LegalizeDAG.cpp revision 8b9430cbf64da05fcefd445f6a997260ba7fbc28
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/Target/TargetSubtarget.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/DerivedTypes.h"
30#include "llvm/Function.h"
31#include "llvm/GlobalVariable.h"
32#include "llvm/LLVMContext.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include <map>
42using namespace llvm;
43
44//===----------------------------------------------------------------------===//
45/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
46/// hacks on it until the target machine can handle it.  This involves
47/// eliminating value sizes the machine cannot handle (promoting small sizes to
48/// large sizes or splitting up large values into small values) as well as
49/// eliminating operations the machine cannot handle.
50///
51/// This code also does a small amount of optimization and recognition of idioms
52/// as part of its processing.  For example, if a target does not support a
53/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
54/// will attempt merge setcc and brc instructions into brcc's.
55///
56namespace {
57class SelectionDAGLegalize {
58  TargetLowering &TLI;
59  SelectionDAG &DAG;
60  CodeGenOpt::Level OptLevel;
61
62  // Libcall insertion helpers.
63
64  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65  /// legalized.  We use this to ensure that calls are properly serialized
66  /// against each other, including inserted libcalls.
67  SDValue LastCALLSEQ_END;
68
69  /// IsLegalizingCall - This member is used *only* for purposes of providing
70  /// helpful assertions that a libcall isn't created while another call is
71  /// being legalized (which could lead to non-serialized call sequences).
72  bool IsLegalizingCall;
73
74  enum LegalizeAction {
75    Legal,      // The target natively supports this operation.
76    Promote,    // This operation should be executed in a larger type.
77    Expand      // Try to expand this to other ops, otherwise use a libcall.
78  };
79
80  /// ValueTypeActions - This is a bitvector that contains two bits for each
81  /// value type, where the two bits correspond to the LegalizeAction enum.
82  /// This can be queried with "getTypeAction(VT)".
83  TargetLowering::ValueTypeActionImpl ValueTypeActions;
84
85  /// LegalizedNodes - For nodes that are of legal width, and that have more
86  /// than one use, this map indicates what regularized operand to use.  This
87  /// allows us to avoid legalizing the same thing more than once.
88  DenseMap<SDValue, SDValue> LegalizedNodes;
89
90  void AddLegalizedOperand(SDValue From, SDValue To) {
91    LegalizedNodes.insert(std::make_pair(From, To));
92    // If someone requests legalization of the new node, return itself.
93    if (From != To)
94      LegalizedNodes.insert(std::make_pair(To, To));
95  }
96
97public:
98  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
99
100  /// getTypeAction - Return how we should legalize values of this type, either
101  /// it is already legal or we need to expand it into multiple registers of
102  /// smaller integer type, or we need to promote it to a larger type.
103  LegalizeAction getTypeAction(EVT VT) const {
104    return
105        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
106  }
107
108  /// isTypeLegal - Return true if this type is legal on this target.
109  ///
110  bool isTypeLegal(EVT VT) const {
111    return getTypeAction(VT) == Legal;
112  }
113
114  void LegalizeDAG();
115
116private:
117  /// LegalizeOp - We know that the specified value has a legal type.
118  /// Recursively ensure that the operands have legal types, then return the
119  /// result.
120  SDValue LegalizeOp(SDValue O);
121
122  SDValue OptimizeFloatStore(StoreSDNode *ST);
123
124  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
125  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
126  /// is necessary to spill the vector being inserted into to memory, perform
127  /// the insert there, and then read the result back.
128  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
129                                         SDValue Idx, DebugLoc dl);
130  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
131                                  SDValue Idx, DebugLoc dl);
132
133  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
134  /// performs the same shuffe in terms of order or result bytes, but on a type
135  /// whose vector element type is narrower than the original shuffle type.
136  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
137  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
138                                     SDValue N1, SDValue N2,
139                                     SmallVectorImpl<int> &Mask) const;
140
141  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
142                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
143
144  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
145                             DebugLoc dl);
146
147  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
148  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
149                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
150                          RTLIB::Libcall Call_PPCF128);
151  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
152                           RTLIB::Libcall Call_I8,
153                           RTLIB::Libcall Call_I16,
154                           RTLIB::Libcall Call_I32,
155                           RTLIB::Libcall Call_I64,
156                           RTLIB::Libcall Call_I128);
157
158  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
159  SDValue ExpandBUILD_VECTOR(SDNode *Node);
160  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
161  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
162                                SmallVectorImpl<SDValue> &Results);
163  SDValue ExpandFCOPYSIGN(SDNode *Node);
164  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
165                               DebugLoc dl);
166  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
169                                DebugLoc dl);
170
171  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
172  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
173
174  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
175  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
176
177  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
178  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
179};
180}
181
182/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
183/// performs the same shuffe in terms of order or result bytes, but on a type
184/// whose vector element type is narrower than the original shuffle type.
185/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
186SDValue
187SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
188                                                 SDValue N1, SDValue N2,
189                                             SmallVectorImpl<int> &Mask) const {
190  unsigned NumMaskElts = VT.getVectorNumElements();
191  unsigned NumDestElts = NVT.getVectorNumElements();
192  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
193
194  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
195
196  if (NumEltsGrowth == 1)
197    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
198
199  SmallVector<int, 8> NewMask;
200  for (unsigned i = 0; i != NumMaskElts; ++i) {
201    int Idx = Mask[i];
202    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
203      if (Idx < 0)
204        NewMask.push_back(-1);
205      else
206        NewMask.push_back(Idx * NumEltsGrowth + j);
207    }
208  }
209  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
210  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
211  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
212}
213
214SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
215                                           CodeGenOpt::Level ol)
216  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
217    ValueTypeActions(TLI.getValueTypeActions()) {
218  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
219         "Too many value types for ValueTypeActions to hold!");
220}
221
222void SelectionDAGLegalize::LegalizeDAG() {
223  LastCALLSEQ_END = DAG.getEntryNode();
224  IsLegalizingCall = false;
225
226  // The legalize process is inherently a bottom-up recursive process (users
227  // legalize their uses before themselves).  Given infinite stack space, we
228  // could just start legalizing on the root and traverse the whole graph.  In
229  // practice however, this causes us to run out of stack space on large basic
230  // blocks.  To avoid this problem, compute an ordering of the nodes where each
231  // node is only legalized after all of its operands are legalized.
232  DAG.AssignTopologicalOrder();
233  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
234       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
235    LegalizeOp(SDValue(I, 0));
236
237  // Finally, it's possible the root changed.  Get the new root.
238  SDValue OldRoot = DAG.getRoot();
239  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
240  DAG.setRoot(LegalizedNodes[OldRoot]);
241
242  LegalizedNodes.clear();
243
244  // Remove dead nodes now.
245  DAG.RemoveDeadNodes();
246}
247
248
249/// FindCallEndFromCallStart - Given a chained node that is part of a call
250/// sequence, find the CALLSEQ_END node that terminates the call sequence.
251static SDNode *FindCallEndFromCallStart(SDNode *Node) {
252  if (Node->getOpcode() == ISD::CALLSEQ_END)
253    return Node;
254  if (Node->use_empty())
255    return 0;   // No CallSeqEnd
256
257  // The chain is usually at the end.
258  SDValue TheChain(Node, Node->getNumValues()-1);
259  if (TheChain.getValueType() != MVT::Other) {
260    // Sometimes it's at the beginning.
261    TheChain = SDValue(Node, 0);
262    if (TheChain.getValueType() != MVT::Other) {
263      // Otherwise, hunt for it.
264      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
265        if (Node->getValueType(i) == MVT::Other) {
266          TheChain = SDValue(Node, i);
267          break;
268        }
269
270      // Otherwise, we walked into a node without a chain.
271      if (TheChain.getValueType() != MVT::Other)
272        return 0;
273    }
274  }
275
276  for (SDNode::use_iterator UI = Node->use_begin(),
277       E = Node->use_end(); UI != E; ++UI) {
278
279    // Make sure to only follow users of our token chain.
280    SDNode *User = *UI;
281    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
282      if (User->getOperand(i) == TheChain)
283        if (SDNode *Result = FindCallEndFromCallStart(User))
284          return Result;
285  }
286  return 0;
287}
288
289/// FindCallStartFromCallEnd - Given a chained node that is part of a call
290/// sequence, find the CALLSEQ_START node that initiates the call sequence.
291static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
292  assert(Node && "Didn't find callseq_start for a call??");
293  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
294
295  assert(Node->getOperand(0).getValueType() == MVT::Other &&
296         "Node doesn't have a token chain argument!");
297  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
298}
299
300/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
301/// see if any uses can reach Dest.  If no dest operands can get to dest,
302/// legalize them, legalize ourself, and return false, otherwise, return true.
303///
304/// Keep track of the nodes we fine that actually do lead to Dest in
305/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
306///
307bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
308                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
309  if (N == Dest) return true;  // N certainly leads to Dest :)
310
311  // If we've already processed this node and it does lead to Dest, there is no
312  // need to reprocess it.
313  if (NodesLeadingTo.count(N)) return true;
314
315  // If the first result of this node has been already legalized, then it cannot
316  // reach N.
317  if (LegalizedNodes.count(SDValue(N, 0))) return false;
318
319  // Okay, this node has not already been legalized.  Check and legalize all
320  // operands.  If none lead to Dest, then we can legalize this node.
321  bool OperandsLeadToDest = false;
322  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
323    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
324      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
325
326  if (OperandsLeadToDest) {
327    NodesLeadingTo.insert(N);
328    return true;
329  }
330
331  // Okay, this node looks safe, legalize it and return false.
332  LegalizeOp(SDValue(N, 0));
333  return false;
334}
335
336/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
337/// a load from the constant pool.
338static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
339                                SelectionDAG &DAG, const TargetLowering &TLI) {
340  bool Extend = false;
341  DebugLoc dl = CFP->getDebugLoc();
342
343  // If a FP immediate is precise when represented as a float and if the
344  // target can do an extending load from float to double, we put it into
345  // the constant pool as a float, even if it's is statically typed as a
346  // double.  This shrinks FP constants and canonicalizes them for targets where
347  // an FP extending load is the same cost as a normal load (such as on the x87
348  // fp stack or PPC FP unit).
349  EVT VT = CFP->getValueType(0);
350  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
351  if (!UseCP) {
352    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
353    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
354                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
355  }
356
357  EVT OrigVT = VT;
358  EVT SVT = VT;
359  while (SVT != MVT::f32) {
360    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
361    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
362        // Only do this if the target has a native EXTLOAD instruction from
363        // smaller type.
364        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
365        TLI.ShouldShrinkFPConstant(OrigVT)) {
366      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
367      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
368      VT = SVT;
369      Extend = true;
370    }
371  }
372
373  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
374  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
375  if (Extend)
376    return DAG.getExtLoad(ISD::EXTLOAD, dl,
377                          OrigVT, DAG.getEntryNode(),
378                          CPIdx, PseudoSourceValue::getConstantPool(),
379                          0, VT, false, false, Alignment);
380  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
381                     PseudoSourceValue::getConstantPool(), 0, false, false,
382                     Alignment);
383}
384
385/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
386static
387SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
388                             const TargetLowering &TLI) {
389  SDValue Chain = ST->getChain();
390  SDValue Ptr = ST->getBasePtr();
391  SDValue Val = ST->getValue();
392  EVT VT = Val.getValueType();
393  int Alignment = ST->getAlignment();
394  int SVOffset = ST->getSrcValueOffset();
395  DebugLoc dl = ST->getDebugLoc();
396  if (ST->getMemoryVT().isFloatingPoint() ||
397      ST->getMemoryVT().isVector()) {
398    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
399    if (TLI.isTypeLegal(intVT)) {
400      // Expand to a bitconvert of the value to the integer type of the
401      // same size, then a (misaligned) int store.
402      // FIXME: Does not handle truncating floating point stores!
403      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
404      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
405                          SVOffset, ST->isVolatile(), ST->isNonTemporal(),
406                          Alignment);
407    } else {
408      // Do a (aligned) store to a stack slot, then copy from the stack slot
409      // to the final destination using (unaligned) integer loads and stores.
410      EVT StoredVT = ST->getMemoryVT();
411      EVT RegVT =
412        TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits()));
413      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
414      unsigned RegBytes = RegVT.getSizeInBits() / 8;
415      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
416
417      // Make sure the stack slot is also aligned for the register type.
