LegalizeDAG.cpp revision 7abe37e4aee38cc79d91dd069a37d7e91d5bef53
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/Target/TargetSubtarget.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/DerivedTypes.h"
30#include "llvm/Function.h"
31#include "llvm/GlobalVariable.h"
32#include "llvm/LLVMContext.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class SelectionDAGLegalize {
56  const TargetMachine &TM;
57  const TargetLowering &TLI;
58  SelectionDAG &DAG;
59  CodeGenOpt::Level OptLevel;
60
61  // Libcall insertion helpers.
62
63  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64  /// legalized.  We use this to ensure that calls are properly serialized
65  /// against each other, including inserted libcalls.
66  SDValue LastCALLSEQ_END;
67
68  /// IsLegalizingCall - This member is used *only* for purposes of providing
69  /// helpful assertions that a libcall isn't created while another call is
70  /// being legalized (which could lead to non-serialized call sequences).
71  bool IsLegalizingCall;
72
73  enum LegalizeAction {
74    Legal,      // The target natively supports this operation.
75    Promote,    // This operation should be executed in a larger type.
76    Expand      // Try to expand this to other ops, otherwise use a libcall.
77  };
78
79  /// ValueTypeActions - This is a bitvector that contains two bits for each
80  /// value type, where the two bits correspond to the LegalizeAction enum.
81  /// This can be queried with "getTypeAction(VT)".
82  TargetLowering::ValueTypeActionImpl ValueTypeActions;
83
84  /// LegalizedNodes - For nodes that are of legal width, and that have more
85  /// than one use, this map indicates what regularized operand to use.  This
86  /// allows us to avoid legalizing the same thing more than once.
87  DenseMap<SDValue, SDValue> LegalizedNodes;
88
89  void AddLegalizedOperand(SDValue From, SDValue To) {
90    LegalizedNodes.insert(std::make_pair(From, To));
91    // If someone requests legalization of the new node, return itself.
92    if (From != To)
93      LegalizedNodes.insert(std::make_pair(To, To));
94  }
95
96public:
97  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
98
99  /// getTypeAction - Return how we should legalize values of this type, either
100  /// it is already legal or we need to expand it into multiple registers of
101  /// smaller integer type, or we need to promote it to a larger type.
102  LegalizeAction getTypeAction(EVT VT) const {
103    return
104        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
105  }
106
107  /// isTypeLegal - Return true if this type is legal on this target.
108  ///
109  bool isTypeLegal(EVT VT) const {
110    return getTypeAction(VT) == Legal;
111  }
112
113  void LegalizeDAG();
114
115private:
116  /// LegalizeOp - We know that the specified value has a legal type.
117  /// Recursively ensure that the operands have legal types, then return the
118  /// result.
119  SDValue LegalizeOp(SDValue O);
120
121  SDValue OptimizeFloatStore(StoreSDNode *ST);
122
123  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
124  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
125  /// is necessary to spill the vector being inserted into to memory, perform
126  /// the insert there, and then read the result back.
127  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
128                                         SDValue Idx, DebugLoc dl);
129  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
130                                  SDValue Idx, DebugLoc dl);
131
132  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
133  /// performs the same shuffe in terms of order or result bytes, but on a type
134  /// whose vector element type is narrower than the original shuffle type.
135  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
136  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
137                                     SDValue N1, SDValue N2,
138                                     SmallVectorImpl<int> &Mask) const;
139
140  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
141                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
142
143  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
144                             DebugLoc dl);
145
146  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
147  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
148                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
149                          RTLIB::Libcall Call_PPCF128);
150  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
151                           RTLIB::Libcall Call_I8,
152                           RTLIB::Libcall Call_I16,
153                           RTLIB::Libcall Call_I32,
154                           RTLIB::Libcall Call_I64,
155                           RTLIB::Libcall Call_I128);
156
157  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
158  SDValue ExpandBUILD_VECTOR(SDNode *Node);
159  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
160  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
161                                SmallVectorImpl<SDValue> &Results);
162  SDValue ExpandFCOPYSIGN(SDNode *Node);
163  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
164                               DebugLoc dl);
165  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
166                                DebugLoc dl);
167  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
168                                DebugLoc dl);
169
170  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
171  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
172
173  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
174  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
175
176  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
177  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
178};
179}
180
181/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
182/// performs the same shuffe in terms of order or result bytes, but on a type
183/// whose vector element type is narrower than the original shuffle type.
184/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
185SDValue
186SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
187                                                 SDValue N1, SDValue N2,
188                                             SmallVectorImpl<int> &Mask) const {
189  unsigned NumMaskElts = VT.getVectorNumElements();
190  unsigned NumDestElts = NVT.getVectorNumElements();
191  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
192
193  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
194
195  if (NumEltsGrowth == 1)
196    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
197
198  SmallVector<int, 8> NewMask;
199  for (unsigned i = 0; i != NumMaskElts; ++i) {
200    int Idx = Mask[i];
201    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
202      if (Idx < 0)
203        NewMask.push_back(-1);
204      else
205        NewMask.push_back(Idx * NumEltsGrowth + j);
206    }
207  }
208  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
209  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
210  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
211}
212
213SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
214                                           CodeGenOpt::Level ol)
215  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
216    DAG(dag), OptLevel(ol),
217    ValueTypeActions(TLI.getValueTypeActions()) {
218  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
219         "Too many value types for ValueTypeActions to hold!");
220}
221
222void SelectionDAGLegalize::LegalizeDAG() {
223  LastCALLSEQ_END = DAG.getEntryNode();
224  IsLegalizingCall = false;
225
226  // The legalize process is inherently a bottom-up recursive process (users
227  // legalize their uses before themselves).  Given infinite stack space, we
228  // could just start legalizing on the root and traverse the whole graph.  In
229  // practice however, this causes us to run out of stack space on large basic
230  // blocks.  To avoid this problem, compute an ordering of the nodes where each
231  // node is only legalized after all of its operands are legalized.
232  DAG.AssignTopologicalOrder();
233  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
234       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
235    LegalizeOp(SDValue(I, 0));
236
237  // Finally, it's possible the root changed.  Get the new root.
238  SDValue OldRoot = DAG.getRoot();
239  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
240  DAG.setRoot(LegalizedNodes[OldRoot]);
241
242  LegalizedNodes.clear();
243
244  // Remove dead nodes now.
245  DAG.RemoveDeadNodes();
246}
247
248
249/// FindCallEndFromCallStart - Given a chained node that is part of a call
250/// sequence, find the CALLSEQ_END node that terminates the call sequence.
251static SDNode *FindCallEndFromCallStart(SDNode *Node) {
252  if (Node->getOpcode() == ISD::CALLSEQ_END)
253    return Node;
254  if (Node->use_empty())
255    return 0;   // No CallSeqEnd
256
257  // The chain is usually at the end.
258  SDValue TheChain(Node, Node->getNumValues()-1);
259  if (TheChain.getValueType() != MVT::Other) {
260    // Sometimes it's at the beginning.
261    TheChain = SDValue(Node, 0);
262    if (TheChain.getValueType() != MVT::Other) {
263      // Otherwise, hunt for it.
264      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
265        if (Node->getValueType(i) == MVT::Other) {
266          TheChain = SDValue(Node, i);
267          break;
268        }
269
270      // Otherwise, we walked into a node without a chain.
271      if (TheChain.getValueType() != MVT::Other)
272        return 0;
273    }
274  }
275
276  for (SDNode::use_iterator UI = Node->use_begin(),
277       E = Node->use_end(); UI != E; ++UI) {
278
279    // Make sure to only follow users of our token chain.
280    SDNode *User = *UI;
281    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
282      if (User->getOperand(i) == TheChain)
283        if (SDNode *Result = FindCallEndFromCallStart(User))
284          return Result;
285  }
286  return 0;
287}
288
289/// FindCallStartFromCallEnd - Given a chained node that is part of a call
290/// sequence, find the CALLSEQ_START node that initiates the call sequence.
291static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
292  assert(Node && "Didn't find callseq_start for a call??");
293  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
294
295  assert(Node->getOperand(0).getValueType() == MVT::Other &&
296         "Node doesn't have a token chain argument!");
297  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
298}
299
300/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
301/// see if any uses can reach Dest.  If no dest operands can get to dest,
302/// legalize them, legalize ourself, and return false, otherwise, return true.
303///
304/// Keep track of the nodes we fine that actually do lead to Dest in
305/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
306///
307bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
308                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
309  if (N == Dest) return true;  // N certainly leads to Dest :)
310
311  // If we've already processed this node and it does lead to Dest, there is no
312  // need to reprocess it.
313  if (NodesLeadingTo.count(N)) return true;
314
315  // If the first result of this node has been already legalized, then it cannot
316  // reach N.
317  if (LegalizedNodes.count(SDValue(N, 0))) return false;
318
319  // Okay, this node has not already been legalized.  Check and legalize all
320  // operands.  If none lead to Dest, then we can legalize this node.
321  bool OperandsLeadToDest = false;
322  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
323    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
324      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
325
326  if (OperandsLeadToDest) {
327    NodesLeadingTo.insert(N);
328    return true;
329  }
330
331  // Okay, this node looks safe, legalize it and return false.
332  LegalizeOp(SDValue(N, 0));
333  return false;
334}
335
336/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
337/// a load from the constant pool.
338static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
339                                SelectionDAG &DAG, const TargetLowering &TLI) {
340  bool Extend = false;
341  DebugLoc dl = CFP->getDebugLoc();
342
343  // If a FP immediate is precise when represented as a float and if the
344  // target can do an extending load from float to double, we put it into
345  // the constant pool as a float, even if it's is statically typed as a
346  // double.  This shrinks FP constants and canonicalizes them for targets where
347  // an FP extending load is the same cost as a normal load (such as on the x87
348  // fp stack or PPC FP unit).
349  EVT VT = CFP->getValueType(0);
350  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
351  if (!UseCP) {
352    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
353    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
354                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
355  }
356
357  EVT OrigVT = VT;
358  EVT SVT = VT;
359  while (SVT != MVT::f32) {
360    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
361    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
362        // Only do this if the target has a native EXTLOAD instruction from
363        // smaller type.
364        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
365        TLI.ShouldShrinkFPConstant(OrigVT)) {
366      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
367      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
368      VT = SVT;
369      Extend = true;
370    }
371  }
372
373  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
374  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
375  if (Extend)
376    return DAG.getExtLoad(ISD::EXTLOAD, dl,
377                          OrigVT, DAG.getEntryNode(),
378                          CPIdx, PseudoSourceValue::getConstantPool(),
379                          0, VT, false, false, Alignment);
380  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
381                     PseudoSourceValue::getConstantPool(), 0, false, false,
382                     Alignment);
383}
384
385/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
386static
387SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
388                             const TargetLowering &TLI) {
389  SDValue Chain = ST->getChain();
390  SDValue Ptr = ST->getBasePtr();
391  SDValue Val = ST->getValue();
392  EVT VT = Val.getValueType();
393  int Alignment = ST->getAlignment();
394  int SVOffset = ST->getSrcValueOffset();
395  DebugLoc dl = ST->getDebugLoc();
396  if (ST->getMemoryVT().isFloatingPoint() ||
397      ST->getMemoryVT().isVector()) {
398    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
399    if (TLI.isTypeLegal(intVT)) {
400      // Expand to a bitconvert of the value to the integer type of the
401      // same size, then a (misaligned) int store.
402      // FIXME: Does not handle truncating floating point stores!
403      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
404      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
405                          SVOffset, ST->isVolatile(), ST->isNonTemporal(),
406                          Alignment);
407    } else {
408      // Do a (aligned) store to a stack slot, then copy from the stack slot
409      // to the final destination using (unaligned) integer loads and stores.
410      EVT StoredVT = ST->getMemoryVT();
411      EVT RegVT =
412        TLI.getRegisterType(*DAG.getContext(),
413                            EVT::getIntegerVT(*DAG.getContext(),
414                                              StoredVT.getSizeInBits()));
415      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
416      unsigned RegBytes = RegVT.getSizeInBits() / 8;
417      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
418
419      // Make sure the stack slot is also aligned for the register type.
420      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
421
422      // Perform the original store, only redirected to the stack slot.
