LegalizeDAG.cpp revision 884b918c2d7ed8dbd804bda72f25729f84a16ab0
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/DebugInfo.h"
15#include "llvm/CodeGen/Analysis.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/Target/TargetFrameLowering.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/CallingConv.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38/// hacks on it until the target machine can handle it.  This involves
39/// eliminating value sizes the machine cannot handle (promoting small sizes to
40/// large sizes or splitting up large values into small values) as well as
41/// eliminating operations the machine cannot handle.
42///
43/// This code also does a small amount of optimization and recognition of idioms
44/// as part of its processing.  For example, if a target does not support a
45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46/// will attempt merge setcc and brc instructions into brcc's.
47///
48namespace {
49class SelectionDAGLegalize {
50  const TargetMachine &TM;
51  const TargetLowering &TLI;
52  SelectionDAG &DAG;
53
54  // Libcall insertion helpers.
55
56  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
57  /// legalized.  We use this to ensure that calls are properly serialized
58  /// against each other, including inserted libcalls.
59  SDValue LastCALLSEQ_END;
60
61  /// IsLegalizingCall - This member is used *only* for purposes of providing
62  /// helpful assertions that a libcall isn't created while another call is
63  /// being legalized (which could lead to non-serialized call sequences).
64  bool IsLegalizingCall;
65
66  /// LegalizedNodes - For nodes that are of legal width, and that have more
67  /// than one use, this map indicates what regularized operand to use.  This
68  /// allows us to avoid legalizing the same thing more than once.
69  DenseMap<SDValue, SDValue> LegalizedNodes;
70
71  void AddLegalizedOperand(SDValue From, SDValue To) {
72    LegalizedNodes.insert(std::make_pair(From, To));
73    // If someone requests legalization of the new node, return itself.
74    if (From != To)
75      LegalizedNodes.insert(std::make_pair(To, To));
76
77    // Transfer SDDbgValues.
78    DAG.TransferDbgValues(From, To);
79  }
80
81public:
82  explicit SelectionDAGLegalize(SelectionDAG &DAG);
83
84  void LegalizeDAG();
85
86private:
87  /// LegalizeOp - Return a legal replacement for the given operation, with
88  /// all legal operands.
89  SDValue LegalizeOp(SDValue O);
90
91  SDValue OptimizeFloatStore(StoreSDNode *ST);
92
93  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
94  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
95  /// is necessary to spill the vector being inserted into to memory, perform
96  /// the insert there, and then read the result back.
97  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
98                                         SDValue Idx, DebugLoc dl);
99  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
100                                  SDValue Idx, DebugLoc dl);
101
102  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
103  /// performs the same shuffe in terms of order or result bytes, but on a type
104  /// whose vector element type is narrower than the original shuffle type.
105  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
106  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
107                                     SDValue N1, SDValue N2,
108                                     SmallVectorImpl<int> &Mask) const;
109
110  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
111                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
112
113  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
114                             DebugLoc dl);
115
116  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
117  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
118                        unsigned NumOps, bool isSigned, DebugLoc dl);
119
120  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
121                                                 SDNode *Node, bool isSigned);
122  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
123                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
124                          RTLIB::Libcall Call_PPCF128);
125  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
126                           RTLIB::Libcall Call_I8,
127                           RTLIB::Libcall Call_I16,
128                           RTLIB::Libcall Call_I32,
129                           RTLIB::Libcall Call_I64,
130                           RTLIB::Libcall Call_I128);
131  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
132
133  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
134  SDValue ExpandBUILD_VECTOR(SDNode *Node);
135  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
136  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
137                                SmallVectorImpl<SDValue> &Results);
138  SDValue ExpandFCOPYSIGN(SDNode *Node);
139  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
140                               DebugLoc dl);
141  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
142                                DebugLoc dl);
143  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
144                                DebugLoc dl);
145
146  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
147  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
148
149  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
150  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
151  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
152
153  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
154
155  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
156  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157};
158}
159
160/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
161/// performs the same shuffe in terms of order or result bytes, but on a type
162/// whose vector element type is narrower than the original shuffle type.
163/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
164SDValue
165SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
166                                                 SDValue N1, SDValue N2,
167                                             SmallVectorImpl<int> &Mask) const {
168  unsigned NumMaskElts = VT.getVectorNumElements();
169  unsigned NumDestElts = NVT.getVectorNumElements();
170  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
171
172  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
173
174  if (NumEltsGrowth == 1)
175    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
176
177  SmallVector<int, 8> NewMask;
178  for (unsigned i = 0; i != NumMaskElts; ++i) {
179    int Idx = Mask[i];
180    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
181      if (Idx < 0)
182        NewMask.push_back(-1);
183      else
184        NewMask.push_back(Idx * NumEltsGrowth + j);
185    }
186  }
187  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
188  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
189  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
190}
191
192SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
193  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
194    DAG(dag) {
195}
196
197void SelectionDAGLegalize::LegalizeDAG() {
198  LastCALLSEQ_END = DAG.getEntryNode();
199  IsLegalizingCall = false;
200
201  // The legalize process is inherently a bottom-up recursive process (users
202  // legalize their uses before themselves).  Given infinite stack space, we
203  // could just start legalizing on the root and traverse the whole graph.  In
204  // practice however, this causes us to run out of stack space on large basic
205  // blocks.  To avoid this problem, compute an ordering of the nodes where each
206  // node is only legalized after all of its operands are legalized.
207  DAG.AssignTopologicalOrder();
208  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
209       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
210    LegalizeOp(SDValue(I, 0));
211
212  // Finally, it's possible the root changed.  Get the new root.
213  SDValue OldRoot = DAG.getRoot();
214  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
215  DAG.setRoot(LegalizedNodes[OldRoot]);
216
217  LegalizedNodes.clear();
218
219  // Remove dead nodes now.
220  DAG.RemoveDeadNodes();
221}
222
223
224/// FindCallEndFromCallStart - Given a chained node that is part of a call
225/// sequence, find the CALLSEQ_END node that terminates the call sequence.
226static SDNode *FindCallEndFromCallStart(SDNode *Node, int depth = 0) {
227  // Nested CALLSEQ_START/END constructs aren't yet legal,
228  // but we can DTRT and handle them correctly here.
229  if (Node->getOpcode() == ISD::CALLSEQ_START)
230    depth++;
231  else if (Node->getOpcode() == ISD::CALLSEQ_END) {
232    depth--;
233    if (depth == 0)
234      return Node;
235  }
236  if (Node->use_empty())
237    return 0;   // No CallSeqEnd
238
239  // The chain is usually at the end.
240  SDValue TheChain(Node, Node->getNumValues()-1);
241  if (TheChain.getValueType() != MVT::Other) {
242    // Sometimes it's at the beginning.
243    TheChain = SDValue(Node, 0);
244    if (TheChain.getValueType() != MVT::Other) {
245      // Otherwise, hunt for it.
246      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
247        if (Node->getValueType(i) == MVT::Other) {
248          TheChain = SDValue(Node, i);
249          break;
250        }
251
252      // Otherwise, we walked into a node without a chain.
253      if (TheChain.getValueType() != MVT::Other)
254        return 0;
255    }
256  }
257
258  for (SDNode::use_iterator UI = Node->use_begin(),
259       E = Node->use_end(); UI != E; ++UI) {
260
261    // Make sure to only follow users of our token chain.
262    SDNode *User = *UI;
263    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
264      if (User->getOperand(i) == TheChain)
265        if (SDNode *Result = FindCallEndFromCallStart(User, depth))
266          return Result;
267  }
268  return 0;
269}
270
271/// FindCallStartFromCallEnd - Given a chained node that is part of a call
272/// sequence, find the CALLSEQ_START node that initiates the call sequence.
273static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
274  int nested = 0;
275  assert(Node && "Didn't find callseq_start for a call??");
276  while (Node->getOpcode() != ISD::CALLSEQ_START || nested) {
277    Node = Node->getOperand(0).getNode();
278    assert(Node->getOperand(0).getValueType() == MVT::Other &&
279           "Node doesn't have a token chain argument!");
280    switch (Node->getOpcode()) {
281    default:
282      break;
283    case ISD::CALLSEQ_START:
284      if (!nested)
285        return Node;
286      nested--;
287      break;
288    case ISD::CALLSEQ_END:
289      nested++;
290      break;
291    }
292  }
293  return 0;
294}
295
296/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
297/// see if any uses can reach Dest.  If no dest operands can get to dest,
298/// legalize them, legalize ourself, and return false, otherwise, return true.
299///
300/// Keep track of the nodes we fine that actually do lead to Dest in
301/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
302///
303bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
304                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
305  if (N == Dest) return true;  // N certainly leads to Dest :)
306
307  // If we've already processed this node and it does lead to Dest, there is no
308  // need to reprocess it.
309  if (NodesLeadingTo.count(N)) return true;
310
311  // If the first result of this node has been already legalized, then it cannot
312  // reach N.
313  if (LegalizedNodes.count(SDValue(N, 0))) return false;
314
315  // Okay, this node has not already been legalized.  Check and legalize all
316  // operands.  If none lead to Dest, then we can legalize this node.
317  bool OperandsLeadToDest = false;
318  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
319    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
320      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
321                                   NodesLeadingTo);
322
323  if (OperandsLeadToDest) {
324    NodesLeadingTo.insert(N);
325    return true;
326  }
327
328  // Okay, this node looks safe, legalize it and return false.
329  LegalizeOp(SDValue(N, 0));
330  return false;
331}
332
333/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
334/// a load from the constant pool.
335static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
336                                SelectionDAG &DAG, const TargetLowering &TLI) {
337  bool Extend = false;
338  DebugLoc dl = CFP->getDebugLoc();
339
340  // If a FP immediate is precise when represented as a float and if the
341  // target can do an extending load from float to double, we put it into
342  // the constant pool as a float, even if it's is statically typed as a
343  // double.  This shrinks FP constants and canonicalizes them for targets where
344  // an FP extending load is the same cost as a normal load (such as on the x87
345  // fp stack or PPC FP unit).
346  EVT VT = CFP->getValueType(0);
347  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
348  if (!UseCP) {
349    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
350    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
351                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
352  }
353
354  EVT OrigVT = VT;
355  EVT SVT = VT;
356  while (SVT != MVT::f32) {
357    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
358    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
359        // Only do this if the target has a native EXTLOAD instruction from
360        // smaller type.
361        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
362        TLI.ShouldShrinkFPConstant(OrigVT)) {
363      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
364      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
365      VT = SVT;
366      Extend = true;
367    }
368  }
369
370  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
371  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
372  if (Extend)
373    return DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
374                          DAG.getEntryNode(),
375                          CPIdx, MachinePointerInfo::getConstantPool(),
376                          VT, false, false, Alignment);
377  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
378                     MachinePointerInfo::getConstantPool(), false, false,
379                     Alignment);
380}
381
382/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
383static
384SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
385                             const TargetLowering &TLI) {
386  SDValue Chain = ST->getChain();
387  SDValue Ptr = ST->getBasePtr();
388  SDValue Val = ST->getValue();
389  EVT VT = Val.getValueType();
390  int Alignment = ST->getAlignment();
391  DebugLoc dl = ST->getDebugLoc();
392  if (ST->getMemoryVT().isFloatingPoint() ||
393      ST->getMemoryVT().isVector()) {
394    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
395    if (TLI.isTypeLegal(intVT)) {
396      // Expand to a bitconvert of the value to the integer type of the
397      // same size, then a (misaligned) int store.
398      // FIXME: Does not handle truncating floating point stores!
399      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
400      return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
401                          ST->isVolatile(), ST->isNonTemporal(), Alignment);
402    }
403    // Do a (aligned) store to a stack slot, then copy from the stack slot
404    // to the final destination using (unaligned) integer loads and stores.
405    EVT StoredVT = ST->getMemoryVT();
406    EVT RegVT =
407      TLI.getRegisterType(*DAG.getContext(),
408                          EVT::getIntegerVT(*DAG.getContext(),
409                                            StoredVT.getSizeInBits()));
410    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
411    unsigned RegBytes = RegVT.getSizeInBits() / 8;
412    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
413
414    // Make sure the stack slot is also aligned for the register type.
415    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
416
417    // Perform the original store, only redirected to the stack slot.
418    SDValue Store = DAG.getTruncStore(Chain, dl,
419                                      Val, StackPtr, MachinePointerInfo(),
420                                      StoredVT, false, false, 0);
421    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
422    SmallVector<SDValue, 8> Stores;
423    unsigned Offset = 0;
424
425    // Do all but one copies using the full register width.
426    for (unsigned i = 1; i < NumRegs; i++) {
427      // Load one integer register's worth from the stack slot.
428      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
429                                 MachinePointerInfo(),
430                                 false, false, 0);
431      // Store it to the final location.  Remember the store.
432      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
433                                  ST->getPointerInfo().getWithOffset(Offset),
434                                    ST->isVolatile(), ST->isNonTemporal(),
435                                    MinAlign(ST->getAlignment(), Offset)));
436      // Increment the pointers.
437      Offset += RegBytes;
438      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
439                             Increment);
440      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
441    }
442
443    // The last store may be partial.  Do a truncating store.  On big-endian
444    // machines this requires an extending load from the stack slot to ensure
445    // that the bits are in the right place.
446    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
447                                  8 * (StoredBytes - Offset));
448
449    // Load from the stack slot.
450    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
451                                  MachinePointerInfo(),
452                                  MemVT, false, false, 0);
453
454    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
455                                       ST->getPointerInfo()
456                                         .getWithOffset(Offset),
457                                       MemVT, ST->isVolatile(),
458                                       ST->isNonTemporal(),
459                                       MinAlign(ST->getAlignment(), Offset)));
460    // The order of the stores doesn't matter - say it with a TokenFactor.
461    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
462                       Stores.size());
463  }
464  assert(ST->getMemoryVT().isInteger() &&
465         !ST->getMemoryVT().isVector() &&
466         "Unaligned store of unknown type.");
467  // Get the half-size VT
468  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
469  int NumBits = NewStoredVT.getSizeInBits();
470  int IncrementSize = NumBits / 8;
471
472  // Divide the stored value in two parts.
473  SDValue ShiftAmount = DAG.getConstant(NumBits,
474                                      TLI.getShiftAmountTy(Val.getValueType()));
475  SDValue Lo = Val;
476  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
477
478  // Store the two parts
479  SDValue Store1, Store2;
480  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
481                             ST->getPointerInfo(), NewStoredVT,
482                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
483  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
484                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
485  Alignment = MinAlign(Alignment, IncrementSize);
486  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
487                             ST->getPointerInfo().getWithOffset(IncrementSize),
488                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
489                             Alignment);
490
491  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
492}
493
494/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
495static
496SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
497                            const TargetLowering &TLI) {
498  SDValue Chain = LD->getChain();
499  SDValue Ptr = LD->getBasePtr();
500  EVT VT = LD->getValueType(0);
501  EVT LoadedVT = LD->getMemoryVT();
502  DebugLoc dl = LD->getDebugLoc();
503  if (VT.isFloatingPoint() || VT.isVector()) {
504    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
505    if (TLI.isTypeLegal(intVT)) {
506      // Expand to a (misaligned) integer load of the same size,
507      // then bitconvert to floating point or vector.
508      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
509                                    LD->isVolatile(),
510                                    LD->isNonTemporal(), LD->getAlignment());
511      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
512      if (VT.isFloatingPoint() && LoadedVT != VT)
513        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
514
515      SDValue Ops[] = { Result, Chain };
516      return DAG.getMergeValues(Ops, 2, dl);
517    }
518
519    // Copy the value to a (aligned) stack slot using (unaligned) integer
520    // loads and stores, then do a (aligned) load from the stack slot.
