LegalizeDAG.cpp revision 899c5cfbecf4221a3268384e417e85c29c130594
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/DenseMap.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include <map>
43using namespace llvm;
44
45//===----------------------------------------------------------------------===//
46/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
47/// hacks on it until the target machine can handle it.  This involves
48/// eliminating value sizes the machine cannot handle (promoting small sizes to
49/// large sizes or splitting up large values into small values) as well as
50/// eliminating operations the machine cannot handle.
51///
52/// This code also does a small amount of optimization and recognition of idioms
53/// as part of its processing.  For example, if a target does not support a
54/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
55/// will attempt merge setcc and brc instructions into brcc's.
56///
57namespace {
58class SelectionDAGLegalize {
59  TargetLowering &TLI;
60  SelectionDAG &DAG;
61  CodeGenOpt::Level OptLevel;
62
63  // Libcall insertion helpers.
64
65  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
66  /// legalized.  We use this to ensure that calls are properly serialized
67  /// against each other, including inserted libcalls.
68  SDValue LastCALLSEQ_END;
69
70  /// IsLegalizingCall - This member is used *only* for purposes of providing
71  /// helpful assertions that a libcall isn't created while another call is
72  /// being legalized (which could lead to non-serialized call sequences).
73  bool IsLegalizingCall;
74
75  enum LegalizeAction {
76    Legal,      // The target natively supports this operation.
77    Promote,    // This operation should be executed in a larger type.
78    Expand      // Try to expand this to other ops, otherwise use a libcall.
79  };
80
81  /// ValueTypeActions - This is a bitvector that contains two bits for each
82  /// value type, where the two bits correspond to the LegalizeAction enum.
83  /// This can be queried with "getTypeAction(VT)".
84  TargetLowering::ValueTypeActionImpl ValueTypeActions;
85
86  /// LegalizedNodes - For nodes that are of legal width, and that have more
87  /// than one use, this map indicates what regularized operand to use.  This
88  /// allows us to avoid legalizing the same thing more than once.
89  DenseMap<SDValue, SDValue> LegalizedNodes;
90
91  void AddLegalizedOperand(SDValue From, SDValue To) {
92    LegalizedNodes.insert(std::make_pair(From, To));
93    // If someone requests legalization of the new node, return itself.
94    if (From != To)
95      LegalizedNodes.insert(std::make_pair(To, To));
96  }
97
98public:
99  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
100
101  /// getTypeAction - Return how we should legalize values of this type, either
102  /// it is already legal or we need to expand it into multiple registers of
103  /// smaller integer type, or we need to promote it to a larger type.
104  LegalizeAction getTypeAction(EVT VT) const {
105    return
106        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
107  }
108
109  /// isTypeLegal - Return true if this type is legal on this target.
110  ///
111  bool isTypeLegal(EVT VT) const {
112    return getTypeAction(VT) == Legal;
113  }
114
115  void LegalizeDAG();
116
117private:
118  /// LegalizeOp - We know that the specified value has a legal type.
119  /// Recursively ensure that the operands have legal types, then return the
120  /// result.
121  SDValue LegalizeOp(SDValue O);
122
123  SDValue OptimizeFloatStore(StoreSDNode *ST);
124
125  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
126  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
127  /// is necessary to spill the vector being inserted into to memory, perform
128  /// the insert there, and then read the result back.
129  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
130                                         SDValue Idx, DebugLoc dl);
131  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
132                                  SDValue Idx, DebugLoc dl);
133
134  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
135  /// performs the same shuffe in terms of order or result bytes, but on a type
136  /// whose vector element type is narrower than the original shuffle type.
137  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
138  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
139                                     SDValue N1, SDValue N2,
140                                     SmallVectorImpl<int> &Mask) const;
141
142  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
143                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
144
145  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
146                             DebugLoc dl);
147
148  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
149  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
150                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
151                          RTLIB::Libcall Call_PPCF128);
152  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
153                           RTLIB::Libcall Call_I8,
154                           RTLIB::Libcall Call_I16,
155                           RTLIB::Libcall Call_I32,
156                           RTLIB::Libcall Call_I64,
157                           RTLIB::Libcall Call_I128);
158
159  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
160  SDValue ExpandBUILD_VECTOR(SDNode *Node);
161  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
162  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
163                                SmallVectorImpl<SDValue> &Results);
164  SDValue ExpandFCOPYSIGN(SDNode *Node);
165  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
166                               DebugLoc dl);
167  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
168                                DebugLoc dl);
169  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
170                                DebugLoc dl);
171
172  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
173  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
174
175  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
176  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
177
178  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
179  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
180};
181}
182
183/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
184/// performs the same shuffe in terms of order or result bytes, but on a type
185/// whose vector element type is narrower than the original shuffle type.
186/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
187SDValue
188SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
189                                                 SDValue N1, SDValue N2,
190                                             SmallVectorImpl<int> &Mask) const {
191  unsigned NumMaskElts = VT.getVectorNumElements();
192  unsigned NumDestElts = NVT.getVectorNumElements();
193  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
194
195  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
196
197  if (NumEltsGrowth == 1)
198    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
199
200  SmallVector<int, 8> NewMask;
201  for (unsigned i = 0; i != NumMaskElts; ++i) {
202    int Idx = Mask[i];
203    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
204      if (Idx < 0)
205        NewMask.push_back(-1);
206      else
207        NewMask.push_back(Idx * NumEltsGrowth + j);
208    }
209  }
210  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
211  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
212  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
213}
214
215SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
216                                           CodeGenOpt::Level ol)
217  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
218    ValueTypeActions(TLI.getValueTypeActions()) {
219  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
220         "Too many value types for ValueTypeActions to hold!");
221}
222
223void SelectionDAGLegalize::LegalizeDAG() {
224  LastCALLSEQ_END = DAG.getEntryNode();
225  IsLegalizingCall = false;
226
227  // The legalize process is inherently a bottom-up recursive process (users
228  // legalize their uses before themselves).  Given infinite stack space, we
229  // could just start legalizing on the root and traverse the whole graph.  In
230  // practice however, this causes us to run out of stack space on large basic
231  // blocks.  To avoid this problem, compute an ordering of the nodes where each
232  // node is only legalized after all of its operands are legalized.
233  DAG.AssignTopologicalOrder();
234  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
235       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
236    LegalizeOp(SDValue(I, 0));
237
238  // Finally, it's possible the root changed.  Get the new root.
239  SDValue OldRoot = DAG.getRoot();
240  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
241  DAG.setRoot(LegalizedNodes[OldRoot]);
242
243  LegalizedNodes.clear();
244
245  // Remove dead nodes now.
246  DAG.RemoveDeadNodes();
247}
248
249
250/// FindCallEndFromCallStart - Given a chained node that is part of a call
251/// sequence, find the CALLSEQ_END node that terminates the call sequence.
252static SDNode *FindCallEndFromCallStart(SDNode *Node) {
253  if (Node->getOpcode() == ISD::CALLSEQ_END)
254    return Node;
255  if (Node->use_empty())
256    return 0;   // No CallSeqEnd
257
258  // The chain is usually at the end.
259  SDValue TheChain(Node, Node->getNumValues()-1);
260  if (TheChain.getValueType() != MVT::Other) {
261    // Sometimes it's at the beginning.
262    TheChain = SDValue(Node, 0);
263    if (TheChain.getValueType() != MVT::Other) {
264      // Otherwise, hunt for it.
265      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
266        if (Node->getValueType(i) == MVT::Other) {
267          TheChain = SDValue(Node, i);
268          break;
269        }
270
271      // Otherwise, we walked into a node without a chain.
272      if (TheChain.getValueType() != MVT::Other)
273        return 0;
274    }
275  }
276
277  for (SDNode::use_iterator UI = Node->use_begin(),
278       E = Node->use_end(); UI != E; ++UI) {
279
280    // Make sure to only follow users of our token chain.
281    SDNode *User = *UI;
282    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
283      if (User->getOperand(i) == TheChain)
284        if (SDNode *Result = FindCallEndFromCallStart(User))
285          return Result;
286  }
287  return 0;
288}
289
290/// FindCallStartFromCallEnd - Given a chained node that is part of a call
291/// sequence, find the CALLSEQ_START node that initiates the call sequence.
292static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
293  assert(Node && "Didn't find callseq_start for a call??");
294  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
295
296  assert(Node->getOperand(0).getValueType() == MVT::Other &&
297         "Node doesn't have a token chain argument!");
298  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
299}
300
301/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
302/// see if any uses can reach Dest.  If no dest operands can get to dest,
303/// legalize them, legalize ourself, and return false, otherwise, return true.
304///
305/// Keep track of the nodes we fine that actually do lead to Dest in
306/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
307///
308bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
309                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
310  if (N == Dest) return true;  // N certainly leads to Dest :)
311
312  // If we've already processed this node and it does lead to Dest, there is no
313  // need to reprocess it.
314  if (NodesLeadingTo.count(N)) return true;
315
316  // If the first result of this node has been already legalized, then it cannot
317  // reach N.
318  if (LegalizedNodes.count(SDValue(N, 0))) return false;
319
320  // Okay, this node has not already been legalized.  Check and legalize all
321  // operands.  If none lead to Dest, then we can legalize this node.
322  bool OperandsLeadToDest = false;
323  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
324    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
325      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
326
327  if (OperandsLeadToDest) {
328    NodesLeadingTo.insert(N);
329    return true;
330  }
331
332  // Okay, this node looks safe, legalize it and return false.
333  LegalizeOp(SDValue(N, 0));
334  return false;
335}
336
337/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
338/// a load from the constant pool.
339static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
340                                SelectionDAG &DAG, const TargetLowering &TLI) {
341  bool Extend = false;
342  DebugLoc dl = CFP->getDebugLoc();
343
344  // If a FP immediate is precise when represented as a float and if the
345  // target can do an extending load from float to double, we put it into
346  // the constant pool as a float, even if it's is statically typed as a
347  // double.  This shrinks FP constants and canonicalizes them for targets where
348  // an FP extending load is the same cost as a normal load (such as on the x87
349  // fp stack or PPC FP unit).
350  EVT VT = CFP->getValueType(0);
351  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
352  if (!UseCP) {
353    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
354    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
355                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
356  }
357
358  EVT OrigVT = VT;
359  EVT SVT = VT;
360  while (SVT != MVT::f32) {
361    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
362    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
363        // Only do this if the target has a native EXTLOAD instruction from
364        // smaller type.
365        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
366        TLI.ShouldShrinkFPConstant(OrigVT)) {
367      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
368      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
369      VT = SVT;
370      Extend = true;
371    }
372  }
373
374  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
375  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
376  if (Extend)
377    return DAG.getExtLoad(ISD::EXTLOAD, dl,
378                          OrigVT, DAG.getEntryNode(),
379                          CPIdx, PseudoSourceValue::getConstantPool(),
380                          0, VT, false, false, Alignment);
381  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
382                     PseudoSourceValue::getConstantPool(), 0, false, false,
383                     Alignment);
384}
385
386/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
387static
388SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
389                             const TargetLowering &TLI) {
390  SDValue Chain = ST->getChain();
391  SDValue Ptr = ST->getBasePtr();
392  SDValue Val = ST->getValue();
393  EVT VT = Val.getValueType();
394  int Alignment = ST->getAlignment();
395  int SVOffset = ST->getSrcValueOffset();
396  DebugLoc dl = ST->getDebugLoc();
397  if (ST->getMemoryVT().isFloatingPoint() ||
398      ST->getMemoryVT().isVector()) {
399    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
400    if (TLI.isTypeLegal(intVT)) {
401      // Expand to a bitconvert of the value to the integer type of the
402      // same size, then a (misaligned) int store.
403      // FIXME: Does not handle truncating floating point stores!
404      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
405      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
406                          SVOffset, ST->isVolatile(), ST->isNonTemporal(),
407                          Alignment);
408    } else {
409      // Do a (aligned) store to a stack slot, then copy from the stack slot
410      // to the final destination using (unaligned) integer loads and stores.
411      EVT StoredVT = ST->getMemoryVT();
412      EVT RegVT =
413        TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits()));
414      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
415      unsigned RegBytes = RegVT.getSizeInBits() / 8;
416      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
417
418      // Make sure the stack slot is also aligned for the register type.