418      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
419
420      // Perform the original store, only redirected to the stack slot.
421      SDValue Store = DAG.getTruncStore(Chain, dl,
422                                        Val, StackPtr, NULL, 0, StoredVT,
423                                        false, false, 0);
424      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
425      SmallVector<SDValue, 8> Stores;
426      unsigned Offset = 0;
427
428      // Do all but one copies using the full register width.
429      for (unsigned i = 1; i < NumRegs; i++) {
430        // Load one integer register's worth from the stack slot.
431        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0,
432                                   false, false, 0);
433        // Store it to the final location.  Remember the store.
434        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
435                                      ST->getSrcValue(), SVOffset + Offset,
436                                      ST->isVolatile(), ST->isNonTemporal(),
437                                      MinAlign(ST->getAlignment(), Offset)));
438        // Increment the pointers.
439        Offset += RegBytes;
440        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
441                               Increment);
442        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
443      }
444
445      // The last store may be partial.  Do a truncating store.  On big-endian
446      // machines this requires an extending load from the stack slot to ensure
447      // that the bits are in the right place.
448      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
449
450      // Load from the stack slot.
451      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
452                                    NULL, 0, MemVT, false, false, 0);
453
454      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
455                                         ST->getSrcValue(), SVOffset + Offset,
456                                         MemVT, ST->isVolatile(),
457                                         ST->isNonTemporal(),
458                                         MinAlign(ST->getAlignment(), Offset)));
459      // The order of the stores doesn't matter - say it with a TokenFactor.
460      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
461                         Stores.size());
462    }
463  }
464  assert(ST->getMemoryVT().isInteger() &&
465         !ST->getMemoryVT().isVector() &&
466         "Unaligned store of unknown type.");
467  // Get the half-size VT
468  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
469  int NumBits = NewStoredVT.getSizeInBits();
470  int IncrementSize = NumBits / 8;
471
472  // Divide the stored value in two parts.
473  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
474  SDValue Lo = Val;
475  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
476
477  // Store the two parts
478  SDValue Store1, Store2;
479  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
480                             ST->getSrcValue(), SVOffset, NewStoredVT,
481                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
482  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
483                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
484  Alignment = MinAlign(Alignment, IncrementSize);
485  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
486                             ST->getSrcValue(), SVOffset + IncrementSize,
487                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
488                             Alignment);
489
490  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
491}
492
493/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
494static
495SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
496                            const TargetLowering &TLI) {
497  int SVOffset = LD->getSrcValueOffset();
498  SDValue Chain = LD->getChain();
499  SDValue Ptr = LD->getBasePtr();
500  EVT VT = LD->getValueType(0);
501  EVT LoadedVT = LD->getMemoryVT();
502  DebugLoc dl = LD->getDebugLoc();
503  if (VT.isFloatingPoint() || VT.isVector()) {
504    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
505    if (TLI.isTypeLegal(intVT)) {
506      // Expand to a (misaligned) integer load of the same size,
507      // then bitconvert to floating point or vector.
508      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
509                                    SVOffset, LD->isVolatile(),
510                                    LD->isNonTemporal(), LD->getAlignment());
511      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
512      if (VT.isFloatingPoint() && LoadedVT != VT)
513        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
514
515      SDValue Ops[] = { Result, Chain };
516      return DAG.getMergeValues(Ops, 2, dl);
517    } else {
518      // Copy the value to a (aligned) stack slot using (unaligned) integer
519      // loads and stores, then do a (aligned) load from the stack slot.
520      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
521      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
522      unsigned RegBytes = RegVT.getSizeInBits() / 8;
523      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
524
525      // Make sure the stack slot is also aligned for the register type.
526      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
527
528      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
529      SmallVector<SDValue, 8> Stores;
530      SDValue StackPtr = StackBase;
531      unsigned Offset = 0;
532
533      // Do all but one copies using the full register width.
534      for (unsigned i = 1; i < NumRegs; i++) {
535        // Load one integer register's worth from the original location.
536        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
537                                   SVOffset + Offset, LD->isVolatile(),
538                                   LD->isNonTemporal(),
539                                   MinAlign(LD->getAlignment(), Offset));
540        // Follow the load with a store to the stack slot.  Remember the store.
541        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
542                                      NULL, 0, false, false, 0));
543        // Increment the pointers.
544        Offset += RegBytes;
545        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
546        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
547                               Increment);
548      }
549
550      // The last copy may be partial.  Do an extending load.
551      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset));
552      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
553                                    LD->getSrcValue(), SVOffset + Offset,
554                                    MemVT, LD->isVolatile(),
555                                    LD->isNonTemporal(),
556                                    MinAlign(LD->getAlignment(), Offset));
557      // Follow the load with a store to the stack slot.  Remember the store.
558      // On big-endian machines this requires a truncating store to ensure
559      // that the bits end up in the right place.
560      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
561                                         NULL, 0, MemVT, false, false, 0));
562
563      // The order of the stores doesn't matter - say it with a TokenFactor.
564      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
565                               Stores.size());
566
567      // Finally, perform the original load only redirected to the stack slot.
568      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
569                            NULL, 0, LoadedVT, false, false, 0);
570
571      // Callers expect a MERGE_VALUES node.
572      SDValue Ops[] = { Load, TF };
573      return DAG.getMergeValues(Ops, 2, dl);
574    }
575  }
576  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
577         "Unaligned load of unsupported type.");
578
579  // Compute the new VT that is half the size of the old one.  This is an
580  // integer MVT.
581  unsigned NumBits = LoadedVT.getSizeInBits();
582  EVT NewLoadedVT;
583  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
584  NumBits >>= 1;
585
586  unsigned Alignment = LD->getAlignment();
587  unsigned IncrementSize = NumBits / 8;
588  ISD::LoadExtType HiExtType = LD->getExtensionType();
589
590  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
591  if (HiExtType == ISD::NON_EXTLOAD)
592    HiExtType = ISD::ZEXTLOAD;
593
594  // Load the value in two parts
595  SDValue Lo, Hi;
596  if (TLI.isLittleEndian()) {
597    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
598                        SVOffset, NewLoadedVT, LD->isVolatile(),
599                        LD->isNonTemporal(), Alignment);
600    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
601                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
602    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
603                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
604                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
605  } else {
606    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
607                        SVOffset, NewLoadedVT, LD->isVolatile(),
608                        LD->isNonTemporal(), Alignment);
609    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
610                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
611    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
612                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
613                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
614  }
615
616  // aggregate the two parts
617  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
618  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
619  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
620
621  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
622                             Hi.getValue(1));
623
624  SDValue Ops[] = { Result, TF };
625  return DAG.getMergeValues(Ops, 2, dl);
626}
627
628/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
629/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
630/// is necessary to spill the vector being inserted into to memory, perform
631/// the insert there, and then read the result back.
632SDValue SelectionDAGLegalize::
633PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
634                               DebugLoc dl) {
635  SDValue Tmp1 = Vec;
636  SDValue Tmp2 = Val;
637  SDValue Tmp3 = Idx;
638
639  // If the target doesn't support this, we have to spill the input vector
640  // to a temporary stack slot, update the element, then reload it.  This is
641  // badness.  We could also load the value into a vector register (either
642  // with a "move to register" or "extload into register" instruction, then
643  // permute it into place, if the idx is a constant and if the idx is
644  // supported by the target.
645  EVT VT    = Tmp1.getValueType();
646  EVT EltVT = VT.getVectorElementType();
647  EVT IdxVT = Tmp3.getValueType();
648  EVT PtrVT = TLI.getPointerTy();
649  SDValue StackPtr = DAG.CreateStackTemporary(VT);
650
651  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
652
653  // Store the vector.
654  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
655                            PseudoSourceValue::getFixedStack(SPFI), 0,
656                            false, false, 0);
657
658  // Truncate or zero extend offset to target pointer type.
659  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
660  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
661  // Add the offset to the index.
662  unsigned EltSize = EltVT.getSizeInBits()/8;
663  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
664  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
665  // Store the scalar value.
666  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
667                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT,
668                         false, false, 0);
669  // Load the updated vector.
670  return DAG.getLoad(VT, dl, Ch, StackPtr,
671                     PseudoSourceValue::getFixedStack(SPFI), 0,
672                     false, false, 0);
673}
674
675
676SDValue SelectionDAGLegalize::
677ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
678  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
679    // SCALAR_TO_VECTOR requires that the type of the value being inserted
680    // match the element type of the vector being created, except for
681    // integers in which case the inserted value can be over width.
682    EVT EltVT = Vec.getValueType().getVectorElementType();
683    if (Val.getValueType() == EltVT ||
684        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
685      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
686                                  Vec.getValueType(), Val);
687
688      unsigned NumElts = Vec.getValueType().getVectorNumElements();
689      // We generate a shuffle of InVec and ScVec, so the shuffle mask
690      // should be 0,1,2,3,4,5... with the appropriate element replaced with
691      // elt 0 of the RHS.
692      SmallVector<int, 8> ShufOps;
693      for (unsigned i = 0; i != NumElts; ++i)
694        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
695
696      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
697                                  &ShufOps[0]);
698    }
699  }
700  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
701}
702
703SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
704  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
705  // FIXME: We shouldn't do this for TargetConstantFP's.
706  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
707  // to phase ordering between legalized code and the dag combiner.  This
708  // probably means that we need to integrate dag combiner and legalizer
709  // together.
710  // We generally can't do this one for long doubles.
711  SDValue Tmp1 = ST->getChain();
712  SDValue Tmp2 = ST->getBasePtr();
713  SDValue Tmp3;
714  int SVOffset = ST->getSrcValueOffset();
715  unsigned Alignment = ST->getAlignment();
716  bool isVolatile = ST->isVolatile();
717  bool isNonTemporal = ST->isNonTemporal();
718  DebugLoc dl = ST->getDebugLoc();
719  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
720    if (CFP->getValueType(0) == MVT::f32 &&
721        getTypeAction(MVT::i32) == Legal) {
722      Tmp3 = DAG.getConstant(CFP->getValueAPF().
723                                      bitcastToAPInt().zextOrTrunc(32),
724                              MVT::i32);
725      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
726                          SVOffset, isVolatile, isNonTemporal, Alignment);
727    } else if (CFP->getValueType(0) == MVT::f64) {
728      // If this target supports 64-bit registers, do a single 64-bit store.
729      if (getTypeAction(MVT::i64) == Legal) {
730        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
731                                  zextOrTrunc(64), MVT::i64);
732        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
733                            SVOffset, isVolatile, isNonTemporal, Alignment);
734      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
735        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
736        // stores.  If the target supports neither 32- nor 64-bits, this
737        // xform is certainly not worth it.
738        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
739        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
740        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
741        if (TLI.isBigEndian()) std::swap(Lo, Hi);
742
743        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
744                          SVOffset, isVolatile, isNonTemporal, Alignment);
745        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
746                            DAG.getIntPtrConstant(4));
747        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
748                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
749
750        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
751      }
752    }
753  }
754  return SDValue();
755}
756
757/// LegalizeOp - We know that the specified value has a legal type, and
758/// that its operands are legal.  Now ensure that the operation itself
759/// is legal, recursively ensuring that the operands' operations remain
760/// legal.
761SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
762  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
763    return Op;
764
765  SDNode *Node = Op.getNode();
766  DebugLoc dl = Node->getDebugLoc();
767
768  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
769    assert(getTypeAction(Node->getValueType(i)) == Legal &&
770           "Unexpected illegal type!");
771
772  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
773    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
774            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
775           "Unexpected illegal type!");
776
777  // Note that LegalizeOp may be reentered even from single-use nodes, which
778  // means that we always must cache transformed nodes.