521    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
522    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
523    unsigned RegBytes = RegVT.getSizeInBits() / 8;
524    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
525
526    // Make sure the stack slot is also aligned for the register type.
527    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
528
529    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
530    SmallVector<SDValue, 8> Stores;
531    SDValue StackPtr = StackBase;
532    unsigned Offset = 0;
533
534    // Do all but one copies using the full register width.
535    for (unsigned i = 1; i < NumRegs; i++) {
536      // Load one integer register's worth from the original location.
537      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
538                                 LD->getPointerInfo().getWithOffset(Offset),
539                                 LD->isVolatile(), LD->isNonTemporal(),
540                                 MinAlign(LD->getAlignment(), Offset));
541      // Follow the load with a store to the stack slot.  Remember the store.
542      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
543                                    MachinePointerInfo(), false, false, 0));
544      // Increment the pointers.
545      Offset += RegBytes;
546      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
547      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
548                             Increment);
549    }
550
551    // The last copy may be partial.  Do an extending load.
552    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
553                                  8 * (LoadedBytes - Offset));
554    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
555                                  LD->getPointerInfo().getWithOffset(Offset),
556                                  MemVT, LD->isVolatile(),
557                                  LD->isNonTemporal(),
558                                  MinAlign(LD->getAlignment(), Offset));
559    // Follow the load with a store to the stack slot.  Remember the store.
560    // On big-endian machines this requires a truncating store to ensure
561    // that the bits end up in the right place.
562    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
563                                       MachinePointerInfo(), MemVT,
564                                       false, false, 0));
565
566    // The order of the stores doesn't matter - say it with a TokenFactor.
567    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
568                             Stores.size());
569
570    // Finally, perform the original load only redirected to the stack slot.
571    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
572                          MachinePointerInfo(), LoadedVT, false, false, 0);
573
574    // Callers expect a MERGE_VALUES node.
575    SDValue Ops[] = { Load, TF };
576    return DAG.getMergeValues(Ops, 2, dl);
577  }
578  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
579         "Unaligned load of unsupported type.");
580
581  // Compute the new VT that is half the size of the old one.  This is an
582  // integer MVT.
583  unsigned NumBits = LoadedVT.getSizeInBits();
584  EVT NewLoadedVT;
585  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
586  NumBits >>= 1;
587
588  unsigned Alignment = LD->getAlignment();
589  unsigned IncrementSize = NumBits / 8;
590  ISD::LoadExtType HiExtType = LD->getExtensionType();
591
592  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
593  if (HiExtType == ISD::NON_EXTLOAD)
594    HiExtType = ISD::ZEXTLOAD;
595
596  // Load the value in two parts
597  SDValue Lo, Hi;
598  if (TLI.isLittleEndian()) {
599    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
600                        NewLoadedVT, LD->isVolatile(),
601                        LD->isNonTemporal(), Alignment);
602    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
603                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
604    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
605                        LD->getPointerInfo().getWithOffset(IncrementSize),
606                        NewLoadedVT, LD->isVolatile(),
607                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
608  } else {
609    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
610                        NewLoadedVT, LD->isVolatile(),
611                        LD->isNonTemporal(), Alignment);
612    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
613                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
614    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
615                        LD->getPointerInfo().getWithOffset(IncrementSize),
616                        NewLoadedVT, LD->isVolatile(),
617                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
618  }
619
620  // aggregate the two parts
621  SDValue ShiftAmount = DAG.getConstant(NumBits,
622                                       TLI.getShiftAmountTy(Hi.getValueType()));
623  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
624  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
625
626  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
627                             Hi.getValue(1));
628
629  SDValue Ops[] = { Result, TF };
630  return DAG.getMergeValues(Ops, 2, dl);
631}
632
633/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
634/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
635/// is necessary to spill the vector being inserted into to memory, perform
636/// the insert there, and then read the result back.
637SDValue SelectionDAGLegalize::
638PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
639                               DebugLoc dl) {
640  SDValue Tmp1 = Vec;
641  SDValue Tmp2 = Val;
642  SDValue Tmp3 = Idx;
643
644  // If the target doesn't support this, we have to spill the input vector
645  // to a temporary stack slot, update the element, then reload it.  This is
646  // badness.  We could also load the value into a vector register (either
647  // with a "move to register" or "extload into register" instruction, then
648  // permute it into place, if the idx is a constant and if the idx is
649  // supported by the target.
650  EVT VT    = Tmp1.getValueType();
651  EVT EltVT = VT.getVectorElementType();
652  EVT IdxVT = Tmp3.getValueType();
653  EVT PtrVT = TLI.getPointerTy();
654  SDValue StackPtr = DAG.CreateStackTemporary(VT);
655
656  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
657
658  // Store the vector.
659  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
660                            MachinePointerInfo::getFixedStack(SPFI),
661                            false, false, 0);
662
663  // Truncate or zero extend offset to target pointer type.
664  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
665  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
666  // Add the offset to the index.
667  unsigned EltSize = EltVT.getSizeInBits()/8;
668  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
669  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
670  // Store the scalar value.
671  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
672                         false, false, 0);
673  // Load the updated vector.
674  return DAG.getLoad(VT, dl, Ch, StackPtr,
675                     MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
676}
677
678
679SDValue SelectionDAGLegalize::
680ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
681  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
682    // SCALAR_TO_VECTOR requires that the type of the value being inserted
683    // match the element type of the vector being created, except for
684    // integers in which case the inserted value can be over width.
685    EVT EltVT = Vec.getValueType().getVectorElementType();
686    if (Val.getValueType() == EltVT ||
687        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
688      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
689                                  Vec.getValueType(), Val);
690
691      unsigned NumElts = Vec.getValueType().getVectorNumElements();
692      // We generate a shuffle of InVec and ScVec, so the shuffle mask
693      // should be 0,1,2,3,4,5... with the appropriate element replaced with
694      // elt 0 of the RHS.
695      SmallVector<int, 8> ShufOps;
696      for (unsigned i = 0; i != NumElts; ++i)
697        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
698
699      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
700                                  &ShufOps[0]);
701    }
702  }
703  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
704}
705
706SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
707  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
708  // FIXME: We shouldn't do this for TargetConstantFP's.
709  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
710  // to phase ordering between legalized code and the dag combiner.  This
711  // probably means that we need to integrate dag combiner and legalizer
712  // together.
713  // We generally can't do this one for long doubles.
714  SDValue Tmp1 = ST->getChain();
715  SDValue Tmp2 = ST->getBasePtr();
716  SDValue Tmp3;
717  unsigned Alignment = ST->getAlignment();
718  bool isVolatile = ST->isVolatile();
719  bool isNonTemporal = ST->isNonTemporal();
720  DebugLoc dl = ST->getDebugLoc();
721  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
722    if (CFP->getValueType(0) == MVT::f32 &&
723        TLI.isTypeLegal(MVT::i32)) {
724      Tmp3 = DAG.getConstant(CFP->getValueAPF().
725                                      bitcastToAPInt().zextOrTrunc(32),
726                              MVT::i32);
727      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
728                          isVolatile, isNonTemporal, Alignment);
729    }
730
731    if (CFP->getValueType(0) == MVT::f64) {
732      // If this target supports 64-bit registers, do a single 64-bit store.
733      if (TLI.isTypeLegal(MVT::i64)) {
734        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
735                                  zextOrTrunc(64), MVT::i64);
736        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
737                            isVolatile, isNonTemporal, Alignment);
738      }
739
740      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
741        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
742        // stores.  If the target supports neither 32- nor 64-bits, this
743        // xform is certainly not worth it.
744        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
745        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
746        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
747        if (TLI.isBigEndian()) std::swap(Lo, Hi);
748
749        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
750                          isNonTemporal, Alignment);
751        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
752                            DAG.getIntPtrConstant(4));
753        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
754                          ST->getPointerInfo().getWithOffset(4),
755                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
756
757        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
758      }
759    }
760  }
761  return SDValue(0, 0);
762}
763
764/// LegalizeOp - Return a legal replacement for the given operation, with
765/// all legal operands.
766SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
767  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
768    return Op;
769
770  SDNode *Node = Op.getNode();
771  DebugLoc dl = Node->getDebugLoc();
772
773  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
774    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
775             TargetLowering::TypeLegal &&
776           "Unexpected illegal type!");
777
778  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
779    assert((TLI.getTypeAction(*DAG.getContext(),
780                              Node->getOperand(i).getValueType()) ==
781              TargetLowering::TypeLegal ||
782            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
783           "Unexpected illegal type!");
784
785  // Note that LegalizeOp may be reentered even from single-use nodes, which
786  // means that we always must cache transformed nodes.
787  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
788  if (I != LegalizedNodes.end()) return I->second;
789
790  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
791  SDValue Result = Op;
792  bool isCustom = false;
793
794  // Figure out the correct action; the way to query this varies by opcode
795  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
796  bool SimpleFinishLegalizing = true;
797  switch (Node->getOpcode()) {
798  case ISD::INTRINSIC_W_CHAIN:
799  case ISD::INTRINSIC_WO_CHAIN:
800  case ISD::INTRINSIC_VOID:
801  case ISD::VAARG:
802  case ISD::STACKSAVE:
803    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
804    break;
805  case ISD::SINT_TO_FP:
806  case ISD::UINT_TO_FP:
807  case ISD::EXTRACT_VECTOR_ELT:
808    Action = TLI.getOperationAction(Node->getOpcode(),
809                                    Node->getOperand(0).getValueType());
810    break;
811  case ISD::FP_ROUND_INREG:
812  case ISD::SIGN_EXTEND_INREG: {
813    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
814    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
815    break;
816  }
817  case ISD::ATOMIC_STORE: {
818    Action = TLI.getOperationAction(Node->getOpcode(),
819                                    Node->getOperand(2).getValueType());
820    break;
821  }
822  case ISD::SELECT_CC:
823  case ISD::SETCC:
824  case ISD::BR_CC: {
825    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
826                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
827    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
828    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
829    ISD::CondCode CCCode =
830        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
831    Action = TLI.getCondCodeAction(CCCode, OpVT);
832    if (Action == TargetLowering::Legal) {
833      if (Node->getOpcode() == ISD::SELECT_CC)
834        Action = TLI.getOperationAction(Node->getOpcode(),
835                                        Node->getValueType(0));
836      else
837        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
838    }
839    break;
840  }
841  case ISD::LOAD:
842  case ISD::STORE:
843    // FIXME: Model these properly.  LOAD and STORE are complicated, and
844    // STORE expects the unlegalized operand in some cases.
845    SimpleFinishLegalizing = false;
846    break;
847  case ISD::CALLSEQ_START:
848  case ISD::CALLSEQ_END:
849    // FIXME: This shouldn't be necessary.  These nodes have special properties
850    // dealing with the recursive nature of legalization.  Removing this
851    // special case should be done as part of making LegalizeDAG non-recursive.
852    SimpleFinishLegalizing = false;
853    break;
854  case ISD::EXTRACT_ELEMENT:
855  case ISD::FLT_ROUNDS_:
856  case ISD::SADDO:
857  case ISD::SSUBO:
858  case ISD::UADDO:
859  case ISD::USUBO:
860  case ISD::SMULO:
861  case ISD::UMULO:
862  case ISD::FPOWI:
863  case ISD::MERGE_VALUES:
864  case ISD::EH_RETURN:
865  case ISD::FRAME_TO_ARGS_OFFSET:
866  case ISD::EH_SJLJ_SETJMP:
867  case ISD::EH_SJLJ_LONGJMP:
868  case ISD::EH_SJLJ_DISPATCHSETUP:
869    // These operations lie about being legal: when they claim to be legal,
870    // they should actually be expanded.
871    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
872    if (Action == TargetLowering::Legal)
873      Action = TargetLowering::Expand;
874    break;
875  case ISD::INIT_TRAMPOLINE:
876  case ISD::ADJUST_TRAMPOLINE:
877  case ISD::FRAMEADDR:
878  case ISD::RETURNADDR:
879    // These operations lie about being legal: when they claim to be legal,
880    // they should actually be custom-lowered.
881    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
882    if (Action == TargetLowering::Legal)
883      Action = TargetLowering::Custom;
884    break;
885  case ISD::BUILD_VECTOR:
886    // A weird case: legalization for BUILD_VECTOR never legalizes the
887    // operands!
888    // FIXME: This really sucks... changing it isn't semantically incorrect,
889    // but it massively pessimizes the code for floating-point BUILD_VECTORs
890    // because ConstantFP operands get legalized into constant pool loads
891    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
892    // though, because BUILD_VECTORS usually get lowered into other nodes
893    // which get legalized properly.
894    SimpleFinishLegalizing = false;
895    break;
896  default:
897    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
898      Action = TargetLowering::Legal;
899    } else {
900      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
901    }
902    break;
903  }
904
905  if (SimpleFinishLegalizing) {
906    SmallVector<SDValue, 8> Ops, ResultVals;
907    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
908      Ops.push_back(LegalizeOp(Node->getOperand(i)));
909    switch (Node->getOpcode()) {
910    default: break;
911    case ISD::BR:
912    case ISD::BRIND:
913    case ISD::BR_JT:
914    case ISD::BR_CC:
915    case ISD::BRCOND:
916      // Branches tweak the chain to include LastCALLSEQ_END
917      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
918                           LastCALLSEQ_END);
919      Ops[0] = LegalizeOp(Ops[0]);
920      LastCALLSEQ_END = DAG.getEntryNode();
921      break;
922    case ISD::SHL:
923    case ISD::SRL:
924    case ISD::SRA:
925    case ISD::ROTL:
926    case ISD::ROTR:
927      // Legalizing shifts/rotates requires adjusting the shift amount
928      // to the appropriate width.
929      if (!Ops[1].getValueType().isVector())
930        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(),
931                                                      Ops[1]));
932      break;
933    case ISD::SRL_PARTS:
934    case ISD::SRA_PARTS:
935    case ISD::SHL_PARTS:
936      // Legalizing shifts/rotates requires adjusting the shift amount
937      // to the appropriate width.
938      if (!Ops[2].getValueType().isVector())
939        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(),
940                                                      Ops[2]));
941      break;
942    }
943
944    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
945                                            Ops.size()), 0);
946    switch (Action) {
947    case TargetLowering::Legal:
948      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
949        ResultVals.push_back(Result.getValue(i));
950      break;
951    case TargetLowering::Custom:
952      // FIXME: The handling for custom lowering with multiple results is
953      // a complete mess.
954      Tmp1 = TLI.LowerOperation(Result, DAG);
955      if (Tmp1.getNode()) {
956        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
957          if (e == 1)
958            ResultVals.push_back(Tmp1);
959          else
960            ResultVals.push_back(Tmp1.getValue(i));
961        }
962        break;
963      }
964
965      // FALL THROUGH
966    case TargetLowering::Expand:
967      ExpandNode(Result.getNode(), ResultVals);
968      break;
969    case TargetLowering::Promote:
970      PromoteNode(Result.getNode(), ResultVals);
971      break;
972    }
973    if (!ResultVals.empty()) {
974      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
975        if (ResultVals[i] != SDValue(Node, i))
976          ResultVals[i] = LegalizeOp(ResultVals[i]);
977        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
978      }
979      return ResultVals[Op.getResNo()];
980    }
981  }
982
983  switch (Node->getOpcode()) {
984  default:
985#ifndef NDEBUG
986    dbgs() << "NODE: ";
987    Node->dump( &DAG);
988    dbgs() << "\n";
989#endif
990    assert(0 && "Do not know how to legalize this operator!");
991
992  case ISD::BUILD_VECTOR:
993    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
994    default: assert(0 && "This action is not supported yet!");
995    case TargetLowering::Custom:
996      Tmp3 = TLI.LowerOperation(Result, DAG);
997      if (Tmp3.getNode()) {
998        Result = Tmp3;
999        break;
1000      }
1001      // FALLTHROUGH
1002    case TargetLowering::Expand:
1003      Result = ExpandBUILD_VECTOR(Result.getNode());
1004      break;
1005    }
1006    break;
1007  case ISD::CALLSEQ_START: {
1008    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1009
1010    // Recursively Legalize all of the inputs of the call end that do not lead
1011    // to this call start.  This ensures that any libcalls that need be inserted
1012    // are inserted *before* the CALLSEQ_START.