419      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
420
421      // Perform the original store, only redirected to the stack slot.
422      SDValue Store = DAG.getTruncStore(Chain, dl,
423                                        Val, StackPtr, NULL, 0, StoredVT,
424                                        false, false, 0);
425      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
426      SmallVector<SDValue, 8> Stores;
427      unsigned Offset = 0;
428
429      // Do all but one copies using the full register width.
430      for (unsigned i = 1; i < NumRegs; i++) {
431        // Load one integer register's worth from the stack slot.
432        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0,
433                                   false, false, 0);
434        // Store it to the final location.  Remember the store.
435        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
436                                      ST->getSrcValue(), SVOffset + Offset,
437                                      ST->isVolatile(), ST->isNonTemporal(),
438                                      MinAlign(ST->getAlignment(), Offset)));
439        // Increment the pointers.
440        Offset += RegBytes;
441        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
442                               Increment);
443        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
444      }
445
446      // The last store may be partial.  Do a truncating store.  On big-endian
447      // machines this requires an extending load from the stack slot to ensure
448      // that the bits are in the right place.
449      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
450
451      // Load from the stack slot.
452      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
453                                    NULL, 0, MemVT, false, false, 0);
454
455      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
456                                         ST->getSrcValue(), SVOffset + Offset,
457                                         MemVT, ST->isVolatile(),
458                                         ST->isNonTemporal(),
459                                         MinAlign(ST->getAlignment(), Offset)));
460      // The order of the stores doesn't matter - say it with a TokenFactor.
461      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
462                         Stores.size());
463    }
464  }
465  assert(ST->getMemoryVT().isInteger() &&
466         !ST->getMemoryVT().isVector() &&
467         "Unaligned store of unknown type.");
468  // Get the half-size VT
469  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
470  int NumBits = NewStoredVT.getSizeInBits();
471  int IncrementSize = NumBits / 8;
472
473  // Divide the stored value in two parts.
474  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
475  SDValue Lo = Val;
476  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
477
478  // Store the two parts
479  SDValue Store1, Store2;
480  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
481                             ST->getSrcValue(), SVOffset, NewStoredVT,
482                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
483  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
484                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
485  Alignment = MinAlign(Alignment, IncrementSize);
486  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
487                             ST->getSrcValue(), SVOffset + IncrementSize,
488                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
489                             Alignment);
490
491  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
492}
493
494/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
495static
496SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
497                            const TargetLowering &TLI) {
498  int SVOffset = LD->getSrcValueOffset();
499  SDValue Chain = LD->getChain();
500  SDValue Ptr = LD->getBasePtr();
501  EVT VT = LD->getValueType(0);
502  EVT LoadedVT = LD->getMemoryVT();
503  DebugLoc dl = LD->getDebugLoc();
504  if (VT.isFloatingPoint() || VT.isVector()) {
505    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
506    if (TLI.isTypeLegal(intVT)) {
507      // Expand to a (misaligned) integer load of the same size,
508      // then bitconvert to floating point or vector.
509      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
510                                    SVOffset, LD->isVolatile(),
511                                    LD->isNonTemporal(), LD->getAlignment());
512      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
513      if (VT.isFloatingPoint() && LoadedVT != VT)
514        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
515
516      SDValue Ops[] = { Result, Chain };
517      return DAG.getMergeValues(Ops, 2, dl);
518    } else {
519      // Copy the value to a (aligned) stack slot using (unaligned) integer
520      // loads and stores, then do a (aligned) load from the stack slot.
521      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
522      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
523      unsigned RegBytes = RegVT.getSizeInBits() / 8;
524      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
525
526      // Make sure the stack slot is also aligned for the register type.
527      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
528
529      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
530      SmallVector<SDValue, 8> Stores;
531      SDValue StackPtr = StackBase;
532      unsigned Offset = 0;
533
534      // Do all but one copies using the full register width.
535      for (unsigned i = 1; i < NumRegs; i++) {
536        // Load one integer register's worth from the original location.
537        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
538                                   SVOffset + Offset, LD->isVolatile(),
539                                   LD->isNonTemporal(),
540                                   MinAlign(LD->getAlignment(), Offset));
541        // Follow the load with a store to the stack slot.  Remember the store.
542        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
543                                      NULL, 0, false, false, 0));
544        // Increment the pointers.
545        Offset += RegBytes;
546        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
547        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
548                               Increment);
549      }
550
551      // The last copy may be partial.  Do an extending load.
552      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset));
553      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
554                                    LD->getSrcValue(), SVOffset + Offset,
555                                    MemVT, LD->isVolatile(),
556                                    LD->isNonTemporal(),
557                                    MinAlign(LD->getAlignment(), Offset));
558      // Follow the load with a store to the stack slot.  Remember the store.
559      // On big-endian machines this requires a truncating store to ensure
560      // that the bits end up in the right place.
561      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
562                                         NULL, 0, MemVT, false, false, 0));
563
564      // The order of the stores doesn't matter - say it with a TokenFactor.
565      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
566                               Stores.size());
567
568      // Finally, perform the original load only redirected to the stack slot.
569      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
570                            NULL, 0, LoadedVT, false, false, 0);
571
572      // Callers expect a MERGE_VALUES node.
573      SDValue Ops[] = { Load, TF };
574      return DAG.getMergeValues(Ops, 2, dl);
575    }
576  }
577  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
578         "Unaligned load of unsupported type.");
579
580  // Compute the new VT that is half the size of the old one.  This is an
581  // integer MVT.
582  unsigned NumBits = LoadedVT.getSizeInBits();
583  EVT NewLoadedVT;
584  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
585  NumBits >>= 1;
586
587  unsigned Alignment = LD->getAlignment();
588  unsigned IncrementSize = NumBits / 8;
589  ISD::LoadExtType HiExtType = LD->getExtensionType();
590
591  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
592  if (HiExtType == ISD::NON_EXTLOAD)
593    HiExtType = ISD::ZEXTLOAD;
594
595  // Load the value in two parts
596  SDValue Lo, Hi;
597  if (TLI.isLittleEndian()) {
598    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
599                        SVOffset, NewLoadedVT, LD->isVolatile(),
600                        LD->isNonTemporal(), Alignment);
601    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
602                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
603    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
604                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
605                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
606  } else {
607    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
608                        SVOffset, NewLoadedVT, LD->isVolatile(),
609                        LD->isNonTemporal(), Alignment);
610    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
611                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
612    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
613                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
614                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
615  }
616
617  // aggregate the two parts
618  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
619  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
620  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
621
622  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
623                             Hi.getValue(1));
624
625  SDValue Ops[] = { Result, TF };
626  return DAG.getMergeValues(Ops, 2, dl);
627}
628
629/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
630/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
631/// is necessary to spill the vector being inserted into to memory, perform
632/// the insert there, and then read the result back.
633SDValue SelectionDAGLegalize::
634PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
635                               DebugLoc dl) {
636  SDValue Tmp1 = Vec;
637  SDValue Tmp2 = Val;
638  SDValue Tmp3 = Idx;
639
640  // If the target doesn't support this, we have to spill the input vector
641  // to a temporary stack slot, update the element, then reload it.  This is
642  // badness.  We could also load the value into a vector register (either
643  // with a "move to register" or "extload into register" instruction, then
644  // permute it into place, if the idx is a constant and if the idx is
645  // supported by the target.
646  EVT VT    = Tmp1.getValueType();
647  EVT EltVT = VT.getVectorElementType();
648  EVT IdxVT = Tmp3.getValueType();
649  EVT PtrVT = TLI.getPointerTy();
650  SDValue StackPtr = DAG.CreateStackTemporary(VT);
651
652  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
653
654  // Store the vector.
655  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
656                            PseudoSourceValue::getFixedStack(SPFI), 0,
657                            false, false, 0);
658
659  // Truncate or zero extend offset to target pointer type.
660  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
661  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
662  // Add the offset to the index.
663  unsigned EltSize = EltVT.getSizeInBits()/8;
664  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
665  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
666  // Store the scalar value.
667  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
668                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT,
669                         false, false, 0);
670  // Load the updated vector.
671  return DAG.getLoad(VT, dl, Ch, StackPtr,
672                     PseudoSourceValue::getFixedStack(SPFI), 0,
673                     false, false, 0);
674}
675
676
677SDValue SelectionDAGLegalize::
678ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
679  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
680    // SCALAR_TO_VECTOR requires that the type of the value being inserted
681    // match the element type of the vector being created, except for
682    // integers in which case the inserted value can be over width.
683    EVT EltVT = Vec.getValueType().getVectorElementType();
684    if (Val.getValueType() == EltVT ||
685        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
686      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
687                                  Vec.getValueType(), Val);
688
689      unsigned NumElts = Vec.getValueType().getVectorNumElements();
690      // We generate a shuffle of InVec and ScVec, so the shuffle mask
691      // should be 0,1,2,3,4,5... with the appropriate element replaced with
692      // elt 0 of the RHS.
693      SmallVector<int, 8> ShufOps;
694      for (unsigned i = 0; i != NumElts; ++i)
695        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
696
697      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
698                                  &ShufOps[0]);
699    }
700  }
701  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
702}
703
704SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
705  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
706  // FIXME: We shouldn't do this for TargetConstantFP's.
707  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
708  // to phase ordering between legalized code and the dag combiner.  This
709  // probably means that we need to integrate dag combiner and legalizer
710  // together.
711  // We generally can't do this one for long doubles.
712  SDValue Tmp1 = ST->getChain();
713  SDValue Tmp2 = ST->getBasePtr();
714  SDValue Tmp3;
715  int SVOffset = ST->getSrcValueOffset();
716  unsigned Alignment = ST->getAlignment();
717  bool isVolatile = ST->isVolatile();
718  bool isNonTemporal = ST->isNonTemporal();
719  DebugLoc dl = ST->getDebugLoc();
720  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
721    if (CFP->getValueType(0) == MVT::f32 &&
722        getTypeAction(MVT::i32) == Legal) {
723      Tmp3 = DAG.getConstant(CFP->getValueAPF().
724                                      bitcastToAPInt().zextOrTrunc(32),
725                              MVT::i32);
726      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
727                          SVOffset, isVolatile, isNonTemporal, Alignment);
728    } else if (CFP->getValueType(0) == MVT::f64) {
729      // If this target supports 64-bit registers, do a single 64-bit store.
730      if (getTypeAction(MVT::i64) == Legal) {
731        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
732                                  zextOrTrunc(64), MVT::i64);
733        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
734                            SVOffset, isVolatile, isNonTemporal, Alignment);
735      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
736        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
737        // stores.  If the target supports neither 32- nor 64-bits, this
738        // xform is certainly not worth it.
739        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
740        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
741        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
742        if (TLI.isBigEndian()) std::swap(Lo, Hi);
743
744        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
745                          SVOffset, isVolatile, isNonTemporal, Alignment);
746        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
747                            DAG.getIntPtrConstant(4));
748        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
749                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
750
751        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
752      }
753    }
754  }
755  return SDValue();
756}
757
758/// LegalizeOp - We know that the specified value has a legal type, and
759/// that its operands are legal.  Now ensure that the operation itself
760/// is legal, recursively ensuring that the operands' operations remain
761/// legal.
762SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
763  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
764    return Op;
765
766  SDNode *Node = Op.getNode();
767  DebugLoc dl = Node->getDebugLoc();
768
769  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
770    assert(getTypeAction(Node->getValueType(i)) == Legal &&
771           "Unexpected illegal type!");
772
773  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
774    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
775            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
776           "Unexpected illegal type!");
777
778  // Note that LegalizeOp may be reentered even from single-use nodes, which
779  // means that we always must cache transformed nodes.
