::CALLSEQ_END:
1360    break;
1361  case ISD::LOAD: {
1362    return LegalizeLoadOps(Node);
1363  }
1364  case ISD::STORE: {
1365    return LegalizeStoreOps(Node);
1366  }
1367  }
1368}
1369
1370SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1371  SDValue Vec = Op.getOperand(0);
1372  SDValue Idx = Op.getOperand(1);
1373  DebugLoc dl = Op.getDebugLoc();
1374  // Store the value to a temporary stack slot, then LOAD the returned part.
1375  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1376  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1377                            MachinePointerInfo(), false, false, 0);
1378
1379  // Add the offset to the index.
1380  unsigned EltSize =
1381      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1382  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1383                    DAG.getConstant(EltSize, Idx.getValueType()));
1384
1385  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1386    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1387  else
1388    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1389
1390  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1391
1392  if (Op.getValueType().isVector())
1393    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1394                       false, false, false, 0);
1395  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1396                        MachinePointerInfo(),
1397                        Vec.getValueType().getVectorElementType(),
1398                        false, false, 0);
1399}
1400
1401SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1402  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1403
1404  SDValue Vec  = Op.getOperand(0);
1405  SDValue Part = Op.getOperand(1);
1406  SDValue Idx  = Op.getOperand(2);
1407  DebugLoc dl  = Op.getDebugLoc();
1408
1409  // Store the value to a temporary stack slot, then LOAD the returned part.
1410
1411  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1412  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1413  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1414
1415  // First store the whole vector.
1416  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1417                            false, false, 0);
1418
1419  // Then store the inserted part.
1420
1421  // Add the offset to the index.
1422  unsigned EltSize =
1423      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1424
1425  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1426                    DAG.getConstant(EltSize, Idx.getValueType()));
1427
1428  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1429    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1430  else
1431    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1432
1433  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1434                                    StackPtr);
1435
1436  // Store the subvector.
1437  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1438                    MachinePointerInfo(), false, false, 0);
1439
1440  // Finally, load the updated vector.
1441  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1442                     false, false, false, 0);
1443}
1444
1445SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1446  // We can't handle this case efficiently.  Allocate a sufficiently
1447  // aligned object on the stack, store each element into it, then load
1448  // the result as a vector.
1449  // Create the stack frame object.
1450  EVT VT = Node->getValueType(0);
1451  EVT EltVT = VT.getVectorElementType();
1452  DebugLoc dl = Node->getDebugLoc();
1453  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1454  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1455  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1456
1457  // Emit a store of each element to the stack slot.
1458  SmallVector<SDValue, 8> Stores;
1459  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1460  // Store (in the right endianness) the elements to memory.
1461  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1462    // Ignore undef elements.
1463    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1464
1465    unsigned Offset = TypeByteSize*i;
1466
1467    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1468    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1469
1470    // If the destination vector element type is narrower than the source
1471    // element type, only store the bits necessary.
1472    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1473      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1474                                         Node->getOperand(i), Idx,
1475                                         PtrInfo.getWithOffset(Offset),
1476                                         EltVT, false, false, 0));
1477    } else
1478      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1479                                    Node->getOperand(i), Idx,
1480                                    PtrInfo.getWithOffset(Offset),
1481                                    false, false, 0));
1482  }
1483
1484  SDValue StoreChain;
1485  if (!Stores.empty())    // Not all undef elements?
1486    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1487                             &Stores[0], Stores.size());
1488  else
1489    StoreChain = DAG.getEntryNode();
1490
1491  // Result is a load from the stack slot.
1492  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1493                     false, false, false, 0);
1494}
1495
1496SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1497  DebugLoc dl = Node->getDebugLoc();
1498  SDValue Tmp1 = Node->getOperand(0);
1499  SDValue Tmp2 = Node->getOperand(1);
1500
1501  // Get the sign bit of the RHS.  First obtain a value that has the same
1502  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1503  SDValue SignBit;
1504  EVT FloatVT = Tmp2.getValueType();
1505  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1506  if (TLI.isTypeLegal(IVT)) {
1507    // Convert to an integer with the same sign bit.
1508    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1509  } else {
1510    // Store the float to memory, then load the sign part out as an integer.
1511    MVT LoadTy = TLI.getPointerTy();
1512    // First create a temporary that is aligned for both the load and store.
1513    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1514    // Then store the float to it.
1515    SDValue Ch =
1516      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1517                   false, false, 0);
1518    if (TLI.isBigEndian()) {
1519      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1520      // Load out a legal integer with the same sign bit as the float.
1521      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1522                            false, false, false, 0);
1523    } else { // Little endian
1524      SDValue LoadPtr = StackPtr;
1525      // The float may be wider than the integer we are going to load.  Advance
1526      // the pointer so that the loaded integer will contain the sign bit.
1527      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1528      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1529      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1530                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1531      // Load a legal integer containing the sign bit.
1532      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1533                            false, false, false, 0);
1534      // Move the sign bit to the top bit of the loaded integer.
1535      unsigned BitShift = LoadTy.getSizeInBits() -
1536        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1537      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1538      if (BitShift)
1539        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1540                              DAG.getConstant(BitShift,
1541                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1542    }
1543  }
1544  // Now get the sign bit proper, by seeing whether the value is negative.
1545  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1546                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1547                         ISD::SETLT);
1548  // Get the absolute value of the result.
1549  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1550  // Select between the nabs and abs value based on the sign bit of
1551  // the input.
1552  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1553                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1554                     AbsVal);
1555}
1556
1557void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1558                                           SmallVectorImpl<SDValue> &Results) {
1559  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1560  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1561          " not tell us which reg is the stack pointer!");
1562  DebugLoc dl = Node->getDebugLoc();
1563  EVT VT = Node->getValueType(0);
1564  SDValue Tmp1 = SDValue(Node, 0);
1565  SDValue Tmp2 = SDValue(Node, 1);
1566  SDValue Tmp3 = Node->getOperand(2);
1567  SDValue Chain = Tmp1.getOperand(0);
1568
1569  // Chain the dynamic stack allocation so that it doesn't modify the stack
1570  // pointer when other instructions are using the stack.
1571  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1572
1573  SDValue Size  = Tmp2.getOperand(1);
1574  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1575  Chain = SP.getValue(1);
1576  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1577  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1578  if (Align > StackAlign)
1579    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1580                      DAG.getConstant(-(uint64_t)Align, VT));
1581  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1582  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1583
1584  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1585                            DAG.getIntPtrConstant(0, true), SDValue());
1586
1587  Results.push_back(Tmp1);
1588  Results.push_back(Tmp2);
1589}
1590
1591/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1592/// condition code CC on the current target. This routine expands SETCC with
1593/// illegal condition code into AND / OR of multiple SETCC values.
1594void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1595                                                 SDValue &LHS, SDValue &RHS,
1596                                                 SDValue &CC,
1597                                                 DebugLoc dl) {
1598  MVT OpVT = LHS.getSimpleValueType();
1599  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1600  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1601  default: llvm_unreachable("Unknown condition code action!");
1602  case TargetLowering::Legal:
1603    // Nothing to do.
1604    break;
1605  case TargetLowering::Expand: {
1606    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1607    ISD::CondCode InvCC = ISD::SETCC_INVALID;
1608    unsigned Opc = 0;
1609    switch (CCCode) {
1610    default: llvm_unreachable("Don't know how to expand this condition!");
1611    case ISD::SETO:
1612        assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
1613            == TargetLowering::Legal
1614            && "If SETO is expanded, SETOEQ must be legal!");
1615        CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1616    case ISD::SETUO:
1617        assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
1618            == TargetLowering::Legal
1619            && "If SETUO is expanded, SETUNE must be legal!");
1620        CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1621    case ISD::SETOEQ:
1622    case ISD::SETOGT:
1623    case ISD::SETOGE:
1624    case ISD::SETOLT:
1625    case ISD::SETOLE:
1626    case ISD::SETONE:
1627    case ISD::SETUEQ:
1628    case ISD::SETUNE:
1629    case ISD::SETUGT:
1630    case ISD::SETUGE:
1631    case ISD::SETULT:
1632    case ISD::SETULE:
1633        // If we are floating point, assign and break, otherwise fall through.
1634        if (!OpVT.isInteger()) {
1635          // We can use the 4th bit to tell if we are the unordered
1636          // or ordered version of the opcode.
1637          CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1638          Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1639          CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1640          break;
1641        }
1642        // Fallthrough if we are unsigned integer.
1643    case ISD::SETLE:
1644    case ISD::SETGT:
1645    case ISD::SETGE:
1646    case ISD::SETLT:
1647    case ISD::SETNE:
1648    case ISD::SETEQ:
1649      InvCC = ISD::getSetCCSwappedOperands(CCCode);
1650      if (TLI.getCondCodeAction(InvCC, OpVT) == TargetLowering::Expand) {
1651        // We only support using the inverted operation and not a
1652        // different manner of supporting expanding these cases.
1653        llvm_unreachable("Don't know how to expand this condition!");
1654      }
1655      LHS = DAG.getSetCC(dl, VT, RHS, LHS, InvCC);
1656      RHS = SDValue();
1657      CC = SDValue();
1658      return;
1659    }
1660
1661    SDValue SetCC1, SetCC2;
1662    if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1663      // If we aren't the ordered or unorder operation,
1664      // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1665      SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1666      SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1667    } else {
1668      // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1669      SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1670      SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1671    }
1672    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1673    RHS = SDValue();
1674    CC  = SDValue();
1675    break;
1676  }
1677  }
1678}
1679
1680/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1681/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1682/// a load from the stack slot to DestVT, extending it if needed.
1683/// The resultant code need not be legal.
1684SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1685                                               EVT SlotVT,
1686                                               EVT DestVT,
1687                                               DebugLoc dl) {
1688  // Create the stack frame object.
1689  unsigned SrcAlign =
1690    TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
1691                                              getTypeForEVT(*DAG.getContext()));
1692  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1693
1694  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1695  int SPFI = StackPtrFI->getIndex();
1696  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1697
1698  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1699  unsigned SlotSize = SlotVT.getSizeInBits();
1700  unsigned DestSize = DestVT.getSizeInBits();
1701  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1702  unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
1703
1704  // Emit a store to the stack slot.  Use a truncstore if the input value is
1705  // later than DestVT.