423      SDValue Store = DAG.getTruncStore(Chain, dl,
424                                        Val, StackPtr, NULL, 0, StoredVT,
425                                        false, false, 0);
426      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
427      SmallVector<SDValue, 8> Stores;
428      unsigned Offset = 0;
429
430      // Do all but one copies using the full register width.
431      for (unsigned i = 1; i < NumRegs; i++) {
432        // Load one integer register's worth from the stack slot.
433        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0,
434                                   false, false, 0);
435        // Store it to the final location.  Remember the store.
436        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
437                                      ST->getSrcValue(), SVOffset + Offset,
438                                      ST->isVolatile(), ST->isNonTemporal(),
439                                      MinAlign(ST->getAlignment(), Offset)));
440        // Increment the pointers.
441        Offset += RegBytes;
442        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
443                               Increment);
444        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
445      }
446
447      // The last store may be partial.  Do a truncating store.  On big-endian
448      // machines this requires an extending load from the stack slot to ensure
449      // that the bits are in the right place.
450      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
451                                    8 * (StoredBytes - Offset));
452
453      // Load from the stack slot.
454      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
455                                    NULL, 0, MemVT, false, false, 0);
456
457      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
458                                         ST->getSrcValue(), SVOffset + Offset,
459                                         MemVT, ST->isVolatile(),
460                                         ST->isNonTemporal(),
461                                         MinAlign(ST->getAlignment(), Offset)));
462      // The order of the stores doesn't matter - say it with a TokenFactor.
463      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
464                         Stores.size());
465    }
466  }
467  assert(ST->getMemoryVT().isInteger() &&
468         !ST->getMemoryVT().isVector() &&
469         "Unaligned store of unknown type.");
470  // Get the half-size VT
471  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
472  int NumBits = NewStoredVT.getSizeInBits();
473  int IncrementSize = NumBits / 8;
474
475  // Divide the stored value in two parts.
476  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
477  SDValue Lo = Val;
478  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
479
480  // Store the two parts
481  SDValue Store1, Store2;
482  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
483                             ST->getSrcValue(), SVOffset, NewStoredVT,
484                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
485  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
486                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
487  Alignment = MinAlign(Alignment, IncrementSize);
488  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
489                             ST->getSrcValue(), SVOffset + IncrementSize,
490                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
491                             Alignment);
492
493  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
494}
495
496/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
497static
498SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
499                            const TargetLowering &TLI) {
500  int SVOffset = LD->getSrcValueOffset();
501  SDValue Chain = LD->getChain();
502  SDValue Ptr = LD->getBasePtr();
503  EVT VT = LD->getValueType(0);
504  EVT LoadedVT = LD->getMemoryVT();
505  DebugLoc dl = LD->getDebugLoc();
506  if (VT.isFloatingPoint() || VT.isVector()) {
507    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
508    if (TLI.isTypeLegal(intVT)) {
509      // Expand to a (misaligned) integer load of the same size,
510      // then bitconvert to floating point or vector.
511      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
512                                    SVOffset, LD->isVolatile(),
513                                    LD->isNonTemporal(), LD->getAlignment());
514      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
515      if (VT.isFloatingPoint() && LoadedVT != VT)
516        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
517
518      SDValue Ops[] = { Result, Chain };
519      return DAG.getMergeValues(Ops, 2, dl);
520    } else {
521      // Copy the value to a (aligned) stack slot using (unaligned) integer
522      // loads and stores, then do a (aligned) load from the stack slot.
523      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
524      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
525      unsigned RegBytes = RegVT.getSizeInBits() / 8;
526      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
527
528      // Make sure the stack slot is also aligned for the register type.
529      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
530
531      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
532      SmallVector<SDValue, 8> Stores;
533      SDValue StackPtr = StackBase;
534      unsigned Offset = 0;
535
536      // Do all but one copies using the full register width.
537      for (unsigned i = 1; i < NumRegs; i++) {
538        // Load one integer register's worth from the original location.
539        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
540                                   SVOffset + Offset, LD->isVolatile(),
541                                   LD->isNonTemporal(),
542                                   MinAlign(LD->getAlignment(), Offset));
543        // Follow the load with a store to the stack slot.  Remember the store.
544        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
545                                      NULL, 0, false, false, 0));
546        // Increment the pointers.
547        Offset += RegBytes;
548        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
549        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
550                               Increment);
551      }
552
553      // The last copy may be partial.  Do an extending load.
554      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
555                                    8 * (LoadedBytes - Offset));
556      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
557                                    LD->getSrcValue(), SVOffset + Offset,
558                                    MemVT, LD->isVolatile(),
559                                    LD->isNonTemporal(),
560                                    MinAlign(LD->getAlignment(), Offset));
561      // Follow the load with a store to the stack slot.  Remember the store.
562      // On big-endian machines this requires a truncating store to ensure
563      // that the bits end up in the right place.
564      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
565                                         NULL, 0, MemVT, false, false, 0));
566
567      // The order of the stores doesn't matter - say it with a TokenFactor.
568      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
569                               Stores.size());
570
571      // Finally, perform the original load only redirected to the stack slot.
572      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
573                            NULL, 0, LoadedVT, false, false, 0);
574
575      // Callers expect a MERGE_VALUES node.
576      SDValue Ops[] = { Load, TF };
577      return DAG.getMergeValues(Ops, 2, dl);
578    }
579  }
580  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
581         "Unaligned load of unsupported type.");
582
583  // Compute the new VT that is half the size of the old one.  This is an
584  // integer MVT.
585  unsigned NumBits = LoadedVT.getSizeInBits();
586  EVT NewLoadedVT;
587  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
588  NumBits >>= 1;
589
590  unsigned Alignment = LD->getAlignment();
591  unsigned IncrementSize = NumBits / 8;
592  ISD::LoadExtType HiExtType = LD->getExtensionType();
593
594  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
595  if (HiExtType == ISD::NON_EXTLOAD)
596    HiExtType = ISD::ZEXTLOAD;
597
598  // Load the value in two parts
599  SDValue Lo, Hi;
600  if (TLI.isLittleEndian()) {
601    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
602                        SVOffset, NewLoadedVT, LD->isVolatile(),
603                        LD->isNonTemporal(), Alignment);
604    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
605                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
606    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
607                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
608                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
609  } else {
610    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
611                        SVOffset, NewLoadedVT, LD->isVolatile(),
612                        LD->isNonTemporal(), Alignment);
613    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
614                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
615    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
616                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
617                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
618  }
619
620  // aggregate the two parts
621  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
622  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
623  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
624
625  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
626                             Hi.getValue(1));
627
628  SDValue Ops[] = { Result, TF };
629  return DAG.getMergeValues(Ops, 2, dl);
630}
631
632/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
633/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
634/// is necessary to spill the vector being inserted into to memory, perform
635/// the insert there, and then read the result back.
636SDValue SelectionDAGLegalize::
637PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
638                               DebugLoc dl) {
639  SDValue Tmp1 = Vec;
640  SDValue Tmp2 = Val;
641  SDValue Tmp3 = Idx;
642
643  // If the target doesn't support this, we have to spill the input vector
644  // to a temporary stack slot, update the element, then reload it.  This is
645  // badness.  We could also load the value into a vector register (either
646  // with a "move to register" or "extload into register" instruction, then
647  // permute it into place, if the idx is a constant and if the idx is
648  // supported by the target.
649  EVT VT    = Tmp1.getValueType();
650  EVT EltVT = VT.getVectorElementType();
651  EVT IdxVT = Tmp3.getValueType();
652  EVT PtrVT = TLI.getPointerTy();
653  SDValue StackPtr = DAG.CreateStackTemporary(VT);
654
655  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
656
657  // Store the vector.
658  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
659                            PseudoSourceValue::getFixedStack(SPFI), 0,
660                            false, false, 0);
661
662  // Truncate or zero extend offset to target pointer type.
663  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
664  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
665  // Add the offset to the index.
666  unsigned EltSize = EltVT.getSizeInBits()/8;
667  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
668  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
669  // Store the scalar value.
670  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
671                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT,
672                         false, false, 0);
673  // Load the updated vector.
674  return DAG.getLoad(VT, dl, Ch, StackPtr,
675                     PseudoSourceValue::getFixedStack(SPFI), 0,
676                     false, false, 0);
677}
678
679
680SDValue SelectionDAGLegalize::
681ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
682  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
683    // SCALAR_TO_VECTOR requires that the type of the value being inserted
684    // match the element type of the vector being created, except for
685    // integers in which case the inserted value can be over width.
686    EVT EltVT = Vec.getValueType().getVectorElementType();
687    if (Val.getValueType() == EltVT ||
688        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
689      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
690                                  Vec.getValueType(), Val);
691
692      unsigned NumElts = Vec.getValueType().getVectorNumElements();
693      // We generate a shuffle of InVec and ScVec, so the shuffle mask
694      // should be 0,1,2,3,4,5... with the appropriate element replaced with
695      // elt 0 of the RHS.
696      SmallVector<int, 8> ShufOps;
697      for (unsigned i = 0; i != NumElts; ++i)
698        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
699
700      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
701                                  &ShufOps[0]);
702    }
703  }
704  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
705}
706
707SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
708  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
709  // FIXME: We shouldn't do this for TargetConstantFP's.
710  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
711  // to phase ordering between legalized code and the dag combiner.  This
712  // probably means that we need to integrate dag combiner and legalizer
713  // together.
714  // We generally can't do this one for long doubles.
715  SDValue Tmp1 = ST->getChain();
716  SDValue Tmp2 = ST->getBasePtr();
717  SDValue Tmp3;
718  int SVOffset = ST->getSrcValueOffset();
719  unsigned Alignment = ST->getAlignment();
720  bool isVolatile = ST->isVolatile();
721  bool isNonTemporal = ST->isNonTemporal();
722  DebugLoc dl = ST->getDebugLoc();
723  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
724    if (CFP->getValueType(0) == MVT::f32 &&
725        getTypeAction(MVT::i32) == Legal) {
726      Tmp3 = DAG.getConstant(CFP->getValueAPF().
727                                      bitcastToAPInt().zextOrTrunc(32),
728                              MVT::i32);
729      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
730                          SVOffset, isVolatile, isNonTemporal, Alignment);
731    } else if (CFP->getValueType(0) == MVT::f64) {
732      // If this target supports 64-bit registers, do a single 64-bit store.
733      if (getTypeAction(MVT::i64) == Legal) {
734        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
735                                  zextOrTrunc(64), MVT::i64);
736        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
737                            SVOffset, isVolatile, isNonTemporal, Alignment);
738      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
739        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
740        // stores.  If the target supports neither 32- nor 64-bits, this
741        // xform is certainly not worth it.
742        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
743        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
744        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
745        if (TLI.isBigEndian()) std::swap(Lo, Hi);
746
747        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
748                          SVOffset, isVolatile, isNonTemporal, Alignment);
749        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
750                            DAG.getIntPtrConstant(4));
751        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
752                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
753
754        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
755      }
756    }
757  }
758  return SDValue();
759}
760
761/// LegalizeOp - We know that the specified value has a legal type, and
762/// that its operands are legal.  Now ensure that the operation itself
763/// is legal, recursively ensuring that the operands' operations remain
764/// legal.
765SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
766  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
767    return Op;
768
769  SDNode *Node = Op.getNode();
770  DebugLoc dl = Node->getDebugLoc();
771
772  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
773    assert(getTypeAction(Node->getValueType(i)) == Legal &&
774           "Unexpected illegal type!");
775
776  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
777    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
778            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
779           "Unexpected illegal type!");
780
781  // Note that LegalizeOp may be reentered even from single-use nodes, which
782  // means that we always must cache transformed nodes.