779  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
780  if (I != LegalizedNodes.end()) return I->second;
781
782  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
783  SDValue Result = Op;
784  bool isCustom = false;
785
786  // Figure out the correct action; the way to query this varies by opcode
787  TargetLowering::LegalizeAction Action;
788  bool SimpleFinishLegalizing = true;
789  switch (Node->getOpcode()) {
790  case ISD::INTRINSIC_W_CHAIN:
791  case ISD::INTRINSIC_WO_CHAIN:
792  case ISD::INTRINSIC_VOID:
793  case ISD::VAARG:
794  case ISD::STACKSAVE:
795    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
796    break;
797  case ISD::SINT_TO_FP:
798  case ISD::UINT_TO_FP:
799  case ISD::EXTRACT_VECTOR_ELT:
800    Action = TLI.getOperationAction(Node->getOpcode(),
801                                    Node->getOperand(0).getValueType());
802    break;
803  case ISD::FP_ROUND_INREG:
804  case ISD::SIGN_EXTEND_INREG: {
805    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
806    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
807    break;
808  }
809  case ISD::SELECT_CC:
810  case ISD::SETCC:
811  case ISD::BR_CC: {
812    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
813                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
814    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
815    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
816    ISD::CondCode CCCode =
817        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
818    Action = TLI.getCondCodeAction(CCCode, OpVT);
819    if (Action == TargetLowering::Legal) {
820      if (Node->getOpcode() == ISD::SELECT_CC)
821        Action = TLI.getOperationAction(Node->getOpcode(),
822                                        Node->getValueType(0));
823      else
824        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
825    }
826    break;
827  }
828  case ISD::LOAD:
829  case ISD::STORE:
830    // FIXME: Model these properly.  LOAD and STORE are complicated, and
831    // STORE expects the unlegalized operand in some cases.
832    SimpleFinishLegalizing = false;
833    break;
834  case ISD::CALLSEQ_START:
835  case ISD::CALLSEQ_END:
836    // FIXME: This shouldn't be necessary.  These nodes have special properties
837    // dealing with the recursive nature of legalization.  Removing this
838    // special case should be done as part of making LegalizeDAG non-recursive.
839    SimpleFinishLegalizing = false;
840    break;
841  case ISD::EXTRACT_ELEMENT:
842  case ISD::FLT_ROUNDS_:
843  case ISD::SADDO:
844  case ISD::SSUBO:
845  case ISD::UADDO:
846  case ISD::USUBO:
847  case ISD::SMULO:
848  case ISD::UMULO:
849  case ISD::FPOWI:
850  case ISD::MERGE_VALUES:
851  case ISD::EH_RETURN:
852  case ISD::FRAME_TO_ARGS_OFFSET:
853    // These operations lie about being legal: when they claim to be legal,
854    // they should actually be expanded.
855    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
856    if (Action == TargetLowering::Legal)
857      Action = TargetLowering::Expand;
858    break;
859  case ISD::TRAMPOLINE:
860  case ISD::FRAMEADDR:
861  case ISD::RETURNADDR:
862    // These operations lie about being legal: when they claim to be legal,
863    // they should actually be custom-lowered.
864    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
865    if (Action == TargetLowering::Legal)
866      Action = TargetLowering::Custom;
867    break;
868  case ISD::BUILD_VECTOR:
869    // A weird case: legalization for BUILD_VECTOR never legalizes the
870    // operands!
871    // FIXME: This really sucks... changing it isn't semantically incorrect,
872    // but it massively pessimizes the code for floating-point BUILD_VECTORs
873    // because ConstantFP operands get legalized into constant pool loads
874    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
875    // though, because BUILD_VECTORS usually get lowered into other nodes
876    // which get legalized properly.
877    SimpleFinishLegalizing = false;
878    break;
879  default:
880    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
881      Action = TargetLowering::Legal;
882    } else {
883      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
884    }
885    break;
886  }
887
888  if (SimpleFinishLegalizing) {
889    SmallVector<SDValue, 8> Ops, ResultVals;
890    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
891      Ops.push_back(LegalizeOp(Node->getOperand(i)));
892    switch (Node->getOpcode()) {
893    default: break;
894    case ISD::BR:
895    case ISD::BRIND:
896    case ISD::BR_JT:
897    case ISD::BR_CC:
898    case ISD::BRCOND:
899      // Branches tweak the chain to include LastCALLSEQ_END
900      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
901                            LastCALLSEQ_END);
902      Ops[0] = LegalizeOp(Ops[0]);
903      LastCALLSEQ_END = DAG.getEntryNode();
904      break;
905    case ISD::SHL:
906    case ISD::SRL:
907    case ISD::SRA:
908    case ISD::ROTL:
909    case ISD::ROTR:
910      // Legalizing shifts/rotates requires adjusting the shift amount
911      // to the appropriate width.
912      if (!Ops[1].getValueType().isVector())
913        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
914      break;
915    case ISD::SRL_PARTS:
916    case ISD::SRA_PARTS:
917    case ISD::SHL_PARTS:
918      // Legalizing shifts/rotates requires adjusting the shift amount
919      // to the appropriate width.
920      if (!Ops[2].getValueType().isVector())
921        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
922      break;
923    }
924
925    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
926                                    Ops.size());
927    switch (Action) {
928    case TargetLowering::Legal:
929      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
930        ResultVals.push_back(Result.getValue(i));
931      break;
932    case TargetLowering::Custom:
933      // FIXME: The handling for custom lowering with multiple results is
934      // a complete mess.
935      Tmp1 = TLI.LowerOperation(Result, DAG);
936      if (Tmp1.getNode()) {
937        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
938          if (e == 1)
939            ResultVals.push_back(Tmp1);
940          else
941            ResultVals.push_back(Tmp1.getValue(i));
942        }
943        break;
944      }
945
946      // FALL THROUGH
947    case TargetLowering::Expand:
948      ExpandNode(Result.getNode(), ResultVals);
949      break;
950    case TargetLowering::Promote:
951      PromoteNode(Result.getNode(), ResultVals);
952      break;
953    }
954    if (!ResultVals.empty()) {
955      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
956        if (ResultVals[i] != SDValue(Node, i))
957          ResultVals[i] = LegalizeOp(ResultVals[i]);
958        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
959      }
960      return ResultVals[Op.getResNo()];
961    }
962  }
963
964  switch (Node->getOpcode()) {
965  default:
966#ifndef NDEBUG
967    dbgs() << "NODE: ";
968    Node->dump( &DAG);
969    dbgs() << "\n";
970#endif
971    llvm_unreachable("Do not know how to legalize this operator!");
972
973  case ISD::BUILD_VECTOR:
974    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
975    default: llvm_unreachable("This action is not supported yet!");
976    case TargetLowering::Custom:
977      Tmp3 = TLI.LowerOperation(Result, DAG);
978      if (Tmp3.getNode()) {
979        Result = Tmp3;
980        break;
981      }
982      // FALLTHROUGH
983    case TargetLowering::Expand:
984      Result = ExpandBUILD_VECTOR(Result.getNode());
985      break;
986    }
987    break;
988  case ISD::CALLSEQ_START: {
989    SDNode *CallEnd = FindCallEndFromCallStart(Node);
990
991    // Recursively Legalize all of the inputs of the call end that do not lead
992    // to this call start.  This ensures that any libcalls that need be inserted
993    // are inserted *before* the CALLSEQ_START.
994    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
995    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
996      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
997                                   NodesLeadingTo);
998    }
999
1000    // Now that we legalized all of the inputs (which may have inserted
1001    // libcalls) create the new CALLSEQ_START node.
1002    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1003
1004    // Merge in the last call, to ensure that this call start after the last
1005    // call ended.
1006    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1007      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1008                         Tmp1, LastCALLSEQ_END);
1009      Tmp1 = LegalizeOp(Tmp1);
1010    }
1011
1012    // Do not try to legalize the target-specific arguments (#1+).
1013    if (Tmp1 != Node->getOperand(0)) {
1014      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1015      Ops[0] = Tmp1;
1016      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1017    }
1018
1019    // Remember that the CALLSEQ_START is legalized.
1020    AddLegalizedOperand(Op.getValue(0), Result);
1021    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1022      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1023
1024    // Now that the callseq_start and all of the non-call nodes above this call
1025    // sequence have been legalized, legalize the call itself.  During this
1026    // process, no libcalls can/will be inserted, guaranteeing that no calls
1027    // can overlap.
1028    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1029    // Note that we are selecting this call!
1030    LastCALLSEQ_END = SDValue(CallEnd, 0);
1031    IsLegalizingCall = true;
1032
1033    // Legalize the call, starting from the CALLSEQ_END.
1034    LegalizeOp(LastCALLSEQ_END);
1035    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1036    return Result;
1037  }
1038  case ISD::CALLSEQ_END:
1039    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1040    // will cause this node to be legalized as well as handling libcalls right.
1041    if (LastCALLSEQ_END.getNode() != Node) {
1042      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1043      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1044      assert(I != LegalizedNodes.end() &&
1045             "Legalizing the call start should have legalized this node!");
1046      return I->second;
1047    }
1048
1049    // Otherwise, the call start has been legalized and everything is going
1050    // according to plan.  Just legalize ourselves normally here.
1051    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1052    // Do not try to legalize the target-specific arguments (#1+), except for
1053    // an optional flag input.
1054    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1055      if (Tmp1 != Node->getOperand(0)) {
1056        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1057        Ops[0] = Tmp1;
1058        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1059      }
1060    } else {
1061      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1062      if (Tmp1 != Node->getOperand(0) ||
1063          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1064        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1065        Ops[0] = Tmp1;
1066        Ops.back() = Tmp2;
1067        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1068      }
1069    }
1070    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1071    // This finishes up call legalization.
1072    IsLegalizingCall = false;
1073
1074    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1075    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1076    if (Node->getNumValues() == 2)
1077      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1078    return Result.getValue(Op.getResNo());
1079  case ISD::LOAD: {
1080    LoadSDNode *LD = cast<LoadSDNode>(Node);
1081    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1082    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1083
1084    ISD::LoadExtType ExtType = LD->getExtensionType();
1085    if (ExtType == ISD::NON_EXTLOAD) {
1086      EVT VT = Node->getValueType(0);
1087      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1088      Tmp3 = Result.getValue(0);
1089      Tmp4 = Result.getValue(1);
1090
1091      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1092      default: llvm_unreachable("This action is not supported yet!");
1093      case TargetLowering::Legal:
1094        // If this is an unaligned load and the target doesn't support it,
1095        // expand it.
1096        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1097          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1098          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1099          if (LD->getAlignment() < ABIAlignment){
1100            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1101                                         DAG, TLI);
1102            Tmp3 = Result.getOperand(0);
1103            Tmp4 = Result.getOperand(1);
1104            Tmp3 = LegalizeOp(Tmp3);
1105            Tmp4 = LegalizeOp(Tmp4);
1106          }
1107        }
1108        break;
1109      case TargetLowering::Custom:
1110        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1111        if (Tmp1.getNode()) {
1112          Tmp3 = LegalizeOp(Tmp1);
1113          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1114        }
1115        break;
1116      case TargetLowering::Promote: {
1117        // Only promote a load of vector type to another.
1118        assert(VT.isVector() && "Cannot promote this load!");
1119        // Change base type to a different vector type.
1120        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1121
1122        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1123                           LD->getSrcValueOffset(),
1124                           LD->isVolatile(), LD->isNonTemporal(),
1125                           LD->getAlignment());
1126        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1127        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1128        break;
1129      }
1130      }
1131      // Since loads produce two values, make sure to remember that we
1132      // legalized both of them.
1133      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1134      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1135      return Op.getResNo() ? Tmp4 : Tmp3;
1136    } else {
1137      EVT SrcVT = LD->getMemoryVT();
1138      unsigned SrcWidth = SrcVT.getSizeInBits();
1139      int SVOffset = LD->getSrcValueOffset();
1140      unsigned Alignment = LD->getAlignment();
1141      bool isVolatile = LD->isVolatile();
1142      bool isNonTemporal = LD->isNonTemporal();
1143
1144      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1145          // Some targets pretend to have an i1 loading operation, and actually
1146          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1147          // bits are guaranteed to be zero; it helps the optimizers understand
1148          // that these bits are zero.  It is also useful for EXTLOAD, since it
1149          // tells the optimizers that those bits are undefined.  It would be
1150          // nice to have an effective generic way of getting these benefits...
1151          // Until such a way is found, don't insist on promoting i1 here.
1152          (SrcVT != MVT::i1 ||
1153           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1154        // Promote to a byte-sized load if not loading an integral number of
1155        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1156        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1157        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1158        SDValue Ch;
1159
1160        // The extra bits are guaranteed to be zero, since we stored them that
1161        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1162
1163        ISD::LoadExtType NewExtType =
1164          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1165
1166        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1167                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1168                                NVT, isVolatile, isNonTemporal, Alignment);
1169
1170        Ch = Result.getValue(1); // The chain.
1171
1172        if (ExtType == ISD::SEXTLOAD)
1173          // Having the top bits zero doesn't help when sign extending.
