LegalizeDAG.cpp revision 8e23e815ad1136721acdfcce76975a37c8a2c036
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/DebugInfo.h"
15#include "llvm/CodeGen/Analysis.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineJumpTableInfo.h"
19#include "llvm/CodeGen/MachineModuleInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22#include "llvm/Target/TargetFrameLowering.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/DerivedTypes.h"
30#include "llvm/Function.h"
31#include "llvm/GlobalVariable.h"
32#include "llvm/LLVMContext.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41using namespace llvm;
42
43//===----------------------------------------------------------------------===//
44/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
45/// hacks on it until the target machine can handle it.  This involves
46/// eliminating value sizes the machine cannot handle (promoting small sizes to
47/// large sizes or splitting up large values into small values) as well as
48/// eliminating operations the machine cannot handle.
49///
50/// This code also does a small amount of optimization and recognition of idioms
51/// as part of its processing.  For example, if a target does not support a
52/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
53/// will attempt merge setcc and brc instructions into brcc's.
54///
55namespace {
56class SelectionDAGLegalize {
57  const TargetMachine &TM;
58  const TargetLowering &TLI;
59  SelectionDAG &DAG;
60  CodeGenOpt::Level OptLevel;
61
62  // Libcall insertion helpers.
63
64  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65  /// legalized.  We use this to ensure that calls are properly serialized
66  /// against each other, including inserted libcalls.
67  SDValue LastCALLSEQ_END;
68
69  enum LegalizeAction {
70    Legal,      // The target natively supports this operation.
71    Promote,    // This operation should be executed in a larger type.
72    Expand      // Try to expand this to other ops, otherwise use a libcall.
73  };
74
75  /// ValueTypeActions - This is a bitvector that contains two bits for each
76  /// value type, where the two bits correspond to the LegalizeAction enum.
77  /// This can be queried with "getTypeAction(VT)".
78  TargetLowering::ValueTypeActionImpl ValueTypeActions;
79
80  /// LegalizedNodes - For nodes that are of legal width, and that have more
81  /// than one use, this map indicates what regularized operand to use.  This
82  /// allows us to avoid legalizing the same thing more than once.
83  DenseMap<SDValue, SDValue> LegalizedNodes;
84
85  void AddLegalizedOperand(SDValue From, SDValue To) {
86    LegalizedNodes.insert(std::make_pair(From, To));
87    // If someone requests legalization of the new node, return itself.
88    if (From != To)
89      LegalizedNodes.insert(std::make_pair(To, To));
90
91    // Transfer SDDbgValues.
92    DAG.TransferDbgValues(From, To);
93  }
94
95public:
96  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
97
98  /// getTypeAction - Return how we should legalize values of this type, either
99  /// it is already legal or we need to expand it into multiple registers of
100  /// smaller integer type, or we need to promote it to a larger type.
101  LegalizeAction getTypeAction(EVT VT) const {
102    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
103  }
104
105  /// isTypeLegal - Return true if this type is legal on this target.
106  ///
107  bool isTypeLegal(EVT VT) const {
108    return getTypeAction(VT) == Legal;
109  }
110
111  void LegalizeDAG();
112
113private:
114  /// LegalizeOp - We know that the specified value has a legal type.
115  /// Recursively ensure that the operands have legal types, then return the
116  /// result.
117  SDValue LegalizeOp(SDValue O);
118
119  SDValue OptimizeFloatStore(StoreSDNode *ST);
120
121  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
122  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
123  /// is necessary to spill the vector being inserted into to memory, perform
124  /// the insert there, and then read the result back.
125  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
126                                         SDValue Idx, DebugLoc dl);
127  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
128                                  SDValue Idx, DebugLoc dl);
129
130  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
131  /// performs the same shuffe in terms of order or result bytes, but on a type
132  /// whose vector element type is narrower than the original shuffle type.
133  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
134  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
135                                     SDValue N1, SDValue N2,
136                                     SmallVectorImpl<int> &Mask) const;
137
138  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
139                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
140
141  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
142                             DebugLoc dl);
143
144  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
145  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
146                                                 SDNode *Node, bool isSigned);
147  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
148                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
149                          RTLIB::Libcall Call_PPCF128);
150  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
151                           RTLIB::Libcall Call_I8,
152                           RTLIB::Libcall Call_I16,
153                           RTLIB::Libcall Call_I32,
154                           RTLIB::Libcall Call_I64,
155                           RTLIB::Libcall Call_I128);
156  SDValue ExpandDivRemLibCall(SDNode *Node, bool isSigned, bool isDIV);
157
158  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
159  SDValue ExpandBUILD_VECTOR(SDNode *Node);
160  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
161  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
162                                SmallVectorImpl<SDValue> &Results);
163  SDValue ExpandFCOPYSIGN(SDNode *Node);
164  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
165                               DebugLoc dl);
166  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
169                                DebugLoc dl);
170
171  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
172  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
173
174  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
175  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
176  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
177
178  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
179
180  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
182};
183}
184
185/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
186/// performs the same shuffe in terms of order or result bytes, but on a type
187/// whose vector element type is narrower than the original shuffle type.
188/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
189SDValue
190SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
191                                                 SDValue N1, SDValue N2,
192                                             SmallVectorImpl<int> &Mask) const {
193  unsigned NumMaskElts = VT.getVectorNumElements();
194  unsigned NumDestElts = NVT.getVectorNumElements();
195  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
196
197  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
198
199  if (NumEltsGrowth == 1)
200    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
201
202  SmallVector<int, 8> NewMask;
203  for (unsigned i = 0; i != NumMaskElts; ++i) {
204    int Idx = Mask[i];
205    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
206      if (Idx < 0)
207        NewMask.push_back(-1);
208      else
209        NewMask.push_back(Idx * NumEltsGrowth + j);
210    }
211  }
212  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
213  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
214  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
215}
216
217SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
218                                           CodeGenOpt::Level ol)
219  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
220    DAG(dag), OptLevel(ol),
221    ValueTypeActions(TLI.getValueTypeActions()) {
222  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
223         "Too many value types for ValueTypeActions to hold!");
224}
225
226void SelectionDAGLegalize::LegalizeDAG() {
227  LastCALLSEQ_END = DAG.getEntryNode();
228
229  // The legalize process is inherently a bottom-up recursive process (users
230  // legalize their uses before themselves).  Given infinite stack space, we
231  // could just start legalizing on the root and traverse the whole graph.  In
232  // practice however, this causes us to run out of stack space on large basic
233  // blocks.  To avoid this problem, compute an ordering of the nodes where each
234  // node is only legalized after all of its operands are legalized.
235  DAG.AssignTopologicalOrder();
236  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
237       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
238    LegalizeOp(SDValue(I, 0));
239
240  // Finally, it's possible the root changed.  Get the new root.
241  SDValue OldRoot = DAG.getRoot();
242  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
243  DAG.setRoot(LegalizedNodes[OldRoot]);
244
245  LegalizedNodes.clear();
246
247  // Remove dead nodes now.
248  DAG.RemoveDeadNodes();
249}
250
251
252/// FindCallEndFromCallStart - Given a chained node that is part of a call
253/// sequence, find the CALLSEQ_END node that terminates the call sequence.
254static SDNode *FindCallEndFromCallStart(SDNode *Node, int depth = 0) {
255  // Nested CALLSEQ_START/END constructs aren't yet legal,
256  // but we can DTRT and handle them correctly here.
257  if (Node->getOpcode() == ISD::CALLSEQ_START)
258    depth++;
259  else if (Node->getOpcode() == ISD::CALLSEQ_END) {
260    depth--;
261    if (depth == 0)
262      return Node;
263  }
264  if (Node->use_empty())
265    return 0;   // No CallSeqEnd
266
267  // The chain is usually at the end.
268  SDValue TheChain(Node, Node->getNumValues()-1);
269  if (TheChain.getValueType() != MVT::Other) {
270    // Sometimes it's at the beginning.
271    TheChain = SDValue(Node, 0);
272    if (TheChain.getValueType() != MVT::Other) {
273      // Otherwise, hunt for it.
274      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
275        if (Node->getValueType(i) == MVT::Other) {
276          TheChain = SDValue(Node, i);
277          break;
278        }
279
280      // Otherwise, we walked into a node without a chain.
281      if (TheChain.getValueType() != MVT::Other)
282        return 0;
283    }
284  }
285
286  for (SDNode::use_iterator UI = Node->use_begin(),
287       E = Node->use_end(); UI != E; ++UI) {
288
289    // Make sure to only follow users of our token chain.
290    SDNode *User = *UI;
291    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
292      if (User->getOperand(i) == TheChain)
293        if (SDNode *Result = FindCallEndFromCallStart(User, depth))
294          return Result;
295  }
296  return 0;
297}
298
299/// FindCallStartFromCallEnd - Given a chained node that is part of a call
300/// sequence, find the CALLSEQ_START node that initiates the call sequence.