1706  SDValue Store;
1707
1708  if (SrcSize > SlotSize)
1709    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1710                              PtrInfo, SlotVT, false, false, SrcAlign);
1711  else {
1712    assert(SrcSize == SlotSize && "Invalid store");
1713    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1714                         PtrInfo, false, false, SrcAlign);
1715  }
1716
1717  // Result is a load from the stack slot.
1718  if (SlotSize == DestSize)
1719    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1720                       false, false, false, DestAlign);
1721
1722  assert(SlotSize < DestSize && "Unknown extension!");
1723  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1724                        PtrInfo, SlotVT, false, false, DestAlign);
1725}
1726
1727SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1728  DebugLoc dl = Node->getDebugLoc();
1729  // Create a vector sized/aligned stack slot, store the value to element #0,
1730  // then load the whole vector back out.
1731  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1732
1733  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1734  int SPFI = StackPtrFI->getIndex();
1735
1736  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1737                                 StackPtr,
1738                                 MachinePointerInfo::getFixedStack(SPFI),
1739                                 Node->getValueType(0).getVectorElementType(),
1740                                 false, false, 0);
1741  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1742                     MachinePointerInfo::getFixedStack(SPFI),
1743                     false, false, false, 0);
1744}
1745
1746
1747/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1748/// support the operation, but do support the resultant vector type.
1749SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1750  unsigned NumElems = Node->getNumOperands();
1751  SDValue Value1, Value2;
1752  DebugLoc dl = Node->getDebugLoc();
1753  EVT VT = Node->getValueType(0);
1754  EVT OpVT = Node->getOperand(0).getValueType();
1755  EVT EltVT = VT.getVectorElementType();
1756
1757  // If the only non-undef value is the low element, turn this into a
1758  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1759  bool isOnlyLowElement = true;
1760  bool MoreThanTwoValues = false;
1761  bool isConstant = true;
1762  for (unsigned i = 0; i < NumElems; ++i) {
1763    SDValue V = Node->getOperand(i);
1764    if (V.getOpcode() == ISD::UNDEF)
1765      continue;
1766    if (i > 0)
1767      isOnlyLowElement = false;
1768    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1769      isConstant = false;
1770
1771    if (!Value1.getNode()) {
1772      Value1 = V;
1773    } else if (!Value2.getNode()) {
1774      if (V != Value1)
1775        Value2 = V;
1776    } else if (V != Value1 && V != Value2) {
1777      MoreThanTwoValues = true;
1778    }
1779  }
1780
1781  if (!Value1.getNode())
1782    return DAG.getUNDEF(VT);
1783
1784  if (isOnlyLowElement)
1785    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1786
1787  // If all elements are constants, create a load from the constant pool.
1788  if (isConstant) {
1789    SmallVector<Constant*, 16> CV;
1790    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1791      if (ConstantFPSDNode *V =
1792          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1793        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1794      } else if (ConstantSDNode *V =
1795                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1796        if (OpVT==EltVT)
1797          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1798        else {
1799          // If OpVT and EltVT don't match, EltVT is not legal and the
1800          // element values have been promoted/truncated earlier.  Undo this;
1801          // we don't want a v16i8 to become a v16i32 for example.
1802          const ConstantInt *CI = V->getConstantIntValue();
1803          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1804                                        CI->getZExtValue()));
1805        }
1806      } else {
1807        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1808        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1809        CV.push_back(UndefValue::get(OpNTy));
1810      }
1811    }
1812    Constant *CP = ConstantVector::get(CV);
1813    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1814    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1815    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1816                       MachinePointerInfo::getConstantPool(),
1817                       false, false, false, Alignment);
1818  }
1819
1820  if (!MoreThanTwoValues) {
1821    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1822    for (unsigned i = 0; i < NumElems; ++i) {
1823      SDValue V = Node->getOperand(i);
1824      if (V.getOpcode() == ISD::UNDEF)
1825        continue;
1826      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1827    }
1828    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1829      // Get the splatted value into the low element of a vector register.
1830      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1831      SDValue Vec2;
1832      if (Value2.getNode())
1833        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1834      else
1835        Vec2 = DAG.getUNDEF(VT);
1836
1837      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1838      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1839    }
1840  }
1841
1842  // Otherwise, we can't handle this case efficiently.
1843  return ExpandVectorBuildThroughStack(Node);
1844}
1845
1846// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1847// does not fit into a register, return the lo part and set the hi part to the
1848// by-reg argument.  If it does fit into a single register, return the result
1849// and leave the Hi part unset.
1850SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1851                                            bool isSigned) {
1852  TargetLowering::ArgListTy Args;
1853  TargetLowering::ArgListEntry Entry;
1854  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1855    EVT ArgVT = Node->getOperand(i).getValueType();
1856    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1857    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1858    Entry.isSExt = isSigned;
1859    Entry.isZExt = !isSigned;
1860    Args.push_back(Entry);
1861  }
1862  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1863                                         TLI.getPointerTy());
1864
1865  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1866
1867  // By default, the input chain to this libcall is the entry node of the
1868  // function. If the libcall is going to be emitted as a tail call then
1869  // TLI.isUsedByReturnOnly will change it to the right chain if the return
1870  // node which is being folded has a non-entry input chain.
1871  SDValue InChain = DAG.getEntryNode();
1872
1873  // isTailCall may be true since the callee does not reference caller stack
1874  // frame. Check if it's in the right position.
1875  SDValue TCChain = InChain;
1876  bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain);
1877  if (isTailCall)
1878    InChain = TCChain;
1879
1880  TargetLowering::
1881  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1882                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1883                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1884                    Callee, Args, DAG, Node->getDebugLoc());
1885  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1886
1887
1888  if (!CallInfo.second.getNode())
1889    // It's a tailcall, return the chain (which is the DAG root).
1890    return DAG.getRoot();
1891
1892  return CallInfo.first;
1893}
1894
1895/// ExpandLibCall - Generate a libcall taking the given operands as arguments
1896/// and returning a result of type RetVT.
1897SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1898                                            const SDValue *Ops, unsigned NumOps,
1899                                            bool isSigned, DebugLoc dl) {
1900  TargetLowering::ArgListTy Args;
1901  Args.reserve(NumOps);
1902
1903  TargetLowering::ArgListEntry Entry;
1904  for (unsigned i = 0; i != NumOps; ++i) {
1905    Entry.Node = Ops[i];
1906    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1907    Entry.isSExt = isSigned;
1908    Entry.isZExt = !isSigned;
1909    Args.push_back(Entry);
1910  }
1911  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1912                                         TLI.getPointerTy());
1913
1914  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1915  TargetLowering::
1916  CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1917                       false, 0, TLI.getLibcallCallingConv(LC),
1918                       /*isTailCall=*/false,
1919                  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1920                  Callee, Args, DAG, dl);
1921  std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
1922
1923  return CallInfo.first;
1924}
1925
1926// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1927// ExpandLibCall except that the first operand is the in-chain.
1928std::pair<SDValue, SDValue>
1929SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1930                                         SDNode *Node,
1931                                         bool isSigned) {
1932  SDValue InChain = Node->getOperand(0);
1933
1934  TargetLowering::ArgListTy Args;
1935  TargetLowering::ArgListEntry Entry;
1936  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1937    EVT ArgVT = Node->getOperand(i).getValueType();
1938    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1939    Entry.Node = Node->getOperand(i);
1940    Entry.Ty = ArgTy;
1941    Entry.isSExt = isSigned;
1942    Entry.isZExt = !isSigned;
1943    Args.push_back(Entry);
1944  }
1945  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1946                                         TLI.getPointerTy());
1947
1948  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1949  TargetLowering::
1950  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1951                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1952                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1953                    Callee, Args, DAG, Node->getDebugLoc());
1954  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1955
1956  return CallInfo;
1957}
1958
1959SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1960                                              RTLIB::Libcall Call_F32,
1961                                              RTLIB::Libcall Call_F64,
1962                                              RTLIB::Libcall Call_F80,
1963                                              RTLIB::Libcall Call_F128,
1964                                              RTLIB::Libcall Call_PPCF128) {
1965  RTLIB::Libcall LC;
1966  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1967  default: llvm_unreachable("Unexpected request for libcall!");
1968  case MVT::f32: LC = Call_F32; break;
1969  case MVT::f64: LC = Call_F64; break;
1970  case MVT::f80: LC = Call_F80; break;
1971  case MVT::f128: LC = Call_F128; break;
1972  case MVT::ppcf128: LC = Call_PPCF128; break;
1973  }
1974  return ExpandLibCall(LC, Node, false);
1975}
1976
1977SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1978                                               RTLIB::Libcall Call_I8,
1979                                               RTLIB::Libcall Call_I16,
1980                                               RTLIB::Libcall Call_I32,
1981                                               RTLIB::Libcall Call_I64,
1982                                               RTLIB::Libcall Call_I128) {
1983  RTLIB::Libcall LC;
1984  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1985  default: llvm_unreachable("Unexpected request for libcall!");
1986  case MVT::i8:   LC = Call_I8; break;
1987  case MVT::i16:  LC = Call_I16; break;
1988  case MVT::i32:  LC = Call_I32; break;
1989  case MVT::i64:  LC = Call_I64; break;
1990  case MVT::i128: LC = Call_I128; break;
1991  }
1992  return ExpandLibCall(LC, Node, isSigned);
1993}
1994
1995/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
1996static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
1997                                     const TargetLowering &TLI) {
1998  RTLIB::Libcall LC;
1999  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2000  default: llvm_unreachable("Unexpected request for libcall!");
2001  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2002  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2003  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2004  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2005  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2006  }
2007
2008  return TLI.getLibcallName(LC) != 0;
2009}
2010
2011/// useDivRem - Only issue divrem libcall if both quotient and remainder are
2012/// needed.
2013static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2014  // The other use might have been replaced with a divrem already.