1174          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1175                               Result.getValueType(),
1176                               Result, DAG.getValueType(SrcVT));
1177        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1178          // All the top bits are guaranteed to be zero - inform the optimizers.
1179          Result = DAG.getNode(ISD::AssertZext, dl,
1180                               Result.getValueType(), Result,
1181                               DAG.getValueType(SrcVT));
1182
1183        Tmp1 = LegalizeOp(Result);
1184        Tmp2 = LegalizeOp(Ch);
1185      } else if (SrcWidth & (SrcWidth - 1)) {
1186        // If not loading a power-of-2 number of bits, expand as two loads.
1187        assert(!SrcVT.isVector() && "Unsupported extload!");
1188        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1189        assert(RoundWidth < SrcWidth);
1190        unsigned ExtraWidth = SrcWidth - RoundWidth;
1191        assert(ExtraWidth < RoundWidth);
1192        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1193               "Load size not an integral number of bytes!");
1194        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1195        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1196        SDValue Lo, Hi, Ch;
1197        unsigned IncrementSize;
1198
1199        if (TLI.isLittleEndian()) {
1200          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1201          // Load the bottom RoundWidth bits.
1202          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1203                              Node->getValueType(0), Tmp1, Tmp2,
1204                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1205                              isNonTemporal, Alignment);
1206
1207          // Load the remaining ExtraWidth bits.
1208          IncrementSize = RoundWidth / 8;
1209          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1210                             DAG.getIntPtrConstant(IncrementSize));
1211          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1212                              LD->getSrcValue(), SVOffset + IncrementSize,
1213                              ExtraVT, isVolatile, isNonTemporal,
1214                              MinAlign(Alignment, IncrementSize));
1215
1216          // Build a factor node to remember that this load is independent of the
1217          // other one.
1218          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1219                           Hi.getValue(1));
1220
1221          // Move the top bits to the right place.
1222          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1223                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1224
1225          // Join the hi and lo parts.
1226          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1227        } else {
1228          // Big endian - avoid unaligned loads.
1229          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1230          // Load the top RoundWidth bits.
1231          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1232                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1233                              isNonTemporal, Alignment);
1234
1235          // Load the remaining ExtraWidth bits.
1236          IncrementSize = RoundWidth / 8;
1237          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1238                             DAG.getIntPtrConstant(IncrementSize));
1239          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1240                              Node->getValueType(0), Tmp1, Tmp2,
1241                              LD->getSrcValue(), SVOffset + IncrementSize,
1242                              ExtraVT, isVolatile, isNonTemporal,
1243                              MinAlign(Alignment, IncrementSize));
1244
1245          // Build a factor node to remember that this load is independent of the
1246          // other one.
1247          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1248                           Hi.getValue(1));
1249
1250          // Move the top bits to the right place.
1251          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1252                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1253
1254          // Join the hi and lo parts.
1255          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1256        }
1257
1258        Tmp1 = LegalizeOp(Result);
1259        Tmp2 = LegalizeOp(Ch);
1260      } else {
1261        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1262        default: llvm_unreachable("This action is not supported yet!");
1263        case TargetLowering::Custom:
1264          isCustom = true;
1265          // FALLTHROUGH
1266        case TargetLowering::Legal:
1267          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1268          Tmp1 = Result.getValue(0);
1269          Tmp2 = Result.getValue(1);
1270
1271          if (isCustom) {
1272            Tmp3 = TLI.LowerOperation(Result, DAG);
1273            if (Tmp3.getNode()) {
1274              Tmp1 = LegalizeOp(Tmp3);
1275              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1276            }
1277          } else {
1278            // If this is an unaligned load and the target doesn't support it,
1279            // expand it.
1280            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1281              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1282              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1283              if (LD->getAlignment() < ABIAlignment){
1284                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1285                                             DAG, TLI);
1286                Tmp1 = Result.getOperand(0);
1287                Tmp2 = Result.getOperand(1);
1288                Tmp1 = LegalizeOp(Tmp1);
1289                Tmp2 = LegalizeOp(Tmp2);
1290              }
1291            }
1292          }
1293          break;
1294        case TargetLowering::Expand:
1295          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1296          // f128 = EXTLOAD {f32,f64} too
1297          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1298                                     Node->getValueType(0) == MVT::f128)) ||
1299              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1300            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1301                                       LD->getSrcValueOffset(),
1302                                       LD->isVolatile(), LD->isNonTemporal(),
1303                                       LD->getAlignment());
1304            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1305                                 Node->getValueType(0), Load);
1306            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1307            Tmp2 = LegalizeOp(Load.getValue(1));
1308            break;
1309          }
1310          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1311          // Turn the unsupported load into an EXTLOAD followed by an explicit
1312          // zero/sign extend inreg.
1313          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1314                                  Tmp1, Tmp2, LD->getSrcValue(),
1315                                  LD->getSrcValueOffset(), SrcVT,
1316                                  LD->isVolatile(), LD->isNonTemporal(),
1317                                  LD->getAlignment());
1318          SDValue ValRes;
1319          if (ExtType == ISD::SEXTLOAD)
1320            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1321                                 Result.getValueType(),
1322                                 Result, DAG.getValueType(SrcVT));
1323          else
1324            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1325          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1326          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1327          break;
1328        }
1329      }
1330
1331      // Since loads produce two values, make sure to remember that we legalized
1332      // both of them.
1333      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1334      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1335      return Op.getResNo() ? Tmp2 : Tmp1;
1336    }
1337  }
1338  case ISD::STORE: {
1339    StoreSDNode *ST = cast<StoreSDNode>(Node);
1340    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1341    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1342    int SVOffset = ST->getSrcValueOffset();
1343    unsigned Alignment = ST->getAlignment();
1344    bool isVolatile = ST->isVolatile();
1345    bool isNonTemporal = ST->isNonTemporal();
1346
1347    if (!ST->isTruncatingStore()) {
1348      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1349        Result = SDValue(OptStore, 0);
1350        break;
1351      }
1352
1353      {
1354        Tmp3 = LegalizeOp(ST->getValue());
1355        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1356                                        ST->getOffset());
1357
1358        EVT VT = Tmp3.getValueType();
1359        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1360        default: llvm_unreachable("This action is not supported yet!");
1361        case TargetLowering::Legal:
1362          // If this is an unaligned store and the target doesn't support it,
1363          // expand it.
1364          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1365            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1366            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1367            if (ST->getAlignment() < ABIAlignment)
1368              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1369                                            DAG, TLI);
1370          }
1371          break;
1372        case TargetLowering::Custom:
1373          Tmp1 = TLI.LowerOperation(Result, DAG);
1374          if (Tmp1.getNode()) Result = Tmp1;
1375          break;
1376        case TargetLowering::Promote:
1377          assert(VT.isVector() && "Unknown legal promote case!");
1378          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1379                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1380          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1381                                ST->getSrcValue(), SVOffset, isVolatile,
1382                                isNonTemporal, Alignment);
1383          break;
1384        }
1385        break;
1386      }
1387    } else {
1388      Tmp3 = LegalizeOp(ST->getValue());
1389
1390      EVT StVT = ST->getMemoryVT();
1391      unsigned StWidth = StVT.getSizeInBits();
1392
1393      if (StWidth != StVT.getStoreSizeInBits()) {
1394        // Promote to a byte-sized store with upper bits zero if not
1395        // storing an integral number of bytes.  For example, promote
1396        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1397        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits());
1398        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1399        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1400                                   SVOffset, NVT, isVolatile, isNonTemporal,
1401                                   Alignment);
1402      } else if (StWidth & (StWidth - 1)) {
1403        // If not storing a power-of-2 number of bits, expand as two stores.
1404        assert(!StVT.isVector() && "Unsupported truncstore!");
1405        unsigned RoundWidth = 1 << Log2_32(StWidth);
1406        assert(RoundWidth < StWidth);
1407        unsigned ExtraWidth = StWidth - RoundWidth;
1408        assert(ExtraWidth < RoundWidth);
1409        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1410               "Store size not an integral number of bytes!");
1411        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1412        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1413        SDValue Lo, Hi;
1414        unsigned IncrementSize;
1415
1416        if (TLI.isLittleEndian()) {
1417          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1418          // Store the bottom RoundWidth bits.
1419          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1420                                 SVOffset, RoundVT,
1421                                 isVolatile, isNonTemporal, Alignment);
1422
1423          // Store the remaining ExtraWidth bits.
1424          IncrementSize = RoundWidth / 8;
1425          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1426                             DAG.getIntPtrConstant(IncrementSize));
1427          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1428                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1429          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1430                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1431                                 isNonTemporal,
1432                                 MinAlign(Alignment, IncrementSize));
1433        } else {
1434          // Big endian - avoid unaligned stores.
1435          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1436          // Store the top RoundWidth bits.
1437          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1438                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1439          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1440                                 SVOffset, RoundVT, isVolatile, isNonTemporal,
1441                                 Alignment);
1442
1443          // Store the remaining ExtraWidth bits.
1444          IncrementSize = RoundWidth / 8;
1445          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1446                             DAG.getIntPtrConstant(IncrementSize));
1447          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1448                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1449                                 isNonTemporal,
1450                                 MinAlign(Alignment, IncrementSize));
1451        }
1452
1453        // The order of the stores doesn't matter.
1454        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1455      } else {
1456        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1457            Tmp2 != ST->getBasePtr())
1458          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1459                                          ST->getOffset());
1460
1461        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1462        default: llvm_unreachable("This action is not supported yet!");
1463        case TargetLowering::Legal:
1464          // If this is an unaligned store and the target doesn't support it,
1465          // expand it.
1466          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1467            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1468            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1469            if (ST->getAlignment() < ABIAlignment)
1470              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1471                                            DAG, TLI);
1472          }
1473          break;
1474        case TargetLowering::Custom:
1475          Result = TLI.LowerOperation(Result, DAG);
1476          break;
1477        case Expand:
1478          // TRUNCSTORE:i16 i32 -> STORE i16
1479          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1480          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1481          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1482                                SVOffset, isVolatile, isNonTemporal,
1483                                Alignment);
1484          break;
1485        }
1486      }
1487    }
1488    break;
1489  }
1490  }
1491  assert(Result.getValueType() == Op.getValueType() &&
1492         "Bad legalization!");
1493
1494  // Make sure that the generated code is itself legal.
1495  if (Result != Op)
1496    Result = LegalizeOp(Result);
1497
1498  // Note that LegalizeOp may be reentered even from single-use nodes, which
1499  // means that we always must cache transformed nodes.
1500  AddLegalizedOperand(Op, Result);
1501  return Result;
1502}
1503
1504SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1505  SDValue Vec = Op.getOperand(0);
1506  SDValue Idx = Op.getOperand(1);
1507  DebugLoc dl = Op.getDebugLoc();
1508  // Store the value to a temporary stack slot, then LOAD the returned part.
1509  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1510  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1511                            false, false, 0);
1512
1513  // Add the offset to the index.
1514  unsigned EltSize =
1515      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1516  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1517                    DAG.getConstant(EltSize, Idx.getValueType()));
1518
1519  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1520    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1521  else
1522    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1523
1524  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1525
1526  if (Op.getValueType().isVector())
1527    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0,
1528                       false, false, 0);
1529  else
1530    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1531                          NULL, 0, Vec.getValueType().getVectorElementType(),
1532                          false, false, 0);
1533}
1534
1535SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1536  // We can't handle this case efficiently.  Allocate a sufficiently
1537  // aligned object on the stack, store each element into it, then load
1538  // the result as a vector.
1539  // Create the stack frame object.
1540  EVT VT = Node->getValueType(0);
1541  EVT EltVT = VT.getVectorElementType();
1542  DebugLoc dl = Node->getDebugLoc();
1543  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1544  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1545  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1546
1547  // Emit a store of each element to the stack slot.
1548  SmallVector<SDValue, 8> Stores;
1549  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1550  // Store (in the right endianness) the elements to memory.
1551  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1552    // Ignore undef elements.