301static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
302  int nested = 0;
303  assert(Node && "Didn't find callseq_start for a call??");
304  while (Node->getOpcode() != ISD::CALLSEQ_START || nested) {
305    Node = Node->getOperand(0).getNode();
306    assert(Node->getOperand(0).getValueType() == MVT::Other &&
307           "Node doesn't have a token chain argument!");
308    switch (Node->getOpcode()) {
309    default:
310      break;
311    case ISD::CALLSEQ_START:
312      if (!nested)
313        return Node;
314      nested--;
315      break;
316    case ISD::CALLSEQ_END:
317      nested++;
318      break;
319    }
320  }
321  return 0;
322}
323
324/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
325/// see if any uses can reach Dest.  If no dest operands can get to dest,
326/// legalize them, legalize ourself, and return false, otherwise, return true.
327///
328/// Keep track of the nodes we fine that actually do lead to Dest in
329/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
330///
331bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
332                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
333  if (N == Dest) return true;  // N certainly leads to Dest :)
334
335  // If we've already processed this node and it does lead to Dest, there is no
336  // need to reprocess it.
337  if (NodesLeadingTo.count(N)) return true;
338
339  // If the first result of this node has been already legalized, then it cannot
340  // reach N.
341  if (LegalizedNodes.count(SDValue(N, 0))) return false;
342
343  // Okay, this node has not already been legalized.  Check and legalize all
344  // operands.  If none lead to Dest, then we can legalize this node.
345  bool OperandsLeadToDest = false;
346  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
347    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
348      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
349                                   NodesLeadingTo);
350
351  if (OperandsLeadToDest) {
352    NodesLeadingTo.insert(N);
353    return true;
354  }
355
356  // Okay, this node looks safe, legalize it and return false.
357  LegalizeOp(SDValue(N, 0));
358  return false;
359}
360
361/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
362/// a load from the constant pool.
363static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
364                                SelectionDAG &DAG, const TargetLowering &TLI) {
365  bool Extend = false;
366  DebugLoc dl = CFP->getDebugLoc();
367
368  // If a FP immediate is precise when represented as a float and if the
369  // target can do an extending load from float to double, we put it into
370  // the constant pool as a float, even if it's is statically typed as a
371  // double.  This shrinks FP constants and canonicalizes them for targets where
372  // an FP extending load is the same cost as a normal load (such as on the x87
373  // fp stack or PPC FP unit).
374  EVT VT = CFP->getValueType(0);
375  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
376  if (!UseCP) {
377    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
378    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
379                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
380  }
381
382  EVT OrigVT = VT;
383  EVT SVT = VT;
384  while (SVT != MVT::f32) {
385    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
386    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
387        // Only do this if the target has a native EXTLOAD instruction from
388        // smaller type.
389        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
390        TLI.ShouldShrinkFPConstant(OrigVT)) {
391      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
392      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
393      VT = SVT;
394      Extend = true;
395    }
396  }
397
398  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
399  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
400  if (Extend)
401    return DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
402                          DAG.getEntryNode(),
403                          CPIdx, MachinePointerInfo::getConstantPool(),
404                          VT, false, false, Alignment);
405  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
406                     MachinePointerInfo::getConstantPool(), false, false,
407                     Alignment);
408}
409
410/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
411static
412SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
413                             const TargetLowering &TLI) {
414  SDValue Chain = ST->getChain();
415  SDValue Ptr = ST->getBasePtr();
416  SDValue Val = ST->getValue();
417  EVT VT = Val.getValueType();
418  int Alignment = ST->getAlignment();
419  DebugLoc dl = ST->getDebugLoc();
420  if (ST->getMemoryVT().isFloatingPoint() ||
421      ST->getMemoryVT().isVector()) {
422    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
423    if (TLI.isTypeLegal(intVT)) {
424      // Expand to a bitconvert of the value to the integer type of the
425      // same size, then a (misaligned) int store.
426      // FIXME: Does not handle truncating floating point stores!
427      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
428      return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
429                          ST->isVolatile(), ST->isNonTemporal(), Alignment);
430    } else {
431      // Do a (aligned) store to a stack slot, then copy from the stack slot
432      // to the final destination using (unaligned) integer loads and stores.
433      EVT StoredVT = ST->getMemoryVT();
434      EVT RegVT =
435        TLI.getRegisterType(*DAG.getContext(),
436                            EVT::getIntegerVT(*DAG.getContext(),
437                                              StoredVT.getSizeInBits()));
438      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
439      unsigned RegBytes = RegVT.getSizeInBits() / 8;
440      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
441
442      // Make sure the stack slot is also aligned for the register type.
443      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
444
445      // Perform the original store, only redirected to the stack slot.
446      SDValue Store = DAG.getTruncStore(Chain, dl,
447                                        Val, StackPtr, MachinePointerInfo(),
448                                        StoredVT, false, false, 0);
449      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
450      SmallVector<SDValue, 8> Stores;
451      unsigned Offset = 0;
452
453      // Do all but one copies using the full register width.
454      for (unsigned i = 1; i < NumRegs; i++) {
455        // Load one integer register's worth from the stack slot.
456        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
457                                   MachinePointerInfo(),
458                                   false, false, 0);
459        // Store it to the final location.  Remember the store.
460        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
461                                    ST->getPointerInfo().getWithOffset(Offset),
462                                      ST->isVolatile(), ST->isNonTemporal(),
463                                      MinAlign(ST->getAlignment(), Offset)));
464        // Increment the pointers.
465        Offset += RegBytes;
466        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
467                               Increment);
468        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
469      }
470
471      // The last store may be partial.  Do a truncating store.  On big-endian
472      // machines this requires an extending load from the stack slot to ensure
473      // that the bits are in the right place.
474      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
475                                    8 * (StoredBytes - Offset));
476
477      // Load from the stack slot.
478      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
479                                    MachinePointerInfo(),
480                                    MemVT, false, false, 0);
481
482      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
483                                         ST->getPointerInfo()
484                                           .getWithOffset(Offset),
485                                         MemVT, ST->isVolatile(),
486                                         ST->isNonTemporal(),
487                                         MinAlign(ST->getAlignment(), Offset)));
488      // The order of the stores doesn't matter - say it with a TokenFactor.
489      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
490                         Stores.size());
491    }
492  }
493  assert(ST->getMemoryVT().isInteger() &&
494         !ST->getMemoryVT().isVector() &&
495         "Unaligned store of unknown type.");
496  // Get the half-size VT
497  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
498  int NumBits = NewStoredVT.getSizeInBits();
499  int IncrementSize = NumBits / 8;
500
501  // Divide the stored value in two parts.
502  SDValue ShiftAmount = DAG.getConstant(NumBits,
503                                      TLI.getShiftAmountTy(Val.getValueType()));
504  SDValue Lo = Val;
505  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
506
507  // Store the two parts
508  SDValue Store1, Store2;
509  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
510                             ST->getPointerInfo(), NewStoredVT,
511                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
512  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
513                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
514  Alignment = MinAlign(Alignment, IncrementSize);
515  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
516                             ST->getPointerInfo().getWithOffset(IncrementSize),
517                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
518                             Alignment);
519
520  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
521}
522
523/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
524static
525SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
526                            const TargetLowering &TLI) {
527  SDValue Chain = LD->getChain();
528  SDValue Ptr = LD->getBasePtr();
529  EVT VT = LD->getValueType(0);
530  EVT LoadedVT = LD->getMemoryVT();
531  DebugLoc dl = LD->getDebugLoc();
532  if (VT.isFloatingPoint() || VT.isVector()) {
533    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
534    if (TLI.isTypeLegal(intVT)) {
535      // Expand to a (misaligned) integer load of the same size,
536      // then bitconvert to floating point or vector.
537      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
538                                    LD->isVolatile(),
539                                    LD->isNonTemporal(), LD->getAlignment());
540      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
541      if (VT.isFloatingPoint() && LoadedVT != VT)
542        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
543
544      SDValue Ops[] = { Result, Chain };
545      return DAG.getMergeValues(Ops, 2, dl);
546    }
547
548    // Copy the value to a (aligned) stack slot using (unaligned) integer
549    // loads and stores, then do a (aligned) load from the stack slot.
550    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
551    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
552    unsigned RegBytes = RegVT.getSizeInBits() / 8;
553    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
554
555    // Make sure the stack slot is also aligned for the register type.
556    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
557
558    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
559    SmallVector<SDValue, 8> Stores;
560    SDValue StackPtr = StackBase;
561    unsigned Offset = 0;
562
563    // Do all but one copies using the full register width.
564    for (unsigned i = 1; i < NumRegs; i++) {
565      // Load one integer register's worth from the original location.
566      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
567                                 LD->getPointerInfo().getWithOffset(Offset),
568                                 LD->isVolatile(), LD->isNonTemporal(),
569                                 MinAlign(LD->getAlignment(), Offset));
570      // Follow the load with a store to the stack slot.  Remember the store.
571      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
572                                    MachinePointerInfo(), false, false, 0));
573      // Increment the pointers.