780  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
781  if (I != LegalizedNodes.end()) return I->second;
782
783  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
784  SDValue Result = Op;
785  bool isCustom = false;
786
787  // Figure out the correct action; the way to query this varies by opcode
788  TargetLowering::LegalizeAction Action;
789  bool SimpleFinishLegalizing = true;
790  switch (Node->getOpcode()) {
791  case ISD::INTRINSIC_W_CHAIN:
792  case ISD::INTRINSIC_WO_CHAIN:
793  case ISD::INTRINSIC_VOID:
794  case ISD::VAARG:
795  case ISD::STACKSAVE:
796    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
797    break;
798  case ISD::SINT_TO_FP:
799  case ISD::UINT_TO_FP:
800  case ISD::EXTRACT_VECTOR_ELT:
801    Action = TLI.getOperationAction(Node->getOpcode(),
802                                    Node->getOperand(0).getValueType());
803    break;
804  case ISD::FP_ROUND_INREG:
805  case ISD::SIGN_EXTEND_INREG: {
806    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
807    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
808    break;
809  }
810  case ISD::SELECT_CC:
811  case ISD::SETCC:
812  case ISD::BR_CC: {
813    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
814                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
815    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
816    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
817    ISD::CondCode CCCode =
818        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
819    Action = TLI.getCondCodeAction(CCCode, OpVT);
820    if (Action == TargetLowering::Legal) {
821      if (Node->getOpcode() == ISD::SELECT_CC)
822        Action = TLI.getOperationAction(Node->getOpcode(),
823                                        Node->getValueType(0));
824      else
825        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
826    }
827    break;
828  }
829  case ISD::LOAD:
830  case ISD::STORE:
831    // FIXME: Model these properly.  LOAD and STORE are complicated, and
832    // STORE expects the unlegalized operand in some cases.
833    SimpleFinishLegalizing = false;
834    break;
835  case ISD::CALLSEQ_START:
836  case ISD::CALLSEQ_END:
837    // FIXME: This shouldn't be necessary.  These nodes have special properties
838    // dealing with the recursive nature of legalization.  Removing this
839    // special case should be done as part of making LegalizeDAG non-recursive.
840    SimpleFinishLegalizing = false;
841    break;
842  case ISD::EXTRACT_ELEMENT:
843  case ISD::FLT_ROUNDS_:
844  case ISD::SADDO:
845  case ISD::SSUBO:
846  case ISD::UADDO:
847  case ISD::USUBO:
848  case ISD::SMULO:
849  case ISD::UMULO:
850  case ISD::FPOWI:
851  case ISD::MERGE_VALUES:
852  case ISD::EH_RETURN:
853  case ISD::FRAME_TO_ARGS_OFFSET:
854  case ISD::FP16_TO_FP32:
855  case ISD::FP32_TO_FP16:
856    // These operations lie about being legal: when they claim to be legal,
857    // they should actually be expanded.
858    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
859    if (Action == TargetLowering::Legal)
860      Action = TargetLowering::Expand;
861    break;
862  case ISD::TRAMPOLINE:
863  case ISD::FRAMEADDR:
864  case ISD::RETURNADDR:
865    // These operations lie about being legal: when they claim to be legal,
866    // they should actually be custom-lowered.
867    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
868    if (Action == TargetLowering::Legal)
869      Action = TargetLowering::Custom;
870    break;
871  case ISD::BUILD_VECTOR:
872    // A weird case: legalization for BUILD_VECTOR never legalizes the
873    // operands!
874    // FIXME: This really sucks... changing it isn't semantically incorrect,
875    // but it massively pessimizes the code for floating-point BUILD_VECTORs
876    // because ConstantFP operands get legalized into constant pool loads
877    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
878    // though, because BUILD_VECTORS usually get lowered into other nodes
879    // which get legalized properly.
880    SimpleFinishLegalizing = false;
881    break;
882  default:
883    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
884      Action = TargetLowering::Legal;
885    } else {
886      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
887    }
888    break;
889  }
890
891  if (SimpleFinishLegalizing) {
892    SmallVector<SDValue, 8> Ops, ResultVals;
893    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
894      Ops.push_back(LegalizeOp(Node->getOperand(i)));
895    switch (Node->getOpcode()) {
896    default: break;
897    case ISD::BR:
898    case ISD::BRIND:
899    case ISD::BR_JT:
900    case ISD::BR_CC:
901    case ISD::BRCOND:
902      // Branches tweak the chain to include LastCALLSEQ_END
903      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
904                            LastCALLSEQ_END);
905      Ops[0] = LegalizeOp(Ops[0]);
906      LastCALLSEQ_END = DAG.getEntryNode();
907      break;
908    case ISD::SHL:
909    case ISD::SRL:
910    case ISD::SRA:
911    case ISD::ROTL:
912    case ISD::ROTR:
913      // Legalizing shifts/rotates requires adjusting the shift amount
914      // to the appropriate width.
915      if (!Ops[1].getValueType().isVector())
916        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
917      break;
918    case ISD::SRL_PARTS:
919    case ISD::SRA_PARTS:
920    case ISD::SHL_PARTS:
921      // Legalizing shifts/rotates requires adjusting the shift amount
922      // to the appropriate width.
923      if (!Ops[2].getValueType().isVector())
924        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
925      break;
926    }
927
928    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
929                                    Ops.size());
930    switch (Action) {
931    case TargetLowering::Legal:
932      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
933        ResultVals.push_back(Result.getValue(i));
934      break;
935    case TargetLowering::Custom:
936      // FIXME: The handling for custom lowering with multiple results is
937      // a complete mess.
938      Tmp1 = TLI.LowerOperation(Result, DAG);
939      if (Tmp1.getNode()) {
940        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
941          if (e == 1)
942            ResultVals.push_back(Tmp1);
943          else
944            ResultVals.push_back(Tmp1.getValue(i));
945        }
946        break;
947      }
948
949      // FALL THROUGH
950    case TargetLowering::Expand:
951      ExpandNode(Result.getNode(), ResultVals);
952      break;
953    case TargetLowering::Promote:
954      PromoteNode(Result.getNode(), ResultVals);
955      break;
956    }
957    if (!ResultVals.empty()) {
958      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
959        if (ResultVals[i] != SDValue(Node, i))
960          ResultVals[i] = LegalizeOp(ResultVals[i]);
961        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
962      }
963      return ResultVals[Op.getResNo()];
964    }
965  }
966
967  switch (Node->getOpcode()) {
968  default:
969#ifndef NDEBUG
970    dbgs() << "NODE: ";
971    Node->dump( &DAG);
972    dbgs() << "\n";
973#endif
974    llvm_unreachable("Do not know how to legalize this operator!");
975
976  case ISD::BUILD_VECTOR:
977    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
978    default: llvm_unreachable("This action is not supported yet!");
979    case TargetLowering::Custom:
980      Tmp3 = TLI.LowerOperation(Result, DAG);
981      if (Tmp3.getNode()) {
982        Result = Tmp3;
983        break;
984      }
985      // FALLTHROUGH
986    case TargetLowering::Expand:
987      Result = ExpandBUILD_VECTOR(Result.getNode());
988      break;
989    }
990    break;
991  case ISD::CALLSEQ_START: {
992    SDNode *CallEnd = FindCallEndFromCallStart(Node);
993
994    // Recursively Legalize all of the inputs of the call end that do not lead
995    // to this call start.  This ensures that any libcalls that need be inserted
996    // are inserted *before* the CALLSEQ_START.
997    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
998    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
999      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1000                                   NodesLeadingTo);
1001    }
1002
1003    // Now that we legalized all of the inputs (which may have inserted
1004    // libcalls) create the new CALLSEQ_START node.
1005    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1006
1007    // Merge in the last call, to ensure that this call start after the last
1008    // call ended.
1009    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1010      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1011                         Tmp1, LastCALLSEQ_END);
1012      Tmp1 = LegalizeOp(Tmp1);
1013    }
1014
1015    // Do not try to legalize the target-specific arguments (#1+).
1016    if (Tmp1 != Node->getOperand(0)) {
1017      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1018      Ops[0] = Tmp1;
1019      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1020    }
1021
1022    // Remember that the CALLSEQ_START is legalized.
1023    AddLegalizedOperand(Op.getValue(0), Result);
1024    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1025      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1026
1027    // Now that the callseq_start and all of the non-call nodes above this call
1028    // sequence have been legalized, legalize the call itself.  During this
1029    // process, no libcalls can/will be inserted, guaranteeing that no calls
1030    // can overlap.
1031    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1032    // Note that we are selecting this call!
1033    LastCALLSEQ_END = SDValue(CallEnd, 0);
1034    IsLegalizingCall = true;
1035
1036    // Legalize the call, starting from the CALLSEQ_END.
1037    LegalizeOp(LastCALLSEQ_END);
1038    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1039    return Result;
1040  }
1041  case ISD::CALLSEQ_END:
1042    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1043    // will cause this node to be legalized as well as handling libcalls right.
1044    if (LastCALLSEQ_END.getNode() != Node) {
1045      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1046      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1047      assert(I != LegalizedNodes.end() &&
1048             "Legalizing the call start should have legalized this node!");
1049      return I->second;
1050    }
1051
1052    // Otherwise, the call start has been legalized and everything is going
1053    // according to plan.  Just legalize ourselves normally here.
1054    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1055    // Do not try to legalize the target-specific arguments (#1+), except for
1056    // an optional flag input.
1057    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1058      if (Tmp1 != Node->getOperand(0)) {
1059        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1060        Ops[0] = Tmp1;
1061        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1062      }
1063    } else {
1064      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1065      if (Tmp1 != Node->getOperand(0) ||
1066          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1067        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1068        Ops[0] = Tmp1;
1069        Ops.back() = Tmp2;
1070        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1071      }
1072    }
1073    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1074    // This finishes up call legalization.
1075    IsLegalizingCall = false;
1076
1077    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1078    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1079    if (Node->getNumValues() == 2)
1080      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1081    return Result.getValue(Op.getResNo());
1082  case ISD::LOAD: {
1083    LoadSDNode *LD = cast<LoadSDNode>(Node);
1084    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1085    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1086
1087    ISD::LoadExtType ExtType = LD->getExtensionType();
1088    if (ExtType == ISD::NON_EXTLOAD) {
1089      EVT VT = Node->getValueType(0);
1090      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1091      Tmp3 = Result.getValue(0);
1092      Tmp4 = Result.getValue(1);
1093
1094      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1095      default: llvm_unreachable("This action is not supported yet!");
1096      case TargetLowering::Legal:
1097        // If this is an unaligned load and the target doesn't support it,
1098        // expand it.
1099        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1100          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1101          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1102          if (LD->getAlignment() < ABIAlignment){
1103            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1104                                         DAG, TLI);
1105            Tmp3 = Result.getOperand(0);
1106            Tmp4 = Result.getOperand(1);
1107            Tmp3 = LegalizeOp(Tmp3);
1108            Tmp4 = LegalizeOp(Tmp4);
1109          }
1110        }
1111        break;
1112      case TargetLowering::Custom:
1113        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1114        if (Tmp1.getNode()) {
1115          Tmp3 = LegalizeOp(Tmp1);
1116          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1117        }
1118        break;
1119      case TargetLowering::Promote: {
1120        // Only promote a load of vector type to another.
1121        assert(VT.isVector() && "Cannot promote this load!");
1122        // Change base type to a different vector type.
1123        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1124
1125        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1126                           LD->getSrcValueOffset(),
1127                           LD->isVolatile(), LD->isNonTemporal(),
1128                           LD->getAlignment());
1129        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1130        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1131        break;
1132      }
1133      }
1134      // Since loads produce two values, make sure to remember that we
1135      // legalized both of them.
1136      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1137      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1138      return Op.getResNo() ? Tmp4 : Tmp3;
1139    } else {
1140      EVT SrcVT = LD->getMemoryVT();
1141      unsigned SrcWidth = SrcVT.getSizeInBits();
1142      int SVOffset = LD->getSrcValueOffset();
1143      unsigned Alignment = LD->getAlignment();
1144      bool isVolatile = LD->isVolatile();
1145      bool isNonTemporal = LD->isNonTemporal();
1146
1147      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1148          // Some targets pretend to have an i1 loading operation, and actually
1149          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1150          // bits are guaranteed to be zero; it helps the optimizers understand
1151          // that these bits are zero.  It is also useful for EXTLOAD, since it
1152          // tells the optimizers that those bits are undefined.  It would be
1153          // nice to have an effective generic way of getting these benefits...
1154          // Until such a way is found, don't insist on promoting i1 here.
1155          (SrcVT != MVT::i1 ||
1156           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1157        // Promote to a byte-sized load if not loading an integral number of
1158        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1159        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1160        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1161        SDValue Ch;
1162
1163        // The extra bits are guaranteed to be zero, since we stored them that
1164        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1165
1166        ISD::LoadExtType NewExtType =
1167          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1168
1169        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1170                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1171                                NVT, isVolatile, isNonTemporal, Alignment);
1172
1173        Ch = Result.getValue(1); // The chain.
1174
1175        if (ExtType == ISD::SEXTLOAD)
1176          // Having the top bits zero doesn't help when sign extending.