1013    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1014    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1015      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1016                                   NodesLeadingTo);
1017    }
1018
1019    // Now that we have legalized all of the inputs (which may have inserted
1020    // libcalls), create the new CALLSEQ_START node.
1021    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1022
1023    // Merge in the last call to ensure that this call starts after the last
1024    // call ended.
1025    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1026      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1027                         Tmp1, LastCALLSEQ_END);
1028      Tmp1 = LegalizeOp(Tmp1);
1029    }
1030
1031    // Do not try to legalize the target-specific arguments (#1+).
1032    if (Tmp1 != Node->getOperand(0)) {
1033      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1034      Ops[0] = Tmp1;
1035      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1036                                              Ops.size()), Result.getResNo());
1037    }
1038
1039    // Remember that the CALLSEQ_START is legalized.
1040    AddLegalizedOperand(Op.getValue(0), Result);
1041    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1042      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1043
1044    // Now that the callseq_start and all of the non-call nodes above this call
1045    // sequence have been legalized, legalize the call itself.  During this
1046    // process, no libcalls can/will be inserted, guaranteeing that no calls
1047    // can overlap.
1048    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1049    // Note that we are selecting this call!
1050    LastCALLSEQ_END = SDValue(CallEnd, 0);
1051    IsLegalizingCall = true;
1052
1053    // Legalize the call, starting from the CALLSEQ_END.
1054    LegalizeOp(LastCALLSEQ_END);
1055    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1056    return Result;
1057  }
1058  case ISD::CALLSEQ_END:
1059    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1060    // will cause this node to be legalized as well as handling libcalls right.
1061    if (LastCALLSEQ_END.getNode() != Node) {
1062      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1063      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1064      assert(I != LegalizedNodes.end() &&
1065             "Legalizing the call start should have legalized this node!");
1066      return I->second;
1067    }
1068
1069    // Otherwise, the call start has been legalized and everything is going
1070    // according to plan.  Just legalize ourselves normally here.
1071    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1072    // Do not try to legalize the target-specific arguments (#1+), except for
1073    // an optional flag input.
1074    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Glue){
1075      if (Tmp1 != Node->getOperand(0)) {
1076        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1077        Ops[0] = Tmp1;
1078        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1079                                                &Ops[0], Ops.size()),
1080                         Result.getResNo());
1081      }
1082    } else {
1083      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1084      if (Tmp1 != Node->getOperand(0) ||
1085          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1086        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1087        Ops[0] = Tmp1;
1088        Ops.back() = Tmp2;
1089        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1090                                                &Ops[0], Ops.size()),
1091                         Result.getResNo());
1092      }
1093    }
1094    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1095    // This finishes up call legalization.
1096    IsLegalizingCall = false;
1097
1098    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1099    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1100    if (Node->getNumValues() == 2)
1101      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1102    return Result.getValue(Op.getResNo());
1103  case ISD::LOAD: {
1104    LoadSDNode *LD = cast<LoadSDNode>(Node);
1105    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1106    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1107
1108    ISD::LoadExtType ExtType = LD->getExtensionType();
1109    if (ExtType == ISD::NON_EXTLOAD) {
1110      EVT VT = Node->getValueType(0);
1111      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1112                                              Tmp1, Tmp2, LD->getOffset()),
1113                       Result.getResNo());
1114      Tmp3 = Result.getValue(0);
1115      Tmp4 = Result.getValue(1);
1116
1117      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1118      default: assert(0 && "This action is not supported yet!");
1119      case TargetLowering::Legal:
1120        // If this is an unaligned load and the target doesn't support it,
1121        // expand it.
1122        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1123          Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1124          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1125          if (LD->getAlignment() < ABIAlignment){
1126            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1127                                         DAG, TLI);
1128            Tmp3 = Result.getOperand(0);
1129            Tmp4 = Result.getOperand(1);
1130            Tmp3 = LegalizeOp(Tmp3);
1131            Tmp4 = LegalizeOp(Tmp4);
1132          }
1133        }
1134        break;
1135      case TargetLowering::Custom:
1136        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1137        if (Tmp1.getNode()) {
1138          Tmp3 = LegalizeOp(Tmp1);
1139          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1140        }
1141        break;
1142      case TargetLowering::Promote: {
1143        // Only promote a load of vector type to another.
1144        assert(VT.isVector() && "Cannot promote this load!");
1145        // Change base type to a different vector type.
1146        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1147
1148        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
1149                           LD->isVolatile(), LD->isNonTemporal(),
1150                           LD->getAlignment());
1151        Tmp3 = LegalizeOp(DAG.getNode(ISD::BITCAST, dl, VT, Tmp1));
1152        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1153        break;
1154      }
1155      }
1156      // Since loads produce two values, make sure to remember that we
1157      // legalized both of them.
1158      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1159      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1160      return Op.getResNo() ? Tmp4 : Tmp3;
1161    }
1162
1163    EVT SrcVT = LD->getMemoryVT();
1164    unsigned SrcWidth = SrcVT.getSizeInBits();
1165    unsigned Alignment = LD->getAlignment();
1166    bool isVolatile = LD->isVolatile();
1167    bool isNonTemporal = LD->isNonTemporal();
1168
1169    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1170        // Some targets pretend to have an i1 loading operation, and actually
1171        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1172        // bits are guaranteed to be zero; it helps the optimizers understand
1173        // that these bits are zero.  It is also useful for EXTLOAD, since it
1174        // tells the optimizers that those bits are undefined.  It would be
1175        // nice to have an effective generic way of getting these benefits...
1176        // Until such a way is found, don't insist on promoting i1 here.
1177        (SrcVT != MVT::i1 ||
1178         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1179      // Promote to a byte-sized load if not loading an integral number of
1180      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1181      unsigned NewWidth = SrcVT.getStoreSizeInBits();
1182      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1183      SDValue Ch;
1184
1185      // The extra bits are guaranteed to be zero, since we stored them that
1186      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1187
1188      ISD::LoadExtType NewExtType =
1189        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1190
1191      Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1192                              Tmp1, Tmp2, LD->getPointerInfo(),
1193                              NVT, isVolatile, isNonTemporal, Alignment);
1194
1195      Ch = Result.getValue(1); // The chain.
1196
1197      if (ExtType == ISD::SEXTLOAD)
1198        // Having the top bits zero doesn't help when sign extending.
1199        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1200                             Result.getValueType(),
1201                             Result, DAG.getValueType(SrcVT));
1202      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1203        // All the top bits are guaranteed to be zero - inform the optimizers.
1204        Result = DAG.getNode(ISD::AssertZext, dl,
1205                             Result.getValueType(), Result,
1206                             DAG.getValueType(SrcVT));
1207
1208      Tmp1 = LegalizeOp(Result);
1209      Tmp2 = LegalizeOp(Ch);
1210    } else if (SrcWidth & (SrcWidth - 1)) {
1211      // If not loading a power-of-2 number of bits, expand as two loads.
1212      assert(!SrcVT.isVector() && "Unsupported extload!");
1213      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1214      assert(RoundWidth < SrcWidth);
1215      unsigned ExtraWidth = SrcWidth - RoundWidth;
1216      assert(ExtraWidth < RoundWidth);
1217      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1218             "Load size not an integral number of bytes!");
1219      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1220      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1221      SDValue Lo, Hi, Ch;
1222      unsigned IncrementSize;
1223
1224      if (TLI.isLittleEndian()) {
1225        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1226        // Load the bottom RoundWidth bits.
1227        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1228                            Tmp1, Tmp2,
1229                            LD->getPointerInfo(), RoundVT, isVolatile,
1230                            isNonTemporal, Alignment);
1231
1232        // Load the remaining ExtraWidth bits.
1233        IncrementSize = RoundWidth / 8;
1234        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1235                           DAG.getIntPtrConstant(IncrementSize));
1236        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1237                            LD->getPointerInfo().getWithOffset(IncrementSize),
1238                            ExtraVT, isVolatile, isNonTemporal,
1239                            MinAlign(Alignment, IncrementSize));
1240
1241        // Build a factor node to remember that this load is independent of
1242        // the other one.
1243        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1244                         Hi.getValue(1));
1245
1246        // Move the top bits to the right place.
1247        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1248                         DAG.getConstant(RoundWidth,
1249                                      TLI.getShiftAmountTy(Hi.getValueType())));
1250
1251        // Join the hi and lo parts.
1252        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1253      } else {
1254        // Big endian - avoid unaligned loads.
1255        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1256        // Load the top RoundWidth bits.
1257        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1258                            LD->getPointerInfo(), RoundVT, isVolatile,
1259                            isNonTemporal, Alignment);
1260
1261        // Load the remaining ExtraWidth bits.
1262        IncrementSize = RoundWidth / 8;
1263        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1264                           DAG.getIntPtrConstant(IncrementSize));
1265        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1266                            dl, Node->getValueType(0), Tmp1, Tmp2,
1267                            LD->getPointerInfo().getWithOffset(IncrementSize),
1268                            ExtraVT, isVolatile, isNonTemporal,
1269                            MinAlign(Alignment, IncrementSize));
1270
1271        // Build a factor node to remember that this load is independent of
1272        // the other one.
1273        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1274                         Hi.getValue(1));
1275
1276        // Move the top bits to the right place.
1277        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1278                         DAG.getConstant(ExtraWidth,
1279                                      TLI.getShiftAmountTy(Hi.getValueType())));
1280
1281        // Join the hi and lo parts.
1282        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1283      }
1284
1285      Tmp1 = LegalizeOp(Result);
1286      Tmp2 = LegalizeOp(Ch);
1287    } else {
1288      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1289      default: assert(0 && "This action is not supported yet!");
1290      case TargetLowering::Custom:
1291        isCustom = true;
1292        // FALLTHROUGH
1293      case TargetLowering::Legal:
1294        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1295                                                Tmp1, Tmp2, LD->getOffset()),
1296                         Result.getResNo());
1297        Tmp1 = Result.getValue(0);
1298        Tmp2 = Result.getValue(1);
1299
1300        if (isCustom) {
1301          Tmp3 = TLI.LowerOperation(Result, DAG);
1302          if (Tmp3.getNode()) {
1303            Tmp1 = LegalizeOp(Tmp3);
1304            Tmp2 = LegalizeOp(Tmp3.getValue(1));
1305          }
1306        } else {
1307          // If this is an unaligned load and the target doesn't support it,
1308          // expand it.
1309          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1310            Type *Ty =
1311              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1312            unsigned ABIAlignment =
1313              TLI.getTargetData()->getABITypeAlignment(Ty);
1314            if (LD->getAlignment() < ABIAlignment){
1315              Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1316                                           DAG, TLI);
1317              Tmp1 = Result.getOperand(0);
1318              Tmp2 = Result.getOperand(1);
1319              Tmp1 = LegalizeOp(Tmp1);
1320              Tmp2 = LegalizeOp(Tmp2);
1321            }
1322          }
1323        }
1324        break;
1325      case TargetLowering::Expand:
1326        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1327          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1328                                     LD->getPointerInfo(),
1329                                     LD->isVolatile(), LD->isNonTemporal(),
1330                                     LD->getAlignment());
1331          unsigned ExtendOp;
1332          switch (ExtType) {
1333          case ISD::EXTLOAD:
1334            ExtendOp = (SrcVT.isFloatingPoint() ?
1335                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1336            break;
1337          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1338          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1339          default: llvm_unreachable("Unexpected extend load type!");
1340          }
1341          Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1342          Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1343          Tmp2 = LegalizeOp(Load.getValue(1));
1344          break;
1345        }
1346
1347        // If this is a promoted vector load, and the vector element types are
1348        // legal, then scalarize it.
1349        if (ExtType == ISD::EXTLOAD && SrcVT.isVector() &&
1350          TLI.isTypeLegal(Node->getValueType(0).getScalarType())) {
1351          SmallVector<SDValue, 8> LoadVals;
1352          SmallVector<SDValue, 8> LoadChains;
1353          unsigned NumElem = SrcVT.getVectorNumElements();
1354          unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
1355
1356          for (unsigned Idx=0; Idx<NumElem; Idx++) {
1357            Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1358                                DAG.getIntPtrConstant(Stride));
1359            SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl,
1360                  Node->getValueType(0).getScalarType(),
1361                  Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride),
1362                  SrcVT.getScalarType(),
1363                  LD->isVolatile(), LD->isNonTemporal(),
1364                  LD->getAlignment());
1365
1366            LoadVals.push_back(ScalarLoad.getValue(0));
1367            LoadChains.push_back(ScalarLoad.getValue(1));
1368          }
1369          Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1370            &LoadChains[0], LoadChains.size());
1371          SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl,
1372            Node->getValueType(0), &LoadVals[0], LoadVals.size());
1373
1374          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1375          Tmp2 = LegalizeOp(Result.getValue(0));  // Relegalize new nodes.
1376          break;
1377        }
1378
1379        // If this is a promoted vector load, and the vector element types are
1380        // illegal, create the promoted vector from bitcasted segments.
1381        if (ExtType == ISD::EXTLOAD && SrcVT.isVector()) {
1382          EVT MemElemTy = Node->getValueType(0).getScalarType();
1383          EVT SrcSclrTy = SrcVT.getScalarType();
1384          unsigned SizeRatio =
1385            (MemElemTy.getSizeInBits() / SrcSclrTy.getSizeInBits());
1386
1387          SmallVector<SDValue, 8> LoadVals;
1388          SmallVector<SDValue, 8> LoadChains;
1389          unsigned NumElem = SrcVT.getVectorNumElements();
1390          unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
1391
1392          for (unsigned Idx=0; Idx<NumElem; Idx++) {
1393            Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1394                                DAG.getIntPtrConstant(Stride));
1395            SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl,
1396                  SrcVT.getScalarType(),
1397                  Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride),
1398                  SrcVT.getScalarType(),
1399                  LD->isVolatile(), LD->isNonTemporal(),
1400                  LD->getAlignment());
1401            if (TLI.isBigEndian()) {
1402              // MSB (which is garbage, comes first)
1403              LoadVals.push_back(ScalarLoad.getValue(0));
1404              for (unsigned i = 0; i<SizeRatio-1; ++i)
1405                LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType()));
1406            } else {
1407              // LSB (which is data, comes first)
1408              for (unsigned i = 0; i<SizeRatio-1; ++i)
1409                LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType()));
1410              LoadVals.push_back(ScalarLoad.getValue(0));
1411            }
1412            LoadChains.push_back(ScalarLoad.getValue(1));
1413          }
1414
1415          Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1416            &LoadChains[0], LoadChains.size());
1417          EVT TempWideVector = EVT::getVectorVT(*DAG.getContext(),
1418            SrcVT.getScalarType(), NumElem*SizeRatio);
1419          SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl,
1420            TempWideVector, &LoadVals[0], LoadVals.size());
1421
1422          // Cast to the correct type
1423          ValRes = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), ValRes);
1424
1425          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1426          Tmp2 = LegalizeOp(Result.getValue(0));  // Relegalize new nodes.