783  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
784  if (I != LegalizedNodes.end()) return I->second;
785
786  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
787  SDValue Result = Op;
788  bool isCustom = false;
789
790  // Figure out the correct action; the way to query this varies by opcode
791  TargetLowering::LegalizeAction Action;
792  bool SimpleFinishLegalizing = true;
793  switch (Node->getOpcode()) {
794  case ISD::INTRINSIC_W_CHAIN:
795  case ISD::INTRINSIC_WO_CHAIN:
796  case ISD::INTRINSIC_VOID:
797  case ISD::VAARG:
798  case ISD::STACKSAVE:
799    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
800    break;
801  case ISD::SINT_TO_FP:
802  case ISD::UINT_TO_FP:
803  case ISD::EXTRACT_VECTOR_ELT:
804    Action = TLI.getOperationAction(Node->getOpcode(),
805                                    Node->getOperand(0).getValueType());
806    break;
807  case ISD::FP_ROUND_INREG:
808  case ISD::SIGN_EXTEND_INREG: {
809    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
810    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
811    break;
812  }
813  case ISD::SELECT_CC:
814  case ISD::SETCC:
815  case ISD::BR_CC: {
816    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
817                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
818    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
819    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
820    ISD::CondCode CCCode =
821        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
822    Action = TLI.getCondCodeAction(CCCode, OpVT);
823    if (Action == TargetLowering::Legal) {
824      if (Node->getOpcode() == ISD::SELECT_CC)
825        Action = TLI.getOperationAction(Node->getOpcode(),
826                                        Node->getValueType(0));
827      else
828        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
829    }
830    break;
831  }
832  case ISD::LOAD:
833  case ISD::STORE:
834    // FIXME: Model these properly.  LOAD and STORE are complicated, and
835    // STORE expects the unlegalized operand in some cases.
836    SimpleFinishLegalizing = false;
837    break;
838  case ISD::CALLSEQ_START:
839  case ISD::CALLSEQ_END:
840    // FIXME: This shouldn't be necessary.  These nodes have special properties
841    // dealing with the recursive nature of legalization.  Removing this
842    // special case should be done as part of making LegalizeDAG non-recursive.
843    SimpleFinishLegalizing = false;
844    break;
845  case ISD::EXTRACT_ELEMENT:
846  case ISD::FLT_ROUNDS_:
847  case ISD::SADDO:
848  case ISD::SSUBO:
849  case ISD::UADDO:
850  case ISD::USUBO:
851  case ISD::SMULO:
852  case ISD::UMULO:
853  case ISD::FPOWI:
854  case ISD::MERGE_VALUES:
855  case ISD::EH_RETURN:
856  case ISD::FRAME_TO_ARGS_OFFSET:
857    // These operations lie about being legal: when they claim to be legal,
858    // they should actually be expanded.
859    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
860    if (Action == TargetLowering::Legal)
861      Action = TargetLowering::Expand;
862    break;
863  case ISD::TRAMPOLINE:
864  case ISD::FRAMEADDR:
865  case ISD::RETURNADDR:
866    // These operations lie about being legal: when they claim to be legal,
867    // they should actually be custom-lowered.
868    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
869    if (Action == TargetLowering::Legal)
870      Action = TargetLowering::Custom;
871    break;
872  case ISD::BUILD_VECTOR:
873    // A weird case: legalization for BUILD_VECTOR never legalizes the
874    // operands!
875    // FIXME: This really sucks... changing it isn't semantically incorrect,
876    // but it massively pessimizes the code for floating-point BUILD_VECTORs
877    // because ConstantFP operands get legalized into constant pool loads
878    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
879    // though, because BUILD_VECTORS usually get lowered into other nodes
880    // which get legalized properly.
881    SimpleFinishLegalizing = false;
882    break;
883  default:
884    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
885      Action = TargetLowering::Legal;
886    } else {
887      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
888    }
889    break;
890  }
891
892  if (SimpleFinishLegalizing) {
893    SmallVector<SDValue, 8> Ops, ResultVals;
894    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
895      Ops.push_back(LegalizeOp(Node->getOperand(i)));
896    switch (Node->getOpcode()) {
897    default: break;
898    case ISD::BR:
899    case ISD::BRIND:
900    case ISD::BR_JT:
901    case ISD::BR_CC:
902    case ISD::BRCOND:
903      // Branches tweak the chain to include LastCALLSEQ_END
904      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
905                            LastCALLSEQ_END);
906      Ops[0] = LegalizeOp(Ops[0]);
907      LastCALLSEQ_END = DAG.getEntryNode();
908      break;
909    case ISD::SHL:
910    case ISD::SRL:
911    case ISD::SRA:
912    case ISD::ROTL:
913    case ISD::ROTR:
914      // Legalizing shifts/rotates requires adjusting the shift amount
915      // to the appropriate width.
916      if (!Ops[1].getValueType().isVector())
917        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
918      break;
919    case ISD::SRL_PARTS:
920    case ISD::SRA_PARTS:
921    case ISD::SHL_PARTS:
922      // Legalizing shifts/rotates requires adjusting the shift amount
923      // to the appropriate width.
924      if (!Ops[2].getValueType().isVector())
925        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
926      break;
927    }
928
929    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
930                                    Ops.size());
931    switch (Action) {
932    case TargetLowering::Legal:
933      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
934        ResultVals.push_back(Result.getValue(i));
935      break;
936    case TargetLowering::Custom:
937      // FIXME: The handling for custom lowering with multiple results is
938      // a complete mess.
939      Tmp1 = TLI.LowerOperation(Result, DAG);
940      if (Tmp1.getNode()) {
941        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
942          if (e == 1)
943            ResultVals.push_back(Tmp1);
944          else
945            ResultVals.push_back(Tmp1.getValue(i));
946        }
947        break;
948      }
949
950      // FALL THROUGH
951    case TargetLowering::Expand:
952      ExpandNode(Result.getNode(), ResultVals);
953      break;
954    case TargetLowering::Promote:
955      PromoteNode(Result.getNode(), ResultVals);
956      break;
957    }
958    if (!ResultVals.empty()) {
959      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
960        if (ResultVals[i] != SDValue(Node, i))
961          ResultVals[i] = LegalizeOp(ResultVals[i]);
962        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
963      }
964      return ResultVals[Op.getResNo()];
965    }
966  }
967
968  switch (Node->getOpcode()) {
969  default:
970#ifndef NDEBUG
971    dbgs() << "NODE: ";
972    Node->dump( &DAG);
973    dbgs() << "\n";
974#endif
975    assert(0 && "Do not know how to legalize this operator!");
976
977  case ISD::BUILD_VECTOR:
978    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
979    default: assert(0 && "This action is not supported yet!");
980    case TargetLowering::Custom:
981      Tmp3 = TLI.LowerOperation(Result, DAG);
982      if (Tmp3.getNode()) {
983        Result = Tmp3;
984        break;
985      }
986      // FALLTHROUGH
987    case TargetLowering::Expand:
988      Result = ExpandBUILD_VECTOR(Result.getNode());
989      break;
990    }
991    break;
992  case ISD::CALLSEQ_START: {
993    SDNode *CallEnd = FindCallEndFromCallStart(Node);
994
995    // Recursively Legalize all of the inputs of the call end that do not lead
996    // to this call start.  This ensures that any libcalls that need be inserted
997    // are inserted *before* the CALLSEQ_START.
998    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
999    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1000      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1001                                   NodesLeadingTo);
1002    }
1003
1004    // Now that we legalized all of the inputs (which may have inserted
1005    // libcalls) create the new CALLSEQ_START node.
1006    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1007
1008    // Merge in the last call, to ensure that this call start after the last
1009    // call ended.
1010    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1011      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1012                         Tmp1, LastCALLSEQ_END);
1013      Tmp1 = LegalizeOp(Tmp1);
1014    }
1015
1016    // Do not try to legalize the target-specific arguments (#1+).
1017    if (Tmp1 != Node->getOperand(0)) {
1018      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1019      Ops[0] = Tmp1;
1020      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1021    }
1022
1023    // Remember that the CALLSEQ_START is legalized.
1024    AddLegalizedOperand(Op.getValue(0), Result);
1025    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1026      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1027
1028    // Now that the callseq_start and all of the non-call nodes above this call
1029    // sequence have been legalized, legalize the call itself.  During this
1030    // process, no libcalls can/will be inserted, guaranteeing that no calls
1031    // can overlap.
1032    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1033    // Note that we are selecting this call!
1034    LastCALLSEQ_END = SDValue(CallEnd, 0);
1035    IsLegalizingCall = true;
1036
1037    // Legalize the call, starting from the CALLSEQ_END.
1038    LegalizeOp(LastCALLSEQ_END);
1039    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1040    return Result;
1041  }
1042  case ISD::CALLSEQ_END:
1043    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1044    // will cause this node to be legalized as well as handling libcalls right.
1045    if (LastCALLSEQ_END.getNode() != Node) {
1046      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1047      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1048      assert(I != LegalizedNodes.end() &&
1049             "Legalizing the call start should have legalized this node!");
1050      return I->second;
1051    }
1052
1053    // Otherwise, the call start has been legalized and everything is going
1054    // according to plan.  Just legalize ourselves normally here.
1055    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1056    // Do not try to legalize the target-specific arguments (#1+), except for
1057    // an optional flag input.
1058    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1059      if (Tmp1 != Node->getOperand(0)) {
1060        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1061        Ops[0] = Tmp1;
1062        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1063      }
1064    } else {
1065      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1066      if (Tmp1 != Node->getOperand(0) ||
1067          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1068        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1069        Ops[0] = Tmp1;
1070        Ops.back() = Tmp2;
1071        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1072      }
1073    }
1074    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1075    // This finishes up call legalization.
1076    IsLegalizingCall = false;
1077
1078    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1079    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1080    if (Node->getNumValues() == 2)
1081      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1082    return Result.getValue(Op.getResNo());
1083  case ISD::LOAD: {
1084    LoadSDNode *LD = cast<LoadSDNode>(Node);
1085    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1086    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1087
1088    ISD::LoadExtType ExtType = LD->getExtensionType();
1089    if (ExtType == ISD::NON_EXTLOAD) {
1090      EVT VT = Node->getValueType(0);
1091      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1092      Tmp3 = Result.getValue(0);
1093      Tmp4 = Result.getValue(1);
1094
1095      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1096      default: assert(0 && "This action is not supported yet!");
1097      case TargetLowering::Legal:
1098        // If this is an unaligned load and the target doesn't support it,
1099        // expand it.
1100        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1101          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1102          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1103          if (LD->getAlignment() < ABIAlignment){
1104            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1105                                         DAG, TLI);
1106            Tmp3 = Result.getOperand(0);
1107            Tmp4 = Result.getOperand(1);
1108            Tmp3 = LegalizeOp(Tmp3);
1109            Tmp4 = LegalizeOp(Tmp4);
1110          }
1111        }
1112        break;
1113      case TargetLowering::Custom:
1114        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1115        if (Tmp1.getNode()) {
1116          Tmp3 = LegalizeOp(Tmp1);
1117          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1118        }
1119        break;
1120      case TargetLowering::Promote: {
1121        // Only promote a load of vector type to another.
1122        assert(VT.isVector() && "Cannot promote this load!");
1123        // Change base type to a different vector type.
1124        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1125
1126        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1127                           LD->getSrcValueOffset(),
1128                           LD->isVolatile(), LD->isNonTemporal(),
1129                           LD->getAlignment());
1130        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1131        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1132        break;
1133      }
1134      }
1135      // Since loads produce two values, make sure to remember that we
1136      // legalized both of them.
1137      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1138      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1139      return Op.getResNo() ? Tmp4 : Tmp3;
1140    } else {
1141      EVT SrcVT = LD->getMemoryVT();
1142      unsigned SrcWidth = SrcVT.getSizeInBits();
1143      int SVOffset = LD->getSrcValueOffset();
1144      unsigned Alignment = LD->getAlignment();
1145      bool isVolatile = LD->isVolatile();
1146      bool isNonTemporal = LD->isNonTemporal();
1147
1148      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1149          // Some targets pretend to have an i1 loading operation, and actually
1150          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1151          // bits are guaranteed to be zero; it helps the optimizers understand
1152          // that these bits are zero.  It is also useful for EXTLOAD, since it
1153          // tells the optimizers that those bits are undefined.  It would be
1154          // nice to have an effective generic way of getting these benefits...
1155          // Until such a way is found, don't insist on promoting i1 here.
1156          (SrcVT != MVT::i1 ||
1157           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1158        // Promote to a byte-sized load if not loading an integral number of
1159        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1160        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1161        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1162        SDValue Ch;
1163
1164        // The extra bits are guaranteed to be zero, since we stored them that
1165        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1166
1167        ISD::LoadExtType NewExtType =
1168          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1169
1170        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1171                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1172                                NVT, isVolatile, isNonTemporal, Alignment);
1173
1174        Ch = Result.getValue(1); // The chain.
1175
1176        if (ExtType == ISD::SEXTLOAD)
1177          // Having the top bits zero doesn't help when sign extending.