2015  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2016  unsigned OtherOpcode = 0;
2017  if (isSigned)
2018    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2019  else
2020    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2021
2022  SDValue Op0 = Node->getOperand(0);
2023  SDValue Op1 = Node->getOperand(1);
2024  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2025         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2026    SDNode *User = *UI;
2027    if (User == Node)
2028      continue;
2029    if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
2030        User->getOperand(0) == Op0 &&
2031        User->getOperand(1) == Op1)
2032      return true;
2033  }
2034  return false;
2035}
2036
2037/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2038/// pairs.
2039void
2040SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2041                                          SmallVectorImpl<SDValue> &Results) {
2042  unsigned Opcode = Node->getOpcode();
2043  bool isSigned = Opcode == ISD::SDIVREM;
2044
2045  RTLIB::Libcall LC;
2046  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2047  default: llvm_unreachable("Unexpected request for libcall!");
2048  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2049  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2050  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2051  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2052  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2053  }
2054
2055  // The input chain to this libcall is the entry node of the function.
2056  // Legalizing the call will automatically add the previous call to the
2057  // dependence.
2058  SDValue InChain = DAG.getEntryNode();
2059
2060  EVT RetVT = Node->getValueType(0);
2061  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2062
2063  TargetLowering::ArgListTy Args;
2064  TargetLowering::ArgListEntry Entry;
2065  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2066    EVT ArgVT = Node->getOperand(i).getValueType();
2067    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2068    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2069    Entry.isSExt = isSigned;
2070    Entry.isZExt = !isSigned;
2071    Args.push_back(Entry);
2072  }
2073
2074  // Also pass the return address of the remainder.
2075  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2076  Entry.Node = FIPtr;
2077  Entry.Ty = RetTy->getPointerTo();
2078  Entry.isSExt = isSigned;
2079  Entry.isZExt = !isSigned;
2080  Args.push_back(Entry);
2081
2082  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2083                                         TLI.getPointerTy());
2084
2085  DebugLoc dl = Node->getDebugLoc();
2086  TargetLowering::
2087  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
2088                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2089                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2090                    Callee, Args, DAG, dl);
2091  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2092
2093  // Remainder is loaded back from the stack frame.
2094  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2095                            MachinePointerInfo(), false, false, false, 0);
2096  Results.push_back(CallInfo.first);
2097  Results.push_back(Rem);
2098}
2099
2100/// isSinCosLibcallAvailable - Return true if sincos libcall is available.
2101static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2102  RTLIB::Libcall LC;
2103  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2104  default: llvm_unreachable("Unexpected request for libcall!");
2105  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2106  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2107  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2108  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2109  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2110  }
2111  return TLI.getLibcallName(LC) != 0;
2112}
2113
2114/// canCombineSinCosLibcall - Return true if sincos libcall is available and
2115/// can be used to combine sin and cos.
2116static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
2117                                    const TargetMachine &TM) {
2118  if (!isSinCosLibcallAvailable(Node, TLI))
2119    return false;
2120  // GNU sin/cos functions set errno while sincos does not. Therefore
2121  // combining sin and cos is only safe if unsafe-fpmath is enabled.
2122  bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU;
2123  if (isGNU && !TM.Options.UnsafeFPMath)
2124    return false;
2125  return true;
2126}
2127
2128/// useSinCos - Only issue sincos libcall if both sin and cos are
2129/// needed.
2130static bool useSinCos(SDNode *Node) {
2131  unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2132    ? ISD::FCOS : ISD::FSIN;
2133
2134  SDValue Op0 = Node->getOperand(0);
2135  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2136       UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2137    SDNode *User = *UI;
2138    if (User == Node)
2139      continue;
2140    // The other user might have been turned into sincos already.
2141    if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2142      return true;
2143  }
2144  return false;
2145}
2146
2147/// ExpandSinCosLibCall - Issue libcalls to sincos to compute sin / cos
2148/// pairs.
2149void
2150SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2151                                          SmallVectorImpl<SDValue> &Results) {
2152  RTLIB::Libcall LC;
2153  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2154  default: llvm_unreachable("Unexpected request for libcall!");
2155  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2156  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2157  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2158  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2159  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2160  }
2161
2162  // The input chain to this libcall is the entry node of the function.
2163  // Legalizing the call will automatically add the previous call to the
2164  // dependence.
2165  SDValue InChain = DAG.getEntryNode();
2166
2167  EVT RetVT = Node->getValueType(0);
2168  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2169
2170  TargetLowering::ArgListTy Args;
2171  TargetLowering::ArgListEntry Entry;
2172
2173  // Pass the argument.
2174  Entry.Node = Node->getOperand(0);
2175  Entry.Ty = RetTy;
2176  Entry.isSExt = false;
2177  Entry.isZExt = false;
2178  Args.push_back(Entry);
2179
2180  // Pass the return address of sin.
2181  SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2182  Entry.Node = SinPtr;
2183  Entry.Ty = RetTy->getPointerTo();
2184  Entry.isSExt = false;
2185  Entry.isZExt = false;
2186  Args.push_back(Entry);
2187
2188  // Also pass the return address of the cos.
2189  SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2190  Entry.Node = CosPtr;
2191  Entry.Ty = RetTy->getPointerTo();
2192  Entry.isSExt = false;
2193  Entry.isZExt = false;
2194  Args.push_back(Entry);
2195
2196  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2197                                         TLI.getPointerTy());
2198
2199  DebugLoc dl = Node->getDebugLoc();
2200  TargetLowering::
2201  CallLoweringInfo CLI(InChain, Type::getVoidTy(*DAG.getContext()),
2202                       false, false, false, false,
2203                       0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2204                       /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2205                       Callee, Args, DAG, dl);
2206  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2207
2208  Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
2209                                MachinePointerInfo(), false, false, false, 0));
2210  Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
2211                                MachinePointerInfo(), false, false, false, 0));
2212}
2213
2214/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2215/// INT_TO_FP operation of the specified operand when the target requests that
2216/// we expand it.  At this point, we know that the result and operand types are
2217/// legal for the target.
2218SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2219                                                   SDValue Op0,
2220                                                   EVT DestVT,
2221                                                   DebugLoc dl) {
2222  if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2223    // simple 32-bit [signed|unsigned] integer to float/double expansion
2224
2225    // Get the stack frame index of a 8 byte buffer.
2226    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2227
2228    // word offset constant for Hi/Lo address computation
2229    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2230    // set up Hi and Lo (into buffer) address based on endian
2231    SDValue Hi = StackSlot;
2232    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2233                             TLI.getPointerTy(), StackSlot, WordOff);
2234    if (TLI.isLittleEndian())
2235      std::swap(Hi, Lo);
2236
2237    // if signed map to unsigned space
2238    SDValue Op0Mapped;
2239    if (isSigned) {
2240      // constant used to invert sign bit (signed to unsigned mapping)
2241      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2242      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2243    } else {
2244      Op0Mapped = Op0;
2245    }
2246    // store the lo of the constructed double - based on integer input
2247    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2248                                  Op0Mapped, Lo, MachinePointerInfo(),
2249                                  false, false, 0);
2250    // initial hi portion of constructed double
2251    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2252    // store the hi of the constructed double - biased exponent
2253    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2254                                  MachinePointerInfo(),
2255                                  false, false, 0);
2256    // load the constructed double
2257    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2258                               MachinePointerInfo(), false, false, false, 0);
2259    // FP constant to bias correct the final result
2260    SDValue Bias = DAG.getConstantFP(isSigned ?
2261                                     BitsToDouble(0x4330000080000000ULL) :
2262                                     BitsToDouble(0x4330000000000000ULL),
2263                                     MVT::f64);
2264    // subtract the bias
2265    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2266    // final result
2267    SDValue Result;
2268    // handle final rounding
2269    if (DestVT == MVT::f64) {
2270      // do nothing
2271      Result = Sub;
2272    } else if (DestVT.bitsLT(MVT::f64)) {
2273      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2274                           DAG.getIntPtrConstant(0));
2275    } else if (DestVT.bitsGT(MVT::f64)) {
2276      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2277    }
2278    return Result;
2279  }
2280  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2281  // Code below here assumes !isSigned without checking again.
2282
2283  // Implementation of unsigned i64 to f64 following the algorithm in
2284  // __floatundidf in compiler_rt. This implementation has the advantage
2285  // of performing rounding correctly, both in the default rounding mode
2286  // and in all alternate rounding modes.
2287  // TODO: Generalize this for use with other types.
2288  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2289    SDValue TwoP52 =
2290      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2291    SDValue TwoP84PlusTwoP52 =
2292      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2293    SDValue TwoP84 =
2294      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2295
2296    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2297    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2298                             DAG.getConstant(32, MVT::i64));
2299    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2300    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2301    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2302    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2303    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2304                                TwoP84PlusTwoP52);
2305    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2306  }
2307
2308  // Implementation of unsigned i64 to f32.
2309  // TODO: Generalize this for use with other types.
2310  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2311    // For unsigned conversions, convert them to signed conversions using the
2312    // algorithm from the x86_64 __floatundidf in compiler_rt.
2313    if (!isSigned) {
2314      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2315
2316      SDValue ShiftConst =
2317          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2318      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2319      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2320      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2321      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2322
2323      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2324      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2325
2326      // TODO: This really should be implemented using a branch rather than a
2327      // select.  We happen to get lucky and machinesink does the right
2328      // thing most of the time.  This would be a good candidate for a
2329      //pseudo-op, or, even better, for whole-function isel.
2330      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2331        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2332      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2333    }
2334
2335    // Otherwise, implement the fully general conversion.
2336
2337    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2338         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2339    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2340         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2341    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2342         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2343    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2344                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2345    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2346    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2347                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2348                   ISD::SETUGE);
2349    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2350    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2351
2352    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2353                             DAG.getConstant(32, SHVT));
2354    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2355    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2356    SDValue TwoP32 =
2357      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2358    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2359    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2360    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2361    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2362    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2363                       DAG.getIntPtrConstant(0));
2364  }
2365
2366  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2367
2368  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2369                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2370                                 ISD::SETLT);
2371  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2372  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2373                                    SignSet, Four, Zero);
2374
2375  // If the sign bit of the integer is set, the large number will be treated
2376  // as a negative number.  To counteract this, the dynamic code adds an
2377  // offset depending on the data type.