574      Offset += RegBytes;
575      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
576      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
577                             Increment);
578    }
579
580    // The last copy may be partial.  Do an extending load.
581    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
582                                  8 * (LoadedBytes - Offset));
583    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
584                                  LD->getPointerInfo().getWithOffset(Offset),
585                                  MemVT, LD->isVolatile(),
586                                  LD->isNonTemporal(),
587                                  MinAlign(LD->getAlignment(), Offset));
588    // Follow the load with a store to the stack slot.  Remember the store.
589    // On big-endian machines this requires a truncating store to ensure
590    // that the bits end up in the right place.
591    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
592                                       MachinePointerInfo(), MemVT,
593                                       false, false, 0));
594
595    // The order of the stores doesn't matter - say it with a TokenFactor.
596    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
597                             Stores.size());
598
599    // Finally, perform the original load only redirected to the stack slot.
600    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
601                          MachinePointerInfo(), LoadedVT, false, false, 0);
602
603    // Callers expect a MERGE_VALUES node.
604    SDValue Ops[] = { Load, TF };
605    return DAG.getMergeValues(Ops, 2, dl);
606  }
607  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
608         "Unaligned load of unsupported type.");
609
610  // Compute the new VT that is half the size of the old one.  This is an
611  // integer MVT.
612  unsigned NumBits = LoadedVT.getSizeInBits();
613  EVT NewLoadedVT;
614  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
615  NumBits >>= 1;
616
617  unsigned Alignment = LD->getAlignment();
618  unsigned IncrementSize = NumBits / 8;
619  ISD::LoadExtType HiExtType = LD->getExtensionType();
620
621  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
622  if (HiExtType == ISD::NON_EXTLOAD)
623    HiExtType = ISD::ZEXTLOAD;
624
625  // Load the value in two parts
626  SDValue Lo, Hi;
627  if (TLI.isLittleEndian()) {
628    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
629                        NewLoadedVT, LD->isVolatile(),
630                        LD->isNonTemporal(), Alignment);
631    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
632                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
633    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
634                        LD->getPointerInfo().getWithOffset(IncrementSize),
635                        NewLoadedVT, LD->isVolatile(),
636                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
637  } else {
638    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
639                        NewLoadedVT, LD->isVolatile(),
640                        LD->isNonTemporal(), Alignment);
641    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
642                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
643    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
644                        LD->getPointerInfo().getWithOffset(IncrementSize),
645                        NewLoadedVT, LD->isVolatile(),
646                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
647  }
648
649  // aggregate the two parts
650  SDValue ShiftAmount = DAG.getConstant(NumBits,
651                                       TLI.getShiftAmountTy(Hi.getValueType()));
652  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
653  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
654
655  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
656                             Hi.getValue(1));
657
658  SDValue Ops[] = { Result, TF };
659  return DAG.getMergeValues(Ops, 2, dl);
660}
661
662/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
663/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
664/// is necessary to spill the vector being inserted into to memory, perform
665/// the insert there, and then read the result back.
666SDValue SelectionDAGLegalize::
667PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
668                               DebugLoc dl) {
669  SDValue Tmp1 = Vec;
670  SDValue Tmp2 = Val;
671  SDValue Tmp3 = Idx;
672
673  // If the target doesn't support this, we have to spill the input vector
674  // to a temporary stack slot, update the element, then reload it.  This is
675  // badness.  We could also load the value into a vector register (either
676  // with a "move to register" or "extload into register" instruction, then
677  // permute it into place, if the idx is a constant and if the idx is
678  // supported by the target.
679  EVT VT    = Tmp1.getValueType();
680  EVT EltVT = VT.getVectorElementType();
681  EVT IdxVT = Tmp3.getValueType();
682  EVT PtrVT = TLI.getPointerTy();
683  SDValue StackPtr = DAG.CreateStackTemporary(VT);
684
685  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
686
687  // Store the vector.
688  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
689                            MachinePointerInfo::getFixedStack(SPFI),
690                            false, false, 0);
691
692  // Truncate or zero extend offset to target pointer type.
693  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
694  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
695  // Add the offset to the index.
696  unsigned EltSize = EltVT.getSizeInBits()/8;
697  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
698  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
699  // Store the scalar value.
700  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
701                         false, false, 0);
702  // Load the updated vector.
703  return DAG.getLoad(VT, dl, Ch, StackPtr,
704                     MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
705}
706
707
708SDValue SelectionDAGLegalize::
709ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
710  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
711    // SCALAR_TO_VECTOR requires that the type of the value being inserted
712    // match the element type of the vector being created, except for
713    // integers in which case the inserted value can be over width.
714    EVT EltVT = Vec.getValueType().getVectorElementType();
715    if (Val.getValueType() == EltVT ||
716        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
717      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
718                                  Vec.getValueType(), Val);
719
720      unsigned NumElts = Vec.getValueType().getVectorNumElements();
721      // We generate a shuffle of InVec and ScVec, so the shuffle mask
722      // should be 0,1,2,3,4,5... with the appropriate element replaced with
723      // elt 0 of the RHS.
724      SmallVector<int, 8> ShufOps;
725      for (unsigned i = 0; i != NumElts; ++i)
726        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
727
728      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
729                                  &ShufOps[0]);
730    }
731  }
732  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
733}
734
735SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
736  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
737  // FIXME: We shouldn't do this for TargetConstantFP's.
738  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
739  // to phase ordering between legalized code and the dag combiner.  This
740  // probably means that we need to integrate dag combiner and legalizer
741  // together.
742  // We generally can't do this one for long doubles.
743  SDValue Tmp1 = ST->getChain();
744  SDValue Tmp2 = ST->getBasePtr();
745  SDValue Tmp3;
746  unsigned Alignment = ST->getAlignment();
747  bool isVolatile = ST->isVolatile();
748  bool isNonTemporal = ST->isNonTemporal();
749  DebugLoc dl = ST->getDebugLoc();
750  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
751    if (CFP->getValueType(0) == MVT::f32 &&
752        getTypeAction(MVT::i32) == Legal) {
753      Tmp3 = DAG.getConstant(CFP->getValueAPF().
754                                      bitcastToAPInt().zextOrTrunc(32),
755                              MVT::i32);
756      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
757                          isVolatile, isNonTemporal, Alignment);
758    }
759
760    if (CFP->getValueType(0) == MVT::f64) {
761      // If this target supports 64-bit registers, do a single 64-bit store.
762      if (getTypeAction(MVT::i64) == Legal) {
763        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
764                                  zextOrTrunc(64), MVT::i64);
765        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
766                            isVolatile, isNonTemporal, Alignment);
767      }
768
769      if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
770        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
771        // stores.  If the target supports neither 32- nor 64-bits, this
772        // xform is certainly not worth it.
773        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
774        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
775        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
776        if (TLI.isBigEndian()) std::swap(Lo, Hi);
777
778        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
779                          isNonTemporal, Alignment);
780        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
781                            DAG.getIntPtrConstant(4));
782        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
783                          ST->getPointerInfo().getWithOffset(4),
784                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
785
786        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
787      }
788    }
789  }
790  return SDValue(0, 0);
791}
792
793/// LegalizeOp - We know that the specified value has a legal type, and
794/// that its operands are legal.  Now ensure that the operation itself
795/// is legal, recursively ensuring that the operands' operations remain
796/// legal.
797SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
798  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
799    return Op;
800
801  SDNode *Node = Op.getNode();
802  DebugLoc dl = Node->getDebugLoc();
803
804  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
805    assert(getTypeAction(Node->getValueType(i)) == Legal &&
806           "Unexpected illegal type!");
807
808  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
809    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
810            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
811           "Unexpected illegal type!");
812
813  // Note that LegalizeOp may be reentered even from single-use nodes, which
814  // means that we always must cache transformed nodes.
815  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
816  if (I != LegalizedNodes.end()) return I->second;
817
818  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
819  SDValue Result = Op;
820  bool isCustom = false;
821
822  // Figure out the correct action; the way to query this varies by opcode
823  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
824  bool SimpleFinishLegalizing = true;
825  switch (Node->getOpcode()) {
826  case ISD::INTRINSIC_W_CHAIN:
827  case ISD::INTRINSIC_WO_CHAIN:
828  case ISD::INTRINSIC_VOID:
829  case ISD::VAARG:
830  case ISD::STACKSAVE:
831    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
832    break;
833  case ISD::SINT_TO_FP:
834  case ISD::UINT_TO_FP:
835  case ISD::EXTRACT_VECTOR_ELT:
836    Action = TLI.getOperationAction(Node->getOpcode(),
837                                    Node->getOperand(0).getValueType());
838    break;
839  case ISD::FP_ROUND_INREG:
840  case ISD::SIGN_EXTEND_INREG: {
841    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
842    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
843    break;
844  }
845  case ISD::SELECT_CC:
846  case ISD::SETCC:
847  case ISD::BR_CC: {
848    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
849                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
850    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
851    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
852    ISD::CondCode CCCode =
853        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
854    Action = TLI.getCondCodeAction(CCCode, OpVT);
855    if (Action == TargetLowering::Legal) {
856      if (Node->getOpcode() == ISD::SELECT_CC)
857        Action = TLI.getOperationAction(Node->getOpcode(),
858                                        Node->getValueType(0));
859      else
860        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
861    }
862    break;
863  }
864  case ISD::LOAD:
865  case ISD::STORE:
866    // FIXME: Model these properly.  LOAD and STORE are complicated, and
867    // STORE expects the unlegalized operand in some cases.