1177          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1178                               Result.getValueType(),
1179                               Result, DAG.getValueType(SrcVT));
1180        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1181          // All the top bits are guaranteed to be zero - inform the optimizers.
1182          Result = DAG.getNode(ISD::AssertZext, dl,
1183                               Result.getValueType(), Result,
1184                               DAG.getValueType(SrcVT));
1185
1186        Tmp1 = LegalizeOp(Result);
1187        Tmp2 = LegalizeOp(Ch);
1188      } else if (SrcWidth & (SrcWidth - 1)) {
1189        // If not loading a power-of-2 number of bits, expand as two loads.
1190        assert(!SrcVT.isVector() && "Unsupported extload!");
1191        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1192        assert(RoundWidth < SrcWidth);
1193        unsigned ExtraWidth = SrcWidth - RoundWidth;
1194        assert(ExtraWidth < RoundWidth);
1195        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1196               "Load size not an integral number of bytes!");
1197        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1198        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1199        SDValue Lo, Hi, Ch;
1200        unsigned IncrementSize;
1201
1202        if (TLI.isLittleEndian()) {
1203          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1204          // Load the bottom RoundWidth bits.
1205          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1206                              Node->getValueType(0), Tmp1, Tmp2,
1207                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1208                              isNonTemporal, Alignment);
1209
1210          // Load the remaining ExtraWidth bits.
1211          IncrementSize = RoundWidth / 8;
1212          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1213                             DAG.getIntPtrConstant(IncrementSize));
1214          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1215                              LD->getSrcValue(), SVOffset + IncrementSize,
1216                              ExtraVT, isVolatile, isNonTemporal,
1217                              MinAlign(Alignment, IncrementSize));
1218
1219          // Build a factor node to remember that this load is independent of the
1220          // other one.
1221          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1222                           Hi.getValue(1));
1223
1224          // Move the top bits to the right place.
1225          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1226                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1227
1228          // Join the hi and lo parts.
1229          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1230        } else {
1231          // Big endian - avoid unaligned loads.
1232          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1233          // Load the top RoundWidth bits.
1234          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1235                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1236                              isNonTemporal, Alignment);
1237
1238          // Load the remaining ExtraWidth bits.
1239          IncrementSize = RoundWidth / 8;
1240          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1241                             DAG.getIntPtrConstant(IncrementSize));
1242          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1243                              Node->getValueType(0), Tmp1, Tmp2,
1244                              LD->getSrcValue(), SVOffset + IncrementSize,
1245                              ExtraVT, isVolatile, isNonTemporal,
1246                              MinAlign(Alignment, IncrementSize));
1247
1248          // Build a factor node to remember that this load is independent of the
1249          // other one.
1250          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1251                           Hi.getValue(1));
1252
1253          // Move the top bits to the right place.
1254          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1255                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1256
1257          // Join the hi and lo parts.
1258          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1259        }
1260
1261        Tmp1 = LegalizeOp(Result);
1262        Tmp2 = LegalizeOp(Ch);
1263      } else {
1264        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1265        default: llvm_unreachable("This action is not supported yet!");
1266        case TargetLowering::Custom:
1267          isCustom = true;
1268          // FALLTHROUGH
1269        case TargetLowering::Legal:
1270          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1271          Tmp1 = Result.getValue(0);
1272          Tmp2 = Result.getValue(1);
1273
1274          if (isCustom) {
1275            Tmp3 = TLI.LowerOperation(Result, DAG);
1276            if (Tmp3.getNode()) {
1277              Tmp1 = LegalizeOp(Tmp3);
1278              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1279            }
1280          } else {
1281            // If this is an unaligned load and the target doesn't support it,
1282            // expand it.
1283            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1284              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1285              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1286              if (LD->getAlignment() < ABIAlignment){
1287                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1288                                             DAG, TLI);
1289                Tmp1 = Result.getOperand(0);
1290                Tmp2 = Result.getOperand(1);
1291                Tmp1 = LegalizeOp(Tmp1);
1292                Tmp2 = LegalizeOp(Tmp2);
1293              }
1294            }
1295          }
1296          break;
1297        case TargetLowering::Expand:
1298          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1299          // f128 = EXTLOAD {f32,f64} too
1300          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1301                                     Node->getValueType(0) == MVT::f128)) ||
1302              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1303            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1304                                       LD->getSrcValueOffset(),
1305                                       LD->isVolatile(), LD->isNonTemporal(),
1306                                       LD->getAlignment());
1307            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1308                                 Node->getValueType(0), Load);
1309            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1310            Tmp2 = LegalizeOp(Load.getValue(1));
1311            break;
1312          }
1313          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1314          // Turn the unsupported load into an EXTLOAD followed by an explicit
1315          // zero/sign extend inreg.
1316          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1317                                  Tmp1, Tmp2, LD->getSrcValue(),
1318                                  LD->getSrcValueOffset(), SrcVT,
1319                                  LD->isVolatile(), LD->isNonTemporal(),
1320                                  LD->getAlignment());
1321          SDValue ValRes;
1322          if (ExtType == ISD::SEXTLOAD)
1323            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1324                                 Result.getValueType(),
1325                                 Result, DAG.getValueType(SrcVT));
1326          else
1327            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1328          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1329          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1330          break;
1331        }
1332      }
1333
1334      // Since loads produce two values, make sure to remember that we legalized
1335      // both of them.
1336      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1337      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1338      return Op.getResNo() ? Tmp2 : Tmp1;
1339    }
1340  }
1341  case ISD::STORE: {
1342    StoreSDNode *ST = cast<StoreSDNode>(Node);
1343    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1344    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1345    int SVOffset = ST->getSrcValueOffset();
1346    unsigned Alignment = ST->getAlignment();
1347    bool isVolatile = ST->isVolatile();
1348    bool isNonTemporal = ST->isNonTemporal();
1349
1350    if (!ST->isTruncatingStore()) {
1351      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1352        Result = SDValue(OptStore, 0);
1353        break;
1354      }
1355
1356      {
1357        Tmp3 = LegalizeOp(ST->getValue());
1358        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1359                                        ST->getOffset());
1360
1361        EVT VT = Tmp3.getValueType();
1362        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1363        default: llvm_unreachable("This action is not supported yet!");
1364        case TargetLowering::Legal:
1365          // If this is an unaligned store and the target doesn't support it,
1366          // expand it.
1367          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1368            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1369            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1370            if (ST->getAlignment() < ABIAlignment)
1371              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1372                                            DAG, TLI);
1373          }
1374          break;
1375        case TargetLowering::Custom:
1376          Tmp1 = TLI.LowerOperation(Result, DAG);
1377          if (Tmp1.getNode()) Result = Tmp1;
1378          break;
1379        case TargetLowering::Promote:
1380          assert(VT.isVector() && "Unknown legal promote case!");
1381          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1382                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1383          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1384                                ST->getSrcValue(), SVOffset, isVolatile,
1385                                isNonTemporal, Alignment);
1386          break;
1387        }
1388        break;
1389      }
1390    } else {
1391      Tmp3 = LegalizeOp(ST->getValue());
1392
1393      EVT StVT = ST->getMemoryVT();
1394      unsigned StWidth = StVT.getSizeInBits();
1395
1396      if (StWidth != StVT.getStoreSizeInBits()) {
1397        // Promote to a byte-sized store with upper bits zero if not
1398        // storing an integral number of bytes.  For example, promote
1399        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1400        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits());
1401        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1402        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1403                                   SVOffset, NVT, isVolatile, isNonTemporal,
1404                                   Alignment);
1405      } else if (StWidth & (StWidth - 1)) {
1406        // If not storing a power-of-2 number of bits, expand as two stores.
1407        assert(!StVT.isVector() && "Unsupported truncstore!");
1408        unsigned RoundWidth = 1 << Log2_32(StWidth);
1409        assert(RoundWidth < StWidth);
1410        unsigned ExtraWidth = StWidth - RoundWidth;
1411        assert(ExtraWidth < RoundWidth);
1412        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1413               "Store size not an integral number of bytes!");
1414        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1415        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1416        SDValue Lo, Hi;
1417        unsigned IncrementSize;
1418
1419        if (TLI.isLittleEndian()) {
1420          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1421          // Store the bottom RoundWidth bits.
1422          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1423                                 SVOffset, RoundVT,
1424                                 isVolatile, isNonTemporal, Alignment);
1425
1426          // Store the remaining ExtraWidth bits.
1427          IncrementSize = RoundWidth / 8;
1428          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1429                             DAG.getIntPtrConstant(IncrementSize));
1430          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1431                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1432          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1433                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1434                                 isNonTemporal,
1435                                 MinAlign(Alignment, IncrementSize));
1436        } else {
1437          // Big endian - avoid unaligned stores.
1438          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1439          // Store the top RoundWidth bits.
1440          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1441                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1442          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1443                                 SVOffset, RoundVT, isVolatile, isNonTemporal,
1444                                 Alignment);
1445
1446          // Store the remaining ExtraWidth bits.
1447          IncrementSize = RoundWidth / 8;
1448          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1449                             DAG.getIntPtrConstant(IncrementSize));
1450          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1451                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1452                                 isNonTemporal,
1453                                 MinAlign(Alignment, IncrementSize));
1454        }
1455
1456        // The order of the stores doesn't matter.
1457        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1458      } else {
1459        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1460            Tmp2 != ST->getBasePtr())
1461          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1462                                          ST->getOffset());
1463
1464        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1465        default: llvm_unreachable("This action is not supported yet!");
1466        case TargetLowering::Legal:
1467          // If this is an unaligned store and the target doesn't support it,
1468          // expand it.
1469          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1470            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1471            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1472            if (ST->getAlignment() < ABIAlignment)
1473              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1474                                            DAG, TLI);
1475          }
1476          break;
1477        case TargetLowering::Custom:
1478          Result = TLI.LowerOperation(Result, DAG);
1479          break;
1480        case Expand:
1481          // TRUNCSTORE:i16 i32 -> STORE i16
1482          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1483          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1484          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1485                                SVOffset, isVolatile, isNonTemporal,
1486                                Alignment);
1487          break;
1488        }
1489      }
1490    }
1491    break;
1492  }
1493  }
1494  assert(Result.getValueType() == Op.getValueType() &&
1495         "Bad legalization!");
1496
1497  // Make sure that the generated code is itself legal.
1498  if (Result != Op)
1499    Result = LegalizeOp(Result);
1500
1501  // Note that LegalizeOp may be reentered even from single-use nodes, which
1502  // means that we always must cache transformed nodes.
1503  AddLegalizedOperand(Op, Result);
1504  return Result;
1505}
1506
1507SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1508  SDValue Vec = Op.getOperand(0);
1509  SDValue Idx = Op.getOperand(1);
1510  DebugLoc dl = Op.getDebugLoc();
1511  // Store the value to a temporary stack slot, then LOAD the returned part.
1512  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1513  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1514                            false, false, 0);
1515
1516  // Add the offset to the index.
1517  unsigned EltSize =
1518      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1519  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1520                    DAG.getConstant(EltSize, Idx.getValueType()));
1521
1522  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1523    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1524  else
1525    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1526
1527  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1528
1529  if (Op.getValueType().isVector())
1530    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0,
1531                       false, false, 0);
1532  else
1533    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1534                          NULL, 0, Vec.getValueType().getVectorElementType(),
1535                          false, false, 0);
1536}
1537
1538SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1539  // We can't handle this case efficiently.  Allocate a sufficiently
1540  // aligned object on the stack, store each element into it, then load
1541  // the result as a vector.
1542  // Create the stack frame object.
1543  EVT VT = Node->getValueType(0);
1544  EVT EltVT = VT.getVectorElementType();
1545  DebugLoc dl = Node->getDebugLoc();
1546  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1547  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1548  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1549
1550  // Emit a store of each element to the stack slot.
1551  SmallVector<SDValue, 8> Stores;
1552  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1553  // Store (in the right endianness) the elements to memory.
1554  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1555    // Ignore undef elements.