2378  uint64_t FF;
2379  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2380  default: llvm_unreachable("Unsupported integer type!");
2381  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2382  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2383  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2384  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2385  }
2386  if (TLI.isLittleEndian()) FF <<= 32;
2387  Constant *FudgeFactor = ConstantInt::get(
2388                                       Type::getInt64Ty(*DAG.getContext()), FF);
2389
2390  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2391  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2392  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2393  Alignment = std::min(Alignment, 4u);
2394  SDValue FudgeInReg;
2395  if (DestVT == MVT::f32)
2396    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2397                             MachinePointerInfo::getConstantPool(),
2398                             false, false, false, Alignment);
2399  else {
2400    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2401                                  DAG.getEntryNode(), CPIdx,
2402                                  MachinePointerInfo::getConstantPool(),
2403                                  MVT::f32, false, false, Alignment);
2404    HandleSDNode Handle(Load);
2405    LegalizeOp(Load.getNode());
2406    FudgeInReg = Handle.getValue();
2407  }
2408
2409  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2410}
2411
2412/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2413/// *INT_TO_FP operation of the specified operand when the target requests that
2414/// we promote it.  At this point, we know that the result and operand types are
2415/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2416/// operation that takes a larger input.
2417SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2418                                                    EVT DestVT,
2419                                                    bool isSigned,
2420                                                    DebugLoc dl) {
2421  // First step, figure out the appropriate *INT_TO_FP operation to use.
2422  EVT NewInTy = LegalOp.getValueType();
2423
2424  unsigned OpToUse = 0;
2425
2426  // Scan for the appropriate larger type to use.
2427  while (1) {
2428    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2429    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2430
2431    // If the target supports SINT_TO_FP of this type, use it.
2432    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2433      OpToUse = ISD::SINT_TO_FP;
2434      break;
2435    }
2436    if (isSigned) continue;
2437
2438    // If the target supports UINT_TO_FP of this type, use it.
2439    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2440      OpToUse = ISD::UINT_TO_FP;
2441      break;
2442    }
2443
2444    // Otherwise, try a larger type.
2445  }
2446
2447  // Okay, we found the operation and type to use.  Zero extend our input to the
2448  // desired type then run the operation on it.
2449  return DAG.getNode(OpToUse, dl, DestVT,
2450                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2451                                 dl, NewInTy, LegalOp));
2452}
2453
2454/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2455/// FP_TO_*INT operation of the specified operand when the target requests that
2456/// we promote it.  At this point, we know that the result and operand types are
2457/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2458/// operation that returns a larger result.
2459SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2460                                                    EVT DestVT,
2461                                                    bool isSigned,
2462                                                    DebugLoc dl) {
2463  // First step, figure out the appropriate FP_TO*INT operation to use.
2464  EVT NewOutTy = DestVT;
2465
2466  unsigned OpToUse = 0;
2467
2468  // Scan for the appropriate larger type to use.
2469  while (1) {
2470    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2471    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2472
2473    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2474      OpToUse = ISD::FP_TO_SINT;
2475      break;
2476    }
2477
2478    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2479      OpToUse = ISD::FP_TO_UINT;
2480      break;
2481    }
2482
2483    // Otherwise, try a larger type.
2484  }
2485
2486
2487  // Okay, we found the operation and type to use.
2488  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2489
2490  // Truncate the result of the extended FP_TO_*INT operation to the desired
2491  // size.
2492  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2493}
2494
2495/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2496///
2497SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2498  EVT VT = Op.getValueType();
2499  EVT SHVT = TLI.getShiftAmountTy(VT);
2500  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2501  switch (VT.getSimpleVT().SimpleTy) {
2502  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2503  case MVT::i16:
2504    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2505    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2506    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2507  case MVT::i32:
2508    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2509    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2510    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2511    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2512    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2513    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2514    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2515    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2516    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2517  case MVT::i64:
2518    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2519    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2520    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2521    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2522    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2523    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2524    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2525    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2526    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2527    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2528    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2529    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2530    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2531    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2532    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2533    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2534    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2535    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2536    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2537    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2538    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2539  }
2540}
2541
2542/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2543///
2544SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2545                                             DebugLoc dl) {
2546  switch (Opc) {
2547  default: llvm_unreachable("Cannot expand this yet!");
2548  case ISD::CTPOP: {
2549    EVT VT = Op.getValueType();
2550    EVT ShVT = TLI.getShiftAmountTy(VT);
2551    unsigned Len = VT.getSizeInBits();
2552
2553    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2554           "CTPOP not implemented for this type.");
2555
2556    // This is the "best" algorithm from
2557    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2558
2559    SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), VT);
2560    SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), VT);
2561    SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), VT);
2562    SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), VT);
2563
2564    // v = v - ((v >> 1) & 0x55555555...)
2565    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2566                     DAG.getNode(ISD::AND, dl, VT,
2567                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2568                                             DAG.getConstant(1, ShVT)),
2569                                 Mask55));
2570    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2571    Op = DAG.getNode(ISD::ADD, dl, VT,
2572                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2573                     DAG.getNode(ISD::AND, dl, VT,
2574                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2575                                             DAG.getConstant(2, ShVT)),
2576                                 Mask33));
2577    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2578    Op = DAG.getNode(ISD::AND, dl, VT,
2579                     DAG.getNode(ISD::ADD, dl, VT, Op,
2580                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2581                                             DAG.getConstant(4, ShVT))),
2582                     Mask0F);
2583    // v = (v * 0x01010101...) >> (Len - 8)
2584    Op = DAG.getNode(ISD::SRL, dl, VT,
2585                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2586                     DAG.getConstant(Len - 8, ShVT));
2587
2588    return Op;
2589  }
2590  case ISD::CTLZ_ZERO_UNDEF:
2591    // This trivially expands to CTLZ.
2592    return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2593  case ISD::CTLZ: {
2594    // for now, we do this:
2595    // x = x | (x >> 1);
2596    // x = x | (x >> 2);
2597    // ...
2598    // x = x | (x >>16);
2599    // x = x | (x >>32); // for 64-bit input
2600    // return popcount(~x);
2601    //
2602    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2603    EVT VT = Op.getValueType();
2604    EVT ShVT = TLI.getShiftAmountTy(VT);
2605    unsigned len = VT.getSizeInBits();
2606    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2607      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2608      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2609                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2610    }
2611    Op = DAG.getNOT(dl, Op, VT);
2612    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2613  }
2614  case ISD::CTTZ_ZERO_UNDEF:
2615    // This trivially expands to CTTZ.
2616    return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2617  case ISD::CTTZ: {
2618    // for now, we use: { return popcount(~x & (x - 1)); }
2619    // unless the target has ctlz but not ctpop, in which case we use:
2620    // { return 32 - nlz(~x & (x-1)); }
2621    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2622    EVT VT = Op.getValueType();
2623    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2624                               DAG.getNOT(dl, Op, VT),
2625                               DAG.getNode(ISD::SUB, dl, VT, Op,
2626                                           DAG.getConstant(1, VT)));
2627    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2628    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2629        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2630      return DAG.getNode(ISD::SUB, dl, VT,
2631                         DAG.getConstant(VT.getSizeInBits(), VT),
2632                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2633    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2634  }
2635  }
2636}
2637
2638std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2639  unsigned Opc = Node->getOpcode();
2640  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2641  RTLIB::Libcall LC;
2642
2643  switch (Opc) {
2644  default:
2645    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2646  case ISD::ATOMIC_SWAP:
2647    switch (VT.SimpleTy) {
2648    default: llvm_unreachable("Unexpected value type for atomic!");
2649    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2650    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2651    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2652    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2653    }
2654    break;
2655  case ISD::ATOMIC_CMP_SWAP:
2656    switch (VT.SimpleTy) {
2657    default: llvm_unreachable("Unexpected value type for atomic!");
2658    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2659    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2660    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2661    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2662    }
2663    break;
2664  case ISD::ATOMIC_LOAD_ADD:
2665    switch (VT.SimpleTy) {
2666    default: llvm_unreachable("Unexpected value type for atomic!");
2667    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2668    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2669    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2670    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2671    }
2672    break;
2673  case ISD::ATOMIC_LOAD_SUB:
2674    switch (VT.SimpleTy) {
2675    default: llvm_unreachable("Unexpected value type for atomic!");
2676    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2677    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2678    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2679    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2680    }
2681    break;
2682  case ISD::ATOMIC_LOAD_AND:
2683    switch (VT.SimpleTy) {
2684    default: llvm_unreachable("Unexpected value type for atomic!");
2685    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2686    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2687    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2688    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2689    }
2690    break;
2691  case ISD::ATOMIC_LOAD_OR:
2692    switch (VT.SimpleTy) {
2693    default: llvm_unreachable("Unexpected value type for atomic!");
2694    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2695    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2696    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2697    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2698    }
2699    break;
2700  case ISD::ATOMIC_LOAD_XOR:
2701    switch (VT.SimpleTy) {
2702    default: llvm_unreachable("Unexpected value type for atomic!");
2703    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2704    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2705    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2706    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2707    }
2708    break;
2709  case ISD::ATOMIC_LOAD_NAND:
2710    switch (VT.SimpleTy) {
2711    default: llvm_unreachable("Unexpected value type for atomic!");
2712    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2713    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2714    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2715    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2716    }
2717    break;
2718  }
2719
2720  return ExpandChainLibCall(LC, Node, false);
2721}
2722
2723void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2724  SmallVector<SDValue, 8> Results;
2725  DebugLoc dl = Node->getDebugLoc();
2726  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2727  switch (Node->getOpcode()) {
2728  case ISD::CTPOP:
2729  case ISD::CTLZ:
2730  case ISD::CTLZ_ZERO_UNDEF:
2731  case ISD::CTTZ:
2732  case ISD::CTTZ_ZERO_UNDEF:
2733    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2734    Results.push_back(Tmp1);
2735    break;
2736  case ISD::BSWAP:
2737    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2738    break;
2739  case ISD::FRAMEADDR:
2740  case ISD::RETURNADDR:
2741  case ISD::FRAME_TO_ARGS_OFFSET:
2742    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2743    break;
2744  case ISD::FLT_ROUNDS_:
2745    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2746    break;
2747  case ISD::EH_RETURN:
2748  case ISD::EH_LABEL:
2749  case ISD::PREFETCH:
2750  case ISD::VAEND:
2751  case ISD::EH_SJLJ_LONGJMP:
2752    // If the target didn't expand these, there's nothing to do, so just
2753    // preserve the chain and be done.