868    SimpleFinishLegalizing = false;
869    break;
870  case ISD::CALLSEQ_START:
871  case ISD::CALLSEQ_END:
872    // FIXME: This shouldn't be necessary.  These nodes have special properties
873    // dealing with the recursive nature of legalization.  Removing this
874    // special case should be done as part of making LegalizeDAG non-recursive.
875    SimpleFinishLegalizing = false;
876    break;
877  case ISD::EXTRACT_ELEMENT:
878  case ISD::FLT_ROUNDS_:
879  case ISD::SADDO:
880  case ISD::SSUBO:
881  case ISD::UADDO:
882  case ISD::USUBO:
883  case ISD::SMULO:
884  case ISD::UMULO:
885  case ISD::FPOWI:
886  case ISD::MERGE_VALUES:
887  case ISD::EH_RETURN:
888  case ISD::FRAME_TO_ARGS_OFFSET:
889  case ISD::EH_SJLJ_SETJMP:
890  case ISD::EH_SJLJ_LONGJMP:
891  case ISD::EH_SJLJ_DISPATCHSETUP:
892    // These operations lie about being legal: when they claim to be legal,
893    // they should actually be expanded.
894    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
895    if (Action == TargetLowering::Legal)
896      Action = TargetLowering::Expand;
897    break;
898  case ISD::TRAMPOLINE:
899  case ISD::FRAMEADDR:
900  case ISD::RETURNADDR:
901    // These operations lie about being legal: when they claim to be legal,
902    // they should actually be custom-lowered.
903    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
904    if (Action == TargetLowering::Legal)
905      Action = TargetLowering::Custom;
906    break;
907  case ISD::BUILD_VECTOR:
908    // A weird case: legalization for BUILD_VECTOR never legalizes the
909    // operands!
910    // FIXME: This really sucks... changing it isn't semantically incorrect,
911    // but it massively pessimizes the code for floating-point BUILD_VECTORs
912    // because ConstantFP operands get legalized into constant pool loads
913    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
914    // though, because BUILD_VECTORS usually get lowered into other nodes
915    // which get legalized properly.
916    SimpleFinishLegalizing = false;
917    break;
918  default:
919    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
920      Action = TargetLowering::Legal;
921    } else {
922      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
923    }
924    break;
925  }
926
927  if (SimpleFinishLegalizing) {
928    SmallVector<SDValue, 8> Ops, ResultVals;
929    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
930      Ops.push_back(LegalizeOp(Node->getOperand(i)));
931    switch (Node->getOpcode()) {
932    default: break;
933    case ISD::BR:
934    case ISD::BRIND:
935    case ISD::BR_JT:
936    case ISD::BR_CC:
937    case ISD::BRCOND:
938      // Branches tweak the chain to include LastCALLSEQ_END
939      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
940                            LastCALLSEQ_END);
941      Ops[0] = LegalizeOp(Ops[0]);
942      LastCALLSEQ_END = DAG.getEntryNode();
943      break;
944    case ISD::SHL:
945    case ISD::SRL:
946    case ISD::SRA:
947    case ISD::ROTL:
948    case ISD::ROTR:
949      // Legalizing shifts/rotates requires adjusting the shift amount
950      // to the appropriate width.
951      if (!Ops[1].getValueType().isVector())
952        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(),
953                                                      Ops[1]));
954      break;
955    case ISD::SRL_PARTS:
956    case ISD::SRA_PARTS:
957    case ISD::SHL_PARTS:
958      // Legalizing shifts/rotates requires adjusting the shift amount
959      // to the appropriate width.
960      if (!Ops[2].getValueType().isVector())
961        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(),
962                                                      Ops[2]));
963      break;
964    }
965
966    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
967                                            Ops.size()), 0);
968    switch (Action) {
969    case TargetLowering::Legal:
970      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
971        ResultVals.push_back(Result.getValue(i));
972      break;
973    case TargetLowering::Custom:
974      // FIXME: The handling for custom lowering with multiple results is
975      // a complete mess.
976      Tmp1 = TLI.LowerOperation(Result, DAG);
977      if (Tmp1.getNode()) {
978        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
979          if (e == 1)
980            ResultVals.push_back(Tmp1);
981          else
982            ResultVals.push_back(Tmp1.getValue(i));
983        }
984        break;
985      }
986
987      // FALL THROUGH
988    case TargetLowering::Expand:
989      ExpandNode(Result.getNode(), ResultVals);
990      break;
991    case TargetLowering::Promote:
992      PromoteNode(Result.getNode(), ResultVals);
993      break;
994    }
995    if (!ResultVals.empty()) {
996      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
997        if (ResultVals[i] != SDValue(Node, i))
998          ResultVals[i] = LegalizeOp(ResultVals[i]);
999        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
1000      }
1001      return ResultVals[Op.getResNo()];
1002    }
1003  }
1004
1005  switch (Node->getOpcode()) {
1006  default:
1007#ifndef NDEBUG
1008    dbgs() << "NODE: ";
1009    Node->dump( &DAG);
1010    dbgs() << "\n";
1011#endif
1012    assert(0 && "Do not know how to legalize this operator!");
1013
1014  case ISD::BUILD_VECTOR:
1015    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
1016    default: assert(0 && "This action is not supported yet!");
1017    case TargetLowering::Custom:
1018      Tmp3 = TLI.LowerOperation(Result, DAG);
1019      if (Tmp3.getNode()) {
1020        Result = Tmp3;
1021        break;
1022      }
1023      // FALLTHROUGH
1024    case TargetLowering::Expand:
1025      Result = ExpandBUILD_VECTOR(Result.getNode());
1026      break;
1027    }
1028    break;
1029  case ISD::CALLSEQ_START: {
1030    static int depth = 0;
1031    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1032
1033    // Recursively Legalize all of the inputs of the call end that do not lead
1034    // to this call start.  This ensures that any libcalls that need be inserted
1035    // are inserted *before* the CALLSEQ_START.
1036    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1037    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1038      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1039                                   NodesLeadingTo);
1040    }
1041
1042    // Now that we have legalized all of the inputs (which may have inserted
1043    // libcalls), create the new CALLSEQ_START node.
1044    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1045
1046    // Merge in the last call to ensure that this call starts after the last
1047    // call ended.
1048    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken && depth == 0) {
1049      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1050                         Tmp1, LastCALLSEQ_END);
1051      Tmp1 = LegalizeOp(Tmp1);
1052    }
1053
1054    // Do not try to legalize the target-specific arguments (#1+).
1055    if (Tmp1 != Node->getOperand(0)) {
1056      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1057      Ops[0] = Tmp1;
1058      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1059                                              Ops.size()), Result.getResNo());
1060    }
1061
1062    // Remember that the CALLSEQ_START is legalized.
1063    AddLegalizedOperand(Op.getValue(0), Result);
1064    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1065      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1066
1067    // Now that the callseq_start and all of the non-call nodes above this call
1068    // sequence have been legalized, legalize the call itself.  During this
1069    // process, no libcalls can/will be inserted, guaranteeing that no calls
1070    // can overlap.
1071
1072    SDValue Saved_LastCALLSEQ_END = LastCALLSEQ_END ;
1073    // Note that we are selecting this call!
1074    LastCALLSEQ_END = SDValue(CallEnd, 0);
1075
1076    depth++;
1077    // Legalize the call, starting from the CALLSEQ_END.
1078    LegalizeOp(LastCALLSEQ_END);
1079    depth--;
1080    assert(depth >= 0 && "Un-matched CALLSEQ_START?");
1081    if (depth > 0)
1082      LastCALLSEQ_END = Saved_LastCALLSEQ_END;
1083    return Result;
1084  }
1085  case ISD::CALLSEQ_END:
1086    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1087    // will cause this node to be legalized as well as handling libcalls right.
1088    if (LastCALLSEQ_END.getNode() != Node) {
1089      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1090      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1091      assert(I != LegalizedNodes.end() &&
1092             "Legalizing the call start should have legalized this node!");
1093      return I->second;
1094    }
1095
1096    // Otherwise, the call start has been legalized and everything is going
1097    // according to plan.  Just legalize ourselves normally here.
1098    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1099    // Do not try to legalize the target-specific arguments (#1+), except for
1100    // an optional flag input.
1101    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Glue){
1102      if (Tmp1 != Node->getOperand(0)) {
1103        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1104        Ops[0] = Tmp1;
1105        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1106                                                &Ops[0], Ops.size()),
1107                         Result.getResNo());
1108      }
1109    } else {
1110      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1111      if (Tmp1 != Node->getOperand(0) ||
1112          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1113        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1114        Ops[0] = Tmp1;
1115        Ops.back() = Tmp2;
1116        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1117                                                &Ops[0], Ops.size()),
1118                         Result.getResNo());
1119      }
1120    }
1121    // This finishes up call legalization.