1556    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1557
1558    unsigned Offset = TypeByteSize*i;
1559
1560    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1561    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1562
1563    // If the destination vector element type is narrower than the source
1564    // element type, only store the bits necessary.
1565    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1566      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1567                                         Node->getOperand(i), Idx, SV, Offset,
1568                                         EltVT, false, false, 0));
1569    } else
1570      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1571                                    Node->getOperand(i), Idx, SV, Offset,
1572                                    false, false, 0));
1573  }
1574
1575  SDValue StoreChain;
1576  if (!Stores.empty())    // Not all undef elements?
1577    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1578                             &Stores[0], Stores.size());
1579  else
1580    StoreChain = DAG.getEntryNode();
1581
1582  // Result is a load from the stack slot.
1583  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0);
1584}
1585
1586SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1587  DebugLoc dl = Node->getDebugLoc();
1588  SDValue Tmp1 = Node->getOperand(0);
1589  SDValue Tmp2 = Node->getOperand(1);
1590
1591  // Get the sign bit of the RHS.  First obtain a value that has the same
1592  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1593  SDValue SignBit;
1594  EVT FloatVT = Tmp2.getValueType();
1595  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1596  if (isTypeLegal(IVT)) {
1597    // Convert to an integer with the same sign bit.
1598    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1599  } else {
1600    // Store the float to memory, then load the sign part out as an integer.
1601    MVT LoadTy = TLI.getPointerTy();
1602    // First create a temporary that is aligned for both the load and store.
1603    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1604    // Then store the float to it.
1605    SDValue Ch =
1606      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1607                   false, false, 0);
1608    if (TLI.isBigEndian()) {
1609      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1610      // Load out a legal integer with the same sign bit as the float.
1611      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, NULL, 0, false, false, 0);
1612    } else { // Little endian
1613      SDValue LoadPtr = StackPtr;
1614      // The float may be wider than the integer we are going to load.  Advance
1615      // the pointer so that the loaded integer will contain the sign bit.
1616      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1617      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1618      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1619                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1620      // Load a legal integer containing the sign bit.
1621      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, NULL, 0, false, false, 0);
1622      // Move the sign bit to the top bit of the loaded integer.
1623      unsigned BitShift = LoadTy.getSizeInBits() -
1624        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1625      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1626      if (BitShift)
1627        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1628                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1629    }
1630  }
1631  // Now get the sign bit proper, by seeing whether the value is negative.
1632  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1633                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1634                         ISD::SETLT);
1635  // Get the absolute value of the result.
1636  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1637  // Select between the nabs and abs value based on the sign bit of
1638  // the input.
1639  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1640                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1641                     AbsVal);
1642}
1643
1644void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1645                                           SmallVectorImpl<SDValue> &Results) {
1646  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1647  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1648          " not tell us which reg is the stack pointer!");
1649  DebugLoc dl = Node->getDebugLoc();
1650  EVT VT = Node->getValueType(0);
1651  SDValue Tmp1 = SDValue(Node, 0);
1652  SDValue Tmp2 = SDValue(Node, 1);
1653  SDValue Tmp3 = Node->getOperand(2);
1654  SDValue Chain = Tmp1.getOperand(0);
1655
1656  // Chain the dynamic stack allocation so that it doesn't modify the stack
1657  // pointer when other instructions are using the stack.
1658  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1659
1660  SDValue Size  = Tmp2.getOperand(1);
1661  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1662  Chain = SP.getValue(1);
1663  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1664  unsigned StackAlign =
1665    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1666  if (Align > StackAlign)
1667    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1668                      DAG.getConstant(-(uint64_t)Align, VT));
1669  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1670  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1671
1672  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1673                            DAG.getIntPtrConstant(0, true), SDValue());
1674
1675  Results.push_back(Tmp1);
1676  Results.push_back(Tmp2);
1677}
1678
1679/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1680/// condition code CC on the current target. This routine expands SETCC with
1681/// illegal condition code into AND / OR of multiple SETCC values.
1682void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1683                                                 SDValue &LHS, SDValue &RHS,
1684                                                 SDValue &CC,
1685                                                 DebugLoc dl) {
1686  EVT OpVT = LHS.getValueType();
1687  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1688  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1689  default: llvm_unreachable("Unknown condition code action!");
1690  case TargetLowering::Legal:
1691    // Nothing to do.
1692    break;
1693  case TargetLowering::Expand: {
1694    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1695    unsigned Opc = 0;
1696    switch (CCCode) {
1697    default: llvm_unreachable("Don't know how to expand this condition!");
1698    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1699    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1700    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1701    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1702    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1703    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1704    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1705    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1706    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1707    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1708    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1709    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1710    // FIXME: Implement more expansions.
1711    }
1712
1713    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1714    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1715    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1716    RHS = SDValue();
1717    CC  = SDValue();
1718    break;
1719  }
1720  }
1721}
1722
1723/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1724/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1725/// a load from the stack slot to DestVT, extending it if needed.
1726/// The resultant code need not be legal.
1727SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1728                                               EVT SlotVT,
1729                                               EVT DestVT,
1730                                               DebugLoc dl) {
1731  // Create the stack frame object.
1732  unsigned SrcAlign =
1733    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1734                                              getTypeForEVT(*DAG.getContext()));
1735  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1736
1737  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1738  int SPFI = StackPtrFI->getIndex();
1739  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1740
1741  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1742  unsigned SlotSize = SlotVT.getSizeInBits();
1743  unsigned DestSize = DestVT.getSizeInBits();
1744  unsigned DestAlign =
1745    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext()));
1746
1747  // Emit a store to the stack slot.  Use a truncstore if the input value is
1748  // later than DestVT.
1749  SDValue Store;
1750
1751  if (SrcSize > SlotSize)
1752    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1753                              SV, 0, SlotVT, false, false, SrcAlign);
1754  else {
1755    assert(SrcSize == SlotSize && "Invalid store");
1756    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1757                         SV, 0, false, false, SrcAlign);
1758  }
1759
1760  // Result is a load from the stack slot.
1761  if (SlotSize == DestSize)
1762    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false,
1763                       DestAlign);
1764
1765  assert(SlotSize < DestSize && "Unknown extension!");
1766  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1767                        false, false, DestAlign);
1768}
1769
1770SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1771  DebugLoc dl = Node->getDebugLoc();
1772  // Create a vector sized/aligned stack slot, store the value to element #0,
1773  // then load the whole vector back out.
1774  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1775
1776  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1777  int SPFI = StackPtrFI->getIndex();
1778
1779  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1780                                 StackPtr,
1781                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1782                                 Node->getValueType(0).getVectorElementType(),
1783                                 false, false, 0);
1784  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1785                     PseudoSourceValue::getFixedStack(SPFI), 0,
1786                     false, false, 0);
1787}
1788
1789
1790/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1791/// support the operation, but do support the resultant vector type.
1792SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1793  unsigned NumElems = Node->getNumOperands();
1794  SDValue Value1, Value2;
1795  DebugLoc dl = Node->getDebugLoc();
1796  EVT VT = Node->getValueType(0);
1797  EVT OpVT = Node->getOperand(0).getValueType();
1798  EVT EltVT = VT.getVectorElementType();
1799
1800  // If the only non-undef value is the low element, turn this into a
1801  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1802  bool isOnlyLowElement = true;
1803  bool MoreThanTwoValues = false;
1804  bool isConstant = true;
1805  for (unsigned i = 0; i < NumElems; ++i) {
1806    SDValue V = Node->getOperand(i);
1807    if (V.getOpcode() == ISD::UNDEF)
1808      continue;
1809    if (i > 0)
1810      isOnlyLowElement = false;
1811    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1812      isConstant = false;
1813
1814    if (!Value1.getNode()) {
1815      Value1 = V;
1816    } else if (!Value2.getNode()) {
1817      if (V != Value1)
1818        Value2 = V;
1819    } else if (V != Value1 && V != Value2) {
1820      MoreThanTwoValues = true;
1821    }
1822  }
1823
1824  if (!Value1.getNode())
1825    return DAG.getUNDEF(VT);
1826
1827  if (isOnlyLowElement)
1828    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1829
1830  // If all elements are constants, create a load from the constant pool.
1831  if (isConstant) {
1832    std::vector<Constant*> CV;
1833    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1834      if (ConstantFPSDNode *V =
1835          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1836        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1837      } else if (ConstantSDNode *V =
1838                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1839        if (OpVT==EltVT)
1840          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1841        else {
1842          // If OpVT and EltVT don't match, EltVT is not legal and the
1843          // element values have been promoted/truncated earlier.  Undo this;
1844          // we don't want a v16i8 to become a v16i32 for example.
1845          const ConstantInt *CI = V->getConstantIntValue();
1846          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1847                                        CI->getZExtValue()));
1848        }
1849      } else {
1850        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1851        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1852        CV.push_back(UndefValue::get(OpNTy));
1853      }
1854    }
1855    Constant *CP = ConstantVector::get(CV);
1856    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1857    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1858    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1859                       PseudoSourceValue::getConstantPool(), 0,
1860                       false, false, Alignment);
1861  }
1862
1863  if (!MoreThanTwoValues) {
1864    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1865    for (unsigned i = 0; i < NumElems; ++i) {
1866      SDValue V = Node->getOperand(i);
1867      if (V.getOpcode() == ISD::UNDEF)
1868        continue;
1869      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1870    }
1871    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1872      // Get the splatted value into the low element of a vector register.
1873      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1874      SDValue Vec2;
1875      if (Value2.getNode())
1876        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1877      else
1878        Vec2 = DAG.getUNDEF(VT);
1879
1880      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1881      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1882    }
1883  }
1884
1885  // Otherwise, we can't handle this case efficiently.
1886  return ExpandVectorBuildThroughStack(Node);
1887}
1888
1889// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1890// does not fit into a register, return the lo part and set the hi part to the
1891// by-reg argument.  If it does fit into a single register, return the result
1892// and leave the Hi part unset.
1893SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1894                                            bool isSigned) {
1895  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1896  // The input chain to this libcall is the entry node of the function.
1897  // Legalizing the call will automatically add the previous call to the
1898  // dependence.
1899  SDValue InChain = DAG.getEntryNode();
1900
1901  TargetLowering::ArgListTy Args;
1902  TargetLowering::ArgListEntry Entry;
1903  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1904    EVT ArgVT = Node->getOperand(i).getValueType();
1905    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1906    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1907    Entry.isSExt = isSigned;
1908    Entry.isZExt = !isSigned;
1909    Args.push_back(Entry);
1910  }
1911  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1912                                         TLI.getPointerTy());
1913
1914  // Splice the libcall in wherever FindInputOutputChains tells us to.
1915  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1916  std::pair<SDValue, SDValue> CallInfo =
1917    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1918                    0, TLI.getLibcallCallingConv(LC), false,
1919                    /*isReturnValueUsed=*/true,
1920                    Callee, Args, DAG, Node->getDebugLoc());
1921
1922  // Legalize the call sequence, starting with the chain.  This will advance
1923  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1924  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1925  LegalizeOp(CallInfo.second);
1926  return CallInfo.first;
1927}
1928
1929SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1930                                              RTLIB::Libcall Call_F32,
1931                                              RTLIB::Libcall Call_F64,
1932                                              RTLIB::Libcall Call_F80,
1933                                              RTLIB::Libcall Call_PPCF128) {
1934  RTLIB::Libcall LC;
1935  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1936  default: llvm_unreachable("Unexpected request for libcall!");
1937  case MVT::f32: LC = Call_F32; break;
1938  case MVT::f64: LC = Call_F64; break;
1939  case MVT::f80: LC = Call_F80; break;
1940  case MVT::ppcf128: LC = Call_PPCF128; break;
1941  }
1942  return ExpandLibCall(LC, Node, false);
1943}
1944
1945SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1946                                               RTLIB::Libcall Call_I8,
1947                                               RTLIB::Libcall Call_I16,
1948                                               RTLIB::Libcall Call_I32,
1949                                               RTLIB::Libcall Call_I64,
1950                                               RTLIB::Libcall Call_I128) {
1951  RTLIB::Libcall LC;
1952  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1953  default: llvm_unreachable("Unexpected request for libcall!");
1954  case MVT::i8:   LC = Call_I8; break;
1955  case MVT::i16:  LC = Call_I16; break;
1956  case MVT::i32:  LC = Call_I32; break;
1957  case MVT::i64:  LC = Call_I64; break;
1958  case MVT::i128: LC = Call_I128; break;
1959  }
1960  return ExpandLibCall(LC, Node, isSigned);
1961}
1962
1963/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1964/// INT_TO_FP operation of the specified operand when the target requests that
1965/// we expand it.  At this point, we know that the result and operand types are
1966/// legal for the target.