1427          break;
1428
1429        }
1430
1431        // FIXME: This does not work for vectors on most targets.  Sign- and
1432        // zero-extend operations are currently folded into extending loads,
1433        // whether they are legal or not, and then we end up here without any
1434        // support for legalizing them.
1435        assert(ExtType != ISD::EXTLOAD &&
1436               "EXTLOAD should always be supported!");
1437        // Turn the unsupported load into an EXTLOAD followed by an explicit
1438        // zero/sign extend inreg.
1439        Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1440                                Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1441                                LD->isVolatile(), LD->isNonTemporal(),
1442                                LD->getAlignment());
1443        SDValue ValRes;
1444        if (ExtType == ISD::SEXTLOAD)
1445          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1446                               Result.getValueType(),
1447                               Result, DAG.getValueType(SrcVT));
1448        else
1449          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1450        Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1451        Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1452        break;
1453      }
1454    }
1455
1456    // Since loads produce two values, make sure to remember that we legalized
1457    // both of them.
1458    AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1459    AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1460    return Op.getResNo() ? Tmp2 : Tmp1;
1461  }
1462  case ISD::STORE: {
1463    StoreSDNode *ST = cast<StoreSDNode>(Node);
1464    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1465    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1466    unsigned Alignment = ST->getAlignment();
1467    bool isVolatile = ST->isVolatile();
1468    bool isNonTemporal = ST->isNonTemporal();
1469
1470    if (!ST->isTruncatingStore()) {
1471      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1472        Result = SDValue(OptStore, 0);
1473        break;
1474      }
1475
1476      {
1477        Tmp3 = LegalizeOp(ST->getValue());
1478        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1479                                                Tmp1, Tmp3, Tmp2,
1480                                                ST->getOffset()),
1481                         Result.getResNo());
1482
1483        EVT VT = Tmp3.getValueType();
1484        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1485        default: assert(0 && "This action is not supported yet!");
1486        case TargetLowering::Legal:
1487          // If this is an unaligned store and the target doesn't support it,
1488          // expand it.
1489          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1490            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1491            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1492            if (ST->getAlignment() < ABIAlignment)
1493              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1494                                            DAG, TLI);
1495          }
1496          break;
1497        case TargetLowering::Custom:
1498          Tmp1 = TLI.LowerOperation(Result, DAG);
1499          if (Tmp1.getNode()) Result = Tmp1;
1500          break;
1501        case TargetLowering::Promote:
1502          assert(VT.isVector() && "Unknown legal promote case!");
1503          Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1504                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1505          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1506                                ST->getPointerInfo(), isVolatile,
1507                                isNonTemporal, Alignment);
1508          break;
1509        }
1510        break;
1511      }
1512    } else {
1513      Tmp3 = LegalizeOp(ST->getValue());
1514
1515      EVT StVT = ST->getMemoryVT();
1516      unsigned StWidth = StVT.getSizeInBits();
1517
1518      if (StWidth != StVT.getStoreSizeInBits()) {
1519        // Promote to a byte-sized store with upper bits zero if not
1520        // storing an integral number of bytes.  For example, promote
1521        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1522        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1523                                    StVT.getStoreSizeInBits());
1524        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1525        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1526                                   NVT, isVolatile, isNonTemporal, Alignment);
1527      } else if (StWidth & (StWidth - 1)) {
1528        // If not storing a power-of-2 number of bits, expand as two stores.
1529        assert(!StVT.isVector() && "Unsupported truncstore!");
1530        unsigned RoundWidth = 1 << Log2_32(StWidth);
1531        assert(RoundWidth < StWidth);
1532        unsigned ExtraWidth = StWidth - RoundWidth;
1533        assert(ExtraWidth < RoundWidth);
1534        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1535               "Store size not an integral number of bytes!");
1536        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1537        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1538        SDValue Lo, Hi;
1539        unsigned IncrementSize;
1540
1541        if (TLI.isLittleEndian()) {
1542          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1543          // Store the bottom RoundWidth bits.
1544          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1545                                 RoundVT,
1546                                 isVolatile, isNonTemporal, Alignment);
1547
1548          // Store the remaining ExtraWidth bits.
1549          IncrementSize = RoundWidth / 8;
1550          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1551                             DAG.getIntPtrConstant(IncrementSize));
1552          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1553                           DAG.getConstant(RoundWidth,
1554                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1555          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1556                             ST->getPointerInfo().getWithOffset(IncrementSize),
1557                                 ExtraVT, isVolatile, isNonTemporal,
1558                                 MinAlign(Alignment, IncrementSize));
1559        } else {
1560          // Big endian - avoid unaligned stores.
1561          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1562          // Store the top RoundWidth bits.
1563          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1564                           DAG.getConstant(ExtraWidth,
1565                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1566          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1567                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1568
1569          // Store the remaining ExtraWidth bits.
1570          IncrementSize = RoundWidth / 8;
1571          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1572                             DAG.getIntPtrConstant(IncrementSize));
1573          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1574                              ST->getPointerInfo().getWithOffset(IncrementSize),
1575                                 ExtraVT, isVolatile, isNonTemporal,
1576                                 MinAlign(Alignment, IncrementSize));
1577        }
1578
1579        // The order of the stores doesn't matter.
1580        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1581      } else {
1582        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1583            Tmp2 != ST->getBasePtr())
1584          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1585                                                  Tmp1, Tmp3, Tmp2,
1586                                                  ST->getOffset()),
1587                           Result.getResNo());
1588
1589        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1590        default: assert(0 && "This action is not supported yet!");
1591        case TargetLowering::Legal:
1592          // If this is an unaligned store and the target doesn't support it,
1593          // expand it.
1594          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1595            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1596            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1597            if (ST->getAlignment() < ABIAlignment)
1598              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1599                                            DAG, TLI);
1600          }
1601          break;
1602        case TargetLowering::Custom:
1603          Result = TLI.LowerOperation(Result, DAG);
1604          break;
1605        case TargetLowering::Expand:
1606
1607          EVT WideScalarVT = Tmp3.getValueType().getScalarType();
1608          EVT NarrowScalarVT = StVT.getScalarType();
1609
1610          if (StVT.isVector()) {
1611            unsigned NumElem = StVT.getVectorNumElements();
1612            // The type of the data we want to save
1613            EVT RegVT = Tmp3.getValueType();
1614            EVT RegSclVT = RegVT.getScalarType();
1615            // The type of data as saved in memory.
1616            EVT MemSclVT = StVT.getScalarType();
1617
1618            bool RegScalarLegal = TLI.isTypeLegal(RegSclVT);
1619            bool MemScalarLegal = TLI.isTypeLegal(MemSclVT);
1620
1621            // We need to expand this store. If the register element type
1622            // is legal then we can scalarize the vector and use
1623            // truncating stores.
1624            if (RegScalarLegal) {
1625              // Cast floats into integers
1626              unsigned ScalarSize = MemSclVT.getSizeInBits();
1627              EVT EltVT = EVT::getIntegerVT(*DAG.getContext(), ScalarSize);
1628
1629              // Round odd types to the next pow of two.
1630              if (!isPowerOf2_32(ScalarSize))
1631                ScalarSize = NextPowerOf2(ScalarSize);
1632
1633              // Store Stride in bytes
1634              unsigned Stride = ScalarSize/8;
1635              // Extract each of the elements from the original vector
1636              // and save them into memory individually.
1637              SmallVector<SDValue, 8> Stores;
1638              for (unsigned Idx = 0; Idx < NumElem; Idx++) {
1639                SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1640                                RegSclVT, Tmp3, DAG.getIntPtrConstant(Idx));
1641
1642                Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1643                                   DAG.getIntPtrConstant(Stride));
1644
1645                // This scalar TruncStore may be illegal, but we lehalize it
1646                // later.
1647                SDValue Store = DAG.getTruncStore(Tmp1, dl, Ex, Tmp2,
1648                      ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
1649                      isVolatile, isNonTemporal, Alignment);
1650
1651                Stores.push_back(Store);
1652              }
1653
1654              Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1655                                   &Stores[0], Stores.size());
1656              break;
1657            }
1658
1659            // The scalar register type is illegal.
1660            // For example saving <2 x i64> -> <2 x i32> on a x86.
1661            // In here we bitcast the value into a vector of smaller parts and
1662            // save it using smaller scalars.
1663            if (!RegScalarLegal && MemScalarLegal) {
1664              // Store Stride in bytes
1665              unsigned Stride = MemSclVT.getSizeInBits()/8;
1666
1667              unsigned SizeRatio =
1668                (RegSclVT.getSizeInBits() / MemSclVT.getSizeInBits());
1669
1670              EVT CastValueVT = EVT::getVectorVT(*DAG.getContext(),
1671                                                 MemSclVT,
1672                                                 SizeRatio * NumElem);
1673
1674              // Cast the wide elem vector to wider vec with smaller elem type.
1675              // Example <2 x i64> -> <4 x i32>
1676              Tmp3 = DAG.getNode(ISD::BITCAST, dl, CastValueVT, Tmp3);
1677
1678              SmallVector<SDValue, 8> Stores;
1679              for (unsigned Idx=0; Idx < NumElem * SizeRatio; Idx++) {
1680                // Extract the Ith element.
1681                SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1682                               NarrowScalarVT, Tmp3, DAG.getIntPtrConstant(Idx));
1683                // Bump pointer.
1684                Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1685                                   DAG.getIntPtrConstant(Stride));
1686
1687                // Store if, this element is:
1688                //  - First element on big endian, or
1689                //  - Last element on little endian
1690                if (( TLI.isBigEndian() && (Idx % SizeRatio == 0)) ||
1691                    ((!TLI.isBigEndian() && (Idx % SizeRatio == SizeRatio-1)))) {
1692                  SDValue Store = DAG.getStore(Tmp1, dl, Ex, Tmp2,
1693                                  ST->getPointerInfo().getWithOffset(Idx*Stride),
1694                                           isVolatile, isNonTemporal, Alignment);
1695                  Stores.push_back(Store);
1696                }
1697              }
1698              Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1699                                   &Stores[0], Stores.size());
1700              break;
1701            }
1702
1703            assert(false && "Unable to legalize the vector trunc store!");
1704          }// is vector
1705
1706
1707          // TRUNCSTORE:i16 i32 -> STORE i16
1708          assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!");
1709          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1710          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1711                                isVolatile, isNonTemporal, Alignment);
1712          break;
1713        }
1714      }
1715    }
1716    break;
1717  }
1718  }
1719  assert(Result.getValueType() == Op.getValueType() &&
1720         "Bad legalization!");
1721
1722  // Make sure that the generated code is itself legal.
1723  if (Result != Op)
1724    Result = LegalizeOp(Result);
1725
1726  // Note that LegalizeOp may be reentered even from single-use nodes, which
1727  // means that we always must cache transformed nodes.
1728  AddLegalizedOperand(Op, Result);
1729  return Result;
1730}
1731
1732SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1733  SDValue Vec = Op.getOperand(0);
1734  SDValue Idx = Op.getOperand(1);
1735  DebugLoc dl = Op.getDebugLoc();
1736  // Store the value to a temporary stack slot, then LOAD the returned part.
1737  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1738  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1739                            MachinePointerInfo(), false, false, 0);
1740
1741  // Add the offset to the index.
1742  unsigned EltSize =
1743      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1744  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1745                    DAG.getConstant(EltSize, Idx.getValueType()));
1746
1747  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1748    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1749  else
1750    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1751
1752  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1753
1754  if (Op.getValueType().isVector())
1755    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1756                       false, false, 0);
1757  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1758                        MachinePointerInfo(),
1759                        Vec.getValueType().getVectorElementType(),
1760                        false, false, 0);
1761}
1762
1763SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1764  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1765
1766  SDValue Vec  = Op.getOperand(0);
1767  SDValue Part = Op.getOperand(1);
1768  SDValue Idx  = Op.getOperand(2);
1769  DebugLoc dl  = Op.getDebugLoc();
1770
1771  // Store the value to a temporary stack slot, then LOAD the returned part.
1772
1773  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1774  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1775  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1776
1777  // First store the whole vector.
1778  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1779                            false, false, 0);
1780
1781  // Then store the inserted part.
1782
1783  // Add the offset to the index.
1784  unsigned EltSize =
1785      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1786
1787  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1788                    DAG.getConstant(EltSize, Idx.getValueType()));
1789
1790  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1791    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1792  else
1793    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1794
1795  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1796                                    StackPtr);
1797
1798  // Store the subvector.
1799  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1800                    MachinePointerInfo(), false, false, 0);
1801
1802  // Finally, load the updated vector.
1803  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1804                     false, false, 0);
1805}
1806
1807SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1808  // We can't handle this case efficiently.  Allocate a sufficiently
1809  // aligned object on the stack, store each element into it, then load
1810  // the result as a vector.
1811  // Create the stack frame object.
1812  EVT VT = Node->getValueType(0);
1813  EVT EltVT = VT.getVectorElementType();
1814  DebugLoc dl = Node->getDebugLoc();
1815  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1816  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1817  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1818
1819  // Emit a store of each element to the stack slot.
1820  SmallVector<SDValue, 8> Stores;
1821  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1822  // Store (in the right endianness) the elements to memory.
1823  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1824    // Ignore undef elements.
1825    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1826
1827    unsigned Offset = TypeByteSize*i;
1828
1829    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1830    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1831
1832    // If the destination vector element type is narrower than the source
1833    // element type, only store the bits necessary.
1834    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1835      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1836                                         Node->getOperand(i), Idx,
1837                                         PtrInfo.getWithOffset(Offset),
1838                                         EltVT, false, false, 0));
1839    } else
1840      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1841                                    Node->getOperand(i), Idx,
1842                                    PtrInfo.getWithOffset(Offset),
1843                                    false, false, 0));
1844  }
1845
1846  SDValue StoreChain;
1847  if (!Stores.empty())    // Not all undef elements?
1848    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1849                             &Stores[0], Stores.size());
1850  else
1851    StoreChain = DAG.getEntryNode();
1852
1853  // Result is a load from the stack slot.
1854  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1855}
1856
1857SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1858  DebugLoc dl = Node->getDebugLoc();
1859  SDValue Tmp1 = Node->getOperand(0);
1860  SDValue Tmp2 = Node->getOperand(1);
1861
1862  // Get the sign bit of the RHS.  First obtain a value that has the same
1863  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1864  SDValue SignBit;
1865  EVT FloatVT = Tmp2.getValueType();
1866  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1867  if (TLI.isTypeLegal(IVT)) {
1868    // Convert to an integer with the same sign bit.
1869    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1870  } else {
1871    // Store the float to memory, then load the sign part out as an integer.
1872    MVT LoadTy = TLI.getPointerTy();
1873    // First create a temporary that is aligned for both the load and store.
1874    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1875    // Then store the float to it.
1876    SDValue Ch =
1877      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1878                   false, false, 0);
1879    if (TLI.isBigEndian()) {
1880      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1881      // Load out a legal integer with the same sign bit as the float.
1882      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1883                            false, false, 0);
1884    } else { // Little endian
1885      SDValue LoadPtr = StackPtr;
1886      // The float may be wider than the integer we are going to load.  Advance
1887      // the pointer so that the loaded integer will contain the sign bit.
1888      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1889      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1890      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1891                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1892      // Load a legal integer containing the sign bit.
1893      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1894                            false, false, 0);
1895      // Move the sign bit to the top bit of the loaded integer.
1896      unsigned BitShift = LoadTy.getSizeInBits() -
1897        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1898      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1899      if (BitShift)
1900        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1901                              DAG.getConstant(BitShift,
1902                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1903    }
1904  }
1905  // Now get the sign bit proper, by seeing whether the value is negative.
1906  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1907                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1908                         ISD::SETLT);
1909  // Get the absolute value of the result.