1122    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1123    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1124    if (Node->getNumValues() == 2)
1125      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1126    return Result.getValue(Op.getResNo());
1127  case ISD::LOAD: {
1128    LoadSDNode *LD = cast<LoadSDNode>(Node);
1129    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1130    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1131
1132    ISD::LoadExtType ExtType = LD->getExtensionType();
1133    if (ExtType == ISD::NON_EXTLOAD) {
1134      EVT VT = Node->getValueType(0);
1135      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1136                                              Tmp1, Tmp2, LD->getOffset()),
1137                       Result.getResNo());
1138      Tmp3 = Result.getValue(0);
1139      Tmp4 = Result.getValue(1);
1140
1141      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1142      default: assert(0 && "This action is not supported yet!");
1143      case TargetLowering::Legal:
1144        // If this is an unaligned load and the target doesn't support it,
1145        // expand it.
1146        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1147          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1148          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1149          if (LD->getAlignment() < ABIAlignment){
1150            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1151                                         DAG, TLI);
1152            Tmp3 = Result.getOperand(0);
1153            Tmp4 = Result.getOperand(1);
1154            Tmp3 = LegalizeOp(Tmp3);
1155            Tmp4 = LegalizeOp(Tmp4);
1156          }
1157        }
1158        break;
1159      case TargetLowering::Custom:
1160        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1161        if (Tmp1.getNode()) {
1162          Tmp3 = LegalizeOp(Tmp1);
1163          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1164        }
1165        break;
1166      case TargetLowering::Promote: {
1167        // Only promote a load of vector type to another.
1168        assert(VT.isVector() && "Cannot promote this load!");
1169        // Change base type to a different vector type.
1170        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1171
1172        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
1173                           LD->isVolatile(), LD->isNonTemporal(),
1174                           LD->getAlignment());
1175        Tmp3 = LegalizeOp(DAG.getNode(ISD::BITCAST, dl, VT, Tmp1));
1176        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1177        break;
1178      }
1179      }
1180      // Since loads produce two values, make sure to remember that we
1181      // legalized both of them.
1182      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1183      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1184      return Op.getResNo() ? Tmp4 : Tmp3;
1185    }
1186
1187    EVT SrcVT = LD->getMemoryVT();
1188    unsigned SrcWidth = SrcVT.getSizeInBits();
1189    unsigned Alignment = LD->getAlignment();
1190    bool isVolatile = LD->isVolatile();
1191    bool isNonTemporal = LD->isNonTemporal();
1192
1193    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1194        // Some targets pretend to have an i1 loading operation, and actually
1195        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1196        // bits are guaranteed to be zero; it helps the optimizers understand
1197        // that these bits are zero.  It is also useful for EXTLOAD, since it
1198        // tells the optimizers that those bits are undefined.  It would be
1199        // nice to have an effective generic way of getting these benefits...
1200        // Until such a way is found, don't insist on promoting i1 here.
1201        (SrcVT != MVT::i1 ||
1202         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1203      // Promote to a byte-sized load if not loading an integral number of
1204      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1205      unsigned NewWidth = SrcVT.getStoreSizeInBits();
1206      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1207      SDValue Ch;
1208
1209      // The extra bits are guaranteed to be zero, since we stored them that
1210      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1211
1212      ISD::LoadExtType NewExtType =
1213        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1214
1215      Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1216                              Tmp1, Tmp2, LD->getPointerInfo(),
1217                              NVT, isVolatile, isNonTemporal, Alignment);
1218
1219      Ch = Result.getValue(1); // The chain.
1220
1221      if (ExtType == ISD::SEXTLOAD)
1222        // Having the top bits zero doesn't help when sign extending.
1223        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1224                             Result.getValueType(),
1225                             Result, DAG.getValueType(SrcVT));
1226      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1227        // All the top bits are guaranteed to be zero - inform the optimizers.
1228        Result = DAG.getNode(ISD::AssertZext, dl,
1229                             Result.getValueType(), Result,
1230                             DAG.getValueType(SrcVT));
1231
1232      Tmp1 = LegalizeOp(Result);
1233      Tmp2 = LegalizeOp(Ch);
1234    } else if (SrcWidth & (SrcWidth - 1)) {
1235      // If not loading a power-of-2 number of bits, expand as two loads.
1236      assert(!SrcVT.isVector() && "Unsupported extload!");
1237      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1238      assert(RoundWidth < SrcWidth);
1239      unsigned ExtraWidth = SrcWidth - RoundWidth;
1240      assert(ExtraWidth < RoundWidth);
1241      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1242             "Load size not an integral number of bytes!");
1243      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1244      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1245      SDValue Lo, Hi, Ch;
1246      unsigned IncrementSize;
1247
1248      if (TLI.isLittleEndian()) {
1249        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1250        // Load the bottom RoundWidth bits.
1251        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1252                            Tmp1, Tmp2,
1253                            LD->getPointerInfo(), RoundVT, isVolatile,
1254                            isNonTemporal, Alignment);
1255
1256        // Load the remaining ExtraWidth bits.
1257        IncrementSize = RoundWidth / 8;
1258        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1259                           DAG.getIntPtrConstant(IncrementSize));
1260        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1261                            LD->getPointerInfo().getWithOffset(IncrementSize),
1262                            ExtraVT, isVolatile, isNonTemporal,
1263                            MinAlign(Alignment, IncrementSize));
1264
1265        // Build a factor node to remember that this load is independent of
1266        // the other one.
1267        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1268                         Hi.getValue(1));
1269
1270        // Move the top bits to the right place.
1271        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1272                         DAG.getConstant(RoundWidth,
1273                                      TLI.getShiftAmountTy(Hi.getValueType())));
1274
1275        // Join the hi and lo parts.
1276        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1277      } else {
1278        // Big endian - avoid unaligned loads.
1279        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1280        // Load the top RoundWidth bits.
1281        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1282                            LD->getPointerInfo(), RoundVT, isVolatile,
1283                            isNonTemporal, Alignment);
1284
1285        // Load the remaining ExtraWidth bits.
1286        IncrementSize = RoundWidth / 8;
1287        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1288                           DAG.getIntPtrConstant(IncrementSize));
1289        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1290                            dl, Node->getValueType(0), Tmp1, Tmp2,
1291                            LD->getPointerInfo().getWithOffset(IncrementSize),
1292                            ExtraVT, isVolatile, isNonTemporal,
1293                            MinAlign(Alignment, IncrementSize));
1294
1295        // Build a factor node to remember that this load is independent of
1296        // the other one.
1297        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1298                         Hi.getValue(1));
1299
1300        // Move the top bits to the right place.
1301        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1302                         DAG.getConstant(ExtraWidth,
1303                                      TLI.getShiftAmountTy(Hi.getValueType())));
1304
1305        // Join the hi and lo parts.
1306        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1307      }
1308
1309      Tmp1 = LegalizeOp(Result);
1310      Tmp2 = LegalizeOp(Ch);
1311    } else {
1312      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1313      default: assert(0 && "This action is not supported yet!");
1314      case TargetLowering::Custom:
1315        isCustom = true;
1316        // FALLTHROUGH
1317      case TargetLowering::Legal:
1318        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1319                                                Tmp1, Tmp2, LD->getOffset()),
1320                         Result.getResNo());
1321        Tmp1 = Result.getValue(0);
1322        Tmp2 = Result.getValue(1);
1323
1324        if (isCustom) {
1325          Tmp3 = TLI.LowerOperation(Result, DAG);
1326          if (Tmp3.getNode()) {
1327            Tmp1 = LegalizeOp(Tmp3);
1328            Tmp2 = LegalizeOp(Tmp3.getValue(1));
1329          }
1330        } else {
1331          // If this is an unaligned load and the target doesn't support it,
1332          // expand it.
1333          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1334            const Type *Ty =
1335              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1336            unsigned ABIAlignment =
1337              TLI.getTargetData()->getABITypeAlignment(Ty);
1338            if (LD->getAlignment() < ABIAlignment){
1339              Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1340                                           DAG, TLI);
1341              Tmp1 = Result.getOperand(0);
1342              Tmp2 = Result.getOperand(1);
1343              Tmp1 = LegalizeOp(Tmp1);
1344              Tmp2 = LegalizeOp(Tmp2);
1345            }
1346          }
1347        }
1348        break;
1349      case TargetLowering::Expand:
1350        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && isTypeLegal(SrcVT)) {
1351          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1352                                     LD->getPointerInfo(),
1353                                     LD->isVolatile(), LD->isNonTemporal(),
1354                                     LD->getAlignment());
1355          unsigned ExtendOp;
1356          switch (ExtType) {
1357          case ISD::EXTLOAD:
1358            ExtendOp = (SrcVT.isFloatingPoint() ?
1359                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1360            break;
1361          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1362          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1363          default: llvm_unreachable("Unexpected extend load type!");
1364          }
1365          Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1366          Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1367          Tmp2 = LegalizeOp(Load.getValue(1));
1368          break;
1369        }
1370        // FIXME: This does not work for vectors on most targets.  Sign- and
1371        // zero-extend operations are currently folded into extending loads,
1372        // whether they are legal or not, and then we end up here without any
1373        // support for legalizing them.