1967SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1968                                                   SDValue Op0,
1969                                                   EVT DestVT,
1970                                                   DebugLoc dl) {
1971  if (Op0.getValueType() == MVT::i32) {
1972    // simple 32-bit [signed|unsigned] integer to float/double expansion
1973
1974    // Get the stack frame index of a 8 byte buffer.
1975    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1976
1977    // word offset constant for Hi/Lo address computation
1978    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1979    // set up Hi and Lo (into buffer) address based on endian
1980    SDValue Hi = StackSlot;
1981    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1982                             TLI.getPointerTy(), StackSlot, WordOff);
1983    if (TLI.isLittleEndian())
1984      std::swap(Hi, Lo);
1985
1986    // if signed map to unsigned space
1987    SDValue Op0Mapped;
1988    if (isSigned) {
1989      // constant used to invert sign bit (signed to unsigned mapping)
1990      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1991      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1992    } else {
1993      Op0Mapped = Op0;
1994    }
1995    // store the lo of the constructed double - based on integer input
1996    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1997                                  Op0Mapped, Lo, NULL, 0,
1998                                  false, false, 0);
1999    // initial hi portion of constructed double
2000    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2001    // store the hi of the constructed double - biased exponent
2002    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
2003                                false, false, 0);
2004    // load the constructed double
2005    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0,
2006                               false, false, 0);
2007    // FP constant to bias correct the final result
2008    SDValue Bias = DAG.getConstantFP(isSigned ?
2009                                     BitsToDouble(0x4330000080000000ULL) :
2010                                     BitsToDouble(0x4330000000000000ULL),
2011                                     MVT::f64);
2012    // subtract the bias
2013    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2014    // final result
2015    SDValue Result;
2016    // handle final rounding
2017    if (DestVT == MVT::f64) {
2018      // do nothing
2019      Result = Sub;
2020    } else if (DestVT.bitsLT(MVT::f64)) {
2021      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2022                           DAG.getIntPtrConstant(0));
2023    } else if (DestVT.bitsGT(MVT::f64)) {
2024      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2025    }
2026    return Result;
2027  }
2028  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2029
2030  // Implementation of unsigned i64 to f64 following the algorithm in
2031  // __floatundidf in compiler_rt. This implementation has the advantage
2032  // of performing rounding correctly, both in the default rounding mode
2033  // and in all alternate rounding modes.
2034  // TODO: Generalize this for use with other types.
2035  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2036    SDValue TwoP52 =
2037      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2038    SDValue TwoP84PlusTwoP52 =
2039      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2040    SDValue TwoP84 =
2041      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2042
2043    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2044    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2045                             DAG.getConstant(32, MVT::i64));
2046    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2047    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2048    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2049    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2050    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, TwoP84PlusTwoP52);
2051    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2052  }
2053
2054  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2055
2056  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2057                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2058                                 ISD::SETLT);
2059  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2060  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2061                                    SignSet, Four, Zero);
2062
2063  // If the sign bit of the integer is set, the large number will be treated
2064  // as a negative number.  To counteract this, the dynamic code adds an
2065  // offset depending on the data type.
2066  uint64_t FF;
2067  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2068  default: llvm_unreachable("Unsupported integer type!");
2069  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2070  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2071  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2072  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2073  }
2074  if (TLI.isLittleEndian()) FF <<= 32;
2075  Constant *FudgeFactor = ConstantInt::get(
2076                                       Type::getInt64Ty(*DAG.getContext()), FF);
2077
2078  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2079  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2080  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2081  Alignment = std::min(Alignment, 4u);
2082  SDValue FudgeInReg;
2083  if (DestVT == MVT::f32)
2084    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2085                             PseudoSourceValue::getConstantPool(), 0,
2086                             false, false, Alignment);
2087  else {
2088    FudgeInReg =
2089      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2090                                DAG.getEntryNode(), CPIdx,
2091                                PseudoSourceValue::getConstantPool(), 0,
2092                                MVT::f32, false, false, Alignment));
2093  }
2094
2095  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2096}
2097
2098/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2099/// *INT_TO_FP operation of the specified operand when the target requests that
2100/// we promote it.  At this point, we know that the result and operand types are
2101/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2102/// operation that takes a larger input.
2103SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2104                                                    EVT DestVT,
2105                                                    bool isSigned,
2106                                                    DebugLoc dl) {
2107  // First step, figure out the appropriate *INT_TO_FP operation to use.
2108  EVT NewInTy = LegalOp.getValueType();
2109
2110  unsigned OpToUse = 0;
2111
2112  // Scan for the appropriate larger type to use.
2113  while (1) {
2114    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2115    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2116
2117    // If the target supports SINT_TO_FP of this type, use it.
2118    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2119      OpToUse = ISD::SINT_TO_FP;
2120      break;
2121    }
2122    if (isSigned) continue;
2123
2124    // If the target supports UINT_TO_FP of this type, use it.
2125    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2126      OpToUse = ISD::UINT_TO_FP;
2127      break;
2128    }
2129
2130    // Otherwise, try a larger type.
2131  }
2132
2133  // Okay, we found the operation and type to use.  Zero extend our input to the
2134  // desired type then run the operation on it.
2135  return DAG.getNode(OpToUse, dl, DestVT,
2136                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2137                                 dl, NewInTy, LegalOp));
2138}
2139
2140/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2141/// FP_TO_*INT operation of the specified operand when the target requests that
2142/// we promote it.  At this point, we know that the result and operand types are
2143/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2144/// operation that returns a larger result.
2145SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2146                                                    EVT DestVT,
2147                                                    bool isSigned,
2148                                                    DebugLoc dl) {
2149  // First step, figure out the appropriate FP_TO*INT operation to use.
2150  EVT NewOutTy = DestVT;
2151
2152  unsigned OpToUse = 0;
2153
2154  // Scan for the appropriate larger type to use.
2155  while (1) {
2156    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2157    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2158
2159    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2160      OpToUse = ISD::FP_TO_SINT;
2161      break;
2162    }
2163
2164    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2165      OpToUse = ISD::FP_TO_UINT;
2166      break;
2167    }
2168
2169    // Otherwise, try a larger type.
2170  }
2171
2172
2173  // Okay, we found the operation and type to use.
2174  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2175
2176  // Truncate the result of the extended FP_TO_*INT operation to the desired
2177  // size.
2178  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2179}
2180
2181/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2182///
2183SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2184  EVT VT = Op.getValueType();
2185  EVT SHVT = TLI.getShiftAmountTy();
2186  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2187  switch (VT.getSimpleVT().SimpleTy) {
2188  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2189  case MVT::i16:
2190    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2191    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2192    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2193  case MVT::i32:
2194    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2195    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2196    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2197    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2198    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2199    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2200    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2201    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2202    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2203  case MVT::i64:
2204    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2205    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2206    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2207    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2208    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2209    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2210    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2211    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2212    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2213    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2214    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2215    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2216    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2217    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2218    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2219    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2220    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2221    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2222    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2223    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2224    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2225  }
2226}
2227
2228/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2229///
2230SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2231                                             DebugLoc dl) {
2232  switch (Opc) {
2233  default: llvm_unreachable("Cannot expand this yet!");
2234  case ISD::CTPOP: {
2235    static const uint64_t mask[6] = {
2236      0x5555555555555555ULL, 0x3333333333333333ULL,
2237      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2238      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2239    };
2240    EVT VT = Op.getValueType();
2241    EVT ShVT = TLI.getShiftAmountTy();
2242    unsigned len = VT.getSizeInBits();
2243    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2244      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2245      unsigned EltSize = VT.isVector() ?
2246        VT.getVectorElementType().getSizeInBits() : len;
2247      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2248      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2249      Op = DAG.getNode(ISD::ADD, dl, VT,
2250                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2251                       DAG.getNode(ISD::AND, dl, VT,
2252                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2253                                   Tmp2));
2254    }
2255    return Op;
2256  }
2257  case ISD::CTLZ: {
2258    // for now, we do this:
2259    // x = x | (x >> 1);
2260    // x = x | (x >> 2);
2261    // ...
2262    // x = x | (x >>16);
2263    // x = x | (x >>32); // for 64-bit input
2264    // return popcount(~x);
2265    //
2266    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2267    EVT VT = Op.getValueType();
2268    EVT ShVT = TLI.getShiftAmountTy();
2269    unsigned len = VT.getSizeInBits();
2270    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2271      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2272      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2273                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2274    }
2275    Op = DAG.getNOT(dl, Op, VT);
2276    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2277  }
2278  case ISD::CTTZ: {
2279    // for now, we use: { return popcount(~x & (x - 1)); }
2280    // unless the target has ctlz but not ctpop, in which case we use:
2281    // { return 32 - nlz(~x & (x-1)); }
2282    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2283    EVT VT = Op.getValueType();
2284    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2285                               DAG.getNOT(dl, Op, VT),
2286                               DAG.getNode(ISD::SUB, dl, VT, Op,
2287                                           DAG.getConstant(1, VT)));
2288    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2289    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2290        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2291      return DAG.getNode(ISD::SUB, dl, VT,
2292                         DAG.getConstant(VT.getSizeInBits(), VT),
2293                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2294    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2295  }
2296  }
2297}
2298
2299void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2300                                      SmallVectorImpl<SDValue> &Results) {
2301  DebugLoc dl = Node->getDebugLoc();
2302  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2303  switch (Node->getOpcode()) {
2304  case ISD::CTPOP:
2305  case ISD::CTLZ:
2306  case ISD::CTTZ:
2307    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2308    Results.push_back(Tmp1);
2309    break;
2310  case ISD::BSWAP:
2311    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2312    break;
2313  case ISD::FRAMEADDR:
2314  case ISD::RETURNADDR:
2315  case ISD::FRAME_TO_ARGS_OFFSET:
2316    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2317    break;
2318  case ISD::FLT_ROUNDS_:
2319    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2320    break;
2321  case ISD::EH_RETURN:
2322  case ISD::EH_LABEL:
2323  case ISD::PREFETCH:
2324  case ISD::MEMBARRIER:
2325  case ISD::VAEND:
2326    Results.push_back(Node->getOperand(0));
2327    break;
2328  case ISD::DYNAMIC_STACKALLOC:
2329    ExpandDYNAMIC_STACKALLOC(Node, Results);
2330    break;
2331  case ISD::MERGE_VALUES:
2332    for (unsigned i = 0; i < Node->getNumValues(); i++)
2333      Results.push_back(Node->getOperand(i));
2334    break;
2335  case ISD::UNDEF: {
2336    EVT VT = Node->getValueType(0);
2337    if (VT.isInteger())
2338      Results.push_back(DAG.getConstant(0, VT));
2339    else if (VT.isFloatingPoint())
2340      Results.push_back(DAG.getConstantFP(0, VT));
2341    else
2342      llvm_unreachable("Unknown value type!");
2343    break;
2344  }
2345  case ISD::TRAP: {
2346    // If this operation is not supported, lower it to 'abort()' call
2347    TargetLowering::ArgListTy Args;
2348    std::pair<SDValue, SDValue> CallResult =
2349      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2350                      false, false, false, false, 0, CallingConv::C, false,
2351                      /*isReturnValueUsed=*/true,
2352                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2353                      Args, DAG, dl);
2354    Results.push_back(CallResult.second);
2355    break;
2356  }
2357  case ISD::FP_ROUND:
2358  case ISD::BIT_CONVERT:
2359    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2360                            Node->getValueType(0), dl);
2361    Results.push_back(Tmp1);
2362    break;
2363  case ISD::FP_EXTEND:
2364    Tmp1 = EmitStackConvert(Node->getOperand(0),
2365                            Node->getOperand(0).getValueType(),
2366                            Node->getValueType(0), dl);
2367    Results.push_back(Tmp1);
2368    break;
2369  case ISD::SIGN_EXTEND_INREG: {
2370    // NOTE: we could fall back on load/store here too for targets without
2371    // SAR.  However, it is doubtful that any exist.