2754    Results.push_back(Node->getOperand(0));
2755    break;
2756  case ISD::EH_SJLJ_SETJMP:
2757    // If the target didn't expand this, just return 'zero' and preserve the
2758    // chain.
2759    Results.push_back(DAG.getConstant(0, MVT::i32));
2760    Results.push_back(Node->getOperand(0));
2761    break;
2762  case ISD::ATOMIC_FENCE:
2763  case ISD::MEMBARRIER: {
2764    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2765    // FIXME: handle "fence singlethread" more efficiently.
2766    TargetLowering::ArgListTy Args;
2767    TargetLowering::
2768    CallLoweringInfo CLI(Node->getOperand(0),
2769                         Type::getVoidTy(*DAG.getContext()),
2770                      false, false, false, false, 0, CallingConv::C,
2771                      /*isTailCall=*/false,
2772                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2773                      DAG.getExternalSymbol("__sync_synchronize",
2774                                            TLI.getPointerTy()),
2775                      Args, DAG, dl);
2776    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2777
2778    Results.push_back(CallResult.second);
2779    break;
2780  }
2781  case ISD::ATOMIC_LOAD: {
2782    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2783    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2784    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2785                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2786                                 Node->getOperand(0),
2787                                 Node->getOperand(1), Zero, Zero,
2788                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2789                                 cast<AtomicSDNode>(Node)->getOrdering(),
2790                                 cast<AtomicSDNode>(Node)->getSynchScope());
2791    Results.push_back(Swap.getValue(0));
2792    Results.push_back(Swap.getValue(1));
2793    break;
2794  }
2795  case ISD::ATOMIC_STORE: {
2796    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2797    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2798                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2799                                 Node->getOperand(0),
2800                                 Node->getOperand(1), Node->getOperand(2),
2801                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2802                                 cast<AtomicSDNode>(Node)->getOrdering(),
2803                                 cast<AtomicSDNode>(Node)->getSynchScope());
2804    Results.push_back(Swap.getValue(1));
2805    break;
2806  }
2807  // By default, atomic intrinsics are marked Legal and lowered. Targets
2808  // which don't support them directly, however, may want libcalls, in which
2809  // case they mark them Expand, and we get here.
2810  case ISD::ATOMIC_SWAP:
2811  case ISD::ATOMIC_LOAD_ADD:
2812  case ISD::ATOMIC_LOAD_SUB:
2813  case ISD::ATOMIC_LOAD_AND:
2814  case ISD::ATOMIC_LOAD_OR:
2815  case ISD::ATOMIC_LOAD_XOR:
2816  case ISD::ATOMIC_LOAD_NAND:
2817  case ISD::ATOMIC_LOAD_MIN:
2818  case ISD::ATOMIC_LOAD_MAX:
2819  case ISD::ATOMIC_LOAD_UMIN:
2820  case ISD::ATOMIC_LOAD_UMAX:
2821  case ISD::ATOMIC_CMP_SWAP: {
2822    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2823    Results.push_back(Tmp.first);
2824    Results.push_back(Tmp.second);
2825    break;
2826  }
2827  case ISD::DYNAMIC_STACKALLOC:
2828    ExpandDYNAMIC_STACKALLOC(Node, Results);
2829    break;
2830  case ISD::MERGE_VALUES:
2831    for (unsigned i = 0; i < Node->getNumValues(); i++)
2832      Results.push_back(Node->getOperand(i));
2833    break;
2834  case ISD::UNDEF: {
2835    EVT VT = Node->getValueType(0);
2836    if (VT.isInteger())
2837      Results.push_back(DAG.getConstant(0, VT));
2838    else {
2839      assert(VT.isFloatingPoint() && "Unknown value type!");
2840      Results.push_back(DAG.getConstantFP(0, VT));
2841    }
2842    break;
2843  }
2844  case ISD::TRAP: {
2845    // If this operation is not supported, lower it to 'abort()' call
2846    TargetLowering::ArgListTy Args;
2847    TargetLowering::
2848    CallLoweringInfo CLI(Node->getOperand(0),
2849                         Type::getVoidTy(*DAG.getContext()),
2850                      false, false, false, false, 0, CallingConv::C,
2851                      /*isTailCall=*/false,
2852                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2853                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2854                      Args, DAG, dl);
2855    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2856
2857    Results.push_back(CallResult.second);
2858    break;
2859  }
2860  case ISD::FP_ROUND:
2861  case ISD::BITCAST:
2862    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2863                            Node->getValueType(0), dl);
2864    Results.push_back(Tmp1);
2865    break;
2866  case ISD::FP_EXTEND:
2867    Tmp1 = EmitStackConvert(Node->getOperand(0),
2868                            Node->getOperand(0).getValueType(),
2869                            Node->getValueType(0), dl);
2870    Results.push_back(Tmp1);
2871    break;
2872  case ISD::SIGN_EXTEND_INREG: {
2873    // NOTE: we could fall back on load/store here too for targets without
2874    // SAR.  However, it is doubtful that any exist.
2875    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2876    EVT VT = Node->getValueType(0);
2877    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2878    if (VT.isVector())
2879      ShiftAmountTy = VT;
2880    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2881                        ExtraVT.getScalarType().getSizeInBits();
2882    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2883    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2884                       Node->getOperand(0), ShiftCst);
2885    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2886    Results.push_back(Tmp1);
2887    break;
2888  }
2889  case ISD::FP_ROUND_INREG: {
2890    // The only way we can lower this is to turn it into a TRUNCSTORE,
2891    // EXTLOAD pair, targeting a temporary location (a stack slot).
2892
2893    // NOTE: there is a choice here between constantly creating new stack
2894    // slots and always reusing the same one.  We currently always create
2895    // new ones, as reuse may inhibit scheduling.
2896    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2897    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2898                            Node->getValueType(0), dl);
2899    Results.push_back(Tmp1);
2900    break;
2901  }
2902  case ISD::SINT_TO_FP:
2903  case ISD::UINT_TO_FP:
2904    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2905                                Node->getOperand(0), Node->getValueType(0), dl);
2906    Results.push_back(Tmp1);
2907    break;
2908  case ISD::FP_TO_UINT: {
2909    SDValue True, False;
2910    EVT VT =  Node->getOperand(0).getValueType();
2911    EVT NVT = Node->getValueType(0);
2912    APFloat apf(DAG.EVTToAPFloatSemantics(VT),
2913                APInt::getNullValue(VT.getSizeInBits()));
2914    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2915    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2916    Tmp1 = DAG.getConstantFP(apf, VT);
2917    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2918                        Node->getOperand(0),
2919                        Tmp1, ISD::SETLT);
2920    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2921    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2922                        DAG.getNode(ISD::FSUB, dl, VT,
2923                                    Node->getOperand(0), Tmp1));
2924    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2925                        DAG.getConstant(x, NVT));
2926    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2927    Results.push_back(Tmp1);
2928    break;
2929  }
2930  case ISD::VAARG: {
2931    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2932    EVT VT = Node->getValueType(0);
2933    Tmp1 = Node->getOperand(0);
2934    Tmp2 = Node->getOperand(1);
2935    unsigned Align = Node->getConstantOperandVal(3);
2936
2937    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2938                                     MachinePointerInfo(V),
2939                                     false, false, false, 0);
2940    SDValue VAList = VAListLoad;
2941
2942    if (Align > TLI.getMinStackArgumentAlignment()) {
2943      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2944
2945      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2946                           DAG.getConstant(Align - 1,
2947                                           TLI.getPointerTy()));
2948
2949      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2950                           DAG.getConstant(-(int64_t)Align,
2951                                           TLI.getPointerTy()));
2952    }
2953
2954    // Increment the pointer, VAList, to the next vaarg
2955    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2956                       DAG.getConstant(TLI.getDataLayout()->
2957                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2958                                       TLI.getPointerTy()));
2959    // Store the incremented VAList to the legalized pointer
2960    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2961                        MachinePointerInfo(V), false, false, 0);
2962    // Load the actual argument out of the pointer VAList
2963    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2964                                  false, false, false, 0));
2965    Results.push_back(Results[0].getValue(1));
2966    break;
2967  }
2968  case ISD::VACOPY: {
2969    // This defaults to loading a pointer from the input and storing it to the
2970    // output, returning the chain.
2971    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2972    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2973    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2974                       Node->getOperand(2), MachinePointerInfo(VS),
2975                       false, false, false, 0);
2976    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2977                        MachinePointerInfo(VD), false, false, 0);
2978    Results.push_back(Tmp1);
2979    break;
2980  }
2981  case ISD::EXTRACT_VECTOR_ELT:
2982    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2983      // This must be an access of the only element.  Return it.
2984      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2985                         Node->getOperand(0));
2986    else
2987      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2988    Results.push_back(Tmp1);
2989    break;
2990  case ISD::EXTRACT_SUBVECTOR:
2991    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2992    break;
2993  case ISD::INSERT_SUBVECTOR:
2994    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2995    break;
2996  case ISD::CONCAT_VECTORS: {
2997    Results.push_back(ExpandVectorBuildThroughStack(Node));
2998    break;
2999  }
3000  case ISD::SCALAR_TO_VECTOR:
3001    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3002    break;
3003  case ISD::INSERT_VECTOR_ELT:
3004    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3005                                              Node->getOperand(1),
3006                                              Node->getOperand(2), dl));
3007    break;
3008  case ISD::VECTOR_SHUFFLE: {
3009    SmallVector<int, 32> NewMask;
3010    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3011
3012    EVT VT = Node->getValueType(0);
3013    EVT EltVT = VT.getVectorElementType();
3014    SDValue Op0 = Node->getOperand(0);
3015    SDValue Op1 = Node->getOperand(1);
3016    if (!TLI.isTypeLegal(EltVT)) {
3017
3018      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3019
3020      // BUILD_VECTOR operands are allowed to be wider than the element type.