1910  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1911  // Select between the nabs and abs value based on the sign bit of
1912  // the input.
1913  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1914                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1915                     AbsVal);
1916}
1917
1918void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1919                                           SmallVectorImpl<SDValue> &Results) {
1920  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1921  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1922          " not tell us which reg is the stack pointer!");
1923  DebugLoc dl = Node->getDebugLoc();
1924  EVT VT = Node->getValueType(0);
1925  SDValue Tmp1 = SDValue(Node, 0);
1926  SDValue Tmp2 = SDValue(Node, 1);
1927  SDValue Tmp3 = Node->getOperand(2);
1928  SDValue Chain = Tmp1.getOperand(0);
1929
1930  // Chain the dynamic stack allocation so that it doesn't modify the stack
1931  // pointer when other instructions are using the stack.
1932  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1933
1934  SDValue Size  = Tmp2.getOperand(1);
1935  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1936  Chain = SP.getValue(1);
1937  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1938  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1939  if (Align > StackAlign)
1940    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1941                      DAG.getConstant(-(uint64_t)Align, VT));
1942  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1943  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1944
1945  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1946                            DAG.getIntPtrConstant(0, true), SDValue());
1947
1948  Results.push_back(Tmp1);
1949  Results.push_back(Tmp2);
1950}
1951
1952/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1953/// condition code CC on the current target. This routine expands SETCC with
1954/// illegal condition code into AND / OR of multiple SETCC values.
1955void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1956                                                 SDValue &LHS, SDValue &RHS,
1957                                                 SDValue &CC,
1958                                                 DebugLoc dl) {
1959  EVT OpVT = LHS.getValueType();
1960  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1961  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1962  default: assert(0 && "Unknown condition code action!");
1963  case TargetLowering::Legal:
1964    // Nothing to do.
1965    break;
1966  case TargetLowering::Expand: {
1967    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1968    unsigned Opc = 0;
1969    switch (CCCode) {
1970    default: assert(0 && "Don't know how to expand this condition!");
1971    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1972    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1973    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1974    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1975    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1976    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1977    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1978    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1979    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1980    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1981    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1982    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1983    // FIXME: Implement more expansions.
1984    }
1985
1986    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1987    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1988    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1989    RHS = SDValue();
1990    CC  = SDValue();
1991    break;
1992  }
1993  }
1994}
1995
1996/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1997/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1998/// a load from the stack slot to DestVT, extending it if needed.
1999/// The resultant code need not be legal.
2000SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
2001                                               EVT SlotVT,
2002                                               EVT DestVT,
2003                                               DebugLoc dl) {
2004  // Create the stack frame object.
2005  unsigned SrcAlign =
2006    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
2007                                              getTypeForEVT(*DAG.getContext()));
2008  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
2009
2010  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
2011  int SPFI = StackPtrFI->getIndex();
2012  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
2013
2014  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
2015  unsigned SlotSize = SlotVT.getSizeInBits();
2016  unsigned DestSize = DestVT.getSizeInBits();
2017  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
2018  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
2019
2020  // Emit a store to the stack slot.  Use a truncstore if the input value is
2021  // later than DestVT.
2022  SDValue Store;
2023
2024  if (SrcSize > SlotSize)
2025    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
2026                              PtrInfo, SlotVT, false, false, SrcAlign);
2027  else {
2028    assert(SrcSize == SlotSize && "Invalid store");
2029    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
2030                         PtrInfo, false, false, SrcAlign);
2031  }
2032
2033  // Result is a load from the stack slot.
2034  if (SlotSize == DestSize)
2035    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
2036                       false, false, DestAlign);
2037
2038  assert(SlotSize < DestSize && "Unknown extension!");
2039  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
2040                        PtrInfo, SlotVT, false, false, DestAlign);
2041}
2042
2043SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
2044  DebugLoc dl = Node->getDebugLoc();
2045  // Create a vector sized/aligned stack slot, store the value to element #0,
2046  // then load the whole vector back out.
2047  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
2048
2049  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
2050  int SPFI = StackPtrFI->getIndex();
2051
2052  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
2053                                 StackPtr,
2054                                 MachinePointerInfo::getFixedStack(SPFI),
2055                                 Node->getValueType(0).getVectorElementType(),
2056                                 false, false, 0);
2057  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
2058                     MachinePointerInfo::getFixedStack(SPFI),
2059                     false, false, 0);
2060}
2061
2062
2063/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
2064/// support the operation, but do support the resultant vector type.
2065SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
2066  unsigned NumElems = Node->getNumOperands();
2067  SDValue Value1, Value2;
2068  DebugLoc dl = Node->getDebugLoc();
2069  EVT VT = Node->getValueType(0);
2070  EVT OpVT = Node->getOperand(0).getValueType();
2071  EVT EltVT = VT.getVectorElementType();
2072
2073  // If the only non-undef value is the low element, turn this into a
2074  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
2075  bool isOnlyLowElement = true;
2076  bool MoreThanTwoValues = false;
2077  bool isConstant = true;
2078  for (unsigned i = 0; i < NumElems; ++i) {
2079    SDValue V = Node->getOperand(i);
2080    if (V.getOpcode() == ISD::UNDEF)
2081      continue;
2082    if (i > 0)
2083      isOnlyLowElement = false;
2084    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
2085      isConstant = false;
2086
2087    if (!Value1.getNode()) {
2088      Value1 = V;
2089    } else if (!Value2.getNode()) {
2090      if (V != Value1)
2091        Value2 = V;
2092    } else if (V != Value1 && V != Value2) {
2093      MoreThanTwoValues = true;
2094    }
2095  }
2096
2097  if (!Value1.getNode())
2098    return DAG.getUNDEF(VT);
2099
2100  if (isOnlyLowElement)
2101    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
2102
2103  // If all elements are constants, create a load from the constant pool.
2104  if (isConstant) {
2105    std::vector<Constant*> CV;
2106    for (unsigned i = 0, e = NumElems; i != e; ++i) {
2107      if (ConstantFPSDNode *V =
2108          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
2109        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
2110      } else if (ConstantSDNode *V =
2111                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
2112        if (OpVT==EltVT)
2113          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
2114        else {
2115          // If OpVT and EltVT don't match, EltVT is not legal and the
2116          // element values have been promoted/truncated earlier.  Undo this;
2117          // we don't want a v16i8 to become a v16i32 for example.
2118          const ConstantInt *CI = V->getConstantIntValue();
2119          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
2120                                        CI->getZExtValue()));
2121        }
2122      } else {
2123        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
2124        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
2125        CV.push_back(UndefValue::get(OpNTy));
2126      }
2127    }
2128    Constant *CP = ConstantVector::get(CV);
2129    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
2130    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2131    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
2132                       MachinePointerInfo::getConstantPool(),
2133                       false, false, Alignment);
2134  }
2135
2136  if (!MoreThanTwoValues) {
2137    SmallVector<int, 8> ShuffleVec(NumElems, -1);
2138    for (unsigned i = 0; i < NumElems; ++i) {
2139      SDValue V = Node->getOperand(i);
2140      if (V.getOpcode() == ISD::UNDEF)
2141        continue;
2142      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
2143    }
2144    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
2145      // Get the splatted value into the low element of a vector register.
2146      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2147      SDValue Vec2;
2148      if (Value2.getNode())
2149        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2150      else
2151        Vec2 = DAG.getUNDEF(VT);
2152
2153      // Return shuffle(LowValVec, undef, <0,0,0,0>)
2154      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
2155    }
2156  }
2157
2158  // Otherwise, we can't handle this case efficiently.
2159  return ExpandVectorBuildThroughStack(Node);
2160}
2161
2162// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
2163// does not fit into a register, return the lo part and set the hi part to the
2164// by-reg argument.  If it does fit into a single register, return the result
2165// and leave the Hi part unset.
2166SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2167                                            bool isSigned) {
2168  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
2169  // The input chain to this libcall is the entry node of the function.
2170  // Legalizing the call will automatically add the previous call to the
2171  // dependence.
2172  SDValue InChain = DAG.getEntryNode();
2173
2174  TargetLowering::ArgListTy Args;
2175  TargetLowering::ArgListEntry Entry;
2176  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2177    EVT ArgVT = Node->getOperand(i).getValueType();
2178    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2179    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2180    Entry.isSExt = isSigned;
2181    Entry.isZExt = !isSigned;
2182    Args.push_back(Entry);
2183  }
2184  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2185                                         TLI.getPointerTy());
2186
2187  // Splice the libcall in wherever FindInputOutputChains tells us to.
2188  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2189
2190  // isTailCall may be true since the callee does not reference caller stack
2191  // frame. Check if it's in the right position.
2192  bool isTailCall = isInTailCallPosition(DAG, Node, TLI);
2193  std::pair<SDValue, SDValue> CallInfo =
2194    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2195                    0, TLI.getLibcallCallingConv(LC), isTailCall,
2196                    /*isReturnValueUsed=*/true,
2197                    Callee, Args, DAG, Node->getDebugLoc());
2198
2199  if (!CallInfo.second.getNode())
2200    // It's a tailcall, return the chain (which is the DAG root).
2201    return DAG.getRoot();
2202
2203  // Legalize the call sequence, starting with the chain.  This will advance
2204  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2205  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2206  LegalizeOp(CallInfo.second);
2207  return CallInfo.first;
2208}
2209
2210/// ExpandLibCall - Generate a libcall taking the given operands as arguments
2211/// and returning a result of type RetVT.
2212SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
2213                                            const SDValue *Ops, unsigned NumOps,
2214                                            bool isSigned, DebugLoc dl) {
2215  TargetLowering::ArgListTy Args;
2216  Args.reserve(NumOps);
2217
2218  TargetLowering::ArgListEntry Entry;
2219  for (unsigned i = 0; i != NumOps; ++i) {
2220    Entry.Node = Ops[i];
2221    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2222    Entry.isSExt = isSigned;
2223    Entry.isZExt = !isSigned;
2224    Args.push_back(Entry);
2225  }
2226  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2227                                         TLI.getPointerTy());
2228
2229  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2230  std::pair<SDValue,SDValue> CallInfo =
2231  TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
2232                  false, 0, TLI.getLibcallCallingConv(LC), false,
2233                  /*isReturnValueUsed=*/true,
2234                  Callee, Args, DAG, dl);
2235
2236  // Legalize the call sequence, starting with the chain.  This will advance
2237  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2238  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2239  LegalizeOp(CallInfo.second);
2240
2241  return CallInfo.first;
2242}
2243
2244// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
2245// ExpandLibCall except that the first operand is the in-chain.
2246std::pair<SDValue, SDValue>
2247SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2248                                         SDNode *Node,
2249                                         bool isSigned) {
2250  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
2251  SDValue InChain = Node->getOperand(0);
2252
2253  TargetLowering::ArgListTy Args;
2254  TargetLowering::ArgListEntry Entry;
2255  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2256    EVT ArgVT = Node->getOperand(i).getValueType();
2257    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2258    Entry.Node = Node->getOperand(i);
2259    Entry.Ty = ArgTy;
2260    Entry.isSExt = isSigned;
2261    Entry.isZExt = !isSigned;
2262    Args.push_back(Entry);
2263  }
2264  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2265                                         TLI.getPointerTy());
2266
2267  // Splice the libcall in wherever FindInputOutputChains tells us to.
2268  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2269  std::pair<SDValue, SDValue> CallInfo =
2270    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2271                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2272                    /*isReturnValueUsed=*/true,
2273                    Callee, Args, DAG, Node->getDebugLoc());
2274
2275  // Legalize the call sequence, starting with the chain.  This will advance
2276  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2277  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2278  LegalizeOp(CallInfo.second);
2279  return CallInfo;
2280}
2281
2282SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2283                                              RTLIB::Libcall Call_F32,
2284                                              RTLIB::Libcall Call_F64,
2285                                              RTLIB::Libcall Call_F80,
2286                                              RTLIB::Libcall Call_PPCF128) {
2287  RTLIB::Libcall LC;
2288  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2289  default: assert(0 && "Unexpected request for libcall!");
2290  case MVT::f32: LC = Call_F32; break;
2291  case MVT::f64: LC = Call_F64; break;
2292  case MVT::f80: LC = Call_F80; break;
2293  case MVT::ppcf128: LC = Call_PPCF128; break;
2294  }
2295  return ExpandLibCall(LC, Node, false);
2296}
2297
2298SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2299                                               RTLIB::Libcall Call_I8,
2300                                               RTLIB::Libcall Call_I16,
2301                                               RTLIB::Libcall Call_I32,
2302                                               RTLIB::Libcall Call_I64,
2303                                               RTLIB::Libcall Call_I128) {
2304  RTLIB::Libcall LC;
2305  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2306  default: assert(0 && "Unexpected request for libcall!");
2307  case MVT::i8:   LC = Call_I8; break;
2308  case MVT::i16:  LC = Call_I16; break;
2309  case MVT::i32:  LC = Call_I32; break;
2310  case MVT::i64:  LC = Call_I64; break;
2311  case MVT::i128: LC = Call_I128; break;
2312  }
2313  return ExpandLibCall(LC, Node, isSigned);
2314}
2315
2316/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
2317static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2318                                     const TargetLowering &TLI) {
2319  RTLIB::Libcall LC;
2320  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2321  default: assert(0 && "Unexpected request for libcall!");
2322  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2323  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2324  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2325  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2326  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2327  }
2328
2329  return TLI.getLibcallName(LC) != 0;
2330}
2331
2332/// UseDivRem - Only issue divrem libcall if both quotient and remainder are
2333/// needed.
2334static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2335  unsigned OtherOpcode = 0;
2336  if (isSigned)
2337    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2338  else
2339    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2340
2341  SDValue Op0 = Node->getOperand(0);
2342  SDValue Op1 = Node->getOperand(1);
2343  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2344         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2345    SDNode *User = *UI;
2346    if (User == Node)
2347      continue;
2348    if (User->getOpcode() == OtherOpcode &&
2349        User->getOperand(0) == Op0 &&
2350        User->getOperand(1) == Op1)
2351      return true;
2352  }
2353  return false;
2354}
2355
2356/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2357/// pairs.
2358void
2359SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2360                                          SmallVectorImpl<SDValue> &Results) {
2361  unsigned Opcode = Node->getOpcode();
2362  bool isSigned = Opcode == ISD::SDIVREM;
2363
2364  RTLIB::Libcall LC;
2365  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2366  default: assert(0 && "Unexpected request for libcall!");
2367  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2368  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2369  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2370  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2371  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2372  }
2373
2374  // The input chain to this libcall is the entry node of the function.
2375  // Legalizing the call will automatically add the previous call to the
2376  // dependence.
2377  SDValue InChain = DAG.getEntryNode();
2378
2379  EVT RetVT = Node->getValueType(0);
2380  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2381
2382  TargetLowering::ArgListTy Args;
2383  TargetLowering::ArgListEntry Entry;
2384  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2385    EVT ArgVT = Node->getOperand(i).getValueType();
2386    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2387    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2388    Entry.isSExt = isSigned;
2389    Entry.isZExt = !isSigned;
2390    Args.push_back(Entry);
2391  }
2392
2393  // Also pass the return address of the remainder.
2394  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2395  Entry.Node = FIPtr;
2396  Entry.Ty = RetTy->getPointerTo();
2397  Entry.isSExt = isSigned;
2398  Entry.isZExt = !isSigned;
2399  Args.push_back(Entry);
2400
2401  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2402                                         TLI.getPointerTy());
2403
2404  // Splice the libcall in wherever FindInputOutputChains tells us to.