1178          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1179                               Result.getValueType(),
1180                               Result, DAG.getValueType(SrcVT));
1181        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1182          // All the top bits are guaranteed to be zero - inform the optimizers.
1183          Result = DAG.getNode(ISD::AssertZext, dl,
1184                               Result.getValueType(), Result,
1185                               DAG.getValueType(SrcVT));
1186
1187        Tmp1 = LegalizeOp(Result);
1188        Tmp2 = LegalizeOp(Ch);
1189      } else if (SrcWidth & (SrcWidth - 1)) {
1190        // If not loading a power-of-2 number of bits, expand as two loads.
1191        assert(!SrcVT.isVector() && "Unsupported extload!");
1192        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1193        assert(RoundWidth < SrcWidth);
1194        unsigned ExtraWidth = SrcWidth - RoundWidth;
1195        assert(ExtraWidth < RoundWidth);
1196        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1197               "Load size not an integral number of bytes!");
1198        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1199        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1200        SDValue Lo, Hi, Ch;
1201        unsigned IncrementSize;
1202
1203        if (TLI.isLittleEndian()) {
1204          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1205          // Load the bottom RoundWidth bits.
1206          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1207                              Node->getValueType(0), Tmp1, Tmp2,
1208                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1209                              isNonTemporal, Alignment);
1210
1211          // Load the remaining ExtraWidth bits.
1212          IncrementSize = RoundWidth / 8;
1213          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1214                             DAG.getIntPtrConstant(IncrementSize));
1215          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1216                              LD->getSrcValue(), SVOffset + IncrementSize,
1217                              ExtraVT, isVolatile, isNonTemporal,
1218                              MinAlign(Alignment, IncrementSize));
1219
1220          // Build a factor node to remember that this load is independent of the
1221          // other one.
1222          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1223                           Hi.getValue(1));
1224
1225          // Move the top bits to the right place.
1226          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1227                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1228
1229          // Join the hi and lo parts.
1230          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1231        } else {
1232          // Big endian - avoid unaligned loads.
1233          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1234          // Load the top RoundWidth bits.
1235          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1236                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1237                              isNonTemporal, Alignment);
1238
1239          // Load the remaining ExtraWidth bits.
1240          IncrementSize = RoundWidth / 8;
1241          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1242                             DAG.getIntPtrConstant(IncrementSize));
1243          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1244                              Node->getValueType(0), Tmp1, Tmp2,
1245                              LD->getSrcValue(), SVOffset + IncrementSize,
1246                              ExtraVT, isVolatile, isNonTemporal,
1247                              MinAlign(Alignment, IncrementSize));
1248
1249          // Build a factor node to remember that this load is independent of the
1250          // other one.
1251          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1252                           Hi.getValue(1));
1253
1254          // Move the top bits to the right place.
1255          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1256                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1257
1258          // Join the hi and lo parts.
1259          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1260        }
1261
1262        Tmp1 = LegalizeOp(Result);
1263        Tmp2 = LegalizeOp(Ch);
1264      } else {
1265        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1266        default: assert(0 && "This action is not supported yet!");
1267        case TargetLowering::Custom:
1268          isCustom = true;
1269          // FALLTHROUGH
1270        case TargetLowering::Legal:
1271          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1272          Tmp1 = Result.getValue(0);
1273          Tmp2 = Result.getValue(1);
1274
1275          if (isCustom) {
1276            Tmp3 = TLI.LowerOperation(Result, DAG);
1277            if (Tmp3.getNode()) {
1278              Tmp1 = LegalizeOp(Tmp3);
1279              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1280            }
1281          } else {
1282            // If this is an unaligned load and the target doesn't support it,
1283            // expand it.
1284            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1285              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1286              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1287              if (LD->getAlignment() < ABIAlignment){
1288                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1289                                             DAG, TLI);
1290                Tmp1 = Result.getOperand(0);
1291                Tmp2 = Result.getOperand(1);
1292                Tmp1 = LegalizeOp(Tmp1);
1293                Tmp2 = LegalizeOp(Tmp2);
1294              }
1295            }
1296          }
1297          break;
1298        case TargetLowering::Expand:
1299          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1300          // f128 = EXTLOAD {f32,f64} too
1301          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1302                                     Node->getValueType(0) == MVT::f128)) ||
1303              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1304            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1305                                       LD->getSrcValueOffset(),
1306                                       LD->isVolatile(), LD->isNonTemporal(),
1307                                       LD->getAlignment());
1308            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1309                                 Node->getValueType(0), Load);
1310            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1311            Tmp2 = LegalizeOp(Load.getValue(1));
1312            break;
1313          }
1314          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1315          // Turn the unsupported load into an EXTLOAD followed by an explicit
1316          // zero/sign extend inreg.
1317          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1318                                  Tmp1, Tmp2, LD->getSrcValue(),
1319                                  LD->getSrcValueOffset(), SrcVT,
1320                                  LD->isVolatile(), LD->isNonTemporal(),
1321                                  LD->getAlignment());
1322          SDValue ValRes;
1323          if (ExtType == ISD::SEXTLOAD)
1324            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1325                                 Result.getValueType(),
1326                                 Result, DAG.getValueType(SrcVT));
1327          else
1328            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1329          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1330          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1331          break;
1332        }
1333      }
1334
1335      // Since loads produce two values, make sure to remember that we legalized
1336      // both of them.
1337      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1338      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1339      return Op.getResNo() ? Tmp2 : Tmp1;
1340    }
1341  }
1342  case ISD::STORE: {
1343    StoreSDNode *ST = cast<StoreSDNode>(Node);
1344    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1345    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1346    int SVOffset = ST->getSrcValueOffset();
1347    unsigned Alignment = ST->getAlignment();
1348    bool isVolatile = ST->isVolatile();
1349    bool isNonTemporal = ST->isNonTemporal();
1350
1351    if (!ST->isTruncatingStore()) {
1352      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1353        Result = SDValue(OptStore, 0);
1354        break;
1355      }
1356
1357      {
1358        Tmp3 = LegalizeOp(ST->getValue());
1359        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1360                                        ST->getOffset());
1361
1362        EVT VT = Tmp3.getValueType();
1363        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1364        default: assert(0 && "This action is not supported yet!");
1365        case TargetLowering::Legal:
1366          // If this is an unaligned store and the target doesn't support it,
1367          // expand it.
1368          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1369            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1370            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1371            if (ST->getAlignment() < ABIAlignment)
1372              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1373                                            DAG, TLI);
1374          }
1375          break;
1376        case TargetLowering::Custom:
1377          Tmp1 = TLI.LowerOperation(Result, DAG);
1378          if (Tmp1.getNode()) Result = Tmp1;
1379          break;
1380        case TargetLowering::Promote:
1381          assert(VT.isVector() && "Unknown legal promote case!");
1382          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1383                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1384          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1385                                ST->getSrcValue(), SVOffset, isVolatile,
1386                                isNonTemporal, Alignment);
1387          break;
1388        }
1389        break;
1390      }
1391    } else {
1392      Tmp3 = LegalizeOp(ST->getValue());
1393
1394      EVT StVT = ST->getMemoryVT();
1395      unsigned StWidth = StVT.getSizeInBits();
1396
1397      if (StWidth != StVT.getStoreSizeInBits()) {
1398        // Promote to a byte-sized store with upper bits zero if not
1399        // storing an integral number of bytes.  For example, promote
1400        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1401        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1402                                    StVT.getStoreSizeInBits());
1403        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1404        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1405                                   SVOffset, NVT, isVolatile, isNonTemporal,
1406                                   Alignment);
1407      } else if (StWidth & (StWidth - 1)) {
1408        // If not storing a power-of-2 number of bits, expand as two stores.
1409        assert(!StVT.isVector() && "Unsupported truncstore!");
1410        unsigned RoundWidth = 1 << Log2_32(StWidth);
1411        assert(RoundWidth < StWidth);
1412        unsigned ExtraWidth = StWidth - RoundWidth;
1413        assert(ExtraWidth < RoundWidth);
1414        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1415               "Store size not an integral number of bytes!");
1416        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1417        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1418        SDValue Lo, Hi;
1419        unsigned IncrementSize;
1420
1421        if (TLI.isLittleEndian()) {
1422          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1423          // Store the bottom RoundWidth bits.
1424          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1425                                 SVOffset, RoundVT,
1426                                 isVolatile, isNonTemporal, Alignment);
1427
1428          // Store the remaining ExtraWidth bits.
1429          IncrementSize = RoundWidth / 8;
1430          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1431                             DAG.getIntPtrConstant(IncrementSize));
1432          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1433                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1434          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1435                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1436                                 isNonTemporal,
1437                                 MinAlign(Alignment, IncrementSize));
1438        } else {
1439          // Big endian - avoid unaligned stores.
1440          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1441          // Store the top RoundWidth bits.
1442          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1443                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1444          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1445                                 SVOffset, RoundVT, isVolatile, isNonTemporal,
1446                                 Alignment);
1447
1448          // Store the remaining ExtraWidth bits.
1449          IncrementSize = RoundWidth / 8;
1450          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1451                             DAG.getIntPtrConstant(IncrementSize));
1452          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1453                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1454                                 isNonTemporal,
1455                                 MinAlign(Alignment, IncrementSize));
1456        }
1457
1458        // The order of the stores doesn't matter.
1459        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1460      } else {
1461        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1462            Tmp2 != ST->getBasePtr())
1463          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1464                                          ST->getOffset());
1465
1466        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1467        default: assert(0 && "This action is not supported yet!");
1468        case TargetLowering::Legal:
1469          // If this is an unaligned store and the target doesn't support it,
1470          // expand it.
1471          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1472            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1473            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1474            if (ST->getAlignment() < ABIAlignment)
1475              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1476                                            DAG, TLI);
1477          }
1478          break;
1479        case TargetLowering::Custom:
1480          Result = TLI.LowerOperation(Result, DAG);
1481          break;
1482        case Expand:
1483          // TRUNCSTORE:i16 i32 -> STORE i16
1484          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1485          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1486          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1487                                SVOffset, isVolatile, isNonTemporal,
1488                                Alignment);
1489          break;
1490        }
1491      }
1492    }
1493    break;
1494  }
1495  }
1496  assert(Result.getValueType() == Op.getValueType() &&
1497         "Bad legalization!");
1498
1499  // Make sure that the generated code is itself legal.
1500  if (Result != Op)
1501    Result = LegalizeOp(Result);
1502
1503  // Note that LegalizeOp may be reentered even from single-use nodes, which
1504  // means that we always must cache transformed nodes.
1505  AddLegalizedOperand(Op, Result);
1506  return Result;
1507}
1508
1509SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1510  SDValue Vec = Op.getOperand(0);
1511  SDValue Idx = Op.getOperand(1);
1512  DebugLoc dl = Op.getDebugLoc();
1513  // Store the value to a temporary stack slot, then LOAD the returned part.
1514  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1515  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1516                            false, false, 0);
1517
1518  // Add the offset to the index.
1519  unsigned EltSize =
1520      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1521  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1522                    DAG.getConstant(EltSize, Idx.getValueType()));
1523
1524  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1525    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1526  else
1527    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1528
1529  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1530
1531  if (Op.getValueType().isVector())
1532    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0,
1533                       false, false, 0);
1534  else
1535    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1536                          NULL, 0, Vec.getValueType().getVectorElementType(),
1537                          false, false, 0);
1538}
1539
1540SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1541  // We can't handle this case efficiently.  Allocate a sufficiently
1542  // aligned object on the stack, store each element into it, then load
1543  // the result as a vector.
1544  // Create the stack frame object.
1545  EVT VT = Node->getValueType(0);
1546  EVT EltVT = VT.getVectorElementType();
1547  DebugLoc dl = Node->getDebugLoc();
1548  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1549  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1550  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1551
1552  // Emit a store of each element to the stack slot.
1553  SmallVector<SDValue, 8> Stores;
1554  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1555  // Store (in the right endianness) the elements to memory.
1556  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1557    // Ignore undef elements.
1558    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1559
1560    unsigned Offset = TypeByteSize*i;
1561
1562    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1563    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1564
1565    // If the destination vector element type is narrower than the source
1566    // element type, only store the bits necessary.