1374        assert(ExtType != ISD::EXTLOAD &&
1375               "EXTLOAD should always be supported!");
1376        // Turn the unsupported load into an EXTLOAD followed by an explicit
1377        // zero/sign extend inreg.
1378        Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1379                                Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1380                                LD->isVolatile(), LD->isNonTemporal(),
1381                                LD->getAlignment());
1382        SDValue ValRes;
1383        if (ExtType == ISD::SEXTLOAD)
1384          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1385                               Result.getValueType(),
1386                               Result, DAG.getValueType(SrcVT));
1387        else
1388          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1389        Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1390        Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1391        break;
1392      }
1393    }
1394
1395    // Since loads produce two values, make sure to remember that we legalized
1396    // both of them.
1397    AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1398    AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1399    return Op.getResNo() ? Tmp2 : Tmp1;
1400  }
1401  case ISD::STORE: {
1402    StoreSDNode *ST = cast<StoreSDNode>(Node);
1403    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1404    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1405    unsigned Alignment = ST->getAlignment();
1406    bool isVolatile = ST->isVolatile();
1407    bool isNonTemporal = ST->isNonTemporal();
1408
1409    if (!ST->isTruncatingStore()) {
1410      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1411        Result = SDValue(OptStore, 0);
1412        break;
1413      }
1414
1415      {
1416        Tmp3 = LegalizeOp(ST->getValue());
1417        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1418                                                Tmp1, Tmp3, Tmp2,
1419                                                ST->getOffset()),
1420                         Result.getResNo());
1421
1422        EVT VT = Tmp3.getValueType();
1423        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1424        default: assert(0 && "This action is not supported yet!");
1425        case TargetLowering::Legal:
1426          // If this is an unaligned store and the target doesn't support it,
1427          // expand it.
1428          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1429            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1430            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1431            if (ST->getAlignment() < ABIAlignment)
1432              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1433                                            DAG, TLI);
1434          }
1435          break;
1436        case TargetLowering::Custom:
1437          Tmp1 = TLI.LowerOperation(Result, DAG);
1438          if (Tmp1.getNode()) Result = Tmp1;
1439          break;
1440        case TargetLowering::Promote:
1441          assert(VT.isVector() && "Unknown legal promote case!");
1442          Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1443                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1444          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1445                                ST->getPointerInfo(), isVolatile,
1446                                isNonTemporal, Alignment);
1447          break;
1448        }
1449        break;
1450      }
1451    } else {
1452      Tmp3 = LegalizeOp(ST->getValue());
1453
1454      EVT StVT = ST->getMemoryVT();
1455      unsigned StWidth = StVT.getSizeInBits();
1456
1457      if (StWidth != StVT.getStoreSizeInBits()) {
1458        // Promote to a byte-sized store with upper bits zero if not
1459        // storing an integral number of bytes.  For example, promote
1460        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1461        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1462                                    StVT.getStoreSizeInBits());
1463        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1464        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1465                                   NVT, isVolatile, isNonTemporal, Alignment);
1466      } else if (StWidth & (StWidth - 1)) {
1467        // If not storing a power-of-2 number of bits, expand as two stores.
1468        assert(!StVT.isVector() && "Unsupported truncstore!");
1469        unsigned RoundWidth = 1 << Log2_32(StWidth);
1470        assert(RoundWidth < StWidth);
1471        unsigned ExtraWidth = StWidth - RoundWidth;
1472        assert(ExtraWidth < RoundWidth);
1473        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1474               "Store size not an integral number of bytes!");
1475        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1476        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1477        SDValue Lo, Hi;
1478        unsigned IncrementSize;
1479
1480        if (TLI.isLittleEndian()) {
1481          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1482          // Store the bottom RoundWidth bits.
1483          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1484                                 RoundVT,
1485                                 isVolatile, isNonTemporal, Alignment);
1486
1487          // Store the remaining ExtraWidth bits.
1488          IncrementSize = RoundWidth / 8;
1489          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1490                             DAG.getIntPtrConstant(IncrementSize));
1491          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1492                           DAG.getConstant(RoundWidth,
1493                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1494          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1495                             ST->getPointerInfo().getWithOffset(IncrementSize),
1496                                 ExtraVT, isVolatile, isNonTemporal,
1497                                 MinAlign(Alignment, IncrementSize));
1498        } else {
1499          // Big endian - avoid unaligned stores.
1500          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1501          // Store the top RoundWidth bits.
1502          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1503                           DAG.getConstant(ExtraWidth,
1504                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1505          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1506                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1507
1508          // Store the remaining ExtraWidth bits.
1509          IncrementSize = RoundWidth / 8;
1510          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1511                             DAG.getIntPtrConstant(IncrementSize));
1512          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1513                              ST->getPointerInfo().getWithOffset(IncrementSize),
1514                                 ExtraVT, isVolatile, isNonTemporal,
1515                                 MinAlign(Alignment, IncrementSize));
1516        }
1517
1518        // The order of the stores doesn't matter.
1519        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1520      } else {
1521        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1522            Tmp2 != ST->getBasePtr())
1523          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1524                                                  Tmp1, Tmp3, Tmp2,
1525                                                  ST->getOffset()),
1526                           Result.getResNo());
1527
1528        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1529        default: assert(0 && "This action is not supported yet!");
1530        case TargetLowering::Legal:
1531          // If this is an unaligned store and the target doesn't support it,
1532          // expand it.
1533          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1534            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1535            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1536            if (ST->getAlignment() < ABIAlignment)
1537              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1538                                            DAG, TLI);
1539          }
1540          break;
1541        case TargetLowering::Custom:
1542          Result = TLI.LowerOperation(Result, DAG);
1543          break;
1544        case Expand:
1545          // TRUNCSTORE:i16 i32 -> STORE i16
1546          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1547          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1548          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1549                                isVolatile, isNonTemporal, Alignment);
1550          break;
1551        }
1552      }
1553    }
1554    break;
1555  }
1556  }
1557  assert(Result.getValueType() == Op.getValueType() &&
1558         "Bad legalization!");
1559
1560  // Make sure that the generated code is itself legal.
1561  if (Result != Op)
1562    Result = LegalizeOp(Result);
1563
1564  // Note that LegalizeOp may be reentered even from single-use nodes, which
1565  // means that we always must cache transformed nodes.
1566  AddLegalizedOperand(Op, Result);
1567  return Result;
1568}
1569
1570SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1571  SDValue Vec = Op.getOperand(0);
1572  SDValue Idx = Op.getOperand(1);
1573  DebugLoc dl = Op.getDebugLoc();
1574  // Store the value to a temporary stack slot, then LOAD the returned part.
1575  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1576  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1577                            MachinePointerInfo(), false, false, 0);
1578
1579  // Add the offset to the index.
1580  unsigned EltSize =
1581      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1582  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1583                    DAG.getConstant(EltSize, Idx.getValueType()));
1584
1585  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1586    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1587  else
1588    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1589
1590  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1591
1592  if (Op.getValueType().isVector())
1593    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1594                       false, false, 0);
1595  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1596                        MachinePointerInfo(),
1597                        Vec.getValueType().getVectorElementType(),
1598                        false, false, 0);
1599}
1600
1601SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1602  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1603
1604  SDValue Vec  = Op.getOperand(0);
1605  SDValue Part = Op.getOperand(1);
1606  SDValue Idx  = Op.getOperand(2);
1607  DebugLoc dl  = Op.getDebugLoc();
1608
1609  // Store the value to a temporary stack slot, then LOAD the returned part.
1610
1611  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1612  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1613  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1614
1615  // First store the whole vector.
1616  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1617                            false, false, 0);
1618
1619  // Then store the inserted part.
1620
1621  // Add the offset to the index.
1622  unsigned EltSize =
1623      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1624
1625  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1626                    DAG.getConstant(EltSize, Idx.getValueType()));
1627
1628  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1629    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1630  else
1631    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1632
1633  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1634                                    StackPtr);
1635
1636  // Store the subvector.
1637  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1638                    MachinePointerInfo(), false, false, 0);
1639
1640  // Finally, load the updated vector.
1641  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1642                     false, false, 0);
1643}
1644
1645SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1646  // We can't handle this case efficiently.  Allocate a sufficiently
1647  // aligned object on the stack, store each element into it, then load
1648  // the result as a vector.
1649  // Create the stack frame object.
1650  EVT VT = Node->getValueType(0);
1651  EVT EltVT = VT.getVectorElementType();
1652  DebugLoc dl = Node->getDebugLoc();
1653  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1654  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1655  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1656
1657  // Emit a store of each element to the stack slot.