1553    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1554
1555    unsigned Offset = TypeByteSize*i;
1556
1557    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1558    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1559
1560    // If the destination vector element type is narrower than the source
1561    // element type, only store the bits necessary.
1562    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1563      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1564                                         Node->getOperand(i), Idx, SV, Offset,
1565                                         EltVT, false, false, 0));
1566    } else
1567      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1568                                    Node->getOperand(i), Idx, SV, Offset,
1569                                    false, false, 0));
1570  }
1571
1572  SDValue StoreChain;
1573  if (!Stores.empty())    // Not all undef elements?
1574    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1575                             &Stores[0], Stores.size());
1576  else
1577    StoreChain = DAG.getEntryNode();
1578
1579  // Result is a load from the stack slot.
1580  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0);
1581}
1582
1583SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1584  DebugLoc dl = Node->getDebugLoc();
1585  SDValue Tmp1 = Node->getOperand(0);
1586  SDValue Tmp2 = Node->getOperand(1);
1587
1588  // Get the sign bit of the RHS.  First obtain a value that has the same
1589  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1590  SDValue SignBit;
1591  EVT FloatVT = Tmp2.getValueType();
1592  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1593  if (isTypeLegal(IVT)) {
1594    // Convert to an integer with the same sign bit.
1595    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1596  } else {
1597    // Store the float to memory, then load the sign part out as an integer.
1598    MVT LoadTy = TLI.getPointerTy();
1599    // First create a temporary that is aligned for both the load and store.
1600    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1601    // Then store the float to it.
1602    SDValue Ch =
1603      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1604                   false, false, 0);
1605    if (TLI.isBigEndian()) {
1606      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1607      // Load out a legal integer with the same sign bit as the float.
1608      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, NULL, 0, false, false, 0);
1609    } else { // Little endian
1610      SDValue LoadPtr = StackPtr;
1611      // The float may be wider than the integer we are going to load.  Advance
1612      // the pointer so that the loaded integer will contain the sign bit.
1613      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1614      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1615      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1616                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1617      // Load a legal integer containing the sign bit.
1618      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, NULL, 0, false, false, 0);
1619      // Move the sign bit to the top bit of the loaded integer.
1620      unsigned BitShift = LoadTy.getSizeInBits() -
1621        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1622      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1623      if (BitShift)
1624        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1625                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1626    }
1627  }
1628  // Now get the sign bit proper, by seeing whether the value is negative.
1629  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1630                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1631                         ISD::SETLT);
1632  // Get the absolute value of the result.
1633  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1634  // Select between the nabs and abs value based on the sign bit of
1635  // the input.
1636  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1637                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1638                     AbsVal);
1639}
1640
1641void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1642                                           SmallVectorImpl<SDValue> &Results) {
1643  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1644  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1645          " not tell us which reg is the stack pointer!");
1646  DebugLoc dl = Node->getDebugLoc();
1647  EVT VT = Node->getValueType(0);
1648  SDValue Tmp1 = SDValue(Node, 0);
1649  SDValue Tmp2 = SDValue(Node, 1);
1650  SDValue Tmp3 = Node->getOperand(2);
1651  SDValue Chain = Tmp1.getOperand(0);
1652
1653  // Chain the dynamic stack allocation so that it doesn't modify the stack
1654  // pointer when other instructions are using the stack.
1655  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1656
1657  SDValue Size  = Tmp2.getOperand(1);
1658  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1659  Chain = SP.getValue(1);
1660  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1661  unsigned StackAlign =
1662    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1663  if (Align > StackAlign)
1664    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1665                      DAG.getConstant(-(uint64_t)Align, VT));
1666  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1667  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1668
1669  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1670                            DAG.getIntPtrConstant(0, true), SDValue());
1671
1672  Results.push_back(Tmp1);
1673  Results.push_back(Tmp2);
1674}
1675
1676/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1677/// condition code CC on the current target. This routine expands SETCC with
1678/// illegal condition code into AND / OR of multiple SETCC values.
1679void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1680                                                 SDValue &LHS, SDValue &RHS,
1681                                                 SDValue &CC,
1682                                                 DebugLoc dl) {
1683  EVT OpVT = LHS.getValueType();
1684  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1685  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1686  default: llvm_unreachable("Unknown condition code action!");
1687  case TargetLowering::Legal:
1688    // Nothing to do.
1689    break;
1690  case TargetLowering::Expand: {
1691    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1692    unsigned Opc = 0;
1693    switch (CCCode) {
1694    default: llvm_unreachable("Don't know how to expand this condition!");
1695    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1696    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1697    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1698    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1699    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1700    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1701    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1702    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1703    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1704    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1705    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1706    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1707    // FIXME: Implement more expansions.
1708    }
1709
1710    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1711    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1712    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1713    RHS = SDValue();
1714    CC  = SDValue();
1715    break;
1716  }
1717  }
1718}
1719
1720/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1721/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1722/// a load from the stack slot to DestVT, extending it if needed.
1723/// The resultant code need not be legal.
1724SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1725                                               EVT SlotVT,
1726                                               EVT DestVT,
1727                                               DebugLoc dl) {
1728  // Create the stack frame object.
1729  unsigned SrcAlign =
1730    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1731                                              getTypeForEVT(*DAG.getContext()));
1732  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1733
1734  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1735  int SPFI = StackPtrFI->getIndex();
1736  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1737
1738  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1739  unsigned SlotSize = SlotVT.getSizeInBits();
1740  unsigned DestSize = DestVT.getSizeInBits();
1741  unsigned DestAlign =
1742    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext()));
1743
1744  // Emit a store to the stack slot.  Use a truncstore if the input value is
1745  // later than DestVT.
1746  SDValue Store;
1747
1748  if (SrcSize > SlotSize)
1749    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1750                              SV, 0, SlotVT, false, false, SrcAlign);
1751  else {
1752    assert(SrcSize == SlotSize && "Invalid store");
1753    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1754                         SV, 0, false, false, SrcAlign);
1755  }
1756
1757  // Result is a load from the stack slot.
1758  if (SlotSize == DestSize)
1759    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false,
1760                       DestAlign);
1761
1762  assert(SlotSize < DestSize && "Unknown extension!");
1763  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1764                        false, false, DestAlign);
1765}
1766
1767SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1768  DebugLoc dl = Node->getDebugLoc();
1769  // Create a vector sized/aligned stack slot, store the value to element #0,
1770  // then load the whole vector back out.
1771  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1772
1773  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1774  int SPFI = StackPtrFI->getIndex();
1775
1776  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1777                                 StackPtr,
1778                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1779                                 Node->getValueType(0).getVectorElementType(),
1780                                 false, false, 0);
1781  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1782                     PseudoSourceValue::getFixedStack(SPFI), 0,
1783                     false, false, 0);
1784}
1785
1786
1787/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1788/// support the operation, but do support the resultant vector type.
1789SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1790  unsigned NumElems = Node->getNumOperands();
1791  SDValue Value1, Value2;
1792  DebugLoc dl = Node->getDebugLoc();
1793  EVT VT = Node->getValueType(0);
1794  EVT OpVT = Node->getOperand(0).getValueType();
1795  EVT EltVT = VT.getVectorElementType();
1796
1797  // If the only non-undef value is the low element, turn this into a
1798  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1799  bool isOnlyLowElement = true;
1800  bool MoreThanTwoValues = false;
1801  bool isConstant = true;
1802  for (unsigned i = 0; i < NumElems; ++i) {
1803    SDValue V = Node->getOperand(i);
1804    if (V.getOpcode() == ISD::UNDEF)
1805      continue;
1806    if (i > 0)
1807      isOnlyLowElement = false;
1808    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1809      isConstant = false;
1810
1811    if (!Value1.getNode()) {
1812      Value1 = V;
1813    } else if (!Value2.getNode()) {
1814      if (V != Value1)
1815        Value2 = V;
1816    } else if (V != Value1 && V != Value2) {
1817      MoreThanTwoValues = true;
1818    }
1819  }
1820
1821  if (!Value1.getNode())
1822    return DAG.getUNDEF(VT);
1823
1824  if (isOnlyLowElement)
1825    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1826
1827  // If all elements are constants, create a load from the constant pool.
1828  if (isConstant) {
1829    std::vector<Constant*> CV;
1830    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1831      if (ConstantFPSDNode *V =
1832          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1833        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1834      } else if (ConstantSDNode *V =
1835                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1836        if (OpVT==EltVT)
1837          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1838        else {
1839          // If OpVT and EltVT don't match, EltVT is not legal and the
1840          // element values have been promoted/truncated earlier.  Undo this;
1841          // we don't want a v16i8 to become a v16i32 for example.
1842          const ConstantInt *CI = V->getConstantIntValue();
1843          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1844                                        CI->getZExtValue()));
1845        }
1846      } else {
1847        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1848        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1849        CV.push_back(UndefValue::get(OpNTy));
1850      }
1851    }
1852    Constant *CP = ConstantVector::get(CV);
1853    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1854    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1855    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1856                       PseudoSourceValue::getConstantPool(), 0,
1857                       false, false, Alignment);
1858  }
1859
1860  if (!MoreThanTwoValues) {
1861    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1862    for (unsigned i = 0; i < NumElems; ++i) {
1863      SDValue V = Node->getOperand(i);
1864      if (V.getOpcode() == ISD::UNDEF)
1865        continue;
1866      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1867    }
1868    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1869      // Get the splatted value into the low element of a vector register.
1870      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1871      SDValue Vec2;
1872      if (Value2.getNode())
1873        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1874      else
1875        Vec2 = DAG.getUNDEF(VT);
1876
1877      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1878      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1879    }
1880  }
1881
1882  // Otherwise, we can't handle this case efficiently.
1883  return ExpandVectorBuildThroughStack(Node);
1884}
1885
1886// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1887// does not fit into a register, return the lo part and set the hi part to the
1888// by-reg argument.  If it does fit into a single register, return the result
1889// and leave the Hi part unset.
1890SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1891                                            bool isSigned) {
1892  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1893  // The input chain to this libcall is the entry node of the function.
1894  // Legalizing the call will automatically add the previous call to the
1895  // dependence.
1896  SDValue InChain = DAG.getEntryNode();
1897
1898  TargetLowering::ArgListTy Args;
1899  TargetLowering::ArgListEntry Entry;
1900  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1901    EVT ArgVT = Node->getOperand(i).getValueType();
1902    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1903    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1904    Entry.isSExt = isSigned;
1905    Entry.isZExt = !isSigned;
1906    Args.push_back(Entry);
1907  }
1908  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1909                                         TLI.getPointerTy());
1910
1911  // Splice the libcall in wherever FindInputOutputChains tells us to.
1912  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1913  std::pair<SDValue, SDValue> CallInfo =
1914    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1915                    0, TLI.getLibcallCallingConv(LC), false,
1916                    /*isReturnValueUsed=*/true,
1917                    Callee, Args, DAG, Node->getDebugLoc());
1918
1919  // Legalize the call sequence, starting with the chain.  This will advance
1920  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1921  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1922  LegalizeOp(CallInfo.second);
1923  return CallInfo.first;
1924}
1925
1926SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1927                                              RTLIB::Libcall Call_F32,
1928                                              RTLIB::Libcall Call_F64,
1929                                              RTLIB::Libcall Call_F80,
1930                                              RTLIB::Libcall Call_PPCF128) {
1931  RTLIB::Libcall LC;
1932  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1933  default: llvm_unreachable("Unexpected request for libcall!");
1934  case MVT::f32: LC = Call_F32; break;
1935  case MVT::f64: LC = Call_F64; break;
1936  case MVT::f80: LC = Call_F80; break;
1937  case MVT::ppcf128: LC = Call_PPCF128; break;
1938  }
1939  return ExpandLibCall(LC, Node, false);
1940}
1941
1942SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1943                                               RTLIB::Libcall Call_I8,
1944                                               RTLIB::Libcall Call_I16,
1945                                               RTLIB::Libcall Call_I32,
1946                                               RTLIB::Libcall Call_I64,
1947                                               RTLIB::Libcall Call_I128) {
1948  RTLIB::Libcall LC;
1949  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1950  default: llvm_unreachable("Unexpected request for libcall!");
1951  case MVT::i8:   LC = Call_I8; break;
1952  case MVT::i16:  LC = Call_I16; break;
1953  case MVT::i32:  LC = Call_I32; break;
1954  case MVT::i64:  LC = Call_I64; break;
1955  case MVT::i128: LC = Call_I128; break;
1956  }
1957  return ExpandLibCall(LC, Node, isSigned);
1958}
1959
1960/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1961/// INT_TO_FP operation of the specified operand when the target requests that
1962/// we expand it.  At this point, we know that the result and operand types are
1963/// legal for the target.