1567    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1568      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1569                                         Node->getOperand(i), Idx, SV, Offset,
1570                                         EltVT, false, false, 0));
1571    } else
1572      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1573                                    Node->getOperand(i), Idx, SV, Offset,
1574                                    false, false, 0));
1575  }
1576
1577  SDValue StoreChain;
1578  if (!Stores.empty())    // Not all undef elements?
1579    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1580                             &Stores[0], Stores.size());
1581  else
1582    StoreChain = DAG.getEntryNode();
1583
1584  // Result is a load from the stack slot.
1585  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0);
1586}
1587
1588SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1589  DebugLoc dl = Node->getDebugLoc();
1590  SDValue Tmp1 = Node->getOperand(0);
1591  SDValue Tmp2 = Node->getOperand(1);
1592
1593  // Get the sign bit of the RHS.  First obtain a value that has the same
1594  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1595  SDValue SignBit;
1596  EVT FloatVT = Tmp2.getValueType();
1597  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1598  if (isTypeLegal(IVT)) {
1599    // Convert to an integer with the same sign bit.
1600    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1601  } else {
1602    // Store the float to memory, then load the sign part out as an integer.
1603    MVT LoadTy = TLI.getPointerTy();
1604    // First create a temporary that is aligned for both the load and store.
1605    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1606    // Then store the float to it.
1607    SDValue Ch =
1608      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1609                   false, false, 0);
1610    if (TLI.isBigEndian()) {
1611      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1612      // Load out a legal integer with the same sign bit as the float.
1613      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, NULL, 0, false, false, 0);
1614    } else { // Little endian
1615      SDValue LoadPtr = StackPtr;
1616      // The float may be wider than the integer we are going to load.  Advance
1617      // the pointer so that the loaded integer will contain the sign bit.
1618      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1619      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1620      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1621                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1622      // Load a legal integer containing the sign bit.
1623      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, NULL, 0, false, false, 0);
1624      // Move the sign bit to the top bit of the loaded integer.
1625      unsigned BitShift = LoadTy.getSizeInBits() -
1626        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1627      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1628      if (BitShift)
1629        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1630                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1631    }
1632  }
1633  // Now get the sign bit proper, by seeing whether the value is negative.
1634  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1635                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1636                         ISD::SETLT);
1637  // Get the absolute value of the result.
1638  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1639  // Select between the nabs and abs value based on the sign bit of
1640  // the input.
1641  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1642                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1643                     AbsVal);
1644}
1645
1646void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1647                                           SmallVectorImpl<SDValue> &Results) {
1648  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1649  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1650          " not tell us which reg is the stack pointer!");
1651  DebugLoc dl = Node->getDebugLoc();
1652  EVT VT = Node->getValueType(0);
1653  SDValue Tmp1 = SDValue(Node, 0);
1654  SDValue Tmp2 = SDValue(Node, 1);
1655  SDValue Tmp3 = Node->getOperand(2);
1656  SDValue Chain = Tmp1.getOperand(0);
1657
1658  // Chain the dynamic stack allocation so that it doesn't modify the stack
1659  // pointer when other instructions are using the stack.
1660  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1661
1662  SDValue Size  = Tmp2.getOperand(1);
1663  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1664  Chain = SP.getValue(1);
1665  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1666  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1667  if (Align > StackAlign)
1668    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1669                      DAG.getConstant(-(uint64_t)Align, VT));
1670  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1671  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1672
1673  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1674                            DAG.getIntPtrConstant(0, true), SDValue());
1675
1676  Results.push_back(Tmp1);
1677  Results.push_back(Tmp2);
1678}
1679
1680/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1681/// condition code CC on the current target. This routine expands SETCC with
1682/// illegal condition code into AND / OR of multiple SETCC values.
1683void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1684                                                 SDValue &LHS, SDValue &RHS,
1685                                                 SDValue &CC,
1686                                                 DebugLoc dl) {
1687  EVT OpVT = LHS.getValueType();
1688  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1689  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1690  default: assert(0 && "Unknown condition code action!");
1691  case TargetLowering::Legal:
1692    // Nothing to do.
1693    break;
1694  case TargetLowering::Expand: {
1695    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1696    unsigned Opc = 0;
1697    switch (CCCode) {
1698    default: assert(0 && "Don't know how to expand this condition!");
1699    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1700    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1701    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1702    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1703    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1704    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1705    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1706    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1707    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1708    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1709    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1710    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1711    // FIXME: Implement more expansions.
1712    }
1713
1714    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1715    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1716    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1717    RHS = SDValue();
1718    CC  = SDValue();
1719    break;
1720  }
1721  }
1722}
1723
1724/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1725/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1726/// a load from the stack slot to DestVT, extending it if needed.
1727/// The resultant code need not be legal.
1728SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1729                                               EVT SlotVT,
1730                                               EVT DestVT,
1731                                               DebugLoc dl) {
1732  // Create the stack frame object.
1733  unsigned SrcAlign =
1734    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1735                                              getTypeForEVT(*DAG.getContext()));
1736  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1737
1738  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1739  int SPFI = StackPtrFI->getIndex();
1740  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1741
1742  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1743  unsigned SlotSize = SlotVT.getSizeInBits();
1744  unsigned DestSize = DestVT.getSizeInBits();
1745  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1746  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1747
1748  // Emit a store to the stack slot.  Use a truncstore if the input value is
1749  // later than DestVT.
1750  SDValue Store;
1751
1752  if (SrcSize > SlotSize)
1753    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1754                              SV, 0, SlotVT, false, false, SrcAlign);
1755  else {
1756    assert(SrcSize == SlotSize && "Invalid store");
1757    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1758                         SV, 0, false, false, SrcAlign);
1759  }
1760
1761  // Result is a load from the stack slot.
1762  if (SlotSize == DestSize)
1763    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false,
1764                       DestAlign);
1765
1766  assert(SlotSize < DestSize && "Unknown extension!");
1767  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1768                        false, false, DestAlign);
1769}
1770
1771SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1772  DebugLoc dl = Node->getDebugLoc();
1773  // Create a vector sized/aligned stack slot, store the value to element #0,
1774  // then load the whole vector back out.
1775  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1776
1777  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1778  int SPFI = StackPtrFI->getIndex();
1779
1780  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1781                                 StackPtr,
1782                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1783                                 Node->getValueType(0).getVectorElementType(),
1784                                 false, false, 0);
1785  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1786                     PseudoSourceValue::getFixedStack(SPFI), 0,
1787                     false, false, 0);
1788}
1789
1790
1791/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1792/// support the operation, but do support the resultant vector type.
1793SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1794  unsigned NumElems = Node->getNumOperands();
1795  SDValue Value1, Value2;
1796  DebugLoc dl = Node->getDebugLoc();
1797  EVT VT = Node->getValueType(0);
1798  EVT OpVT = Node->getOperand(0).getValueType();
1799  EVT EltVT = VT.getVectorElementType();
1800
1801  // If the only non-undef value is the low element, turn this into a
1802  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1803  bool isOnlyLowElement = true;
1804  bool MoreThanTwoValues = false;
1805  bool isConstant = true;
1806  for (unsigned i = 0; i < NumElems; ++i) {
1807    SDValue V = Node->getOperand(i);
1808    if (V.getOpcode() == ISD::UNDEF)
1809      continue;
1810    if (i > 0)
1811      isOnlyLowElement = false;
1812    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1813      isConstant = false;
1814
1815    if (!Value1.getNode()) {
1816      Value1 = V;
1817    } else if (!Value2.getNode()) {
1818      if (V != Value1)
1819        Value2 = V;
1820    } else if (V != Value1 && V != Value2) {
1821      MoreThanTwoValues = true;
1822    }
1823  }
1824
1825  if (!Value1.getNode())
1826    return DAG.getUNDEF(VT);
1827
1828  if (isOnlyLowElement)
1829    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1830
1831  // If all elements are constants, create a load from the constant pool.
1832  if (isConstant) {
1833    std::vector<Constant*> CV;
1834    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1835      if (ConstantFPSDNode *V =
1836          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1837        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1838      } else if (ConstantSDNode *V =
1839                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1840        if (OpVT==EltVT)
1841          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1842        else {
1843          // If OpVT and EltVT don't match, EltVT is not legal and the
1844          // element values have been promoted/truncated earlier.  Undo this;
1845          // we don't want a v16i8 to become a v16i32 for example.
1846          const ConstantInt *CI = V->getConstantIntValue();
1847          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1848                                        CI->getZExtValue()));
1849        }
1850      } else {
1851        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1852        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1853        CV.push_back(UndefValue::get(OpNTy));
1854      }
1855    }
1856    Constant *CP = ConstantVector::get(CV);
1857    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1858    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1859    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1860                       PseudoSourceValue::getConstantPool(), 0,
1861                       false, false, Alignment);
1862  }
1863
1864  if (!MoreThanTwoValues) {
1865    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1866    for (unsigned i = 0; i < NumElems; ++i) {
1867      SDValue V = Node->getOperand(i);
1868      if (V.getOpcode() == ISD::UNDEF)
1869        continue;
1870      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1871    }
1872    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1873      // Get the splatted value into the low element of a vector register.
1874      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1875      SDValue Vec2;
1876      if (Value2.getNode())
1877        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1878      else
1879        Vec2 = DAG.getUNDEF(VT);
1880
1881      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1882      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1883    }
1884  }
1885
1886  // Otherwise, we can't handle this case efficiently.
1887  return ExpandVectorBuildThroughStack(Node);
1888}
1889
1890// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1891// does not fit into a register, return the lo part and set the hi part to the
1892// by-reg argument.  If it does fit into a single register, return the result
1893// and leave the Hi part unset.
1894SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1895                                            bool isSigned) {
1896  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1897  // The input chain to this libcall is the entry node of the function.
1898  // Legalizing the call will automatically add the previous call to the
1899  // dependence.
1900  SDValue InChain = DAG.getEntryNode();
1901
1902  TargetLowering::ArgListTy Args;
1903  TargetLowering::ArgListEntry Entry;
1904  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1905    EVT ArgVT = Node->getOperand(i).getValueType();
1906    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1907    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1908    Entry.isSExt = isSigned;
1909    Entry.isZExt = !isSigned;
1910    Args.push_back(Entry);
1911  }
1912  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1913                                         TLI.getPointerTy());
1914
1915  // Splice the libcall in wherever FindInputOutputChains tells us to.
1916  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1917  std::pair<SDValue, SDValue> CallInfo =
1918    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1919                    0, TLI.getLibcallCallingConv(LC), false,
1920                    /*isReturnValueUsed=*/true,
1921                    Callee, Args, DAG, Node->getDebugLoc());
1922
1923  // Legalize the call sequence, starting with the chain.  This will advance
1924  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1925  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1926  LegalizeOp(CallInfo.second);
1927  return CallInfo.first;
1928}
1929
1930SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1931                                              RTLIB::Libcall Call_F32,
1932                                              RTLIB::Libcall Call_F64,
1933                                              RTLIB::Libcall Call_F80,
1934                                              RTLIB::Libcall Call_PPCF128) {
1935  RTLIB::Libcall LC;
1936  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1937  default: assert(0 && "Unexpected request for libcall!");
1938  case MVT::f32: LC = Call_F32; break;
1939  case MVT::f64: LC = Call_F64; break;
1940  case MVT::f80: LC = Call_F80; break;
1941  case MVT::ppcf128: LC = Call_PPCF128; break;
1942  }
1943  return ExpandLibCall(LC, Node, false);
1944}
1945
1946SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1947                                               RTLIB::Libcall Call_I8,
1948                                               RTLIB::Libcall Call_I16,
1949                                               RTLIB::Libcall Call_I32,
1950                                               RTLIB::Libcall Call_I64,
1951                                               RTLIB::Libcall Call_I128) {
1952  RTLIB::Libcall LC;
1953  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1954  default: assert(0 && "Unexpected request for libcall!");
1955  case MVT::i8:   LC = Call_I8; break;
1956  case MVT::i16:  LC = Call_I16; break;
1957  case MVT::i32:  LC = Call_I32; break;
1958  case MVT::i64:  LC = Call_I64; break;
1959  case MVT::i128: LC = Call_I128; break;
1960  }
1961  return ExpandLibCall(LC, Node, isSigned);
1962}
1963
1964/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1965/// INT_TO_FP operation of the specified operand when the target requests that
1966/// we expand it.  At this point, we know that the result and operand types are
1967/// legal for the target.