1658  SmallVector<SDValue, 8> Stores;
1659  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1660  // Store (in the right endianness) the elements to memory.
1661  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1662    // Ignore undef elements.
1663    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1664
1665    unsigned Offset = TypeByteSize*i;
1666
1667    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1668    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1669
1670    // If the destination vector element type is narrower than the source
1671    // element type, only store the bits necessary.
1672    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1673      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1674                                         Node->getOperand(i), Idx,
1675                                         PtrInfo.getWithOffset(Offset),
1676                                         EltVT, false, false, 0));
1677    } else
1678      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1679                                    Node->getOperand(i), Idx,
1680                                    PtrInfo.getWithOffset(Offset),
1681                                    false, false, 0));
1682  }
1683
1684  SDValue StoreChain;
1685  if (!Stores.empty())    // Not all undef elements?
1686    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1687                             &Stores[0], Stores.size());
1688  else
1689    StoreChain = DAG.getEntryNode();
1690
1691  // Result is a load from the stack slot.
1692  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1693}
1694
1695SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1696  DebugLoc dl = Node->getDebugLoc();
1697  SDValue Tmp1 = Node->getOperand(0);
1698  SDValue Tmp2 = Node->getOperand(1);
1699
1700  // Get the sign bit of the RHS.  First obtain a value that has the same
1701  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1702  SDValue SignBit;
1703  EVT FloatVT = Tmp2.getValueType();
1704  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1705  if (isTypeLegal(IVT)) {
1706    // Convert to an integer with the same sign bit.
1707    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1708  } else {
1709    // Store the float to memory, then load the sign part out as an integer.
1710    MVT LoadTy = TLI.getPointerTy();
1711    // First create a temporary that is aligned for both the load and store.
1712    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1713    // Then store the float to it.
1714    SDValue Ch =
1715      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1716                   false, false, 0);
1717    if (TLI.isBigEndian()) {
1718      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1719      // Load out a legal integer with the same sign bit as the float.
1720      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1721                            false, false, 0);
1722    } else { // Little endian
1723      SDValue LoadPtr = StackPtr;
1724      // The float may be wider than the integer we are going to load.  Advance
1725      // the pointer so that the loaded integer will contain the sign bit.
1726      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1727      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1728      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1729                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1730      // Load a legal integer containing the sign bit.
1731      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1732                            false, false, 0);
1733      // Move the sign bit to the top bit of the loaded integer.
1734      unsigned BitShift = LoadTy.getSizeInBits() -
1735        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1736      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1737      if (BitShift)
1738        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1739                              DAG.getConstant(BitShift,
1740                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1741    }
1742  }
1743  // Now get the sign bit proper, by seeing whether the value is negative.
1744  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1745                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1746                         ISD::SETLT);
1747  // Get the absolute value of the result.
1748  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1749  // Select between the nabs and abs value based on the sign bit of
1750  // the input.
1751  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1752                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1753                     AbsVal);
1754}
1755
1756void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1757                                           SmallVectorImpl<SDValue> &Results) {
1758  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1759  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1760          " not tell us which reg is the stack pointer!");
1761  DebugLoc dl = Node->getDebugLoc();
1762  EVT VT = Node->getValueType(0);
1763  SDValue Tmp1 = SDValue(Node, 0);
1764  SDValue Tmp2 = SDValue(Node, 1);
1765  SDValue Tmp3 = Node->getOperand(2);
1766  SDValue Chain = Tmp1.getOperand(0);
1767
1768  // Chain the dynamic stack allocation so that it doesn't modify the stack
1769  // pointer when other instructions are using the stack.
1770  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1771
1772  SDValue Size  = Tmp2.getOperand(1);
1773  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1774  Chain = SP.getValue(1);
1775  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1776  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1777  if (Align > StackAlign)
1778    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1779                      DAG.getConstant(-(uint64_t)Align, VT));
1780  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1781  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1782
1783  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1784                            DAG.getIntPtrConstant(0, true), SDValue());
1785
1786  Results.push_back(Tmp1);
1787  Results.push_back(Tmp2);
1788}
1789
1790/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1791/// condition code CC on the current target. This routine expands SETCC with
1792/// illegal condition code into AND / OR of multiple SETCC values.
1793void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1794                                                 SDValue &LHS, SDValue &RHS,
1795                                                 SDValue &CC,
1796                                                 DebugLoc dl) {
1797  EVT OpVT = LHS.getValueType();
1798  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1799  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1800  default: assert(0 && "Unknown condition code action!");
1801  case TargetLowering::Legal:
1802    // Nothing to do.
1803    break;
1804  case TargetLowering::Expand: {
1805    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1806    unsigned Opc = 0;
1807    switch (CCCode) {
1808    default: assert(0 && "Don't know how to expand this condition!");
1809    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1810    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1811    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1812    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1813    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1814    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1815    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1816    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1817    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1818    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1819    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1820    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1821    // FIXME: Implement more expansions.
1822    }
1823
1824    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1825    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1826    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1827    RHS = SDValue();
1828    CC  = SDValue();
1829    break;
1830  }
1831  }
1832}
1833
1834/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1835/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1836/// a load from the stack slot to DestVT, extending it if needed.
1837/// The resultant code need not be legal.
1838SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1839                                               EVT SlotVT,
1840                                               EVT DestVT,
1841                                               DebugLoc dl) {
1842  // Create the stack frame object.
1843  unsigned SrcAlign =
1844    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1845                                              getTypeForEVT(*DAG.getContext()));
1846  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1847
1848  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1849  int SPFI = StackPtrFI->getIndex();
1850  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1851
1852  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1853  unsigned SlotSize = SlotVT.getSizeInBits();
1854  unsigned DestSize = DestVT.getSizeInBits();
1855  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1856  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1857
1858  // Emit a store to the stack slot.  Use a truncstore if the input value is
1859  // later than DestVT.
1860  SDValue Store;
1861
1862  if (SrcSize > SlotSize)
1863    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1864                              PtrInfo, SlotVT, false, false, SrcAlign);
1865  else {
1866    assert(SrcSize == SlotSize && "Invalid store");
1867    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1868                         PtrInfo, false, false, SrcAlign);
1869  }
1870
1871  // Result is a load from the stack slot.
1872  if (SlotSize == DestSize)
1873    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1874                       false, false, DestAlign);
1875
1876  assert(SlotSize < DestSize && "Unknown extension!");
1877  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1878                        PtrInfo, SlotVT, false, false, DestAlign);
1879}
1880
1881SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1882  DebugLoc dl = Node->getDebugLoc();
1883  // Create a vector sized/aligned stack slot, store the value to element #0,
1884  // then load the whole vector back out.
1885  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1886
1887  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1888  int SPFI = StackPtrFI->getIndex();
1889
1890  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1891                                 StackPtr,
1892                                 MachinePointerInfo::getFixedStack(SPFI),
1893                                 Node->getValueType(0).getVectorElementType(),
1894                                 false, false, 0);
1895  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1896                     MachinePointerInfo::getFixedStack(SPFI),
1897                     false, false, 0);
1898}
1899
1900
1901/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1902/// support the operation, but do support the resultant vector type.
1903SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1904  unsigned NumElems = Node->getNumOperands();
1905  SDValue Value1, Value2;
1906  DebugLoc dl = Node->getDebugLoc();
1907  EVT VT = Node->getValueType(0);
1908  EVT OpVT = Node->getOperand(0).getValueType();
1909  EVT EltVT = VT.getVectorElementType();
1910
1911  // If the only non-undef value is the low element, turn this into a
1912  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1913  bool isOnlyLowElement = true;
1914  bool MoreThanTwoValues = false;
1915  bool isConstant = true;
1916  for (unsigned i = 0; i < NumElems; ++i) {
1917    SDValue V = Node->getOperand(i);
1918    if (V.getOpcode() == ISD::UNDEF)
1919      continue;
1920    if (i > 0)
1921      isOnlyLowElement = false;
1922    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1923      isConstant = false;
1924
1925    if (!Value1.getNode()) {
1926      Value1 = V;
1927    } else if (!Value2.getNode()) {
1928      if (V != Value1)
1929        Value2 = V;
1930    } else if (V != Value1 && V != Value2) {
1931      MoreThanTwoValues = true;
1932    }
1933  }
1934
1935  if (!Value1.getNode())
1936    return DAG.getUNDEF(VT);
1937
1938  if (isOnlyLowElement)
1939    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1940
1941  // If all elements are constants, create a load from the constant pool.
1942  if (isConstant) {
1943    std::vector<Constant*> CV;
1944    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1945      if (ConstantFPSDNode *V =
1946          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1947        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1948      } else if (ConstantSDNode *V =
1949                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1950        if (OpVT==EltVT)
1951          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1952        else {
1953          // If OpVT and EltVT don't match, EltVT is not legal and the
1954          // element values have been promoted/truncated earlier.  Undo this;
1955          // we don't want a v16i8 to become a v16i32 for example.