2405  DebugLoc dl = Node->getDebugLoc();
2406  std::pair<SDValue, SDValue> CallInfo =
2407    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2408                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2409                    /*isReturnValueUsed=*/true, Callee, Args, DAG, dl);
2410
2411  // Legalize the call sequence, starting with the chain.  This will advance
2412  // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that
2413  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2414  LegalizeOp(CallInfo.second);
2415
2416  // Remainder is loaded back from the stack frame.
2417  SDValue Rem = DAG.getLoad(RetVT, dl, LastCALLSEQ_END, FIPtr,
2418                            MachinePointerInfo(), false, false, 0);
2419  Results.push_back(CallInfo.first);
2420  Results.push_back(Rem);
2421}
2422
2423/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2424/// INT_TO_FP operation of the specified operand when the target requests that
2425/// we expand it.  At this point, we know that the result and operand types are
2426/// legal for the target.
2427SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2428                                                   SDValue Op0,
2429                                                   EVT DestVT,
2430                                                   DebugLoc dl) {
2431  if (Op0.getValueType() == MVT::i32) {
2432    // simple 32-bit [signed|unsigned] integer to float/double expansion
2433
2434    // Get the stack frame index of a 8 byte buffer.
2435    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2436
2437    // word offset constant for Hi/Lo address computation
2438    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2439    // set up Hi and Lo (into buffer) address based on endian
2440    SDValue Hi = StackSlot;
2441    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2442                             TLI.getPointerTy(), StackSlot, WordOff);
2443    if (TLI.isLittleEndian())
2444      std::swap(Hi, Lo);
2445
2446    // if signed map to unsigned space
2447    SDValue Op0Mapped;
2448    if (isSigned) {
2449      // constant used to invert sign bit (signed to unsigned mapping)
2450      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2451      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2452    } else {
2453      Op0Mapped = Op0;
2454    }
2455    // store the lo of the constructed double - based on integer input
2456    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2457                                  Op0Mapped, Lo, MachinePointerInfo(),
2458                                  false, false, 0);
2459    // initial hi portion of constructed double
2460    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2461    // store the hi of the constructed double - biased exponent
2462    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2463                                  MachinePointerInfo(),
2464                                  false, false, 0);
2465    // load the constructed double
2466    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2467                               MachinePointerInfo(), false, false, 0);
2468    // FP constant to bias correct the final result
2469    SDValue Bias = DAG.getConstantFP(isSigned ?
2470                                     BitsToDouble(0x4330000080000000ULL) :
2471                                     BitsToDouble(0x4330000000000000ULL),
2472                                     MVT::f64);
2473    // subtract the bias
2474    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2475    // final result
2476    SDValue Result;
2477    // handle final rounding
2478    if (DestVT == MVT::f64) {
2479      // do nothing
2480      Result = Sub;
2481    } else if (DestVT.bitsLT(MVT::f64)) {
2482      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2483                           DAG.getIntPtrConstant(0));
2484    } else if (DestVT.bitsGT(MVT::f64)) {
2485      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2486    }
2487    return Result;
2488  }
2489  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2490  // Code below here assumes !isSigned without checking again.
2491
2492  // Implementation of unsigned i64 to f64 following the algorithm in
2493  // __floatundidf in compiler_rt. This implementation has the advantage
2494  // of performing rounding correctly, both in the default rounding mode
2495  // and in all alternate rounding modes.
2496  // TODO: Generalize this for use with other types.
2497  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2498    SDValue TwoP52 =
2499      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2500    SDValue TwoP84PlusTwoP52 =
2501      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2502    SDValue TwoP84 =
2503      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2504
2505    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2506    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2507                             DAG.getConstant(32, MVT::i64));
2508    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2509    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2510    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2511    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2512    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2513                                TwoP84PlusTwoP52);
2514    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2515  }
2516
2517  // Implementation of unsigned i64 to f32.
2518  // TODO: Generalize this for use with other types.
2519  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2520    // For unsigned conversions, convert them to signed conversions using the
2521    // algorithm from the x86_64 __floatundidf in compiler_rt.
2522    if (!isSigned) {
2523      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2524
2525      SDValue ShiftConst =
2526          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2527      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2528      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2529      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2530      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2531
2532      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2533      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2534
2535      // TODO: This really should be implemented using a branch rather than a
2536      // select.  We happen to get lucky and machinesink does the right
2537      // thing most of the time.  This would be a good candidate for a
2538      //pseudo-op, or, even better, for whole-function isel.
2539      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2540        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2541      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2542    }
2543
2544    // Otherwise, implement the fully general conversion.
2545
2546    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2547         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2548    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2549         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2550    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2551         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2552    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2553                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2554    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2555    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2556                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2557                   ISD::SETUGE);
2558    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2559    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2560
2561    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2562                             DAG.getConstant(32, SHVT));
2563    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2564    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2565    SDValue TwoP32 =
2566      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2567    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2568    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2569    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2570    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2571    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2572                       DAG.getIntPtrConstant(0));
2573  }
2574
2575  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2576
2577  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2578                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2579                                 ISD::SETLT);
2580  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2581  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2582                                    SignSet, Four, Zero);
2583
2584  // If the sign bit of the integer is set, the large number will be treated
2585  // as a negative number.  To counteract this, the dynamic code adds an
2586  // offset depending on the data type.
2587  uint64_t FF;
2588  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2589  default: assert(0 && "Unsupported integer type!");
2590  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2591  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2592  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2593  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2594  }
2595  if (TLI.isLittleEndian()) FF <<= 32;
2596  Constant *FudgeFactor = ConstantInt::get(
2597                                       Type::getInt64Ty(*DAG.getContext()), FF);
2598
2599  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2600  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2601  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2602  Alignment = std::min(Alignment, 4u);
2603  SDValue FudgeInReg;
2604  if (DestVT == MVT::f32)
2605    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2606                             MachinePointerInfo::getConstantPool(),
2607                             false, false, Alignment);
2608  else {
2609    FudgeInReg =
2610      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2611                                DAG.getEntryNode(), CPIdx,
2612                                MachinePointerInfo::getConstantPool(),
2613                                MVT::f32, false, false, Alignment));
2614  }
2615
2616  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2617}
2618
2619/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2620/// *INT_TO_FP operation of the specified operand when the target requests that
2621/// we promote it.  At this point, we know that the result and operand types are
2622/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2623/// operation that takes a larger input.
2624SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2625                                                    EVT DestVT,
2626                                                    bool isSigned,
2627                                                    DebugLoc dl) {
2628  // First step, figure out the appropriate *INT_TO_FP operation to use.
2629  EVT NewInTy = LegalOp.getValueType();
2630
2631  unsigned OpToUse = 0;
2632
2633  // Scan for the appropriate larger type to use.
2634  while (1) {
2635    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2636    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2637
2638    // If the target supports SINT_TO_FP of this type, use it.
2639    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2640      OpToUse = ISD::SINT_TO_FP;
2641      break;
2642    }
2643    if (isSigned) continue;
2644
2645    // If the target supports UINT_TO_FP of this type, use it.
2646    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2647      OpToUse = ISD::UINT_TO_FP;
2648      break;
2649    }
2650
2651    // Otherwise, try a larger type.
2652  }
2653
2654  // Okay, we found the operation and type to use.  Zero extend our input to the
2655  // desired type then run the operation on it.
2656  return DAG.getNode(OpToUse, dl, DestVT,
2657                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2658                                 dl, NewInTy, LegalOp));
2659}
2660
2661/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2662/// FP_TO_*INT operation of the specified operand when the target requests that
2663/// we promote it.  At this point, we know that the result and operand types are
2664/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2665/// operation that returns a larger result.
2666SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2667                                                    EVT DestVT,
2668                                                    bool isSigned,
2669                                                    DebugLoc dl) {
2670  // First step, figure out the appropriate FP_TO*INT operation to use.
2671  EVT NewOutTy = DestVT;
2672
2673  unsigned OpToUse = 0;
2674
2675  // Scan for the appropriate larger type to use.
2676  while (1) {
2677    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2678    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2679
2680    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2681      OpToUse = ISD::FP_TO_SINT;
2682      break;
2683    }
2684
2685    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2686      OpToUse = ISD::FP_TO_UINT;
2687      break;
2688    }
2689
2690    // Otherwise, try a larger type.
2691  }
2692
2693
2694  // Okay, we found the operation and type to use.
2695  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2696
2697  // Truncate the result of the extended FP_TO_*INT operation to the desired
2698  // size.
2699  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2700}
2701
2702/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2703///
2704SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2705  EVT VT = Op.getValueType();
2706  EVT SHVT = TLI.getShiftAmountTy(VT);
2707  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2708  switch (VT.getSimpleVT().SimpleTy) {
2709  default: assert(0 && "Unhandled Expand type in BSWAP!");
2710  case MVT::i16:
2711    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2712    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2713    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2714  case MVT::i32:
2715    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2716    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2717    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2718    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2719    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2720    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2721    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2722    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2723    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2724  case MVT::i64:
2725    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2726    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2727    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2728    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2729    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2730    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2731    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2732    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2733    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2734    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2735    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2736    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2737    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2738    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2739    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2740    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2741    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2742    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2743    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2744    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2745    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2746  }
2747}
2748
2749/// SplatByte - Distribute ByteVal over NumBits bits.
2750// FIXME: Move this helper to a common place.
2751static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2752  APInt Val = APInt(NumBits, ByteVal);
2753  unsigned Shift = 8;
2754  for (unsigned i = NumBits; i > 8; i >>= 1) {
2755    Val = (Val << Shift) | Val;
2756    Shift <<= 1;
2757  }
2758  return Val;
2759}
2760
2761/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2762///
2763SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2764                                             DebugLoc dl) {
2765  switch (Opc) {
2766  default: assert(0 && "Cannot expand this yet!");
2767  case ISD::CTPOP: {
2768    EVT VT = Op.getValueType();
2769    EVT ShVT = TLI.getShiftAmountTy(VT);
2770    unsigned Len = VT.getSizeInBits();
2771
2772    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2773           "CTPOP not implemented for this type.");
2774
2775    // This is the "best" algorithm from
2776    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2777
2778    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2779    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2780    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2781    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2782
2783    // v = v - ((v >> 1) & 0x55555555...)
2784    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2785                     DAG.getNode(ISD::AND, dl, VT,
2786                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2787                                             DAG.getConstant(1, ShVT)),
2788                                 Mask55));
2789    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2790    Op = DAG.getNode(ISD::ADD, dl, VT,
2791                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2792                     DAG.getNode(ISD::AND, dl, VT,
2793                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2794                                             DAG.getConstant(2, ShVT)),
2795                                 Mask33));
2796    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2797    Op = DAG.getNode(ISD::AND, dl, VT,
2798                     DAG.getNode(ISD::ADD, dl, VT, Op,
2799                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2800                                             DAG.getConstant(4, ShVT))),
2801                     Mask0F);
2802    // v = (v * 0x01010101...) >> (Len - 8)
2803    Op = DAG.getNode(ISD::SRL, dl, VT,
2804                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2805                     DAG.getConstant(Len - 8, ShVT));
2806
2807    return Op;
2808  }
2809  case ISD::CTLZ: {
2810    // for now, we do this:
2811    // x = x | (x >> 1);
2812    // x = x | (x >> 2);
2813    // ...
2814    // x = x | (x >>16);
2815    // x = x | (x >>32); // for 64-bit input
2816    // return popcount(~x);
2817    //
2818    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2819    EVT VT = Op.getValueType();
2820    EVT ShVT = TLI.getShiftAmountTy(VT);
2821    unsigned len = VT.getSizeInBits();
2822    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2823      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2824      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2825                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2826    }
2827    Op = DAG.getNOT(dl, Op, VT);
2828    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2829  }
2830  case ISD::CTTZ: {
2831    // for now, we use: { return popcount(~x & (x - 1)); }
2832    // unless the target has ctlz but not ctpop, in which case we use:
2833    // { return 32 - nlz(~x & (x-1)); }
2834    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2835    EVT VT = Op.getValueType();
2836    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2837                               DAG.getNOT(dl, Op, VT),
2838                               DAG.getNode(ISD::SUB, dl, VT, Op,
2839                                           DAG.getConstant(1, VT)));
2840    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2841    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2842        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2843      return DAG.getNode(ISD::SUB, dl, VT,
2844                         DAG.getConstant(VT.getSizeInBits(), VT),
2845                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2846    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2847  }
2848  }
2849}
2850
2851std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2852  unsigned Opc = Node->getOpcode();
2853  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2854  RTLIB::Libcall LC;
2855
2856  switch (Opc) {
2857  default:
2858    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2859    break;
2860  case ISD::ATOMIC_SWAP:
2861    switch (VT.SimpleTy) {
2862    default: llvm_unreachable("Unexpected value type for atomic!");
2863    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2864    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2865    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2866    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2867    }
2868    break;
2869  case ISD::ATOMIC_CMP_SWAP:
2870    switch (VT.SimpleTy) {
2871    default: llvm_unreachable("Unexpected value type for atomic!");
2872    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2873    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2874    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2875    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2876    }
2877    break;
2878  case ISD::ATOMIC_LOAD_ADD:
2879    switch (VT.SimpleTy) {
2880    default: llvm_unreachable("Unexpected value type for atomic!");
2881    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2882    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2883    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2884    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2885    }
2886    break;
2887  case ISD::ATOMIC_LOAD_SUB:
2888    switch (VT.SimpleTy) {
2889    default: llvm_unreachable("Unexpected value type for atomic!");
2890    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2891    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2892    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2893    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2894    }
2895    break;
2896  case ISD::ATOMIC_LOAD_AND:
2897    switch (VT.SimpleTy) {
2898    default: llvm_unreachable("Unexpected value type for atomic!");
2899    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2900    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2901    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2902    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2903    }
2904    break;
2905  case ISD::ATOMIC_LOAD_OR:
2906    switch (VT.SimpleTy) {
2907    default: llvm_unreachable("Unexpected value type for atomic!");
2908    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2909    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2910    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2911    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2912    }
2913    break;
2914  case ISD::ATOMIC_LOAD_XOR:
2915    switch (VT.SimpleTy) {
2916    default: llvm_unreachable("Unexpected value type for atomic!");
2917    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2918    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2919    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2920    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2921    }
2922    break;
2923  case ISD::ATOMIC_LOAD_NAND:
2924    switch (VT.SimpleTy) {
2925    default: llvm_unreachable("Unexpected value type for atomic!");
2926    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2927    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2928    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2929    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2930    }
2931    break;
2932  }
2933
2934  return ExpandChainLibCall(LC, Node, false);
2935}
2936
2937void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2938                                      SmallVectorImpl<SDValue> &Results) {
2939  DebugLoc dl = Node->getDebugLoc();
2940  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2941  switch (Node->getOpcode()) {
2942  case ISD::CTPOP:
2943  case ISD::CTLZ:
2944  case ISD::CTTZ:
2945    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2946    Results.push_back(Tmp1);
2947    break;
2948  case ISD::BSWAP:
2949    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2950    break;
2951  case ISD::FRAMEADDR:
2952  case ISD::RETURNADDR:
2953  case ISD::FRAME_TO_ARGS_OFFSET:
2954    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2955    break;
2956  case ISD::FLT_ROUNDS_:
2957    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2958    break;
2959  case ISD::EH_RETURN:
2960  case ISD::EH_LABEL:
2961  case ISD::PREFETCH:
2962  case ISD::VAEND:
2963  case ISD::EH_SJLJ_LONGJMP:
2964  case ISD::EH_SJLJ_DISPATCHSETUP:
2965    // If the target didn't expand these, there's nothing to do, so just
2966    // preserve the chain and be done.
2967    Results.push_back(Node->getOperand(0));
2968    break;
2969  case ISD::EH_SJLJ_SETJMP:
2970    // If the target didn't expand this, just return 'zero' and preserve the
2971    // chain.