1968SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1969                                                   SDValue Op0,
1970                                                   EVT DestVT,
1971                                                   DebugLoc dl) {
1972  if (Op0.getValueType() == MVT::i32) {
1973    // simple 32-bit [signed|unsigned] integer to float/double expansion
1974
1975    // Get the stack frame index of a 8 byte buffer.
1976    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1977
1978    // word offset constant for Hi/Lo address computation
1979    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1980    // set up Hi and Lo (into buffer) address based on endian
1981    SDValue Hi = StackSlot;
1982    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1983                             TLI.getPointerTy(), StackSlot, WordOff);
1984    if (TLI.isLittleEndian())
1985      std::swap(Hi, Lo);
1986
1987    // if signed map to unsigned space
1988    SDValue Op0Mapped;
1989    if (isSigned) {
1990      // constant used to invert sign bit (signed to unsigned mapping)
1991      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1992      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1993    } else {
1994      Op0Mapped = Op0;
1995    }
1996    // store the lo of the constructed double - based on integer input
1997    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1998                                  Op0Mapped, Lo, NULL, 0,
1999                                  false, false, 0);
2000    // initial hi portion of constructed double
2001    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2002    // store the hi of the constructed double - biased exponent
2003    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
2004                                false, false, 0);
2005    // load the constructed double
2006    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0,
2007                               false, false, 0);
2008    // FP constant to bias correct the final result
2009    SDValue Bias = DAG.getConstantFP(isSigned ?
2010                                     BitsToDouble(0x4330000080000000ULL) :
2011                                     BitsToDouble(0x4330000000000000ULL),
2012                                     MVT::f64);
2013    // subtract the bias
2014    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2015    // final result
2016    SDValue Result;
2017    // handle final rounding
2018    if (DestVT == MVT::f64) {
2019      // do nothing
2020      Result = Sub;
2021    } else if (DestVT.bitsLT(MVT::f64)) {
2022      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2023                           DAG.getIntPtrConstant(0));
2024    } else if (DestVT.bitsGT(MVT::f64)) {
2025      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2026    }
2027    return Result;
2028  }
2029  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2030
2031  // Implementation of unsigned i64 to f64 following the algorithm in
2032  // __floatundidf in compiler_rt. This implementation has the advantage
2033  // of performing rounding correctly, both in the default rounding mode
2034  // and in all alternate rounding modes.
2035  // TODO: Generalize this for use with other types.
2036  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2037    SDValue TwoP52 =
2038      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2039    SDValue TwoP84PlusTwoP52 =
2040      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2041    SDValue TwoP84 =
2042      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2043
2044    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2045    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2046                             DAG.getConstant(32, MVT::i64));
2047    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2048    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2049    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2050    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2051    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, TwoP84PlusTwoP52);
2052    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2053  }
2054
2055  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2056
2057  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2058                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2059                                 ISD::SETLT);
2060  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2061  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2062                                    SignSet, Four, Zero);
2063
2064  // If the sign bit of the integer is set, the large number will be treated
2065  // as a negative number.  To counteract this, the dynamic code adds an
2066  // offset depending on the data type.
2067  uint64_t FF;
2068  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2069  default: assert(0 && "Unsupported integer type!");
2070  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2071  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2072  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2073  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2074  }
2075  if (TLI.isLittleEndian()) FF <<= 32;
2076  Constant *FudgeFactor = ConstantInt::get(
2077                                       Type::getInt64Ty(*DAG.getContext()), FF);
2078
2079  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2080  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2081  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2082  Alignment = std::min(Alignment, 4u);
2083  SDValue FudgeInReg;
2084  if (DestVT == MVT::f32)
2085    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2086                             PseudoSourceValue::getConstantPool(), 0,
2087                             false, false, Alignment);
2088  else {
2089    FudgeInReg =
2090      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2091                                DAG.getEntryNode(), CPIdx,
2092                                PseudoSourceValue::getConstantPool(), 0,
2093                                MVT::f32, false, false, Alignment));
2094  }
2095
2096  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2097}
2098
2099/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2100/// *INT_TO_FP operation of the specified operand when the target requests that
2101/// we promote it.  At this point, we know that the result and operand types are
2102/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2103/// operation that takes a larger input.
2104SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2105                                                    EVT DestVT,
2106                                                    bool isSigned,
2107                                                    DebugLoc dl) {
2108  // First step, figure out the appropriate *INT_TO_FP operation to use.
2109  EVT NewInTy = LegalOp.getValueType();
2110
2111  unsigned OpToUse = 0;
2112
2113  // Scan for the appropriate larger type to use.
2114  while (1) {
2115    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2116    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2117
2118    // If the target supports SINT_TO_FP of this type, use it.
2119    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2120      OpToUse = ISD::SINT_TO_FP;
2121      break;
2122    }
2123    if (isSigned) continue;
2124
2125    // If the target supports UINT_TO_FP of this type, use it.
2126    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2127      OpToUse = ISD::UINT_TO_FP;
2128      break;
2129    }
2130
2131    // Otherwise, try a larger type.
2132  }
2133
2134  // Okay, we found the operation and type to use.  Zero extend our input to the
2135  // desired type then run the operation on it.
2136  return DAG.getNode(OpToUse, dl, DestVT,
2137                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2138                                 dl, NewInTy, LegalOp));
2139}
2140
2141/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2142/// FP_TO_*INT operation of the specified operand when the target requests that
2143/// we promote it.  At this point, we know that the result and operand types are
2144/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2145/// operation that returns a larger result.
2146SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2147                                                    EVT DestVT,
2148                                                    bool isSigned,
2149                                                    DebugLoc dl) {
2150  // First step, figure out the appropriate FP_TO*INT operation to use.
2151  EVT NewOutTy = DestVT;
2152
2153  unsigned OpToUse = 0;
2154
2155  // Scan for the appropriate larger type to use.
2156  while (1) {
2157    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2158    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2159
2160    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2161      OpToUse = ISD::FP_TO_SINT;
2162      break;
2163    }
2164
2165    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2166      OpToUse = ISD::FP_TO_UINT;
2167      break;
2168    }
2169
2170    // Otherwise, try a larger type.
2171  }
2172
2173
2174  // Okay, we found the operation and type to use.
2175  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2176
2177  // Truncate the result of the extended FP_TO_*INT operation to the desired
2178  // size.
2179  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2180}
2181
2182/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2183///
2184SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2185  EVT VT = Op.getValueType();
2186  EVT SHVT = TLI.getShiftAmountTy();
2187  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2188  switch (VT.getSimpleVT().SimpleTy) {
2189  default: assert(0 && "Unhandled Expand type in BSWAP!");
2190  case MVT::i16:
2191    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2192    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2193    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2194  case MVT::i32:
2195    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2196    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2197    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2198    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2199    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2200    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2201    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2202    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2203    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2204  case MVT::i64:
2205    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2206    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2207    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2208    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2209    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2210    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2211    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2212    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2213    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2214    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2215    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2216    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2217    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2218    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2219    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2220    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2221    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2222    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2223    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2224    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2225    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2226  }
2227}
2228
2229/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2230///
2231SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2232                                             DebugLoc dl) {
2233  switch (Opc) {
2234  default: assert(0 && "Cannot expand this yet!");
2235  case ISD::CTPOP: {
2236    static const uint64_t mask[6] = {
2237      0x5555555555555555ULL, 0x3333333333333333ULL,
2238      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2239      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2240    };
2241    EVT VT = Op.getValueType();
2242    EVT ShVT = TLI.getShiftAmountTy();
2243    unsigned len = VT.getSizeInBits();
2244    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2245      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2246      unsigned EltSize = VT.isVector() ?
2247        VT.getVectorElementType().getSizeInBits() : len;
2248      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2249      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2250      Op = DAG.getNode(ISD::ADD, dl, VT,
2251                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2252                       DAG.getNode(ISD::AND, dl, VT,
2253                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2254                                   Tmp2));
2255    }
2256    return Op;
2257  }
2258  case ISD::CTLZ: {
2259    // for now, we do this:
2260    // x = x | (x >> 1);
2261    // x = x | (x >> 2);
2262    // ...
2263    // x = x | (x >>16);
2264    // x = x | (x >>32); // for 64-bit input
2265    // return popcount(~x);
2266    //
2267    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2268    EVT VT = Op.getValueType();
2269    EVT ShVT = TLI.getShiftAmountTy();
2270    unsigned len = VT.getSizeInBits();
2271    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2272      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2273      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2274                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2275    }
2276    Op = DAG.getNOT(dl, Op, VT);
2277    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2278  }
2279  case ISD::CTTZ: {
2280    // for now, we use: { return popcount(~x & (x - 1)); }
2281    // unless the target has ctlz but not ctpop, in which case we use:
2282    // { return 32 - nlz(~x & (x-1)); }
2283    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2284    EVT VT = Op.getValueType();
2285    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2286                               DAG.getNOT(dl, Op, VT),
2287                               DAG.getNode(ISD::SUB, dl, VT, Op,
2288                                           DAG.getConstant(1, VT)));
2289    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2290    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2291        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2292      return DAG.getNode(ISD::SUB, dl, VT,
2293                         DAG.getConstant(VT.getSizeInBits(), VT),
2294                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2295    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2296  }
2297  }
2298}
2299
2300void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2301                                      SmallVectorImpl<SDValue> &Results) {
2302  DebugLoc dl = Node->getDebugLoc();
2303  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2304  switch (Node->getOpcode()) {
2305  case ISD::CTPOP:
2306  case ISD::CTLZ:
2307  case ISD::CTTZ:
2308    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2309    Results.push_back(Tmp1);
2310    break;
2311  case ISD::BSWAP:
2312    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2313    break;
2314  case ISD::FRAMEADDR:
2315  case ISD::RETURNADDR:
2316  case ISD::FRAME_TO_ARGS_OFFSET:
2317    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2318    break;
2319  case ISD::FLT_ROUNDS_:
2320    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2321    break;
2322  case ISD::EH_RETURN:
2323  case ISD::EH_LABEL:
2324  case ISD::PREFETCH:
2325  case ISD::MEMBARRIER:
2326  case ISD::VAEND:
2327    Results.push_back(Node->getOperand(0));
2328    break;
2329  case ISD::DYNAMIC_STACKALLOC:
2330    ExpandDYNAMIC_STACKALLOC(Node, Results);
2331    break;
2332  case ISD::MERGE_VALUES:
2333    for (unsigned i = 0; i < Node->getNumValues(); i++)
2334      Results.push_back(Node->getOperand(i));
2335    break;
2336  case ISD::UNDEF: {
2337    EVT VT = Node->getValueType(0);
2338    if (VT.isInteger())
2339      Results.push_back(DAG.getConstant(0, VT));
2340    else {
2341      assert(VT.isFloatingPoint() && "Unknown value type!");
2342      Results.push_back(DAG.getConstantFP(0, VT));
2343    }
2344    break;
2345  }
2346  case ISD::TRAP: {
2347    // If this operation is not supported, lower it to 'abort()' call
2348    TargetLowering::ArgListTy Args;
2349    std::pair<SDValue, SDValue> CallResult =
2350      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2351                      false, false, false, false, 0, CallingConv::C, false,
2352                      /*isReturnValueUsed=*/true,
2353                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2354                      Args, DAG, dl);
2355    Results.push_back(CallResult.second);
2356    break;
2357  }
2358  case ISD::FP_ROUND:
2359  case ISD::BIT_CONVERT:
2360    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2361                            Node->getValueType(0), dl);
2362    Results.push_back(Tmp1);
2363    break;
2364  case ISD::FP_EXTEND:
2365    Tmp1 = EmitStackConvert(Node->getOperand(0),
2366                            Node->getOperand(0).getValueType(),
2367                            Node->getValueType(0), dl);
2368    Results.push_back(Tmp1);
2369    break;
2370  case ISD::SIGN_EXTEND_INREG: {
2371    // NOTE: we could fall back on load/store here too for targets without
2372    // SAR.  However, it is doubtful that any exist.