3021      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
3022      if (NewEltVT.bitsLT(EltVT)) {
3023
3024        // Convert shuffle node.
3025        // If original node was v4i64 and the new EltVT is i32,
3026        // cast operands to v8i32 and re-build the mask.
3027
3028        // Calculate new VT, the size of the new VT should be equal to original.
3029        EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3030                                      VT.getSizeInBits()/NewEltVT.getSizeInBits());
3031        assert(NewVT.bitsEq(VT));
3032
3033        // cast operands to new VT
3034        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3035        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3036
3037        // Convert the shuffle mask
3038        unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
3039
3040        // EltVT gets smaller
3041        assert(factor > 0);
3042
3043        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3044          if (Mask[i] < 0) {
3045            for (unsigned fi = 0; fi < factor; ++fi)
3046              NewMask.push_back(Mask[i]);
3047          }
3048          else {
3049            for (unsigned fi = 0; fi < factor; ++fi)
3050              NewMask.push_back(Mask[i]*factor+fi);
3051          }
3052        }
3053        Mask = NewMask;
3054        VT = NewVT;
3055      }
3056      EltVT = NewEltVT;
3057    }
3058    unsigned NumElems = VT.getVectorNumElements();
3059    SmallVector<SDValue, 16> Ops;
3060    for (unsigned i = 0; i != NumElems; ++i) {
3061      if (Mask[i] < 0) {
3062        Ops.push_back(DAG.getUNDEF(EltVT));
3063        continue;
3064      }
3065      unsigned Idx = Mask[i];
3066      if (Idx < NumElems)
3067        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3068                                  Op0,
3069                                  DAG.getIntPtrConstant(Idx)));
3070      else
3071        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3072                                  Op1,
3073                                  DAG.getIntPtrConstant(Idx - NumElems)));
3074    }
3075
3076    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
3077    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3078    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3079    Results.push_back(Tmp1);
3080    break;
3081  }
3082  case ISD::EXTRACT_ELEMENT: {
3083    EVT OpTy = Node->getOperand(0).getValueType();
3084    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3085      // 1 -> Hi
3086      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3087                         DAG.getConstant(OpTy.getSizeInBits()/2,
3088                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3089      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3090    } else {
3091      // 0 -> Lo
3092      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3093                         Node->getOperand(0));
3094    }
3095    Results.push_back(Tmp1);
3096    break;
3097  }
3098  case ISD::STACKSAVE:
3099    // Expand to CopyFromReg if the target set
3100    // StackPointerRegisterToSaveRestore.
3101    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3102      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3103                                           Node->getValueType(0)));
3104      Results.push_back(Results[0].getValue(1));
3105    } else {
3106      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3107      Results.push_back(Node->getOperand(0));
3108    }
3109    break;
3110  case ISD::STACKRESTORE:
3111    // Expand to CopyToReg if the target set
3112    // StackPointerRegisterToSaveRestore.
3113    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3114      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3115                                         Node->getOperand(1)));
3116    } else {
3117      Results.push_back(Node->getOperand(0));
3118    }
3119    break;
3120  case ISD::FCOPYSIGN:
3121    Results.push_back(ExpandFCOPYSIGN(Node));
3122    break;
3123  case ISD::FNEG:
3124    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3125    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3126    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3127                       Node->getOperand(0));
3128    Results.push_back(Tmp1);
3129    break;
3130  case ISD::FABS: {
3131    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3132    EVT VT = Node->getValueType(0);
3133    Tmp1 = Node->getOperand(0);
3134    Tmp2 = DAG.getConstantFP(0.0, VT);
3135    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3136                        Tmp1, Tmp2, ISD::SETUGT);
3137    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3138    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
3139    Results.push_back(Tmp1);
3140    break;
3141  }
3142  case ISD::FSQRT:
3143    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3144                                      RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3145                                      RTLIB::SQRT_PPCF128));
3146    break;
3147  case ISD::FSIN:
3148  case ISD::FCOS: {
3149    EVT VT = Node->getValueType(0);
3150    bool isSIN = Node->getOpcode() == ISD::FSIN;
3151    // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3152    // fcos which share the same operand and both are used.
3153    if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3154         canCombineSinCosLibcall(Node, TLI, TM))
3155        && useSinCos(Node)) {
3156      SDVTList VTs = DAG.getVTList(VT, VT);
3157      Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3158      if (!isSIN)
3159        Tmp1 = Tmp1.getValue(1);
3160      Results.push_back(Tmp1);
3161    } else if (isSIN) {
3162      Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3163                                        RTLIB::SIN_F80, RTLIB::SIN_F128,
3164                                        RTLIB::SIN_PPCF128));
3165    } else {
3166      Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3167                                        RTLIB::COS_F80, RTLIB::COS_F128,
3168                                        RTLIB::COS_PPCF128));
3169    }
3170    break;
3171  }
3172  case ISD::FSINCOS:
3173    // Expand into sincos libcall.
3174    ExpandSinCosLibCall(Node, Results);
3175    break;
3176  case ISD::FLOG:
3177    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3178                                      RTLIB::LOG_F80, RTLIB::LOG_F128,
3179                                      RTLIB::LOG_PPCF128));
3180    break;
3181  case ISD::FLOG2:
3182    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3183                                      RTLIB::LOG2_F80, RTLIB::LOG2_F128,
3184                                      RTLIB::LOG2_PPCF128));
3185    break;
3186  case ISD::FLOG10:
3187    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3188                                      RTLIB::LOG10_F80, RTLIB::LOG10_F128,
3189                                      RTLIB::LOG10_PPCF128));
3190    break;
3191  case ISD::FEXP:
3192    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3193                                      RTLIB::EXP_F80, RTLIB::EXP_F128,
3194                                      RTLIB::EXP_PPCF128));
3195    break;
3196  case ISD::FEXP2:
3197    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3198                                      RTLIB::EXP2_F80, RTLIB::EXP2_F128,
3199                                      RTLIB::EXP2_PPCF128));
3200    break;
3201  case ISD::FTRUNC:
3202    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3203                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3204                                      RTLIB::TRUNC_PPCF128));
3205    break;
3206  case ISD::FFLOOR:
3207    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3208                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3209                                      RTLIB::FLOOR_PPCF128));
3210    break;
3211  case ISD::FCEIL:
3212    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3213                                      RTLIB::CEIL_F80, RTLIB::CEIL_F128,
3214                                      RTLIB::CEIL_PPCF128));
3215    break;
3216  case ISD::FRINT:
3217    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3218                                      RTLIB::RINT_F80, RTLIB::RINT_F128,
3219                                      RTLIB::RINT_PPCF128));
3220    break;
3221  case ISD::FNEARBYINT:
3222    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3223                                      RTLIB::NEARBYINT_F64,
3224                                      RTLIB::NEARBYINT_F80,
3225                                      RTLIB::NEARBYINT_F128,
3226                                      RTLIB::NEARBYINT_PPCF128));
3227    break;
3228  case ISD::FPOWI:
3229    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3230                                      RTLIB::POWI_F80, RTLIB::POWI_F128,
3231                                      RTLIB::POWI_PPCF128));
3232    break;
3233  case ISD::FPOW:
3234    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3235                                      RTLIB::POW_F80, RTLIB::POW_F128,
3236                                      RTLIB::POW_PPCF128));
3237    break;
3238  case ISD::FDIV:
3239    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3240                                      RTLIB::DIV_F80, RTLIB::DIV_F128,
3241                                      RTLIB::DIV_PPCF128));
3242    break;
3243  case ISD::FREM:
3244    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3245                                      RTLIB::REM_F80, RTLIB::REM_F128,
3246                                      RTLIB::REM_PPCF128));
3247    break;
3248  case ISD::FMA:
3249    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3250                                      RTLIB::FMA_F80, RTLIB::FMA_F128,
3251                                      RTLIB::FMA_PPCF128));
3252    break;
3253  case ISD::FP16_TO_FP32:
3254    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3255    break;
3256  case ISD::FP32_TO_FP16:
3257    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3258    break;
3259  case ISD::ConstantFP: {
3260    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3261    // Check to see if this FP immediate is already legal.
3262    // If this is a legal constant, turn it into a TargetConstantFP node.