1964SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1965                                                   SDValue Op0,
1966                                                   EVT DestVT,
1967                                                   DebugLoc dl) {
1968  if (Op0.getValueType() == MVT::i32) {
1969    // simple 32-bit [signed|unsigned] integer to float/double expansion
1970
1971    // Get the stack frame index of a 8 byte buffer.
1972    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1973
1974    // word offset constant for Hi/Lo address computation
1975    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1976    // set up Hi and Lo (into buffer) address based on endian
1977    SDValue Hi = StackSlot;
1978    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1979                             TLI.getPointerTy(), StackSlot, WordOff);
1980    if (TLI.isLittleEndian())
1981      std::swap(Hi, Lo);
1982
1983    // if signed map to unsigned space
1984    SDValue Op0Mapped;
1985    if (isSigned) {
1986      // constant used to invert sign bit (signed to unsigned mapping)
1987      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1988      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1989    } else {
1990      Op0Mapped = Op0;
1991    }
1992    // store the lo of the constructed double - based on integer input
1993    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1994                                  Op0Mapped, Lo, NULL, 0,
1995                                  false, false, 0);
1996    // initial hi portion of constructed double
1997    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1998    // store the hi of the constructed double - biased exponent
1999    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
2000                                false, false, 0);
2001    // load the constructed double
2002    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0,
2003                               false, false, 0);
2004    // FP constant to bias correct the final result
2005    SDValue Bias = DAG.getConstantFP(isSigned ?
2006                                     BitsToDouble(0x4330000080000000ULL) :
2007                                     BitsToDouble(0x4330000000000000ULL),
2008                                     MVT::f64);
2009    // subtract the bias
2010    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2011    // final result
2012    SDValue Result;
2013    // handle final rounding
2014    if (DestVT == MVT::f64) {
2015      // do nothing
2016      Result = Sub;
2017    } else if (DestVT.bitsLT(MVT::f64)) {
2018      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2019                           DAG.getIntPtrConstant(0));
2020    } else if (DestVT.bitsGT(MVT::f64)) {
2021      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2022    }
2023    return Result;
2024  }
2025  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2026
2027  // Implementation of unsigned i64 to f64 following the algorithm in
2028  // __floatundidf in compiler_rt. This implementation has the advantage
2029  // of performing rounding correctly, both in the default rounding mode
2030  // and in all alternate rounding modes.
2031  // TODO: Generalize this for use with other types.
2032  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2033    SDValue TwoP52 =
2034      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2035    SDValue TwoP84PlusTwoP52 =
2036      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2037    SDValue TwoP84 =
2038      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2039
2040    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2041    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2042                             DAG.getConstant(32, MVT::i64));
2043    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2044    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2045    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2046    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2047    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, TwoP84PlusTwoP52);
2048    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2049  }
2050
2051  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2052
2053  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2054                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2055                                 ISD::SETLT);
2056  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2057  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2058                                    SignSet, Four, Zero);
2059
2060  // If the sign bit of the integer is set, the large number will be treated
2061  // as a negative number.  To counteract this, the dynamic code adds an
2062  // offset depending on the data type.
2063  uint64_t FF;
2064  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2065  default: llvm_unreachable("Unsupported integer type!");
2066  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2067  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2068  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2069  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2070  }
2071  if (TLI.isLittleEndian()) FF <<= 32;
2072  Constant *FudgeFactor = ConstantInt::get(
2073                                       Type::getInt64Ty(*DAG.getContext()), FF);
2074
2075  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2076  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2077  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2078  Alignment = std::min(Alignment, 4u);
2079  SDValue FudgeInReg;
2080  if (DestVT == MVT::f32)
2081    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2082                             PseudoSourceValue::getConstantPool(), 0,
2083                             false, false, Alignment);
2084  else {
2085    FudgeInReg =
2086      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2087                                DAG.getEntryNode(), CPIdx,
2088                                PseudoSourceValue::getConstantPool(), 0,
2089                                MVT::f32, false, false, Alignment));
2090  }
2091
2092  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2093}
2094
2095/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2096/// *INT_TO_FP operation of the specified operand when the target requests that
2097/// we promote it.  At this point, we know that the result and operand types are
2098/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2099/// operation that takes a larger input.
2100SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2101                                                    EVT DestVT,
2102                                                    bool isSigned,
2103                                                    DebugLoc dl) {
2104  // First step, figure out the appropriate *INT_TO_FP operation to use.
2105  EVT NewInTy = LegalOp.getValueType();
2106
2107  unsigned OpToUse = 0;
2108
2109  // Scan for the appropriate larger type to use.
2110  while (1) {
2111    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2112    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2113
2114    // If the target supports SINT_TO_FP of this type, use it.
2115    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2116      OpToUse = ISD::SINT_TO_FP;
2117      break;
2118    }
2119    if (isSigned) continue;
2120
2121    // If the target supports UINT_TO_FP of this type, use it.
2122    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2123      OpToUse = ISD::UINT_TO_FP;
2124      break;
2125    }
2126
2127    // Otherwise, try a larger type.
2128  }
2129
2130  // Okay, we found the operation and type to use.  Zero extend our input to the
2131  // desired type then run the operation on it.
2132  return DAG.getNode(OpToUse, dl, DestVT,
2133                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2134                                 dl, NewInTy, LegalOp));
2135}
2136
2137/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2138/// FP_TO_*INT operation of the specified operand when the target requests that
2139/// we promote it.  At this point, we know that the result and operand types are
2140/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2141/// operation that returns a larger result.
2142SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2143                                                    EVT DestVT,
2144                                                    bool isSigned,
2145                                                    DebugLoc dl) {
2146  // First step, figure out the appropriate FP_TO*INT operation to use.
2147  EVT NewOutTy = DestVT;
2148
2149  unsigned OpToUse = 0;
2150
2151  // Scan for the appropriate larger type to use.
2152  while (1) {
2153    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2154    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2155
2156    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2157      OpToUse = ISD::FP_TO_SINT;
2158      break;
2159    }
2160
2161    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2162      OpToUse = ISD::FP_TO_UINT;
2163      break;
2164    }
2165
2166    // Otherwise, try a larger type.
2167  }
2168
2169
2170  // Okay, we found the operation and type to use.
2171  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2172
2173  // Truncate the result of the extended FP_TO_*INT operation to the desired
2174  // size.
2175  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2176}
2177
2178/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2179///
2180SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2181  EVT VT = Op.getValueType();
2182  EVT SHVT = TLI.getShiftAmountTy();
2183  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2184  switch (VT.getSimpleVT().SimpleTy) {
2185  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2186  case MVT::i16:
2187    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2188    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2189    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2190  case MVT::i32:
2191    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2192    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2193    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2194    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2195    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2196    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2197    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2198    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2199    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2200  case MVT::i64:
2201    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2202    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2203    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2204    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2205    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2206    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2207    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2208    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2209    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2210    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2211    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2212    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2213    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2214    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2215    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2216    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2217    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2218    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2219    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2220    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2221    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2222  }
2223}
2224
2225/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2226///
2227SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2228                                             DebugLoc dl) {
2229  switch (Opc) {
2230  default: llvm_unreachable("Cannot expand this yet!");
2231  case ISD::CTPOP: {
2232    static const uint64_t mask[6] = {
2233      0x5555555555555555ULL, 0x3333333333333333ULL,
2234      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2235      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2236    };
2237    EVT VT = Op.getValueType();
2238    EVT ShVT = TLI.getShiftAmountTy();
2239    unsigned len = VT.getSizeInBits();
2240    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2241      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2242      unsigned EltSize = VT.isVector() ?
2243        VT.getVectorElementType().getSizeInBits() : len;
2244      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2245      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2246      Op = DAG.getNode(ISD::ADD, dl, VT,
2247                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2248                       DAG.getNode(ISD::AND, dl, VT,
2249                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2250                                   Tmp2));
2251    }
2252    return Op;
2253  }
2254  case ISD::CTLZ: {
2255    // for now, we do this:
2256    // x = x | (x >> 1);
2257    // x = x | (x >> 2);
2258    // ...
2259    // x = x | (x >>16);
2260    // x = x | (x >>32); // for 64-bit input
2261    // return popcount(~x);
2262    //
2263    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2264    EVT VT = Op.getValueType();
2265    EVT ShVT = TLI.getShiftAmountTy();
2266    unsigned len = VT.getSizeInBits();
2267    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2268      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2269      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2270                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2271    }
2272    Op = DAG.getNOT(dl, Op, VT);
2273    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2274  }
2275  case ISD::CTTZ: {
2276    // for now, we use: { return popcount(~x & (x - 1)); }
2277    // unless the target has ctlz but not ctpop, in which case we use:
2278    // { return 32 - nlz(~x & (x-1)); }
2279    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2280    EVT VT = Op.getValueType();
2281    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2282                               DAG.getNOT(dl, Op, VT),
2283                               DAG.getNode(ISD::SUB, dl, VT, Op,
2284                                           DAG.getConstant(1, VT)));
2285    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2286    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2287        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2288      return DAG.getNode(ISD::SUB, dl, VT,
2289                         DAG.getConstant(VT.getSizeInBits(), VT),
2290                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2291    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2292  }
2293  }
2294}
2295
2296void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2297                                      SmallVectorImpl<SDValue> &Results) {
2298  DebugLoc dl = Node->getDebugLoc();
2299  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2300  switch (Node->getOpcode()) {
2301  case ISD::CTPOP:
2302  case ISD::CTLZ:
2303  case ISD::CTTZ:
2304    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2305    Results.push_back(Tmp1);
2306    break;
2307  case ISD::BSWAP:
2308    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2309    break;
2310  case ISD::FRAMEADDR:
2311  case ISD::RETURNADDR:
2312  case ISD::FRAME_TO_ARGS_OFFSET:
2313    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2314    break;
2315  case ISD::FLT_ROUNDS_:
2316    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2317    break;
2318  case ISD::EH_RETURN:
2319  case ISD::EH_LABEL:
2320  case ISD::PREFETCH:
2321  case ISD::MEMBARRIER:
2322  case ISD::VAEND:
2323    Results.push_back(Node->getOperand(0));
2324    break;
2325  case ISD::DYNAMIC_STACKALLOC:
2326    ExpandDYNAMIC_STACKALLOC(Node, Results);
2327    break;
2328  case ISD::MERGE_VALUES:
2329    for (unsigned i = 0; i < Node->getNumValues(); i++)
2330      Results.push_back(Node->getOperand(i));
2331    break;
2332  case ISD::UNDEF: {
2333    EVT VT = Node->getValueType(0);
2334    if (VT.isInteger())
2335      Results.push_back(DAG.getConstant(0, VT));
2336    else if (VT.isFloatingPoint())
2337      Results.push_back(DAG.getConstantFP(0, VT));
2338    else
2339      llvm_unreachable("Unknown value type!");
2340    break;
2341  }
2342  case ISD::TRAP: {
2343    // If this operation is not supported, lower it to 'abort()' call
2344    TargetLowering::ArgListTy Args;
2345    std::pair<SDValue, SDValue> CallResult =
2346      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2347                      false, false, false, false, 0, CallingConv::C, false,
2348                      /*isReturnValueUsed=*/true,
2349                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2350                      Args, DAG, dl);
2351    Results.push_back(CallResult.second);
2352    break;
2353  }
2354  case ISD::FP_ROUND:
2355  case ISD::BIT_CONVERT:
2356    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2357                            Node->getValueType(0), dl);
2358    Results.push_back(Tmp1);
2359    break;
2360  case ISD::FP_EXTEND:
2361    Tmp1 = EmitStackConvert(Node->getOperand(0),
2362                            Node->getOperand(0).getValueType(),
2363                            Node->getValueType(0), dl);
2364    Results.push_back(Tmp1);
2365    break;
2366  case ISD::SIGN_EXTEND_INREG: {
2367    // NOTE: we could fall back on load/store here too for targets without
2368    // SAR.  However, it is doubtful that any exist.