2373    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2374    EVT VT = Node->getValueType(0);
2375    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2376    if (VT.isVector())
2377      ShiftAmountTy = VT;
2378    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2379                        ExtraVT.getScalarType().getSizeInBits();
2380    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2381    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2382                       Node->getOperand(0), ShiftCst);
2383    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2384    Results.push_back(Tmp1);
2385    break;
2386  }
2387  case ISD::FP_ROUND_INREG: {
2388    // The only way we can lower this is to turn it into a TRUNCSTORE,
2389    // EXTLOAD pair, targetting a temporary location (a stack slot).
2390
2391    // NOTE: there is a choice here between constantly creating new stack
2392    // slots and always reusing the same one.  We currently always create
2393    // new ones, as reuse may inhibit scheduling.
2394    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2395    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2396                            Node->getValueType(0), dl);
2397    Results.push_back(Tmp1);
2398    break;
2399  }
2400  case ISD::SINT_TO_FP:
2401  case ISD::UINT_TO_FP:
2402    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2403                                Node->getOperand(0), Node->getValueType(0), dl);
2404    Results.push_back(Tmp1);
2405    break;
2406  case ISD::FP_TO_UINT: {
2407    SDValue True, False;
2408    EVT VT =  Node->getOperand(0).getValueType();
2409    EVT NVT = Node->getValueType(0);
2410    const uint64_t zero[] = {0, 0};
2411    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2412    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2413    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2414    Tmp1 = DAG.getConstantFP(apf, VT);
2415    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2416                        Node->getOperand(0),
2417                        Tmp1, ISD::SETLT);
2418    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2419    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2420                        DAG.getNode(ISD::FSUB, dl, VT,
2421                                    Node->getOperand(0), Tmp1));
2422    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2423                        DAG.getConstant(x, NVT));
2424    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2425    Results.push_back(Tmp1);
2426    break;
2427  }
2428  case ISD::VAARG: {
2429    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2430    EVT VT = Node->getValueType(0);
2431    Tmp1 = Node->getOperand(0);
2432    Tmp2 = Node->getOperand(1);
2433    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0,
2434                                 false, false, 0);
2435    // Increment the pointer, VAList, to the next vaarg
2436    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2437                       DAG.getConstant(TLI.getTargetData()->
2438                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2439                                       TLI.getPointerTy()));
2440    // Store the incremented VAList to the legalized pointer
2441    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0,
2442                        false, false, 0);
2443    // Load the actual argument out of the pointer VAList
2444    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0,
2445                                  false, false, 0));
2446    Results.push_back(Results[0].getValue(1));
2447    break;
2448  }
2449  case ISD::VACOPY: {
2450    // This defaults to loading a pointer from the input and storing it to the
2451    // output, returning the chain.
2452    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2453    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2454    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2455                       Node->getOperand(2), VS, 0, false, false, 0);
2456    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0,
2457                        false, false, 0);
2458    Results.push_back(Tmp1);
2459    break;
2460  }
2461  case ISD::EXTRACT_VECTOR_ELT:
2462    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2463      // This must be an access of the only element.  Return it.
2464      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2465                         Node->getOperand(0));
2466    else
2467      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2468    Results.push_back(Tmp1);
2469    break;
2470  case ISD::EXTRACT_SUBVECTOR:
2471    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2472    break;
2473  case ISD::CONCAT_VECTORS: {
2474    Results.push_back(ExpandVectorBuildThroughStack(Node));
2475    break;
2476  }
2477  case ISD::SCALAR_TO_VECTOR:
2478    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2479    break;
2480  case ISD::INSERT_VECTOR_ELT:
2481    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2482                                              Node->getOperand(1),
2483                                              Node->getOperand(2), dl));
2484    break;
2485  case ISD::VECTOR_SHUFFLE: {
2486    SmallVector<int, 8> Mask;
2487    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2488
2489    EVT VT = Node->getValueType(0);
2490    EVT EltVT = VT.getVectorElementType();
2491    unsigned NumElems = VT.getVectorNumElements();
2492    SmallVector<SDValue, 8> Ops;
2493    for (unsigned i = 0; i != NumElems; ++i) {
2494      if (Mask[i] < 0) {
2495        Ops.push_back(DAG.getUNDEF(EltVT));
2496        continue;
2497      }
2498      unsigned Idx = Mask[i];
2499      if (Idx < NumElems)
2500        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2501                                  Node->getOperand(0),
2502                                  DAG.getIntPtrConstant(Idx)));
2503      else
2504        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2505                                  Node->getOperand(1),
2506                                  DAG.getIntPtrConstant(Idx - NumElems)));
2507    }
2508    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2509    Results.push_back(Tmp1);
2510    break;
2511  }
2512  case ISD::EXTRACT_ELEMENT: {
2513    EVT OpTy = Node->getOperand(0).getValueType();
2514    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2515      // 1 -> Hi
2516      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2517                         DAG.getConstant(OpTy.getSizeInBits()/2,
2518                                         TLI.getShiftAmountTy()));
2519      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2520    } else {
2521      // 0 -> Lo
2522      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2523                         Node->getOperand(0));
2524    }
2525    Results.push_back(Tmp1);
2526    break;
2527  }
2528  case ISD::STACKSAVE:
2529    // Expand to CopyFromReg if the target set
2530    // StackPointerRegisterToSaveRestore.
2531    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2532      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2533                                           Node->getValueType(0)));
2534      Results.push_back(Results[0].getValue(1));
2535    } else {
2536      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2537      Results.push_back(Node->getOperand(0));
2538    }
2539    break;
2540  case ISD::STACKRESTORE:
2541    // Expand to CopyToReg if the target set
2542    // StackPointerRegisterToSaveRestore.
2543    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2544      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2545                                         Node->getOperand(1)));
2546    } else {
2547      Results.push_back(Node->getOperand(0));
2548    }
2549    break;
2550  case ISD::FCOPYSIGN:
2551    Results.push_back(ExpandFCOPYSIGN(Node));
2552    break;
2553  case ISD::FNEG:
2554    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2555    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2556    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2557                       Node->getOperand(0));
2558    Results.push_back(Tmp1);
2559    break;
2560  case ISD::FABS: {
2561    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2562    EVT VT = Node->getValueType(0);
2563    Tmp1 = Node->getOperand(0);
2564    Tmp2 = DAG.getConstantFP(0.0, VT);
2565    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2566                        Tmp1, Tmp2, ISD::SETUGT);
2567    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2568    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2569    Results.push_back(Tmp1);
2570    break;
2571  }
2572  case ISD::FSQRT:
2573    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2574                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2575    break;
2576  case ISD::FSIN:
2577    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2578                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2579    break;
2580  case ISD::FCOS:
2581    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2582                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2583    break;
2584  case ISD::FLOG:
2585    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2586                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2587    break;
2588  case ISD::FLOG2:
2589    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2590                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2591    break;
2592  case ISD::FLOG10:
2593    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2594                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2595    break;
2596  case ISD::FEXP:
2597    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2598                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2599    break;
2600  case ISD::FEXP2:
2601    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2602                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2603    break;
2604  case ISD::FTRUNC:
2605    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2606                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2607    break;
2608  case ISD::FFLOOR:
2609    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2610                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2611    break;
2612  case ISD::FCEIL:
2613    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2614                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2615    break;
2616  case ISD::FRINT:
2617    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2618                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2619    break;
2620  case ISD::FNEARBYINT:
2621    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2622                                      RTLIB::NEARBYINT_F64,
2623                                      RTLIB::NEARBYINT_F80,
2624                                      RTLIB::NEARBYINT_PPCF128));
2625    break;
2626  case ISD::FPOWI:
2627    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2628                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2629    break;
2630  case ISD::FPOW:
2631    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2632                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2633    break;
2634  case ISD::FDIV:
2635    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2636                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2637    break;
2638  case ISD::FREM:
2639    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2640                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2641    break;
2642  case ISD::FP16_TO_FP32:
2643    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2644    break;
2645  case ISD::FP32_TO_FP16:
2646    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2647    break;
2648  case ISD::ConstantFP: {
2649    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2650    // Check to see if this FP immediate is already legal.
2651    // If this is a legal constant, turn it into a TargetConstantFP node.
2652    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2653      Results.push_back(SDValue(Node, 0));
2654    else
2655      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2656    break;
2657  }
2658  case ISD::EHSELECTION: {
2659    unsigned Reg = TLI.getExceptionSelectorRegister();
2660    assert(Reg && "Can't expand to unknown register!");
2661    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2662                                         Node->getValueType(0)));
2663    Results.push_back(Results[0].getValue(1));
2664    break;
2665  }
2666  case ISD::EXCEPTIONADDR: {
2667    unsigned Reg = TLI.getExceptionAddressRegister();
2668    assert(Reg && "Can't expand to unknown register!");
2669    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2670                                         Node->getValueType(0)));
2671    Results.push_back(Results[0].getValue(1));
2672    break;
2673  }
2674  case ISD::SUB: {
2675    EVT VT = Node->getValueType(0);
2676    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2677           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2678           "Don't know how to expand this subtraction!");
2679    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2680               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2681    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2682    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2683    break;
2684  }
2685  case ISD::UREM:
2686  case ISD::SREM: {
2687    EVT VT = Node->getValueType(0);
2688    SDVTList VTs = DAG.getVTList(VT, VT);
2689    bool isSigned = Node->getOpcode() == ISD::SREM;
2690    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2691    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2692    Tmp2 = Node->getOperand(0);
2693    Tmp3 = Node->getOperand(1);
2694    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2695      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2696    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2697      // X % Y -> X-X/Y*Y
2698      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2699      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2700      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2701    } else if (isSigned) {
2702      Tmp1 = ExpandIntLibCall(Node, true,
2703                              RTLIB::SREM_I8,
2704                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2705                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2706    } else {
2707      Tmp1 = ExpandIntLibCall(Node, false,
2708                              RTLIB::UREM_I8,
2709                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2710                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2711    }
2712    Results.push_back(Tmp1);
2713    break;
2714  }
2715  case ISD::UDIV:
2716  case ISD::SDIV: {
2717    bool isSigned = Node->getOpcode() == ISD::SDIV;
2718    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2719    EVT VT = Node->getValueType(0);
2720    SDVTList VTs = DAG.getVTList(VT, VT);
2721    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2722      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2723                         Node->getOperand(1));
2724    else if (isSigned)
2725      Tmp1 = ExpandIntLibCall(Node, true,
2726                              RTLIB::SDIV_I8,
2727                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2728                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2729    else
2730      Tmp1 = ExpandIntLibCall(Node, false,
2731                              RTLIB::UDIV_I8,
2732                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2733                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2734    Results.push_back(Tmp1);
2735    break;
2736  }
2737  case ISD::MULHU:
2738  case ISD::MULHS: {
2739    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2740                                                              ISD::SMUL_LOHI;
2741    EVT VT = Node->getValueType(0);
2742    SDVTList VTs = DAG.getVTList(VT, VT);
2743    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2744           "If this wasn't legal, it shouldn't have been created!");
2745    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2746                       Node->getOperand(1));
2747    Results.push_back(Tmp1.getValue(1));
2748    break;
2749  }
2750  case ISD::MUL: {
2751    EVT VT = Node->getValueType(0);
2752    SDVTList VTs = DAG.getVTList(VT, VT);
2753    // See if multiply or divide can be lowered using two-result operations.
2754    // We just need the low half of the multiply; try both the signed
2755    // and unsigned forms. If the target supports both SMUL_LOHI and
2756    // UMUL_LOHI, form a preference by checking which forms of plain
2757    // MULH it supports.