3263    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3264      Results.push_back(ExpandConstantFP(CFP, true));
3265    break;
3266  }
3267  case ISD::EHSELECTION: {
3268    unsigned Reg = TLI.getExceptionSelectorRegister();
3269    assert(Reg && "Can't expand to unknown register!");
3270    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3271                                         Node->getValueType(0)));
3272    Results.push_back(Results[0].getValue(1));
3273    break;
3274  }
3275  case ISD::EXCEPTIONADDR: {
3276    unsigned Reg = TLI.getExceptionPointerRegister();
3277    assert(Reg && "Can't expand to unknown register!");
3278    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3279                                         Node->getValueType(0)));
3280    Results.push_back(Results[0].getValue(1));
3281    break;
3282  }
3283  case ISD::FSUB: {
3284    EVT VT = Node->getValueType(0);
3285    assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3286           TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
3287           "Don't know how to expand this FP subtraction!");
3288    Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3289    Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3290    Results.push_back(Tmp1);
3291    break;
3292  }
3293  case ISD::SUB: {
3294    EVT VT = Node->getValueType(0);
3295    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3296           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3297           "Don't know how to expand this subtraction!");
3298    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3299               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3300    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
3301    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3302    break;
3303  }
3304  case ISD::UREM:
3305  case ISD::SREM: {
3306    EVT VT = Node->getValueType(0);
3307    bool isSigned = Node->getOpcode() == ISD::SREM;
3308    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3309    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3310    Tmp2 = Node->getOperand(0);
3311    Tmp3 = Node->getOperand(1);
3312    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3313        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3314         // If div is legal, it's better to do the normal expansion
3315         !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) &&
3316         useDivRem(Node, isSigned, false))) {
3317      SDVTList VTs = DAG.getVTList(VT, VT);
3318      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3319    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3320      // X % Y -> X-X/Y*Y
3321      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3322      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3323      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3324    } else if (isSigned)
3325      Tmp1 = ExpandIntLibCall(Node, true,
3326                              RTLIB::SREM_I8,
3327                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3328                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3329    else
3330      Tmp1 = ExpandIntLibCall(Node, false,
3331                              RTLIB::UREM_I8,
3332                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3333                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3334    Results.push_back(Tmp1);
3335    break;
3336  }
3337  case ISD::UDIV:
3338  case ISD::SDIV: {
3339    bool isSigned = Node->getOpcode() == ISD::SDIV;
3340    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3341    EVT VT = Node->getValueType(0);
3342    SDVTList VTs = DAG.getVTList(VT, VT);
3343    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3344        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3345         useDivRem(Node, isSigned, true)))
3346      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3347                         Node->getOperand(1));
3348    else if (isSigned)
3349      Tmp1 = ExpandIntLibCall(Node, true,
3350                              RTLIB::SDIV_I8,
3351                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3352                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3353    else
3354      Tmp1 = ExpandIntLibCall(Node, false,
3355                              RTLIB::UDIV_I8,
3356                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3357                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3358    Results.push_back(Tmp1);
3359    break;
3360  }
3361  case ISD::MULHU:
3362  case ISD::MULHS: {
3363    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3364                                                              ISD::SMUL_LOHI;
3365    EVT VT = Node->getValueType(0);
3366    SDVTList VTs = DAG.getVTList(VT, VT);
3367    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3368           "If this wasn't legal, it shouldn't have been created!");
3369    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3370                       Node->getOperand(1));
3371    Results.push_back(Tmp1.getValue(1));
3372    break;
3373  }
3374  case ISD::SDIVREM:
3375  case ISD::UDIVREM:
3376    // Expand into divrem libcall
3377    ExpandDivRemLibCall(Node, Results);
3378    break;
3379  case ISD::MUL: {
3380    EVT VT = Node->getValueType(0);
3381    SDVTList VTs = DAG.getVTList(VT, VT);
3382    // See if multiply or divide can be lowered using two-result operations.
3383    // We just need the low half of the multiply; try both the signed
3384    // and unsigned forms. If the target supports both SMUL_LOHI and
3385    // UMUL_LOHI, form a preference by checking which forms of plain
3386    // MULH it supports.
3387    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3388    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3389    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3390    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3391    unsigned OpToUse = 0;
3392    if (HasSMUL_LOHI && !HasMULHS) {
3393      OpToUse = ISD::SMUL_LOHI;
3394    } else if (HasUMUL_LOHI && !HasMULHU) {
3395      OpToUse = ISD::UMUL_LOHI;
3396    } else if (HasSMUL_LOHI) {
3397      OpToUse = ISD::SMUL_LOHI;
3398    } else if (HasUMUL_LOHI) {
3399      OpToUse = ISD::UMUL_LOHI;
3400    }
3401    if (OpToUse) {
3402      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3403                                    Node->getOperand(1)));
3404      break;
3405    }
3406    Tmp1 = ExpandIntLibCall(Node, false,
3407                            RTLIB::MUL_I8,
3408                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3409                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3410    Results.push_back(Tmp1);
3411    break;
3412  }
3413  case ISD::SADDO:
3414  case ISD::SSUBO: {
3415    SDValue LHS = Node->getOperand(0);
3416    SDValue RHS = Node->getOperand(1);
3417    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3418                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3419                              LHS, RHS);
3420    Results.push_back(Sum);
3421    EVT OType = Node->getValueType(1);
3422
3423    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3424
3425    //   LHSSign -> LHS >= 0
3426    //   RHSSign -> RHS >= 0
3427    //   SumSign -> Sum >= 0
3428    //
3429    //   Add:
3430    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3431    //   Sub:
3432    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3433    //
3434    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3435    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3436    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3437                                      Node->getOpcode() == ISD::SADDO ?
3438                                      ISD::SETEQ : ISD::SETNE);
3439
3440    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3441    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3442
3443    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3444    Results.push_back(Cmp);
3445    break;
3446  }
3447  case ISD::UADDO:
3448  case ISD::USUBO: {
3449    SDValue LHS = Node->getOperand(0);
3450    SDValue RHS = Node->getOperand(1);
3451    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3452                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3453                              LHS, RHS);
3454    Results.push_back(Sum);
3455    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3456                                   Node->getOpcode () == ISD::UADDO ?
3457                                   ISD::SETULT : ISD::SETUGT));
3458    break;
3459  }
3460  case ISD::UMULO:
3461  case ISD::SMULO: {
3462    EVT VT = Node->getValueType(0);
3463    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3464    SDValue LHS = Node->getOperand(0);
3465    SDValue RHS = Node->getOperand(1);
3466    SDValue BottomHalf;
3467    SDValue TopHalf;
3468    static const unsigned Ops[2][3] =
3469        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3470          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3471    bool isSigned = Node->getOpcode() == ISD::SMULO;
3472    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3473      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3474      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3475    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3476      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3477                               RHS);
3478      TopHalf = BottomHalf.getValue(1);
3479    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3480                                                 VT.getSizeInBits() * 2))) {
3481      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3482      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3483      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3484      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3485                               DAG.getIntPtrConstant(0));
3486      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3487                            DAG.getIntPtrConstant(1));
3488    } else {
3489      // We can fall back to a libcall with an illegal type for the MUL if we
3490      // have a libcall big enough.
3491      // Also, we can fall back to a division in some cases, but that's a big
3492      // performance hit in the general case.
3493      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3494      if (WideVT == MVT::i16)
3495        LC = RTLIB::MUL_I16;
3496      else if (WideVT == MVT::i32)
3497        LC = RTLIB::MUL_I32;
3498      else if (WideVT == MVT::i64)
3499        LC = RTLIB::MUL_I64;
3500      else if (WideVT == MVT::i128)
3501        LC = RTLIB::MUL_I128;
3502      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3503
3504      // The high part is obtained by SRA'ing all but one of the bits of low
3505      // part.
3506      unsigned LoSize = VT.getSizeInBits();
3507      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3508                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3509      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3510                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3511
3512      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3513      // pre-lowered to the correct types. This all depends upon WideVT not
3514      // being a legal type for the architecture and thus has to be split to
3515      // two arguments.
3516      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3517      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3518      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3519                               DAG.getIntPtrConstant(0));
3520      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3521                            DAG.getIntPtrConstant(1));
3522      // Ret is a node with an illegal type. Because such things are not
3523      // generally permitted during this phase of legalization, delete the
3524      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3525      DAG.DeleteNode(Ret.getNode());
3526    }
3527
3528    if (isSigned) {
3529      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3530                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3531      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3532      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3533                             ISD::SETNE);
3534    } else {
3535      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3536                             DAG.getConstant(0, VT), ISD::SETNE);
3537    }
3538    Results.push_back(BottomHalf);
3539    Results.push_back(TopHalf);
3540    break;
3541  }
3542  case ISD::BUILD_PAIR: {
3543    EVT PairTy = Node->getValueType(0);
3544    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3545    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3546    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3547                       DAG.getConstant(PairTy.getSizeInBits()/2,
3548                                       TLI.getShiftAmountTy(PairTy)));
3549    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3550    break;
3551  }
3552  case ISD::SELECT:
3553    Tmp1 = Node->getOperand(0);
3554    Tmp2 = Node->getOperand(1);
3555    Tmp3 = Node->getOperand(2);
3556    if (Tmp1.getOpcode() == ISD::SETCC) {
3557      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3558                             Tmp2, Tmp3,
3559                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3560    } else {
3561      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3562                             DAG.getConstant(0, Tmp1.getValueType()),
3563                             Tmp2, Tmp3, ISD::SETNE);
3564    }
3565    Results.push_back(Tmp1);
3566    break;
3567  case ISD::BR_JT: {
3568    SDValue Chain = Node->getOperand(0);
3569    SDValue Table = Node->getOperand(1);
3570    SDValue Index = Node->getOperand(2);
3571
3572    EVT PTy = TLI.getPointerTy();
3573
3574    const DataLayout &TD = *TLI.getDataLayout();
3575    unsigned EntrySize =
3576      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3577
3578    Index = DAG.getNode(ISD::MUL, dl, PTy,
3579                        Index, DAG.getConstant(EntrySize, PTy));
3580    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3581
3582    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3583    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3584                                MachinePointerInfo::getJumpTable(), MemVT,
3585                                false, false, 0);
3586    Addr = LD;
3587    if (TM.getRelocationModel() == Reloc::PIC_) {
3588      // For PIC, the sequence is:
3589      // BRIND(load(Jumptable + index) + RelocBase)
3590      // RelocBase can be JumpTable, GOT or some sort of global base.
3591      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3592                          TLI.getPICJumpTableRelocBase(Table, DAG));
3593    }
3594    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3595    Results.push_back(Tmp1);
3596    break;
3597  }
3598  case ISD::BRCOND:
3599    // Expand brcond's setcc into its constituent parts and create a BR_CC
3600    // Node.
3601    Tmp1 = Node->getOperand(0);
3602    Tmp2 = Node->getOperand(1);
3603    if (Tmp2.getOpcode() == ISD::SETCC) {
3604      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3605                         Tmp1, Tmp2.getOperand(2),
3606                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3607                         Node->getOperand(2));
3608    } else {
3609      // We test only the i1 bit.  Skip the AND if UNDEF.