2972    Results.push_back(DAG.getConstant(0, MVT::i32));
2973    Results.push_back(Node->getOperand(0));
2974    break;
2975  case ISD::ATOMIC_FENCE:
2976  case ISD::MEMBARRIER: {
2977    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2978    // FIXME: handle "fence singlethread" more efficiently.
2979    TargetLowering::ArgListTy Args;
2980    std::pair<SDValue, SDValue> CallResult =
2981      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2982                      false, false, false, false, 0, CallingConv::C,
2983                      /*isTailCall=*/false,
2984                      /*isReturnValueUsed=*/true,
2985                      DAG.getExternalSymbol("__sync_synchronize",
2986                                            TLI.getPointerTy()),
2987                      Args, DAG, dl);
2988    Results.push_back(CallResult.second);
2989    break;
2990  }
2991  case ISD::ATOMIC_LOAD: {
2992    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2993    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2994    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2995                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2996                                 Node->getOperand(0),
2997                                 Node->getOperand(1), Zero, Zero,
2998                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2999                                 cast<AtomicSDNode>(Node)->getOrdering(),
3000                                 cast<AtomicSDNode>(Node)->getSynchScope());
3001    Results.push_back(Swap.getValue(0));
3002    Results.push_back(Swap.getValue(1));
3003    break;
3004  }
3005  case ISD::ATOMIC_STORE: {
3006    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
3007    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
3008                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
3009                                 Node->getOperand(0),
3010                                 Node->getOperand(1), Node->getOperand(2),
3011                                 cast<AtomicSDNode>(Node)->getMemOperand(),
3012                                 cast<AtomicSDNode>(Node)->getOrdering(),
3013                                 cast<AtomicSDNode>(Node)->getSynchScope());
3014    Results.push_back(Swap.getValue(1));
3015    break;
3016  }
3017  // By default, atomic intrinsics are marked Legal and lowered. Targets
3018  // which don't support them directly, however, may want libcalls, in which
3019  // case they mark them Expand, and we get here.
3020  case ISD::ATOMIC_SWAP:
3021  case ISD::ATOMIC_LOAD_ADD:
3022  case ISD::ATOMIC_LOAD_SUB:
3023  case ISD::ATOMIC_LOAD_AND:
3024  case ISD::ATOMIC_LOAD_OR:
3025  case ISD::ATOMIC_LOAD_XOR:
3026  case ISD::ATOMIC_LOAD_NAND:
3027  case ISD::ATOMIC_LOAD_MIN:
3028  case ISD::ATOMIC_LOAD_MAX:
3029  case ISD::ATOMIC_LOAD_UMIN:
3030  case ISD::ATOMIC_LOAD_UMAX:
3031  case ISD::ATOMIC_CMP_SWAP: {
3032    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
3033    Results.push_back(Tmp.first);
3034    Results.push_back(Tmp.second);
3035    break;
3036  }
3037  case ISD::DYNAMIC_STACKALLOC:
3038    ExpandDYNAMIC_STACKALLOC(Node, Results);
3039    break;
3040  case ISD::MERGE_VALUES:
3041    for (unsigned i = 0; i < Node->getNumValues(); i++)
3042      Results.push_back(Node->getOperand(i));
3043    break;
3044  case ISD::UNDEF: {
3045    EVT VT = Node->getValueType(0);
3046    if (VT.isInteger())
3047      Results.push_back(DAG.getConstant(0, VT));
3048    else {
3049      assert(VT.isFloatingPoint() && "Unknown value type!");
3050      Results.push_back(DAG.getConstantFP(0, VT));
3051    }
3052    break;
3053  }
3054  case ISD::TRAP: {
3055    // If this operation is not supported, lower it to 'abort()' call
3056    TargetLowering::ArgListTy Args;
3057    std::pair<SDValue, SDValue> CallResult =
3058      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
3059                      false, false, false, false, 0, CallingConv::C,
3060                      /*isTailCall=*/false,
3061                      /*isReturnValueUsed=*/true,
3062                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
3063                      Args, DAG, dl);
3064    Results.push_back(CallResult.second);
3065    break;
3066  }
3067  case ISD::FP_ROUND:
3068  case ISD::BITCAST:
3069    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
3070                            Node->getValueType(0), dl);
3071    Results.push_back(Tmp1);
3072    break;
3073  case ISD::FP_EXTEND:
3074    Tmp1 = EmitStackConvert(Node->getOperand(0),
3075                            Node->getOperand(0).getValueType(),
3076                            Node->getValueType(0), dl);
3077    Results.push_back(Tmp1);
3078    break;
3079  case ISD::SIGN_EXTEND_INREG: {
3080    // NOTE: we could fall back on load/store here too for targets without
3081    // SAR.  However, it is doubtful that any exist.
3082    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3083    EVT VT = Node->getValueType(0);
3084    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
3085    if (VT.isVector())
3086      ShiftAmountTy = VT;
3087    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
3088                        ExtraVT.getScalarType().getSizeInBits();
3089    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
3090    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3091                       Node->getOperand(0), ShiftCst);
3092    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3093    Results.push_back(Tmp1);
3094    break;
3095  }
3096  case ISD::FP_ROUND_INREG: {
3097    // The only way we can lower this is to turn it into a TRUNCSTORE,
3098    // EXTLOAD pair, targeting a temporary location (a stack slot).
3099
3100    // NOTE: there is a choice here between constantly creating new stack
3101    // slots and always reusing the same one.  We currently always create
3102    // new ones, as reuse may inhibit scheduling.
3103    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3104    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
3105                            Node->getValueType(0), dl);
3106    Results.push_back(Tmp1);
3107    break;
3108  }
3109  case ISD::SINT_TO_FP:
3110  case ISD::UINT_TO_FP:
3111    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
3112                                Node->getOperand(0), Node->getValueType(0), dl);
3113    Results.push_back(Tmp1);
3114    break;
3115  case ISD::FP_TO_UINT: {
3116    SDValue True, False;
3117    EVT VT =  Node->getOperand(0).getValueType();
3118    EVT NVT = Node->getValueType(0);
3119    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
3120    APInt x = APInt::getSignBit(NVT.getSizeInBits());
3121    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
3122    Tmp1 = DAG.getConstantFP(apf, VT);
3123    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
3124                        Node->getOperand(0),
3125                        Tmp1, ISD::SETLT);
3126    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
3127    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
3128                        DAG.getNode(ISD::FSUB, dl, VT,
3129                                    Node->getOperand(0), Tmp1));
3130    False = DAG.getNode(ISD::XOR, dl, NVT, False,
3131                        DAG.getConstant(x, NVT));
3132    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
3133    Results.push_back(Tmp1);
3134    break;
3135  }
3136  case ISD::VAARG: {
3137    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3138    EVT VT = Node->getValueType(0);
3139    Tmp1 = Node->getOperand(0);
3140    Tmp2 = Node->getOperand(1);
3141    unsigned Align = Node->getConstantOperandVal(3);
3142
3143    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
3144                                     MachinePointerInfo(V), false, false, 0);
3145    SDValue VAList = VAListLoad;
3146
3147    if (Align > TLI.getMinStackArgumentAlignment()) {
3148      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
3149
3150      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
3151                           DAG.getConstant(Align - 1,
3152                                           TLI.getPointerTy()));
3153
3154      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
3155                           DAG.getConstant(-(int64_t)Align,
3156                                           TLI.getPointerTy()));
3157    }
3158
3159    // Increment the pointer, VAList, to the next vaarg
3160    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
3161                       DAG.getConstant(TLI.getTargetData()->
3162                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
3163                                       TLI.getPointerTy()));
3164    // Store the incremented VAList to the legalized pointer
3165    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
3166                        MachinePointerInfo(V), false, false, 0);
3167    // Load the actual argument out of the pointer VAList
3168    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
3169                                  false, false, 0));
3170    Results.push_back(Results[0].getValue(1));
3171    break;
3172  }
3173  case ISD::VACOPY: {
3174    // This defaults to loading a pointer from the input and storing it to the
3175    // output, returning the chain.
3176    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
3177    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
3178    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
3179                       Node->getOperand(2), MachinePointerInfo(VS),
3180                       false, false, 0);
3181    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
3182                        MachinePointerInfo(VD), false, false, 0);
3183    Results.push_back(Tmp1);
3184    break;
3185  }
3186  case ISD::EXTRACT_VECTOR_ELT:
3187    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3188      // This must be an access of the only element.  Return it.
3189      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3190                         Node->getOperand(0));
3191    else
3192      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3193    Results.push_back(Tmp1);
3194    break;
3195  case ISD::EXTRACT_SUBVECTOR:
3196    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3197    break;
3198  case ISD::INSERT_SUBVECTOR:
3199    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3200    break;
3201  case ISD::CONCAT_VECTORS: {
3202    Results.push_back(ExpandVectorBuildThroughStack(Node));
3203    break;
3204  }
3205  case ISD::SCALAR_TO_VECTOR:
3206    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3207    break;
3208  case ISD::INSERT_VECTOR_ELT:
3209    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3210                                              Node->getOperand(1),
3211                                              Node->getOperand(2), dl));
3212    break;
3213  case ISD::VECTOR_SHUFFLE: {
3214    SmallVector<int, 8> Mask;
3215    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3216
3217    EVT VT = Node->getValueType(0);
3218    EVT EltVT = VT.getVectorElementType();
3219    if (!TLI.isTypeLegal(EltVT))
3220      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3221    unsigned NumElems = VT.getVectorNumElements();
3222    SmallVector<SDValue, 8> Ops;
3223    for (unsigned i = 0; i != NumElems; ++i) {
3224      if (Mask[i] < 0) {
3225        Ops.push_back(DAG.getUNDEF(EltVT));
3226        continue;
3227      }
3228      unsigned Idx = Mask[i];
3229      if (Idx < NumElems)
3230        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3231                                  Node->getOperand(0),
3232                                  DAG.getIntPtrConstant(Idx)));
3233      else
3234        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3235                                  Node->getOperand(1),
3236                                  DAG.getIntPtrConstant(Idx - NumElems)));
3237    }
3238    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
3239    Results.push_back(Tmp1);
3240    break;
3241  }
3242  case ISD::EXTRACT_ELEMENT: {
3243    EVT OpTy = Node->getOperand(0).getValueType();
3244    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3245      // 1 -> Hi
3246      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3247                         DAG.getConstant(OpTy.getSizeInBits()/2,
3248                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3249      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3250    } else {
3251      // 0 -> Lo
3252      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3253                         Node->getOperand(0));
3254    }
3255    Results.push_back(Tmp1);
3256    break;
3257  }
3258  case ISD::STACKSAVE:
3259    // Expand to CopyFromReg if the target set
3260    // StackPointerRegisterToSaveRestore.
3261    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3262      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3263                                           Node->getValueType(0)));
3264      Results.push_back(Results[0].getValue(1));
3265    } else {
3266      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3267      Results.push_back(Node->getOperand(0));
3268    }
3269    break;
3270  case ISD::STACKRESTORE:
3271    // Expand to CopyToReg if the target set
3272    // StackPointerRegisterToSaveRestore.
3273    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3274      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3275                                         Node->getOperand(1)));
3276    } else {
3277      Results.push_back(Node->getOperand(0));
3278    }
3279    break;
3280  case ISD::FCOPYSIGN:
3281    Results.push_back(ExpandFCOPYSIGN(Node));
3282    break;
3283  case ISD::FNEG:
3284    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3285    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3286    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3287                       Node->getOperand(0));
3288    Results.push_back(Tmp1);
3289    break;
3290  case ISD::FABS: {
3291    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3292    EVT VT = Node->getValueType(0);
3293    Tmp1 = Node->getOperand(0);
3294    Tmp2 = DAG.getConstantFP(0.0, VT);
3295    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3296                        Tmp1, Tmp2, ISD::SETUGT);
3297    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3298    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
3299    Results.push_back(Tmp1);
3300    break;
3301  }
3302  case ISD::FSQRT:
3303    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3304                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
3305    break;
3306  case ISD::FSIN:
3307    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3308                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
3309    break;
3310  case ISD::FCOS:
3311    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3312                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
3313    break;
3314  case ISD::FLOG:
3315    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3316                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
3317    break;
3318  case ISD::FLOG2:
3319    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3320                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
3321    break;
3322  case ISD::FLOG10:
3323    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3324                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
3325    break;
3326  case ISD::FEXP:
3327    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3328                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
3329    break;
3330  case ISD::FEXP2:
3331    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3332                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
3333    break;
3334  case ISD::FTRUNC:
3335    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3336                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
3337    break;
3338  case ISD::FFLOOR:
3339    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3340                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
3341    break;
3342  case ISD::FCEIL:
3343    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3344                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
3345    break;
3346  case ISD::FRINT:
3347    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3348                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
3349    break;
3350  case ISD::FNEARBYINT:
3351    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3352                                      RTLIB::NEARBYINT_F64,
3353                                      RTLIB::NEARBYINT_F80,
3354                                      RTLIB::NEARBYINT_PPCF128));
3355    break;
3356  case ISD::FPOWI:
3357    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3358                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3359    break;
3360  case ISD::FPOW:
3361    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3362                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
3363    break;
3364  case ISD::FDIV:
3365    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3366                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3367    break;
3368  case ISD::FREM:
3369    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3370                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3371    break;
3372  case ISD::FMA:
3373    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3374                                      RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
3375    break;
3376  case ISD::FP16_TO_FP32:
3377    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3378    break;
3379  case ISD::FP32_TO_FP16:
3380    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3381    break;
3382  case ISD::ConstantFP: {
3383    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3384    // Check to see if this FP immediate is already legal.
3385    // If this is a legal constant, turn it into a TargetConstantFP node.
3386    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3387      Results.push_back(SDValue(Node, 0));
3388    else
3389      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
3390    break;
3391  }
3392  case ISD::EHSELECTION: {
3393    unsigned Reg = TLI.getExceptionSelectorRegister();
3394    assert(Reg && "Can't expand to unknown register!");
3395    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3396                                         Node->getValueType(0)));
3397    Results.push_back(Results[0].getValue(1));
3398    break;
3399  }
3400  case ISD::EXCEPTIONADDR: {
3401    unsigned Reg = TLI.getExceptionAddressRegister();
3402    assert(Reg && "Can't expand to unknown register!");
3403    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3404                                         Node->getValueType(0)));
3405    Results.push_back(Results[0].getValue(1));
3406    break;
3407  }
3408  case ISD::SUB: {
3409    EVT VT = Node->getValueType(0);
3410    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3411           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3412           "Don't know how to expand this subtraction!");
3413    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3414               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3415    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
3416    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3417    break;
3418  }
3419  case ISD::UREM:
3420  case ISD::SREM: {
3421    EVT VT = Node->getValueType(0);
3422    SDVTList VTs = DAG.getVTList(VT, VT);
3423    bool isSigned = Node->getOpcode() == ISD::SREM;
3424    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3425    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3426    Tmp2 = Node->getOperand(0);
3427    Tmp3 = Node->getOperand(1);
3428    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3429        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3430         UseDivRem(Node, isSigned, false))) {
3431      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3432    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3433      // X % Y -> X-X/Y*Y
3434      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3435      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3436      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3437    } else if (isSigned)
3438      Tmp1 = ExpandIntLibCall(Node, true,
3439                              RTLIB::SREM_I8,
3440                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3441                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3442    else
3443      Tmp1 = ExpandIntLibCall(Node, false,
3444                              RTLIB::UREM_I8,
3445                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3446                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3447    Results.push_back(Tmp1);
3448    break;
3449  }
3450  case ISD::UDIV:
3451  case ISD::SDIV: {
3452    bool isSigned = Node->getOpcode() == ISD::SDIV;
3453    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3454    EVT VT = Node->getValueType(0);
3455    SDVTList VTs = DAG.getVTList(VT, VT);
3456    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3457        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3458         UseDivRem(Node, isSigned, true)))
3459      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3460                         Node->getOperand(1));
3461    else if (isSigned)
3462      Tmp1 = ExpandIntLibCall(Node, true,
3463                              RTLIB::SDIV_I8,
3464                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3465                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3466    else
3467      Tmp1 = ExpandIntLibCall(Node, false,
3468                              RTLIB::UDIV_I8,
3469                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3470                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3471    Results.push_back(Tmp1);
3472    break;
3473  }
3474  case ISD::MULHU:
3475  case ISD::MULHS: {
3476    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3477                                                              ISD::SMUL_LOHI;
3478    EVT VT = Node->getValueType(0);
3479    SDVTList VTs = DAG.getVTList(VT, VT);
3480    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3481           "If this wasn't legal, it shouldn't have been created!");
3482    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3483                       Node->getOperand(1));
3484    Results.push_back(Tmp1.getValue(1));
3485    break;
3486  }
3487  case ISD::SDIVREM:
3488  case ISD::UDIVREM:
3489    // Expand into divrem libcall
3490    ExpandDivRemLibCall(Node, Results);
3491    break;
3492  case ISD::MUL: {
3493    EVT VT = Node->getValueType(0);
3494    SDVTList VTs = DAG.getVTList(VT, VT);
3495    // See if multiply or divide can be lowered using two-result operations.