2369    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2370    EVT VT = Node->getValueType(0);
2371    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2372    if (VT.isVector())
2373      ShiftAmountTy = VT;
2374    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2375                        ExtraVT.getScalarType().getSizeInBits();
2376    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2377    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2378                       Node->getOperand(0), ShiftCst);
2379    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2380    Results.push_back(Tmp1);
2381    break;
2382  }
2383  case ISD::FP_ROUND_INREG: {
2384    // The only way we can lower this is to turn it into a TRUNCSTORE,
2385    // EXTLOAD pair, targetting a temporary location (a stack slot).
2386
2387    // NOTE: there is a choice here between constantly creating new stack
2388    // slots and always reusing the same one.  We currently always create
2389    // new ones, as reuse may inhibit scheduling.
2390    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2391    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2392                            Node->getValueType(0), dl);
2393    Results.push_back(Tmp1);
2394    break;
2395  }
2396  case ISD::SINT_TO_FP:
2397  case ISD::UINT_TO_FP:
2398    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2399                                Node->getOperand(0), Node->getValueType(0), dl);
2400    Results.push_back(Tmp1);
2401    break;
2402  case ISD::FP_TO_UINT: {
2403    SDValue True, False;
2404    EVT VT =  Node->getOperand(0).getValueType();
2405    EVT NVT = Node->getValueType(0);
2406    const uint64_t zero[] = {0, 0};
2407    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2408    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2409    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2410    Tmp1 = DAG.getConstantFP(apf, VT);
2411    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2412                        Node->getOperand(0),
2413                        Tmp1, ISD::SETLT);
2414    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2415    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2416                        DAG.getNode(ISD::FSUB, dl, VT,
2417                                    Node->getOperand(0), Tmp1));
2418    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2419                        DAG.getConstant(x, NVT));
2420    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2421    Results.push_back(Tmp1);
2422    break;
2423  }
2424  case ISD::VAARG: {
2425    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2426    EVT VT = Node->getValueType(0);
2427    Tmp1 = Node->getOperand(0);
2428    Tmp2 = Node->getOperand(1);
2429    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0,
2430                                 false, false, 0);
2431    // Increment the pointer, VAList, to the next vaarg
2432    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2433                       DAG.getConstant(TLI.getTargetData()->
2434                                       getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2435                                       TLI.getPointerTy()));
2436    // Store the incremented VAList to the legalized pointer
2437    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0,
2438                        false, false, 0);
2439    // Load the actual argument out of the pointer VAList
2440    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0,
2441                                  false, false, 0));
2442    Results.push_back(Results[0].getValue(1));
2443    break;
2444  }
2445  case ISD::VACOPY: {
2446    // This defaults to loading a pointer from the input and storing it to the
2447    // output, returning the chain.
2448    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2449    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2450    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2451                       Node->getOperand(2), VS, 0, false, false, 0);
2452    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0,
2453                        false, false, 0);
2454    Results.push_back(Tmp1);
2455    break;
2456  }
2457  case ISD::EXTRACT_VECTOR_ELT:
2458    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2459      // This must be an access of the only element.  Return it.
2460      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2461                         Node->getOperand(0));
2462    else
2463      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2464    Results.push_back(Tmp1);
2465    break;
2466  case ISD::EXTRACT_SUBVECTOR:
2467    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2468    break;
2469  case ISD::CONCAT_VECTORS: {
2470    Results.push_back(ExpandVectorBuildThroughStack(Node));
2471    break;
2472  }
2473  case ISD::SCALAR_TO_VECTOR:
2474    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2475    break;
2476  case ISD::INSERT_VECTOR_ELT:
2477    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2478                                              Node->getOperand(1),
2479                                              Node->getOperand(2), dl));
2480    break;
2481  case ISD::VECTOR_SHUFFLE: {
2482    SmallVector<int, 8> Mask;
2483    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2484
2485    EVT VT = Node->getValueType(0);
2486    EVT EltVT = VT.getVectorElementType();
2487    unsigned NumElems = VT.getVectorNumElements();
2488    SmallVector<SDValue, 8> Ops;
2489    for (unsigned i = 0; i != NumElems; ++i) {
2490      if (Mask[i] < 0) {
2491        Ops.push_back(DAG.getUNDEF(EltVT));
2492        continue;
2493      }
2494      unsigned Idx = Mask[i];
2495      if (Idx < NumElems)
2496        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2497                                  Node->getOperand(0),
2498                                  DAG.getIntPtrConstant(Idx)));
2499      else
2500        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2501                                  Node->getOperand(1),
2502                                  DAG.getIntPtrConstant(Idx - NumElems)));
2503    }
2504    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2505    Results.push_back(Tmp1);
2506    break;
2507  }
2508  case ISD::EXTRACT_ELEMENT: {
2509    EVT OpTy = Node->getOperand(0).getValueType();
2510    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2511      // 1 -> Hi
2512      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2513                         DAG.getConstant(OpTy.getSizeInBits()/2,
2514                                         TLI.getShiftAmountTy()));
2515      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2516    } else {
2517      // 0 -> Lo
2518      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2519                         Node->getOperand(0));
2520    }
2521    Results.push_back(Tmp1);
2522    break;
2523  }
2524  case ISD::STACKSAVE:
2525    // Expand to CopyFromReg if the target set
2526    // StackPointerRegisterToSaveRestore.
2527    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2528      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2529                                           Node->getValueType(0)));
2530      Results.push_back(Results[0].getValue(1));
2531    } else {
2532      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2533      Results.push_back(Node->getOperand(0));
2534    }
2535    break;
2536  case ISD::STACKRESTORE:
2537    // Expand to CopyToReg if the target set
2538    // StackPointerRegisterToSaveRestore.
2539    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2540      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2541                                         Node->getOperand(1)));
2542    } else {
2543      Results.push_back(Node->getOperand(0));
2544    }
2545    break;
2546  case ISD::FCOPYSIGN:
2547    Results.push_back(ExpandFCOPYSIGN(Node));
2548    break;
2549  case ISD::FNEG:
2550    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2551    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2552    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2553                       Node->getOperand(0));
2554    Results.push_back(Tmp1);
2555    break;
2556  case ISD::FABS: {
2557    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2558    EVT VT = Node->getValueType(0);
2559    Tmp1 = Node->getOperand(0);
2560    Tmp2 = DAG.getConstantFP(0.0, VT);
2561    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2562                        Tmp1, Tmp2, ISD::SETUGT);
2563    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2564    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2565    Results.push_back(Tmp1);
2566    break;
2567  }
2568  case ISD::FSQRT:
2569    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2570                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2571    break;
2572  case ISD::FSIN:
2573    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2574                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2575    break;
2576  case ISD::FCOS:
2577    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2578                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2579    break;
2580  case ISD::FLOG:
2581    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2582                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2583    break;
2584  case ISD::FLOG2:
2585    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2586                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2587    break;
2588  case ISD::FLOG10:
2589    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2590                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2591    break;
2592  case ISD::FEXP:
2593    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2594                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2595    break;
2596  case ISD::FEXP2:
2597    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2598                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2599    break;
2600  case ISD::FTRUNC:
2601    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2602                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2603    break;
2604  case ISD::FFLOOR:
2605    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2606                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2607    break;
2608  case ISD::FCEIL:
2609    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2610                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2611    break;
2612  case ISD::FRINT:
2613    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2614                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2615    break;
2616  case ISD::FNEARBYINT:
2617    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2618                                      RTLIB::NEARBYINT_F64,
2619                                      RTLIB::NEARBYINT_F80,
2620                                      RTLIB::NEARBYINT_PPCF128));
2621    break;
2622  case ISD::FPOWI:
2623    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2624                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2625    break;
2626  case ISD::FPOW:
2627    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2628                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2629    break;
2630  case ISD::FDIV:
2631    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2632                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2633    break;
2634  case ISD::FREM:
2635    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2636                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2637    break;
2638  case ISD::FP16_TO_FP32:
2639    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2640    break;
2641  case ISD::FP32_TO_FP16:
2642    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2643    break;
2644  case ISD::ConstantFP: {
2645    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2646    // Check to see if this FP immediate is already legal.
2647    // If this is a legal constant, turn it into a TargetConstantFP node.
2648    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2649      Results.push_back(SDValue(Node, 0));
2650    else
2651      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2652    break;
2653  }
2654  case ISD::EHSELECTION: {
2655    unsigned Reg = TLI.getExceptionSelectorRegister();
2656    assert(Reg && "Can't expand to unknown register!");
2657    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2658                                         Node->getValueType(0)));
2659    Results.push_back(Results[0].getValue(1));
2660    break;
2661  }
2662  case ISD::EXCEPTIONADDR: {
2663    unsigned Reg = TLI.getExceptionAddressRegister();
2664    assert(Reg && "Can't expand to unknown register!");
2665    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2666                                         Node->getValueType(0)));
2667    Results.push_back(Results[0].getValue(1));
2668    break;
2669  }
2670  case ISD::SUB: {
2671    EVT VT = Node->getValueType(0);
2672    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2673           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2674           "Don't know how to expand this subtraction!");
2675    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2676               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2677    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2678    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2679    break;
2680  }
2681  case ISD::UREM:
2682  case ISD::SREM: {
2683    EVT VT = Node->getValueType(0);
2684    SDVTList VTs = DAG.getVTList(VT, VT);
2685    bool isSigned = Node->getOpcode() == ISD::SREM;
2686    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2687    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2688    Tmp2 = Node->getOperand(0);
2689    Tmp3 = Node->getOperand(1);
2690    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2691      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2692    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2693      // X % Y -> X-X/Y*Y
2694      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2695      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2696      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2697    } else if (isSigned) {
2698      Tmp1 = ExpandIntLibCall(Node, true,
2699                              RTLIB::SREM_I8,
2700                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2701                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2702    } else {
2703      Tmp1 = ExpandIntLibCall(Node, false,
2704                              RTLIB::UREM_I8,
2705                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2706                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2707    }
2708    Results.push_back(Tmp1);
2709    break;
2710  }
2711  case ISD::UDIV:
2712  case ISD::SDIV: {
2713    bool isSigned = Node->getOpcode() == ISD::SDIV;
2714    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2715    EVT VT = Node->getValueType(0);
2716    SDVTList VTs = DAG.getVTList(VT, VT);
2717    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2718      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2719                         Node->getOperand(1));
2720    else if (isSigned)
2721      Tmp1 = ExpandIntLibCall(Node, true,
2722                              RTLIB::SDIV_I8,
2723                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2724                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2725    else
2726      Tmp1 = ExpandIntLibCall(Node, false,
2727                              RTLIB::UDIV_I8,
2728                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2729                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2730    Results.push_back(Tmp1);
2731    break;
2732  }
2733  case ISD::MULHU:
2734  case ISD::MULHS: {
2735    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2736                                                              ISD::SMUL_LOHI;
2737    EVT VT = Node->getValueType(0);
2738    SDVTList VTs = DAG.getVTList(VT, VT);
2739    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2740           "If this wasn't legal, it shouldn't have been created!");
2741    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2742                       Node->getOperand(1));
2743    Results.push_back(Tmp1.getValue(1));
2744    break;
2745  }
2746  case ISD::MUL: {
2747    EVT VT = Node->getValueType(0);
2748    SDVTList VTs = DAG.getVTList(VT, VT);
2749    // See if multiply or divide can be lowered using two-result operations.
2750    // We just need the low half of the multiply; try both the signed
2751    // and unsigned forms. If the target supports both SMUL_LOHI and
2752    // UMUL_LOHI, form a preference by checking which forms of plain
2753    // MULH it supports.