2372    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2373    EVT VT = Node->getValueType(0);
2374    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2375    if (VT.isVector())
2376      ShiftAmountTy = VT;
2377    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2378                        ExtraVT.getScalarType().getSizeInBits();
2379    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2380    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2381                       Node->getOperand(0), ShiftCst);
2382    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2383    Results.push_back(Tmp1);
2384    break;
2385  }
2386  case ISD::FP_ROUND_INREG: {
2387    // The only way we can lower this is to turn it into a TRUNCSTORE,
2388    // EXTLOAD pair, targetting a temporary location (a stack slot).
2389
2390    // NOTE: there is a choice here between constantly creating new stack
2391    // slots and always reusing the same one.  We currently always create
2392    // new ones, as reuse may inhibit scheduling.
2393    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2394    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2395                            Node->getValueType(0), dl);
2396    Results.push_back(Tmp1);
2397    break;
2398  }
2399  case ISD::SINT_TO_FP:
2400  case ISD::UINT_TO_FP:
2401    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2402                                Node->getOperand(0), Node->getValueType(0), dl);
2403    Results.push_back(Tmp1);
2404    break;
2405  case ISD::FP_TO_UINT: {
2406    SDValue True, False;
2407    EVT VT =  Node->getOperand(0).getValueType();
2408    EVT NVT = Node->getValueType(0);
2409    const uint64_t zero[] = {0, 0};
2410    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2411    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2412    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2413    Tmp1 = DAG.getConstantFP(apf, VT);
2414    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2415                        Node->getOperand(0),
2416                        Tmp1, ISD::SETLT);
2417    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2418    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2419                        DAG.getNode(ISD::FSUB, dl, VT,
2420                                    Node->getOperand(0), Tmp1));
2421    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2422                        DAG.getConstant(x, NVT));
2423    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2424    Results.push_back(Tmp1);
2425    break;
2426  }
2427  case ISD::VAARG: {
2428    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2429    EVT VT = Node->getValueType(0);
2430    Tmp1 = Node->getOperand(0);
2431    Tmp2 = Node->getOperand(1);
2432    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0,
2433                                 false, false, 0);
2434    // Increment the pointer, VAList, to the next vaarg
2435    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2436                       DAG.getConstant(TLI.getTargetData()->
2437                                       getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2438                                       TLI.getPointerTy()));
2439    // Store the incremented VAList to the legalized pointer
2440    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0,
2441                        false, false, 0);
2442    // Load the actual argument out of the pointer VAList
2443    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0,
2444                                  false, false, 0));
2445    Results.push_back(Results[0].getValue(1));
2446    break;
2447  }
2448  case ISD::VACOPY: {
2449    // This defaults to loading a pointer from the input and storing it to the
2450    // output, returning the chain.
2451    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2452    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2453    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2454                       Node->getOperand(2), VS, 0, false, false, 0);
2455    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0,
2456                        false, false, 0);
2457    Results.push_back(Tmp1);
2458    break;
2459  }
2460  case ISD::EXTRACT_VECTOR_ELT:
2461    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2462      // This must be an access of the only element.  Return it.
2463      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2464                         Node->getOperand(0));
2465    else
2466      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2467    Results.push_back(Tmp1);
2468    break;
2469  case ISD::EXTRACT_SUBVECTOR:
2470    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2471    break;
2472  case ISD::CONCAT_VECTORS: {
2473    Results.push_back(ExpandVectorBuildThroughStack(Node));
2474    break;
2475  }
2476  case ISD::SCALAR_TO_VECTOR:
2477    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2478    break;
2479  case ISD::INSERT_VECTOR_ELT:
2480    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2481                                              Node->getOperand(1),
2482                                              Node->getOperand(2), dl));
2483    break;
2484  case ISD::VECTOR_SHUFFLE: {
2485    SmallVector<int, 8> Mask;
2486    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2487
2488    EVT VT = Node->getValueType(0);
2489    EVT EltVT = VT.getVectorElementType();
2490    unsigned NumElems = VT.getVectorNumElements();
2491    SmallVector<SDValue, 8> Ops;
2492    for (unsigned i = 0; i != NumElems; ++i) {
2493      if (Mask[i] < 0) {
2494        Ops.push_back(DAG.getUNDEF(EltVT));
2495        continue;
2496      }
2497      unsigned Idx = Mask[i];
2498      if (Idx < NumElems)
2499        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2500                                  Node->getOperand(0),
2501                                  DAG.getIntPtrConstant(Idx)));
2502      else
2503        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2504                                  Node->getOperand(1),
2505                                  DAG.getIntPtrConstant(Idx - NumElems)));
2506    }
2507    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2508    Results.push_back(Tmp1);
2509    break;
2510  }
2511  case ISD::EXTRACT_ELEMENT: {
2512    EVT OpTy = Node->getOperand(0).getValueType();
2513    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2514      // 1 -> Hi
2515      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2516                         DAG.getConstant(OpTy.getSizeInBits()/2,
2517                                         TLI.getShiftAmountTy()));
2518      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2519    } else {
2520      // 0 -> Lo
2521      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2522                         Node->getOperand(0));
2523    }
2524    Results.push_back(Tmp1);
2525    break;
2526  }
2527  case ISD::STACKSAVE:
2528    // Expand to CopyFromReg if the target set
2529    // StackPointerRegisterToSaveRestore.
2530    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2531      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2532                                           Node->getValueType(0)));
2533      Results.push_back(Results[0].getValue(1));
2534    } else {
2535      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2536      Results.push_back(Node->getOperand(0));
2537    }
2538    break;
2539  case ISD::STACKRESTORE:
2540    // Expand to CopyToReg if the target set
2541    // StackPointerRegisterToSaveRestore.
2542    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2543      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2544                                         Node->getOperand(1)));
2545    } else {
2546      Results.push_back(Node->getOperand(0));
2547    }
2548    break;
2549  case ISD::FCOPYSIGN:
2550    Results.push_back(ExpandFCOPYSIGN(Node));
2551    break;
2552  case ISD::FNEG:
2553    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2554    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2555    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2556                       Node->getOperand(0));
2557    Results.push_back(Tmp1);
2558    break;
2559  case ISD::FABS: {
2560    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2561    EVT VT = Node->getValueType(0);
2562    Tmp1 = Node->getOperand(0);
2563    Tmp2 = DAG.getConstantFP(0.0, VT);
2564    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2565                        Tmp1, Tmp2, ISD::SETUGT);
2566    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2567    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2568    Results.push_back(Tmp1);
2569    break;
2570  }
2571  case ISD::FSQRT:
2572    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2573                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2574    break;
2575  case ISD::FSIN:
2576    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2577                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2578    break;
2579  case ISD::FCOS:
2580    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2581                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2582    break;
2583  case ISD::FLOG:
2584    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2585                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2586    break;
2587  case ISD::FLOG2:
2588    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2589                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2590    break;
2591  case ISD::FLOG10:
2592    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2593                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2594    break;
2595  case ISD::FEXP:
2596    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2597                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2598    break;
2599  case ISD::FEXP2:
2600    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2601                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2602    break;
2603  case ISD::FTRUNC:
2604    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2605                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2606    break;
2607  case ISD::FFLOOR:
2608    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2609                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2610    break;
2611  case ISD::FCEIL:
2612    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2613                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2614    break;
2615  case ISD::FRINT:
2616    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2617                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2618    break;
2619  case ISD::FNEARBYINT:
2620    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2621                                      RTLIB::NEARBYINT_F64,
2622                                      RTLIB::NEARBYINT_F80,
2623                                      RTLIB::NEARBYINT_PPCF128));
2624    break;
2625  case ISD::FPOWI:
2626    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2627                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2628    break;
2629  case ISD::FPOW:
2630    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2631                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2632    break;
2633  case ISD::FDIV:
2634    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2635                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2636    break;
2637  case ISD::FREM:
2638    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2639                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2640    break;
2641  case ISD::FP16_TO_FP32:
2642    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2643    break;
2644  case ISD::FP32_TO_FP16:
2645    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2646    break;
2647  case ISD::ConstantFP: {
2648    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2649    // Check to see if this FP immediate is already legal.
2650    // If this is a legal constant, turn it into a TargetConstantFP node.
2651    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2652      Results.push_back(SDValue(Node, 0));
2653    else
2654      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2655    break;
2656  }
2657  case ISD::EHSELECTION: {
2658    unsigned Reg = TLI.getExceptionSelectorRegister();
2659    assert(Reg && "Can't expand to unknown register!");
2660    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2661                                         Node->getValueType(0)));
2662    Results.push_back(Results[0].getValue(1));
2663    break;
2664  }
2665  case ISD::EXCEPTIONADDR: {
2666    unsigned Reg = TLI.getExceptionAddressRegister();
2667    assert(Reg && "Can't expand to unknown register!");
2668    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2669                                         Node->getValueType(0)));
2670    Results.push_back(Results[0].getValue(1));
2671    break;
2672  }
2673  case ISD::SUB: {
2674    EVT VT = Node->getValueType(0);
2675    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2676           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2677           "Don't know how to expand this subtraction!");
2678    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2679               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2680    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2681    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2682    break;
2683  }
2684  case ISD::UREM:
2685  case ISD::SREM: {
2686    EVT VT = Node->getValueType(0);
2687    SDVTList VTs = DAG.getVTList(VT, VT);
2688    bool isSigned = Node->getOpcode() == ISD::SREM;
2689    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2690    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2691    Tmp2 = Node->getOperand(0);
2692    Tmp3 = Node->getOperand(1);
2693    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2694      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2695    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2696      // X % Y -> X-X/Y*Y
2697      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2698      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2699      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2700    } else if (isSigned) {
2701      Tmp1 = ExpandIntLibCall(Node, true,
2702                              RTLIB::SREM_I8,
2703                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2704                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2705    } else {
2706      Tmp1 = ExpandIntLibCall(Node, false,
2707                              RTLIB::UREM_I8,
2708                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2709                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2710    }
2711    Results.push_back(Tmp1);
2712    break;
2713  }
2714  case ISD::UDIV:
2715  case ISD::SDIV: {
2716    bool isSigned = Node->getOpcode() == ISD::SDIV;
2717    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2718    EVT VT = Node->getValueType(0);
2719    SDVTList VTs = DAG.getVTList(VT, VT);
2720    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2721      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2722                         Node->getOperand(1));
2723    else if (isSigned)
2724      Tmp1 = ExpandIntLibCall(Node, true,
2725                              RTLIB::SDIV_I8,
2726                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2727                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2728    else
2729      Tmp1 = ExpandIntLibCall(Node, false,
2730                              RTLIB::UDIV_I8,
2731                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2732                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2733    Results.push_back(Tmp1);
2734    break;
2735  }
2736  case ISD::MULHU:
2737  case ISD::MULHS: {
2738    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2739                                                              ISD::SMUL_LOHI;
2740    EVT VT = Node->getValueType(0);
2741    SDVTList VTs = DAG.getVTList(VT, VT);
2742    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2743           "If this wasn't legal, it shouldn't have been created!");
2744    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2745                       Node->getOperand(1));
2746    Results.push_back(Tmp1.getValue(1));
2747    break;
2748  }
2749  case ISD::MUL: {
2750    EVT VT = Node->getValueType(0);
2751    SDVTList VTs = DAG.getVTList(VT, VT);
2752    // See if multiply or divide can be lowered using two-result operations.
2753    // We just need the low half of the multiply; try both the signed
2754    // and unsigned forms. If the target supports both SMUL_LOHI and
2755    // UMUL_LOHI, form a preference by checking which forms of plain
2756    // MULH it supports.