3496    // We just need the low half of the multiply; try both the signed
3497    // and unsigned forms. If the target supports both SMUL_LOHI and
3498    // UMUL_LOHI, form a preference by checking which forms of plain
3499    // MULH it supports.
3500    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3501    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3502    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3503    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3504    unsigned OpToUse = 0;
3505    if (HasSMUL_LOHI && !HasMULHS) {
3506      OpToUse = ISD::SMUL_LOHI;
3507    } else if (HasUMUL_LOHI && !HasMULHU) {
3508      OpToUse = ISD::UMUL_LOHI;
3509    } else if (HasSMUL_LOHI) {
3510      OpToUse = ISD::SMUL_LOHI;
3511    } else if (HasUMUL_LOHI) {
3512      OpToUse = ISD::UMUL_LOHI;
3513    }
3514    if (OpToUse) {
3515      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3516                                    Node->getOperand(1)));
3517      break;
3518    }
3519    Tmp1 = ExpandIntLibCall(Node, false,
3520                            RTLIB::MUL_I8,
3521                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3522                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3523    Results.push_back(Tmp1);
3524    break;
3525  }
3526  case ISD::SADDO:
3527  case ISD::SSUBO: {
3528    SDValue LHS = Node->getOperand(0);
3529    SDValue RHS = Node->getOperand(1);
3530    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3531                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3532                              LHS, RHS);
3533    Results.push_back(Sum);
3534    EVT OType = Node->getValueType(1);
3535
3536    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3537
3538    //   LHSSign -> LHS >= 0
3539    //   RHSSign -> RHS >= 0
3540    //   SumSign -> Sum >= 0
3541    //
3542    //   Add:
3543    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3544    //   Sub:
3545    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3546    //
3547    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3548    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3549    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3550                                      Node->getOpcode() == ISD::SADDO ?
3551                                      ISD::SETEQ : ISD::SETNE);
3552
3553    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3554    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3555
3556    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3557    Results.push_back(Cmp);
3558    break;
3559  }
3560  case ISD::UADDO:
3561  case ISD::USUBO: {
3562    SDValue LHS = Node->getOperand(0);
3563    SDValue RHS = Node->getOperand(1);
3564    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3565                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3566                              LHS, RHS);
3567    Results.push_back(Sum);
3568    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3569                                   Node->getOpcode () == ISD::UADDO ?
3570                                   ISD::SETULT : ISD::SETUGT));
3571    break;
3572  }
3573  case ISD::UMULO:
3574  case ISD::SMULO: {
3575    EVT VT = Node->getValueType(0);
3576    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3577    SDValue LHS = Node->getOperand(0);
3578    SDValue RHS = Node->getOperand(1);
3579    SDValue BottomHalf;
3580    SDValue TopHalf;
3581    static const unsigned Ops[2][3] =
3582        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3583          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3584    bool isSigned = Node->getOpcode() == ISD::SMULO;
3585    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3586      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3587      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3588    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3589      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3590                               RHS);
3591      TopHalf = BottomHalf.getValue(1);
3592    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3593                                                 VT.getSizeInBits() * 2))) {
3594      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3595      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3596      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3597      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3598                               DAG.getIntPtrConstant(0));
3599      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3600                            DAG.getIntPtrConstant(1));
3601    } else {
3602      // We can fall back to a libcall with an illegal type for the MUL if we
3603      // have a libcall big enough.
3604      // Also, we can fall back to a division in some cases, but that's a big
3605      // performance hit in the general case.
3606      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3607      if (WideVT == MVT::i16)
3608        LC = RTLIB::MUL_I16;
3609      else if (WideVT == MVT::i32)
3610        LC = RTLIB::MUL_I32;
3611      else if (WideVT == MVT::i64)
3612        LC = RTLIB::MUL_I64;
3613      else if (WideVT == MVT::i128)
3614        LC = RTLIB::MUL_I128;
3615      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3616
3617      // The high part is obtained by SRA'ing all but one of the bits of low
3618      // part.
3619      unsigned LoSize = VT.getSizeInBits();
3620      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3621                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3622      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3623                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3624
3625      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3626      // pre-lowered to the correct types. This all depends upon WideVT not
3627      // being a legal type for the architecture and thus has to be split to
3628      // two arguments.
3629      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3630      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3631      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3632                               DAG.getIntPtrConstant(0));
3633      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3634                            DAG.getIntPtrConstant(1));
3635    }
3636
3637    if (isSigned) {
3638      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3639                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3640      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3641      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3642                             ISD::SETNE);
3643    } else {
3644      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3645                             DAG.getConstant(0, VT), ISD::SETNE);
3646    }
3647    Results.push_back(BottomHalf);
3648    Results.push_back(TopHalf);
3649    break;
3650  }
3651  case ISD::BUILD_PAIR: {
3652    EVT PairTy = Node->getValueType(0);
3653    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3654    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3655    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3656                       DAG.getConstant(PairTy.getSizeInBits()/2,
3657                                       TLI.getShiftAmountTy(PairTy)));
3658    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3659    break;
3660  }
3661  case ISD::SELECT:
3662    Tmp1 = Node->getOperand(0);
3663    Tmp2 = Node->getOperand(1);
3664    Tmp3 = Node->getOperand(2);
3665    if (Tmp1.getOpcode() == ISD::SETCC) {
3666      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3667                             Tmp2, Tmp3,
3668                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3669    } else {
3670      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3671                             DAG.getConstant(0, Tmp1.getValueType()),
3672                             Tmp2, Tmp3, ISD::SETNE);
3673    }
3674    Results.push_back(Tmp1);
3675    break;
3676  case ISD::BR_JT: {
3677    SDValue Chain = Node->getOperand(0);
3678    SDValue Table = Node->getOperand(1);
3679    SDValue Index = Node->getOperand(2);
3680
3681    EVT PTy = TLI.getPointerTy();
3682
3683    const TargetData &TD = *TLI.getTargetData();
3684    unsigned EntrySize =
3685      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3686
3687    Index = DAG.getNode(ISD::MUL, dl, PTy,
3688                        Index, DAG.getConstant(EntrySize, PTy));
3689    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3690
3691    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3692    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3693                                MachinePointerInfo::getJumpTable(), MemVT,
3694                                false, false, 0);
3695    Addr = LD;
3696    if (TM.getRelocationModel() == Reloc::PIC_) {
3697      // For PIC, the sequence is:
3698      // BRIND(load(Jumptable + index) + RelocBase)
3699      // RelocBase can be JumpTable, GOT or some sort of global base.
3700      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3701                          TLI.getPICJumpTableRelocBase(Table, DAG));
3702    }
3703    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3704    Results.push_back(Tmp1);
3705    break;
3706  }
3707  case ISD::BRCOND:
3708    // Expand brcond's setcc into its constituent parts and create a BR_CC
3709    // Node.
3710    Tmp1 = Node->getOperand(0);
3711    Tmp2 = Node->getOperand(1);
3712    if (Tmp2.getOpcode() == ISD::SETCC) {
3713      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3714                         Tmp1, Tmp2.getOperand(2),
3715                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3716                         Node->getOperand(2));
3717    } else {
3718      // We test only the i1 bit.  Skip the AND if UNDEF.
3719      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3720        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3721                    DAG.getConstant(1, Tmp2.getValueType()));
3722      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3723                         DAG.getCondCode(ISD::SETNE), Tmp3,
3724                         DAG.getConstant(0, Tmp3.getValueType()),
3725                         Node->getOperand(2));
3726    }
3727    Results.push_back(Tmp1);
3728    break;
3729  case ISD::SETCC: {
3730    Tmp1 = Node->getOperand(0);
3731    Tmp2 = Node->getOperand(1);
3732    Tmp3 = Node->getOperand(2);
3733    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3734
3735    // If we expanded the SETCC into an AND/OR, return the new node
3736    if (Tmp2.getNode() == 0) {
3737      Results.push_back(Tmp1);
3738      break;
3739    }
3740
3741    // Otherwise, SETCC for the given comparison type must be completely
3742    // illegal; expand it into a SELECT_CC.
3743    EVT VT = Node->getValueType(0);
3744    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3745                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3746    Results.push_back(Tmp1);
3747    break;
3748  }
3749  case ISD::SELECT_CC: {
3750    Tmp1 = Node->getOperand(0);   // LHS
3751    Tmp2 = Node->getOperand(1);   // RHS
3752    Tmp3 = Node->getOperand(2);   // True
3753    Tmp4 = Node->getOperand(3);   // False
3754    SDValue CC = Node->getOperand(4);
3755
3756    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3757                          Tmp1, Tmp2, CC, dl);
3758
3759    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3760    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3761    CC = DAG.getCondCode(ISD::SETNE);
3762    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3763                       Tmp3, Tmp4, CC);
3764    Results.push_back(Tmp1);
3765    break;
3766  }
3767  case ISD::BR_CC: {
3768    Tmp1 = Node->getOperand(0);              // Chain
3769    Tmp2 = Node->getOperand(2);              // LHS
3770    Tmp3 = Node->getOperand(3);              // RHS
3771    Tmp4 = Node->getOperand(1);              // CC
3772
3773    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3774                          Tmp2, Tmp3, Tmp4, dl);
3775    LastCALLSEQ_END = DAG.getEntryNode();
3776
3777    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3778    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3779    Tmp4 = DAG.getCondCode(ISD::SETNE);
3780    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3781                       Tmp3, Node->getOperand(4));
3782    Results.push_back(Tmp1);
3783    break;
3784  }
3785  case ISD::GLOBAL_OFFSET_TABLE:
3786  case ISD::GlobalAddress:
3787  case ISD::GlobalTLSAddress:
3788  case ISD::ExternalSymbol:
3789  case ISD::ConstantPool:
3790  case ISD::JumpTable:
3791  case ISD::INTRINSIC_W_CHAIN:
3792  case ISD::INTRINSIC_WO_CHAIN:
3793  case ISD::INTRINSIC_VOID:
3794    // FIXME: Custom lowering for these operations shouldn't return null!
3795    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3796      Results.push_back(SDValue(Node, i));
3797    break;
3798  }
3799}
3800void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3801                                       SmallVectorImpl<SDValue> &Results) {
3802  EVT OVT = Node->getValueType(0);
3803  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3804      Node->getOpcode() == ISD::SINT_TO_FP ||
3805      Node->getOpcode() == ISD::SETCC) {
3806    OVT = Node->getOperand(0).getValueType();
3807  }
3808  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3809  DebugLoc dl = Node->getDebugLoc();
3810  SDValue Tmp1, Tmp2, Tmp3;
3811  switch (Node->getOpcode()) {
3812  case ISD::CTTZ:
3813  case ISD::CTLZ:
3814  case ISD::CTPOP:
3815    // Zero extend the argument.
3816    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3817    // Perform the larger operation.
3818    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3819    if (Node->getOpcode() == ISD::CTTZ) {
3820      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3821      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3822                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3823                          ISD::SETEQ);
3824      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3825                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3826    } else if (Node->getOpcode() == ISD::CTLZ) {
3827      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3828      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3829                          DAG.getConstant(NVT.getSizeInBits() -
3830                                          OVT.getSizeInBits(), NVT));
3831    }
3832    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3833    break;
3834  case ISD::BSWAP: {
3835    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3836    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3837    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3838    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3839                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3840    Results.push_back(Tmp1);
3841    break;
3842  }
3843  case ISD::FP_TO_UINT:
3844  case ISD::FP_TO_SINT:
3845    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3846                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3847    Results.push_back(Tmp1);
3848    break;
3849  case ISD::UINT_TO_FP:
3850  case ISD::SINT_TO_FP:
3851    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3852                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3853    Results.push_back(Tmp1);
3854    break;
3855  case ISD::AND:
3856  case ISD::OR:
3857  case ISD::XOR: {
3858    unsigned ExtOp, TruncOp;
3859    if (OVT.isVector()) {
3860      ExtOp   = ISD::BITCAST;
3861      TruncOp = ISD::BITCAST;
3862    } else {
3863      assert(OVT.isInteger() && "Cannot promote logic operation");
3864      ExtOp   = ISD::ANY_EXTEND;
3865      TruncOp = ISD::TRUNCATE;
3866    }
3867    // Promote each of the values to the new type.
3868    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3869    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3870    // Perform the larger operation, then convert back
3871    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3872    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3873    break;
3874  }
3875  case ISD::SELECT: {
3876    unsigned ExtOp, TruncOp;
3877    if (Node->getValueType(0).isVector()) {
3878      ExtOp   = ISD::BITCAST;
3879      TruncOp = ISD::BITCAST;
3880    } else if (Node->getValueType(0).isInteger()) {
3881      ExtOp   = ISD::ANY_EXTEND;
3882      TruncOp = ISD::TRUNCATE;
3883    } else {
3884      ExtOp   = ISD::FP_EXTEND;
3885      TruncOp = ISD::FP_ROUND;
3886    }
3887    Tmp1 = Node->getOperand(0);
3888    // Promote each of the values to the new type.
3889    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3890    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3891    // Perform the larger operation, then round down.
3892    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3893    if (TruncOp != ISD::FP_ROUND)
3894      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3895    else
3896      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3897                         DAG.getIntPtrConstant(0));
3898    Results.push_back(Tmp1);
3899    break;
3900  }
3901  case ISD::VECTOR_SHUFFLE: {
3902    SmallVector<int, 8> Mask;
3903    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3904
3905    // Cast the two input vectors.
3906    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3907    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3908
3909    // Convert the shuffle mask to the right # elements.
3910    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3911    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3912    Results.push_back(Tmp1);
3913    break;
3914  }
3915  case ISD::SETCC: {
3916    unsigned ExtOp = ISD::FP_EXTEND;
3917    if (NVT.isInteger()) {
3918      ISD::CondCode CCCode =
3919        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3920      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3921    }
3922    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3923    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3924    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3925                                  Tmp1, Tmp2, Node->getOperand(2)));
3926    break;
3927  }
3928  }
3929}
3930
3931// SelectionDAG::Legalize - This is the entry point for the file.
3932//
3933void SelectionDAG::Legalize() {
3934  /// run - This is the main entry point to this class.
3935  ///
3936  SelectionDAGLegalize(*this).LegalizeDAG();
3937}
3938