2754    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2755    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2756    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2757    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2758    unsigned OpToUse = 0;
2759    if (HasSMUL_LOHI && !HasMULHS) {
2760      OpToUse = ISD::SMUL_LOHI;
2761    } else if (HasUMUL_LOHI && !HasMULHU) {
2762      OpToUse = ISD::UMUL_LOHI;
2763    } else if (HasSMUL_LOHI) {
2764      OpToUse = ISD::SMUL_LOHI;
2765    } else if (HasUMUL_LOHI) {
2766      OpToUse = ISD::UMUL_LOHI;
2767    }
2768    if (OpToUse) {
2769      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2770                                    Node->getOperand(1)));
2771      break;
2772    }
2773    Tmp1 = ExpandIntLibCall(Node, false,
2774                            RTLIB::MUL_I8,
2775                            RTLIB::MUL_I16, RTLIB::MUL_I32,
2776                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2777    Results.push_back(Tmp1);
2778    break;
2779  }
2780  case ISD::SADDO:
2781  case ISD::SSUBO: {
2782    SDValue LHS = Node->getOperand(0);
2783    SDValue RHS = Node->getOperand(1);
2784    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2785                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2786                              LHS, RHS);
2787    Results.push_back(Sum);
2788    EVT OType = Node->getValueType(1);
2789
2790    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2791
2792    //   LHSSign -> LHS >= 0
2793    //   RHSSign -> RHS >= 0
2794    //   SumSign -> Sum >= 0
2795    //
2796    //   Add:
2797    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2798    //   Sub:
2799    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2800    //
2801    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2802    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2803    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2804                                      Node->getOpcode() == ISD::SADDO ?
2805                                      ISD::SETEQ : ISD::SETNE);
2806
2807    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2808    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2809
2810    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2811    Results.push_back(Cmp);
2812    break;
2813  }
2814  case ISD::UADDO:
2815  case ISD::USUBO: {
2816    SDValue LHS = Node->getOperand(0);
2817    SDValue RHS = Node->getOperand(1);
2818    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2819                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2820                              LHS, RHS);
2821    Results.push_back(Sum);
2822    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2823                                   Node->getOpcode () == ISD::UADDO ?
2824                                   ISD::SETULT : ISD::SETUGT));
2825    break;
2826  }
2827  case ISD::UMULO:
2828  case ISD::SMULO: {
2829    EVT VT = Node->getValueType(0);
2830    SDValue LHS = Node->getOperand(0);
2831    SDValue RHS = Node->getOperand(1);
2832    SDValue BottomHalf;
2833    SDValue TopHalf;
2834    static const unsigned Ops[2][3] =
2835        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2836          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2837    bool isSigned = Node->getOpcode() == ISD::SMULO;
2838    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2839      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2840      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2841    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2842      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2843                               RHS);
2844      TopHalf = BottomHalf.getValue(1);
2845    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) {
2846      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2847      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2848      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2849      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2850      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2851                               DAG.getIntPtrConstant(0));
2852      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2853                            DAG.getIntPtrConstant(1));
2854    } else {
2855      // FIXME: We should be able to fall back to a libcall with an illegal
2856      // type in some cases.
2857      // Also, we can fall back to a division in some cases, but that's a big
2858      // performance hit in the general case.
2859      llvm_unreachable("Don't know how to expand this operation yet!");
2860    }
2861    if (isSigned) {
2862      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2863      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2864      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2865                             ISD::SETNE);
2866    } else {
2867      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2868                             DAG.getConstant(0, VT), ISD::SETNE);
2869    }
2870    Results.push_back(BottomHalf);
2871    Results.push_back(TopHalf);
2872    break;
2873  }
2874  case ISD::BUILD_PAIR: {
2875    EVT PairTy = Node->getValueType(0);
2876    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2877    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2878    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2879                       DAG.getConstant(PairTy.getSizeInBits()/2,
2880                                       TLI.getShiftAmountTy()));
2881    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2882    break;
2883  }
2884  case ISD::SELECT:
2885    Tmp1 = Node->getOperand(0);
2886    Tmp2 = Node->getOperand(1);
2887    Tmp3 = Node->getOperand(2);
2888    if (Tmp1.getOpcode() == ISD::SETCC) {
2889      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2890                             Tmp2, Tmp3,
2891                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2892    } else {
2893      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2894                             DAG.getConstant(0, Tmp1.getValueType()),
2895                             Tmp2, Tmp3, ISD::SETNE);
2896    }
2897    Results.push_back(Tmp1);
2898    break;
2899  case ISD::BR_JT: {
2900    SDValue Chain = Node->getOperand(0);
2901    SDValue Table = Node->getOperand(1);
2902    SDValue Index = Node->getOperand(2);
2903
2904    EVT PTy = TLI.getPointerTy();
2905
2906    const TargetData &TD = *TLI.getTargetData();
2907    unsigned EntrySize =
2908      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
2909
2910    Index = DAG.getNode(ISD::MUL, dl, PTy,
2911                        Index, DAG.getConstant(EntrySize, PTy));
2912    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2913
2914    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2915    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2916                                PseudoSourceValue::getJumpTable(), 0, MemVT,
2917                                false, false, 0);
2918    Addr = LD;
2919    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2920      // For PIC, the sequence is:
2921      // BRIND(load(Jumptable + index) + RelocBase)
2922      // RelocBase can be JumpTable, GOT or some sort of global base.
2923      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2924                          TLI.getPICJumpTableRelocBase(Table, DAG));
2925    }
2926    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2927    Results.push_back(Tmp1);
2928    break;
2929  }
2930  case ISD::BRCOND:
2931    // Expand brcond's setcc into its constituent parts and create a BR_CC
2932    // Node.
2933    Tmp1 = Node->getOperand(0);
2934    Tmp2 = Node->getOperand(1);
2935    if (Tmp2.getOpcode() == ISD::SETCC) {
2936      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2937                         Tmp1, Tmp2.getOperand(2),
2938                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2939                         Node->getOperand(2));
2940    } else {
2941      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2942                         DAG.getCondCode(ISD::SETNE), Tmp2,
2943                         DAG.getConstant(0, Tmp2.getValueType()),
2944                         Node->getOperand(2));
2945    }
2946    Results.push_back(Tmp1);
2947    break;
2948  case ISD::SETCC: {
2949    Tmp1 = Node->getOperand(0);
2950    Tmp2 = Node->getOperand(1);
2951    Tmp3 = Node->getOperand(2);
2952    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2953
2954    // If we expanded the SETCC into an AND/OR, return the new node
2955    if (Tmp2.getNode() == 0) {
2956      Results.push_back(Tmp1);
2957      break;
2958    }
2959
2960    // Otherwise, SETCC for the given comparison type must be completely
2961    // illegal; expand it into a SELECT_CC.
2962    EVT VT = Node->getValueType(0);
2963    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2964                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2965    Results.push_back(Tmp1);
2966    break;
2967  }
2968  case ISD::SELECT_CC: {
2969    Tmp1 = Node->getOperand(0);   // LHS
2970    Tmp2 = Node->getOperand(1);   // RHS
2971    Tmp3 = Node->getOperand(2);   // True
2972    Tmp4 = Node->getOperand(3);   // False
2973    SDValue CC = Node->getOperand(4);
2974
2975    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2976                          Tmp1, Tmp2, CC, dl);
2977
2978    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2979    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2980    CC = DAG.getCondCode(ISD::SETNE);
2981    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2982                       Tmp3, Tmp4, CC);
2983    Results.push_back(Tmp1);
2984    break;
2985  }
2986  case ISD::BR_CC: {
2987    Tmp1 = Node->getOperand(0);              // Chain
2988    Tmp2 = Node->getOperand(2);              // LHS
2989    Tmp3 = Node->getOperand(3);              // RHS
2990    Tmp4 = Node->getOperand(1);              // CC
2991
2992    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2993                          Tmp2, Tmp3, Tmp4, dl);
2994    LastCALLSEQ_END = DAG.getEntryNode();
2995
2996    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2997    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2998    Tmp4 = DAG.getCondCode(ISD::SETNE);
2999    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3000                       Tmp3, Node->getOperand(4));
3001    Results.push_back(Tmp1);
3002    break;
3003  }
3004  case ISD::GLOBAL_OFFSET_TABLE:
3005  case ISD::GlobalAddress:
3006  case ISD::GlobalTLSAddress:
3007  case ISD::ExternalSymbol:
3008  case ISD::ConstantPool:
3009  case ISD::JumpTable:
3010  case ISD::INTRINSIC_W_CHAIN:
3011  case ISD::INTRINSIC_WO_CHAIN:
3012  case ISD::INTRINSIC_VOID:
3013    // FIXME: Custom lowering for these operations shouldn't return null!
3014    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3015      Results.push_back(SDValue(Node, i));
3016    break;
3017  }
3018}
3019void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3020                                       SmallVectorImpl<SDValue> &Results) {
3021  EVT OVT = Node->getValueType(0);
3022  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3023      Node->getOpcode() == ISD::SINT_TO_FP ||
3024      Node->getOpcode() == ISD::SETCC) {
3025    OVT = Node->getOperand(0).getValueType();
3026  }
3027  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3028  DebugLoc dl = Node->getDebugLoc();
3029  SDValue Tmp1, Tmp2, Tmp3;
3030  switch (Node->getOpcode()) {
3031  case ISD::CTTZ:
3032  case ISD::CTLZ:
3033  case ISD::CTPOP:
3034    // Zero extend the argument.
3035    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3036    // Perform the larger operation.
3037    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3038    if (Node->getOpcode() == ISD::CTTZ) {
3039      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3040      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3041                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3042                          ISD::SETEQ);
3043      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3044                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3045    } else if (Node->getOpcode() == ISD::CTLZ) {
3046      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3047      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3048                          DAG.getConstant(NVT.getSizeInBits() -
3049                                          OVT.getSizeInBits(), NVT));
3050    }
3051    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3052    break;
3053  case ISD::BSWAP: {
3054    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3055    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3056    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3057    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3058                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3059    Results.push_back(Tmp1);
3060    break;
3061  }
3062  case ISD::FP_TO_UINT:
3063  case ISD::FP_TO_SINT:
3064    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3065                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3066    Results.push_back(Tmp1);
3067    break;
3068  case ISD::UINT_TO_FP:
3069  case ISD::SINT_TO_FP:
3070    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3071                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3072    Results.push_back(Tmp1);
3073    break;
3074  case ISD::AND:
3075  case ISD::OR:
3076  case ISD::XOR: {
3077    unsigned ExtOp, TruncOp;
3078    if (OVT.isVector()) {
3079      ExtOp   = ISD::BIT_CONVERT;
3080      TruncOp = ISD::BIT_CONVERT;
3081    } else if (OVT.isInteger()) {
3082      ExtOp   = ISD::ANY_EXTEND;
3083      TruncOp = ISD::TRUNCATE;
3084    } else {
3085      llvm_report_error("Cannot promote logic operation");
3086    }
3087    // Promote each of the values to the new type.
3088    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3089    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3090    // Perform the larger operation, then convert back
3091    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3092    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3093    break;
3094  }
3095  case ISD::SELECT: {
3096    unsigned ExtOp, TruncOp;
3097    if (Node->getValueType(0).isVector()) {
3098      ExtOp   = ISD::BIT_CONVERT;
3099      TruncOp = ISD::BIT_CONVERT;
3100    } else if (Node->getValueType(0).isInteger()) {
3101      ExtOp   = ISD::ANY_EXTEND;
3102      TruncOp = ISD::TRUNCATE;
3103    } else {
3104      ExtOp   = ISD::FP_EXTEND;
3105      TruncOp = ISD::FP_ROUND;
3106    }
3107    Tmp1 = Node->getOperand(0);
3108    // Promote each of the values to the new type.
3109    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3110    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3111    // Perform the larger operation, then round down.
3112    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3113    if (TruncOp != ISD::FP_ROUND)
3114      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3115    else
3116      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3117                         DAG.getIntPtrConstant(0));
3118    Results.push_back(Tmp1);
3119    break;
3120  }
3121  case ISD::VECTOR_SHUFFLE: {
3122    SmallVector<int, 8> Mask;
3123    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3124
3125    // Cast the two input vectors.
3126    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3127    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3128
3129    // Convert the shuffle mask to the right # elements.
3130    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3131    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3132    Results.push_back(Tmp1);
3133    break;
3134  }
3135  case ISD::SETCC: {
3136    unsigned ExtOp = ISD::FP_EXTEND;
3137    if (NVT.isInteger()) {
3138      ISD::CondCode CCCode =
3139        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3140      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3141    }
3142    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3143    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3144    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3145                                  Tmp1, Tmp2, Node->getOperand(2)));
3146    break;
3147  }
3148  }
3149}
3150
3151// SelectionDAG::Legalize - This is the entry point for the file.
3152//
3153void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3154  /// run - This is the main entry point to this class.
3155  ///
3156  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3157}
3158
3159