2757    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2758    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2759    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2760    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2761    unsigned OpToUse = 0;
2762    if (HasSMUL_LOHI && !HasMULHS) {
2763      OpToUse = ISD::SMUL_LOHI;
2764    } else if (HasUMUL_LOHI && !HasMULHU) {
2765      OpToUse = ISD::UMUL_LOHI;
2766    } else if (HasSMUL_LOHI) {
2767      OpToUse = ISD::SMUL_LOHI;
2768    } else if (HasUMUL_LOHI) {
2769      OpToUse = ISD::UMUL_LOHI;
2770    }
2771    if (OpToUse) {
2772      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2773                                    Node->getOperand(1)));
2774      break;
2775    }
2776    Tmp1 = ExpandIntLibCall(Node, false,
2777                            RTLIB::MUL_I8,
2778                            RTLIB::MUL_I16, RTLIB::MUL_I32,
2779                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2780    Results.push_back(Tmp1);
2781    break;
2782  }
2783  case ISD::SADDO:
2784  case ISD::SSUBO: {
2785    SDValue LHS = Node->getOperand(0);
2786    SDValue RHS = Node->getOperand(1);
2787    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2788                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2789                              LHS, RHS);
2790    Results.push_back(Sum);
2791    EVT OType = Node->getValueType(1);
2792
2793    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2794
2795    //   LHSSign -> LHS >= 0
2796    //   RHSSign -> RHS >= 0
2797    //   SumSign -> Sum >= 0
2798    //
2799    //   Add:
2800    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2801    //   Sub:
2802    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2803    //
2804    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2805    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2806    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2807                                      Node->getOpcode() == ISD::SADDO ?
2808                                      ISD::SETEQ : ISD::SETNE);
2809
2810    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2811    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2812
2813    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2814    Results.push_back(Cmp);
2815    break;
2816  }
2817  case ISD::UADDO:
2818  case ISD::USUBO: {
2819    SDValue LHS = Node->getOperand(0);
2820    SDValue RHS = Node->getOperand(1);
2821    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2822                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2823                              LHS, RHS);
2824    Results.push_back(Sum);
2825    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2826                                   Node->getOpcode () == ISD::UADDO ?
2827                                   ISD::SETULT : ISD::SETUGT));
2828    break;
2829  }
2830  case ISD::UMULO:
2831  case ISD::SMULO: {
2832    EVT VT = Node->getValueType(0);
2833    SDValue LHS = Node->getOperand(0);
2834    SDValue RHS = Node->getOperand(1);
2835    SDValue BottomHalf;
2836    SDValue TopHalf;
2837    static const unsigned Ops[2][3] =
2838        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2839          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2840    bool isSigned = Node->getOpcode() == ISD::SMULO;
2841    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2842      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2843      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2844    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2845      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2846                               RHS);
2847      TopHalf = BottomHalf.getValue(1);
2848    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) {
2849      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2850      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2851      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2852      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2853      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2854                               DAG.getIntPtrConstant(0));
2855      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2856                            DAG.getIntPtrConstant(1));
2857    } else {
2858      // FIXME: We should be able to fall back to a libcall with an illegal
2859      // type in some cases.
2860      // Also, we can fall back to a division in some cases, but that's a big
2861      // performance hit in the general case.
2862      llvm_unreachable("Don't know how to expand this operation yet!");
2863    }
2864    if (isSigned) {
2865      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2866      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2867      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2868                             ISD::SETNE);
2869    } else {
2870      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2871                             DAG.getConstant(0, VT), ISD::SETNE);
2872    }
2873    Results.push_back(BottomHalf);
2874    Results.push_back(TopHalf);
2875    break;
2876  }
2877  case ISD::BUILD_PAIR: {
2878    EVT PairTy = Node->getValueType(0);
2879    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2880    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2881    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2882                       DAG.getConstant(PairTy.getSizeInBits()/2,
2883                                       TLI.getShiftAmountTy()));
2884    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2885    break;
2886  }
2887  case ISD::SELECT:
2888    Tmp1 = Node->getOperand(0);
2889    Tmp2 = Node->getOperand(1);
2890    Tmp3 = Node->getOperand(2);
2891    if (Tmp1.getOpcode() == ISD::SETCC) {
2892      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2893                             Tmp2, Tmp3,
2894                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2895    } else {
2896      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2897                             DAG.getConstant(0, Tmp1.getValueType()),
2898                             Tmp2, Tmp3, ISD::SETNE);
2899    }
2900    Results.push_back(Tmp1);
2901    break;
2902  case ISD::BR_JT: {
2903    SDValue Chain = Node->getOperand(0);
2904    SDValue Table = Node->getOperand(1);
2905    SDValue Index = Node->getOperand(2);
2906
2907    EVT PTy = TLI.getPointerTy();
2908
2909    const TargetData &TD = *TLI.getTargetData();
2910    unsigned EntrySize =
2911      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
2912
2913    Index = DAG.getNode(ISD::MUL, dl, PTy,
2914                        Index, DAG.getConstant(EntrySize, PTy));
2915    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2916
2917    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2918    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2919                                PseudoSourceValue::getJumpTable(), 0, MemVT,
2920                                false, false, 0);
2921    Addr = LD;
2922    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2923      // For PIC, the sequence is:
2924      // BRIND(load(Jumptable + index) + RelocBase)
2925      // RelocBase can be JumpTable, GOT or some sort of global base.
2926      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2927                          TLI.getPICJumpTableRelocBase(Table, DAG));
2928    }
2929    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2930    Results.push_back(Tmp1);
2931    break;
2932  }
2933  case ISD::BRCOND:
2934    // Expand brcond's setcc into its constituent parts and create a BR_CC
2935    // Node.
2936    Tmp1 = Node->getOperand(0);
2937    Tmp2 = Node->getOperand(1);
2938    if (Tmp2.getOpcode() == ISD::SETCC) {
2939      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2940                         Tmp1, Tmp2.getOperand(2),
2941                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2942                         Node->getOperand(2));
2943    } else {
2944      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2945                         DAG.getCondCode(ISD::SETNE), Tmp2,
2946                         DAG.getConstant(0, Tmp2.getValueType()),
2947                         Node->getOperand(2));
2948    }
2949    Results.push_back(Tmp1);
2950    break;
2951  case ISD::SETCC: {
2952    Tmp1 = Node->getOperand(0);
2953    Tmp2 = Node->getOperand(1);
2954    Tmp3 = Node->getOperand(2);
2955    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2956
2957    // If we expanded the SETCC into an AND/OR, return the new node
2958    if (Tmp2.getNode() == 0) {
2959      Results.push_back(Tmp1);
2960      break;
2961    }
2962
2963    // Otherwise, SETCC for the given comparison type must be completely
2964    // illegal; expand it into a SELECT_CC.
2965    EVT VT = Node->getValueType(0);
2966    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2967                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2968    Results.push_back(Tmp1);
2969    break;
2970  }
2971  case ISD::SELECT_CC: {
2972    Tmp1 = Node->getOperand(0);   // LHS
2973    Tmp2 = Node->getOperand(1);   // RHS
2974    Tmp3 = Node->getOperand(2);   // True
2975    Tmp4 = Node->getOperand(3);   // False
2976    SDValue CC = Node->getOperand(4);
2977
2978    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2979                          Tmp1, Tmp2, CC, dl);
2980
2981    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2982    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2983    CC = DAG.getCondCode(ISD::SETNE);
2984    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2985                       Tmp3, Tmp4, CC);
2986    Results.push_back(Tmp1);
2987    break;
2988  }
2989  case ISD::BR_CC: {
2990    Tmp1 = Node->getOperand(0);              // Chain
2991    Tmp2 = Node->getOperand(2);              // LHS
2992    Tmp3 = Node->getOperand(3);              // RHS
2993    Tmp4 = Node->getOperand(1);              // CC
2994
2995    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2996                          Tmp2, Tmp3, Tmp4, dl);
2997    LastCALLSEQ_END = DAG.getEntryNode();
2998
2999    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3000    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3001    Tmp4 = DAG.getCondCode(ISD::SETNE);
3002    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3003                       Tmp3, Node->getOperand(4));
3004    Results.push_back(Tmp1);
3005    break;
3006  }
3007  case ISD::GLOBAL_OFFSET_TABLE:
3008  case ISD::GlobalAddress:
3009  case ISD::GlobalTLSAddress:
3010  case ISD::ExternalSymbol:
3011  case ISD::ConstantPool:
3012  case ISD::JumpTable:
3013  case ISD::INTRINSIC_W_CHAIN:
3014  case ISD::INTRINSIC_WO_CHAIN:
3015  case ISD::INTRINSIC_VOID:
3016    // FIXME: Custom lowering for these operations shouldn't return null!
3017    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3018      Results.push_back(SDValue(Node, i));
3019    break;
3020  }
3021}
3022void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3023                                       SmallVectorImpl<SDValue> &Results) {
3024  EVT OVT = Node->getValueType(0);
3025  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3026      Node->getOpcode() == ISD::SINT_TO_FP ||
3027      Node->getOpcode() == ISD::SETCC) {
3028    OVT = Node->getOperand(0).getValueType();
3029  }
3030  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3031  DebugLoc dl = Node->getDebugLoc();
3032  SDValue Tmp1, Tmp2, Tmp3;
3033  switch (Node->getOpcode()) {
3034  case ISD::CTTZ:
3035  case ISD::CTLZ:
3036  case ISD::CTPOP:
3037    // Zero extend the argument.
3038    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3039    // Perform the larger operation.
3040    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3041    if (Node->getOpcode() == ISD::CTTZ) {
3042      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3043      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3044                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3045                          ISD::SETEQ);
3046      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3047                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3048    } else if (Node->getOpcode() == ISD::CTLZ) {
3049      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3050      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3051                          DAG.getConstant(NVT.getSizeInBits() -
3052                                          OVT.getSizeInBits(), NVT));
3053    }
3054    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3055    break;
3056  case ISD::BSWAP: {
3057    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3058    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3059    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3060    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3061                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3062    Results.push_back(Tmp1);
3063    break;
3064  }
3065  case ISD::FP_TO_UINT:
3066  case ISD::FP_TO_SINT:
3067    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3068                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3069    Results.push_back(Tmp1);
3070    break;
3071  case ISD::UINT_TO_FP:
3072  case ISD::SINT_TO_FP:
3073    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3074                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3075    Results.push_back(Tmp1);
3076    break;
3077  case ISD::AND:
3078  case ISD::OR:
3079  case ISD::XOR: {
3080    unsigned ExtOp, TruncOp;
3081    if (OVT.isVector()) {
3082      ExtOp   = ISD::BIT_CONVERT;
3083      TruncOp = ISD::BIT_CONVERT;
3084    } else if (OVT.isInteger()) {
3085      ExtOp   = ISD::ANY_EXTEND;
3086      TruncOp = ISD::TRUNCATE;
3087    } else {
3088      llvm_report_error("Cannot promote logic operation");
3089    }
3090    // Promote each of the values to the new type.
3091    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3092    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3093    // Perform the larger operation, then convert back
3094    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3095    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3096    break;
3097  }
3098  case ISD::SELECT: {
3099    unsigned ExtOp, TruncOp;
3100    if (Node->getValueType(0).isVector()) {
3101      ExtOp   = ISD::BIT_CONVERT;
3102      TruncOp = ISD::BIT_CONVERT;
3103    } else if (Node->getValueType(0).isInteger()) {
3104      ExtOp   = ISD::ANY_EXTEND;
3105      TruncOp = ISD::TRUNCATE;
3106    } else {
3107      ExtOp   = ISD::FP_EXTEND;
3108      TruncOp = ISD::FP_ROUND;
3109    }
3110    Tmp1 = Node->getOperand(0);
3111    // Promote each of the values to the new type.
3112    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3113    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3114    // Perform the larger operation, then round down.
3115    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3116    if (TruncOp != ISD::FP_ROUND)
3117      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3118    else
3119      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3120                         DAG.getIntPtrConstant(0));
3121    Results.push_back(Tmp1);
3122    break;
3123  }
3124  case ISD::VECTOR_SHUFFLE: {
3125    SmallVector<int, 8> Mask;
3126    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3127
3128    // Cast the two input vectors.
3129    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3130    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3131
3132    // Convert the shuffle mask to the right # elements.
3133    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3134    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3135    Results.push_back(Tmp1);
3136    break;
3137  }
3138  case ISD::SETCC: {
3139    unsigned ExtOp = ISD::FP_EXTEND;
3140    if (NVT.isInteger()) {
3141      ISD::CondCode CCCode =
3142        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3143      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3144    }
3145    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3146    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3147    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3148                                  Tmp1, Tmp2, Node->getOperand(2)));
3149    break;
3150  }
3151  }
3152}
3153
3154// SelectionDAG::Legalize - This is the entry point for the file.
3155//
3156void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3157  /// run - This is the main entry point to this class.
3158  ///
3159  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3160}
3161
3162