2758    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2759    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2760    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2761    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2762    unsigned OpToUse = 0;
2763    if (HasSMUL_LOHI && !HasMULHS) {
2764      OpToUse = ISD::SMUL_LOHI;
2765    } else if (HasUMUL_LOHI && !HasMULHU) {
2766      OpToUse = ISD::UMUL_LOHI;
2767    } else if (HasSMUL_LOHI) {
2768      OpToUse = ISD::SMUL_LOHI;
2769    } else if (HasUMUL_LOHI) {
2770      OpToUse = ISD::UMUL_LOHI;
2771    }
2772    if (OpToUse) {
2773      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2774                                    Node->getOperand(1)));
2775      break;
2776    }
2777    Tmp1 = ExpandIntLibCall(Node, false,
2778                            RTLIB::MUL_I8,
2779                            RTLIB::MUL_I16, RTLIB::MUL_I32,
2780                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2781    Results.push_back(Tmp1);
2782    break;
2783  }
2784  case ISD::SADDO:
2785  case ISD::SSUBO: {
2786    SDValue LHS = Node->getOperand(0);
2787    SDValue RHS = Node->getOperand(1);
2788    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2789                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2790                              LHS, RHS);
2791    Results.push_back(Sum);
2792    EVT OType = Node->getValueType(1);
2793
2794    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2795
2796    //   LHSSign -> LHS >= 0
2797    //   RHSSign -> RHS >= 0
2798    //   SumSign -> Sum >= 0
2799    //
2800    //   Add:
2801    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2802    //   Sub:
2803    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2804    //
2805    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2806    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2807    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2808                                      Node->getOpcode() == ISD::SADDO ?
2809                                      ISD::SETEQ : ISD::SETNE);
2810
2811    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2812    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2813
2814    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2815    Results.push_back(Cmp);
2816    break;
2817  }
2818  case ISD::UADDO:
2819  case ISD::USUBO: {
2820    SDValue LHS = Node->getOperand(0);
2821    SDValue RHS = Node->getOperand(1);
2822    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2823                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2824                              LHS, RHS);
2825    Results.push_back(Sum);
2826    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2827                                   Node->getOpcode () == ISD::UADDO ?
2828                                   ISD::SETULT : ISD::SETUGT));
2829    break;
2830  }
2831  case ISD::UMULO:
2832  case ISD::SMULO: {
2833    EVT VT = Node->getValueType(0);
2834    SDValue LHS = Node->getOperand(0);
2835    SDValue RHS = Node->getOperand(1);
2836    SDValue BottomHalf;
2837    SDValue TopHalf;
2838    static const unsigned Ops[2][3] =
2839        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2840          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2841    bool isSigned = Node->getOpcode() == ISD::SMULO;
2842    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2843      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2844      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2845    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2846      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2847                               RHS);
2848      TopHalf = BottomHalf.getValue(1);
2849    } else {
2850      // FIXME: We should be able to fall back to a libcall with an illegal
2851      // type in some cases.
2852      // Also, we can fall back to a division in some cases, but that's a big
2853      // performance hit in the general case.
2854      assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
2855                                               VT.getSizeInBits() * 2)) &&
2856             "Don't know how to expand this operation yet!");
2857      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2858      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2859      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2860      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2861      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2862                               DAG.getIntPtrConstant(0));
2863      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2864                            DAG.getIntPtrConstant(1));
2865    }
2866    if (isSigned) {
2867      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2868      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2869      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2870                             ISD::SETNE);
2871    } else {
2872      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2873                             DAG.getConstant(0, VT), ISD::SETNE);
2874    }
2875    Results.push_back(BottomHalf);
2876    Results.push_back(TopHalf);
2877    break;
2878  }
2879  case ISD::BUILD_PAIR: {
2880    EVT PairTy = Node->getValueType(0);
2881    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2882    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2883    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2884                       DAG.getConstant(PairTy.getSizeInBits()/2,
2885                                       TLI.getShiftAmountTy()));
2886    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2887    break;
2888  }
2889  case ISD::SELECT:
2890    Tmp1 = Node->getOperand(0);
2891    Tmp2 = Node->getOperand(1);
2892    Tmp3 = Node->getOperand(2);
2893    if (Tmp1.getOpcode() == ISD::SETCC) {
2894      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2895                             Tmp2, Tmp3,
2896                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2897    } else {
2898      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2899                             DAG.getConstant(0, Tmp1.getValueType()),
2900                             Tmp2, Tmp3, ISD::SETNE);
2901    }
2902    Results.push_back(Tmp1);
2903    break;
2904  case ISD::BR_JT: {
2905    SDValue Chain = Node->getOperand(0);
2906    SDValue Table = Node->getOperand(1);
2907    SDValue Index = Node->getOperand(2);
2908
2909    EVT PTy = TLI.getPointerTy();
2910
2911    const TargetData &TD = *TLI.getTargetData();
2912    unsigned EntrySize =
2913      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
2914
2915    Index = DAG.getNode(ISD::MUL, dl, PTy,
2916                        Index, DAG.getConstant(EntrySize, PTy));
2917    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2918
2919    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2920    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2921                                PseudoSourceValue::getJumpTable(), 0, MemVT,
2922                                false, false, 0);
2923    Addr = LD;
2924    if (TM.getRelocationModel() == Reloc::PIC_) {
2925      // For PIC, the sequence is:
2926      // BRIND(load(Jumptable + index) + RelocBase)
2927      // RelocBase can be JumpTable, GOT or some sort of global base.
2928      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2929                          TLI.getPICJumpTableRelocBase(Table, DAG));
2930    }
2931    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2932    Results.push_back(Tmp1);
2933    break;
2934  }
2935  case ISD::BRCOND:
2936    // Expand brcond's setcc into its constituent parts and create a BR_CC
2937    // Node.
2938    Tmp1 = Node->getOperand(0);
2939    Tmp2 = Node->getOperand(1);
2940    if (Tmp2.getOpcode() == ISD::SETCC) {
2941      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2942                         Tmp1, Tmp2.getOperand(2),
2943                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2944                         Node->getOperand(2));
2945    } else {
2946      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2947                         DAG.getCondCode(ISD::SETNE), Tmp2,
2948                         DAG.getConstant(0, Tmp2.getValueType()),
2949                         Node->getOperand(2));
2950    }
2951    Results.push_back(Tmp1);
2952    break;
2953  case ISD::SETCC: {
2954    Tmp1 = Node->getOperand(0);
2955    Tmp2 = Node->getOperand(1);
2956    Tmp3 = Node->getOperand(2);
2957    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2958
2959    // If we expanded the SETCC into an AND/OR, return the new node
2960    if (Tmp2.getNode() == 0) {
2961      Results.push_back(Tmp1);
2962      break;
2963    }
2964
2965    // Otherwise, SETCC for the given comparison type must be completely
2966    // illegal; expand it into a SELECT_CC.
2967    EVT VT = Node->getValueType(0);
2968    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2969                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2970    Results.push_back(Tmp1);
2971    break;
2972  }
2973  case ISD::SELECT_CC: {
2974    Tmp1 = Node->getOperand(0);   // LHS
2975    Tmp2 = Node->getOperand(1);   // RHS
2976    Tmp3 = Node->getOperand(2);   // True
2977    Tmp4 = Node->getOperand(3);   // False
2978    SDValue CC = Node->getOperand(4);
2979
2980    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2981                          Tmp1, Tmp2, CC, dl);
2982
2983    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2984    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2985    CC = DAG.getCondCode(ISD::SETNE);
2986    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2987                       Tmp3, Tmp4, CC);
2988    Results.push_back(Tmp1);
2989    break;
2990  }
2991  case ISD::BR_CC: {
2992    Tmp1 = Node->getOperand(0);              // Chain
2993    Tmp2 = Node->getOperand(2);              // LHS
2994    Tmp3 = Node->getOperand(3);              // RHS
2995    Tmp4 = Node->getOperand(1);              // CC
2996
2997    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2998                          Tmp2, Tmp3, Tmp4, dl);
2999    LastCALLSEQ_END = DAG.getEntryNode();
3000
3001    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3002    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3003    Tmp4 = DAG.getCondCode(ISD::SETNE);
3004    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3005                       Tmp3, Node->getOperand(4));
3006    Results.push_back(Tmp1);
3007    break;
3008  }
3009  case ISD::GLOBAL_OFFSET_TABLE:
3010  case ISD::GlobalAddress:
3011  case ISD::GlobalTLSAddress:
3012  case ISD::ExternalSymbol:
3013  case ISD::ConstantPool:
3014  case ISD::JumpTable:
3015  case ISD::INTRINSIC_W_CHAIN:
3016  case ISD::INTRINSIC_WO_CHAIN:
3017  case ISD::INTRINSIC_VOID:
3018    // FIXME: Custom lowering for these operations shouldn't return null!
3019    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3020      Results.push_back(SDValue(Node, i));
3021    break;
3022  }
3023}
3024void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3025                                       SmallVectorImpl<SDValue> &Results) {
3026  EVT OVT = Node->getValueType(0);
3027  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3028      Node->getOpcode() == ISD::SINT_TO_FP ||
3029      Node->getOpcode() == ISD::SETCC) {
3030    OVT = Node->getOperand(0).getValueType();
3031  }
3032  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3033  DebugLoc dl = Node->getDebugLoc();
3034  SDValue Tmp1, Tmp2, Tmp3;
3035  switch (Node->getOpcode()) {
3036  case ISD::CTTZ:
3037  case ISD::CTLZ:
3038  case ISD::CTPOP:
3039    // Zero extend the argument.
3040    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3041    // Perform the larger operation.
3042    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3043    if (Node->getOpcode() == ISD::CTTZ) {
3044      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3045      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3046                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3047                          ISD::SETEQ);
3048      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3049                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3050    } else if (Node->getOpcode() == ISD::CTLZ) {
3051      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3052      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3053                          DAG.getConstant(NVT.getSizeInBits() -
3054                                          OVT.getSizeInBits(), NVT));
3055    }
3056    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3057    break;
3058  case ISD::BSWAP: {
3059    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3060    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3061    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3062    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3063                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3064    Results.push_back(Tmp1);
3065    break;
3066  }
3067  case ISD::FP_TO_UINT:
3068  case ISD::FP_TO_SINT:
3069    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3070                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3071    Results.push_back(Tmp1);
3072    break;
3073  case ISD::UINT_TO_FP:
3074  case ISD::SINT_TO_FP:
3075    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3076                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3077    Results.push_back(Tmp1);
3078    break;
3079  case ISD::AND:
3080  case ISD::OR:
3081  case ISD::XOR: {
3082    unsigned ExtOp, TruncOp;
3083    if (OVT.isVector()) {
3084      ExtOp   = ISD::BIT_CONVERT;
3085      TruncOp = ISD::BIT_CONVERT;
3086    } else {
3087      assert(OVT.isInteger() && "Cannot promote logic operation");
3088      ExtOp   = ISD::ANY_EXTEND;
3089      TruncOp = ISD::TRUNCATE;
3090    }
3091    // Promote each of the values to the new type.
3092    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3093    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3094    // Perform the larger operation, then convert back
3095    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3096    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3097    break;
3098  }
3099  case ISD::SELECT: {
3100    unsigned ExtOp, TruncOp;
3101    if (Node->getValueType(0).isVector()) {
3102      ExtOp   = ISD::BIT_CONVERT;
3103      TruncOp = ISD::BIT_CONVERT;
3104    } else if (Node->getValueType(0).isInteger()) {
3105      ExtOp   = ISD::ANY_EXTEND;
3106      TruncOp = ISD::TRUNCATE;
3107    } else {
3108      ExtOp   = ISD::FP_EXTEND;
3109      TruncOp = ISD::FP_ROUND;
3110    }
3111    Tmp1 = Node->getOperand(0);
3112    // Promote each of the values to the new type.
3113    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3114    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3115    // Perform the larger operation, then round down.
3116    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3117    if (TruncOp != ISD::FP_ROUND)
3118      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3119    else
3120      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3121                         DAG.getIntPtrConstant(0));
3122    Results.push_back(Tmp1);
3123    break;
3124  }
3125  case ISD::VECTOR_SHUFFLE: {
3126    SmallVector<int, 8> Mask;
3127    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3128
3129    // Cast the two input vectors.
3130    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3131    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3132
3133    // Convert the shuffle mask to the right # elements.
3134    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3135    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3136    Results.push_back(Tmp1);
3137    break;
3138  }
3139  case ISD::SETCC: {
3140    unsigned ExtOp = ISD::FP_EXTEND;
3141    if (NVT.isInteger()) {
3142      ISD::CondCode CCCode =
3143        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3144      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3145    }
3146    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3147    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3148    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3149                                  Tmp1, Tmp2, Node->getOperand(2)));
3150    break;
3151  }
3152  }
3153}
3154
3155// SelectionDAG::Legalize - This is the entry point for the file.
3156//
3157void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3158  /// run - This is the main entry point to this class.
3159  ///
3160  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3161}
3162
3163