3610      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3611        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3612                    DAG.getConstant(1, Tmp2.getValueType()));
3613      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3614                         DAG.getCondCode(ISD::SETNE), Tmp3,
3615                         DAG.getConstant(0, Tmp3.getValueType()),
3616                         Node->getOperand(2));
3617    }
3618    Results.push_back(Tmp1);
3619    break;
3620  case ISD::SETCC: {
3621    Tmp1 = Node->getOperand(0);
3622    Tmp2 = Node->getOperand(1);
3623    Tmp3 = Node->getOperand(2);
3624    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3625
3626    // If we expanded the SETCC into an AND/OR, return the new node
3627    if (Tmp2.getNode() == 0) {
3628      Results.push_back(Tmp1);
3629      break;
3630    }
3631
3632    // Otherwise, SETCC for the given comparison type must be completely
3633    // illegal; expand it into a SELECT_CC.
3634    EVT VT = Node->getValueType(0);
3635    int TrueValue;
3636    switch (TLI.getBooleanContents(VT.isVector())) {
3637    case TargetLowering::ZeroOrOneBooleanContent:
3638    case TargetLowering::UndefinedBooleanContent:
3639      TrueValue = 1;
3640      break;
3641    case TargetLowering::ZeroOrNegativeOneBooleanContent:
3642      TrueValue = -1;
3643      break;
3644    }
3645    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3646                       DAG.getConstant(TrueValue, VT), DAG.getConstant(0, VT),
3647                       Tmp3);
3648    Results.push_back(Tmp1);
3649    break;
3650  }
3651  case ISD::SELECT_CC: {
3652    Tmp1 = Node->getOperand(0);   // LHS
3653    Tmp2 = Node->getOperand(1);   // RHS
3654    Tmp3 = Node->getOperand(2);   // True
3655    Tmp4 = Node->getOperand(3);   // False
3656    SDValue CC = Node->getOperand(4);
3657
3658    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3659                          Tmp1, Tmp2, CC, dl);
3660
3661    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3662    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3663    CC = DAG.getCondCode(ISD::SETNE);
3664    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3665                       Tmp3, Tmp4, CC);
3666    Results.push_back(Tmp1);
3667    break;
3668  }
3669  case ISD::BR_CC: {
3670    Tmp1 = Node->getOperand(0);              // Chain
3671    Tmp2 = Node->getOperand(2);              // LHS
3672    Tmp3 = Node->getOperand(3);              // RHS
3673    Tmp4 = Node->getOperand(1);              // CC
3674
3675    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3676                          Tmp2, Tmp3, Tmp4, dl);
3677
3678    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3679    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3680    Tmp4 = DAG.getCondCode(ISD::SETNE);
3681    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3682                       Tmp3, Node->getOperand(4));
3683    Results.push_back(Tmp1);
3684    break;
3685  }
3686  case ISD::BUILD_VECTOR:
3687    Results.push_back(ExpandBUILD_VECTOR(Node));
3688    break;
3689  case ISD::SRA:
3690  case ISD::SRL:
3691  case ISD::SHL: {
3692    // Scalarize vector SRA/SRL/SHL.
3693    EVT VT = Node->getValueType(0);
3694    assert(VT.isVector() && "Unable to legalize non-vector shift");
3695    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3696    unsigned NumElem = VT.getVectorNumElements();
3697
3698    SmallVector<SDValue, 8> Scalars;
3699    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3700      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3701                               VT.getScalarType(),
3702                               Node->getOperand(0), DAG.getIntPtrConstant(Idx));
3703      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3704                               VT.getScalarType(),
3705                               Node->getOperand(1), DAG.getIntPtrConstant(Idx));
3706      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3707                                    VT.getScalarType(), Ex, Sh));
3708    }
3709    SDValue Result =
3710      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3711                  &Scalars[0], Scalars.size());
3712    ReplaceNode(SDValue(Node, 0), Result);
3713    break;
3714  }
3715  case ISD::GLOBAL_OFFSET_TABLE:
3716  case ISD::GlobalAddress:
3717  case ISD::GlobalTLSAddress:
3718  case ISD::ExternalSymbol:
3719  case ISD::ConstantPool:
3720  case ISD::JumpTable:
3721  case ISD::INTRINSIC_W_CHAIN:
3722  case ISD::INTRINSIC_WO_CHAIN:
3723  case ISD::INTRINSIC_VOID:
3724    // FIXME: Custom lowering for these operations shouldn't return null!
3725    break;
3726  }
3727
3728  // Replace the original node with the legalized result.
3729  if (!Results.empty())
3730    ReplaceNode(Node, Results.data());
3731}
3732
3733void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3734  SmallVector<SDValue, 8> Results;
3735  MVT OVT = Node->getSimpleValueType(0);
3736  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3737      Node->getOpcode() == ISD::SINT_TO_FP ||
3738      Node->getOpcode() == ISD::SETCC) {
3739    OVT = Node->getOperand(0).getSimpleValueType();
3740  }
3741  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3742  DebugLoc dl = Node->getDebugLoc();
3743  SDValue Tmp1, Tmp2, Tmp3;
3744  switch (Node->getOpcode()) {
3745  case ISD::CTTZ:
3746  case ISD::CTTZ_ZERO_UNDEF:
3747  case ISD::CTLZ:
3748  case ISD::CTLZ_ZERO_UNDEF:
3749  case ISD::CTPOP:
3750    // Zero extend the argument.
3751    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3752    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3753    // already the correct result.
3754    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3755    if (Node->getOpcode() == ISD::CTTZ) {
3756      // FIXME: This should set a bit in the zero extended value instead.
3757      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3758                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3759                          ISD::SETEQ);
3760      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3761                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3762    } else if (Node->getOpcode() == ISD::CTLZ ||
3763               Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
3764      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3765      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3766                          DAG.getConstant(NVT.getSizeInBits() -
3767                                          OVT.getSizeInBits(), NVT));
3768    }
3769    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3770    break;
3771  case ISD::BSWAP: {
3772    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3773    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3774    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3775    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3776                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3777    Results.push_back(Tmp1);
3778    break;
3779  }
3780  case ISD::FP_TO_UINT:
3781  case ISD::FP_TO_SINT:
3782    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3783                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3784    Results.push_back(Tmp1);
3785    break;
3786  case ISD::UINT_TO_FP:
3787  case ISD::SINT_TO_FP:
3788    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3789                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3790    Results.push_back(Tmp1);
3791    break;
3792  case ISD::VAARG: {
3793    SDValue Chain = Node->getOperand(0); // Get the chain.
3794    SDValue Ptr = Node->getOperand(1); // Get the pointer.
3795
3796    unsigned TruncOp;
3797    if (OVT.isVector()) {
3798      TruncOp = ISD::BITCAST;
3799    } else {
3800      assert(OVT.isInteger()
3801        && "VAARG promotion is supported only for vectors or integer types");
3802      TruncOp = ISD::TRUNCATE;
3803    }
3804
3805    // Perform the larger operation, then convert back
3806    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
3807             Node->getConstantOperandVal(3));
3808    Chain = Tmp1.getValue(1);
3809
3810    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
3811
3812    // Modified the chain result - switch anything that used the old chain to
3813    // use the new one.
3814    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
3815    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
3816    ReplacedNode(Node);
3817    break;
3818  }
3819  case ISD::AND:
3820  case ISD::OR:
3821  case ISD::XOR: {
3822    unsigned ExtOp, TruncOp;
3823    if (OVT.isVector()) {
3824      ExtOp   = ISD::BITCAST;
3825      TruncOp = ISD::BITCAST;
3826    } else {
3827      assert(OVT.isInteger() && "Cannot promote logic operation");
3828      ExtOp   = ISD::ANY_EXTEND;
3829      TruncOp = ISD::TRUNCATE;
3830    }
3831    // Promote each of the values to the new type.
3832    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3833    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3834    // Perform the larger operation, then convert back
3835    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3836    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3837    break;
3838  }
3839  case ISD::SELECT: {
3840    unsigned ExtOp, TruncOp;
3841    if (Node->getValueType(0).isVector()) {
3842      ExtOp   = ISD::BITCAST;
3843      TruncOp = ISD::BITCAST;
3844    } else if (Node->getValueType(0).isInteger()) {
3845      ExtOp   = ISD::ANY_EXTEND;
3846      TruncOp = ISD::TRUNCATE;
3847    } else {
3848      ExtOp   = ISD::FP_EXTEND;
3849      TruncOp = ISD::FP_ROUND;
3850    }
3851    Tmp1 = Node->getOperand(0);
3852    // Promote each of the values to the new type.
3853    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3854    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3855    // Perform the larger operation, then round down.
3856    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3857    if (TruncOp != ISD::FP_ROUND)
3858      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3859    else
3860      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3861                         DAG.getIntPtrConstant(0));
3862    Results.push_back(Tmp1);
3863    break;
3864  }
3865  case ISD::VECTOR_SHUFFLE: {
3866    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3867
3868    // Cast the two input vectors.
3869    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3870    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3871
3872    // Convert the shuffle mask to the right # elements.
3873    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3874    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3875    Results.push_back(Tmp1);
3876    break;
3877  }
3878  case ISD::SETCC: {
3879    unsigned ExtOp = ISD::FP_EXTEND;
3880    if (NVT.isInteger()) {
3881      ISD::CondCode CCCode =
3882        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3883      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3884    }
3885    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3886    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3887    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3888                                  Tmp1, Tmp2, Node->getOperand(2)));
3889    break;
3890  }
3891  case ISD::FDIV:
3892  case ISD::FREM:
3893  case ISD::FPOW: {
3894    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3895    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
3896    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3897    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3898                                  Tmp3, DAG.getIntPtrConstant(0)));
3899    break;
3900  }
3901  case ISD::FLOG2:
3902  case ISD::FEXP2:
3903  case ISD::FLOG:
3904  case ISD::FEXP: {
3905    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3906    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3907    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3908                                  Tmp2, DAG.getIntPtrConstant(0)));
3909    break;
3910  }
3911  }
3912
3913  // Replace the original node with the legalized result.
3914  if (!Results.empty())
3915    ReplaceNode(Node, Results.data());
3916}
3917
3918// SelectionDAG::Legalize - This is the entry point for the file.
3919//
3920void SelectionDAG::Legalize() {
3921  /// run - This is the main entry point to this class.
3922  ///
3923  SelectionDAGLegalize(*this).LegalizeDAG();
3924}
3925