1956          const ConstantInt *CI = V->getConstantIntValue();
1957          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1958                                        CI->getZExtValue()));
1959        }
1960      } else {
1961        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1962        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1963        CV.push_back(UndefValue::get(OpNTy));
1964      }
1965    }
1966    Constant *CP = ConstantVector::get(CV);
1967    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1968    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1969    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1970                       MachinePointerInfo::getConstantPool(),
1971                       false, false, Alignment);
1972  }
1973
1974  if (!MoreThanTwoValues) {
1975    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1976    for (unsigned i = 0; i < NumElems; ++i) {
1977      SDValue V = Node->getOperand(i);
1978      if (V.getOpcode() == ISD::UNDEF)
1979        continue;
1980      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1981    }
1982    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1983      // Get the splatted value into the low element of a vector register.
1984      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1985      SDValue Vec2;
1986      if (Value2.getNode())
1987        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1988      else
1989        Vec2 = DAG.getUNDEF(VT);
1990
1991      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1992      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1993    }
1994  }
1995
1996  // Otherwise, we can't handle this case efficiently.
1997  return ExpandVectorBuildThroughStack(Node);
1998}
1999
2000// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
2001// does not fit into a register, return the lo part and set the hi part to the
2002// by-reg argument.  If it does fit into a single register, return the result
2003// and leave the Hi part unset.
2004SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2005                                            bool isSigned) {
2006  // The input chain to this libcall is the entry node of the function.
2007  // Legalizing the call will automatically add the previous call to the
2008  // dependence.
2009  SDValue InChain = DAG.getEntryNode();
2010
2011  TargetLowering::ArgListTy Args;
2012  TargetLowering::ArgListEntry Entry;
2013  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2014    EVT ArgVT = Node->getOperand(i).getValueType();
2015    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2016    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2017    Entry.isSExt = isSigned;
2018    Entry.isZExt = !isSigned;
2019    Args.push_back(Entry);
2020  }
2021  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2022                                         TLI.getPointerTy());
2023
2024  // Splice the libcall in wherever FindInputOutputChains tells us to.
2025  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2026
2027  // isTailCall may be true since the callee does not reference caller stack
2028  // frame. Check if it's in the right position.
2029  bool isTailCall = isInTailCallPosition(DAG, Node, TLI);
2030  std::pair<SDValue, SDValue> CallInfo =
2031    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2032                    0, TLI.getLibcallCallingConv(LC), isTailCall,
2033                    /*isReturnValueUsed=*/true,
2034                    Callee, Args, DAG, Node->getDebugLoc());
2035
2036  if (!CallInfo.second.getNode())
2037    // It's a tailcall, return the chain (which is the DAG root).
2038    return DAG.getRoot();
2039
2040  // Legalize the call sequence, starting with the chain.  This will advance
2041  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2042  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2043  LegalizeOp(CallInfo.second);
2044  return CallInfo.first;
2045}
2046
2047// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
2048// ExpandLibCall except that the first operand is the in-chain.
2049std::pair<SDValue, SDValue>
2050SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2051                                         SDNode *Node,
2052                                         bool isSigned) {
2053  SDValue InChain = Node->getOperand(0);
2054
2055  TargetLowering::ArgListTy Args;
2056  TargetLowering::ArgListEntry Entry;
2057  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2058    EVT ArgVT = Node->getOperand(i).getValueType();
2059    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2060    Entry.Node = Node->getOperand(i);
2061    Entry.Ty = ArgTy;
2062    Entry.isSExt = isSigned;
2063    Entry.isZExt = !isSigned;
2064    Args.push_back(Entry);
2065  }
2066  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2067                                         TLI.getPointerTy());
2068
2069  // Splice the libcall in wherever FindInputOutputChains tells us to.
2070  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2071  std::pair<SDValue, SDValue> CallInfo =
2072    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2073                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2074                    /*isReturnValueUsed=*/true,
2075                    Callee, Args, DAG, Node->getDebugLoc());
2076
2077  // Legalize the call sequence, starting with the chain.  This will advance
2078  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2079  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2080  LegalizeOp(CallInfo.second);
2081  return CallInfo;
2082}
2083
2084SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2085                                              RTLIB::Libcall Call_F32,
2086                                              RTLIB::Libcall Call_F64,
2087                                              RTLIB::Libcall Call_F80,
2088                                              RTLIB::Libcall Call_PPCF128) {
2089  RTLIB::Libcall LC;
2090  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2091  default: assert(0 && "Unexpected request for libcall!");
2092  case MVT::f32: LC = Call_F32; break;
2093  case MVT::f64: LC = Call_F64; break;
2094  case MVT::f80: LC = Call_F80; break;
2095  case MVT::ppcf128: LC = Call_PPCF128; break;
2096  }
2097  return ExpandLibCall(LC, Node, false);
2098}
2099
2100SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2101                                               RTLIB::Libcall Call_I8,
2102                                               RTLIB::Libcall Call_I16,
2103                                               RTLIB::Libcall Call_I32,
2104                                               RTLIB::Libcall Call_I64,
2105                                               RTLIB::Libcall Call_I128) {
2106  RTLIB::Libcall LC;
2107  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2108  default: assert(0 && "Unexpected request for libcall!");
2109  case MVT::i8:   LC = Call_I8; break;
2110  case MVT::i16:  LC = Call_I16; break;
2111  case MVT::i32:  LC = Call_I32; break;
2112  case MVT::i64:  LC = Call_I64; break;
2113  case MVT::i128: LC = Call_I128; break;
2114  }
2115  return ExpandLibCall(LC, Node, isSigned);
2116}
2117
2118/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2119/// pairs.
2120SDValue SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, bool isSigned,
2121                                                  bool isDIV) {
2122  RTLIB::Libcall LC;
2123  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2124  default: assert(0 && "Unexpected request for libcall!");
2125  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2126  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2127  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2128  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2129  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2130  }
2131
2132  if (!TLI.getLibcallName(LC))
2133    return SDValue();
2134
2135  // Only issue divrem libcall if both quotient and remainder are needed.
2136  unsigned OtherOpcode = 0;
2137  if (isSigned) {
2138    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2139  } else {
2140    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2141  }
2142  SDNode *OtherNode = 0;
2143  SDValue Op0 = Node->getOperand(0);
2144  SDValue Op1 = Node->getOperand(1);
2145  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2146         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2147    SDNode *User = *UI;
2148    if (User == Node)
2149      continue;
2150    if (User->getOpcode() == OtherOpcode &&
2151        User->getOperand(0) == Op0 &&
2152        User->getOperand(1) == Op1) {
2153      OtherNode = User;
2154      break;
2155    }
2156  }
2157  if (!OtherNode)
2158    return SDValue();
2159
2160  // If the libcall is already generated, no need to issue it again.
2161  DenseMap<SDValue, SDValue>::iterator I
2162    = LegalizedNodes.find(SDValue(OtherNode,0));
2163  if (I != LegalizedNodes.end()) {
2164    OtherNode = I->second.getNode();
2165    SDNode *Chain = OtherNode->getOperand(0).getNode();
2166    for (SDNode::use_iterator UI = Chain->use_begin(), UE = Chain->use_end();
2167         UI != UE; ++UI) {
2168      SDNode *User = *UI;
2169      if (User == OtherNode)
2170        continue;
2171      if (isDIV) {
2172        assert(User->getOpcode() == ISD::CopyFromReg);
2173      } else {
2174        assert(User->getOpcode() == ISD::LOAD);
2175      }
2176      return SDValue(User, 0);
2177    }
2178  }
2179
2180  // The input chain to this libcall is the entry node of the function.
2181  // Legalizing the call will automatically add the previous call to the
2182  // dependence.
2183  SDValue InChain = DAG.getEntryNode();
2184
2185  EVT RetVT = Node->getValueType(0);
2186  const Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2187
2188  TargetLowering::ArgListTy Args;
2189  TargetLowering::ArgListEntry Entry;
2190  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2191    EVT ArgVT = Node->getOperand(i).getValueType();
2192    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2193    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2194    Entry.isSExt = isSigned;
2195    Entry.isZExt = !isSigned;
2196    Args.push_back(Entry);
2197  }
2198
2199  // Also pass the return address of the remainder.
2200  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2201  Entry.Node = FIPtr;
2202  Entry.Ty = RetTy->getPointerTo();
2203  Entry.isSExt = isSigned;
2204  Entry.isZExt = !isSigned;
2205  Args.push_back(Entry);
2206
2207  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2208                                         TLI.getPointerTy());
2209
2210  // Splice the libcall in wherever FindInputOutputChains tells us to.
2211  DebugLoc dl = Node->getDebugLoc();
2212  std::pair<SDValue, SDValue> CallInfo =
2213    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2214                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2215                    /*isReturnValueUsed=*/true, Callee, Args, DAG, dl);
2216
2217  // Legalize the call sequence, starting with the chain.  This will advance
2218  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2219  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2220  LegalizeOp(CallInfo.second);
2221
2222  // Remainder is loaded back from the stack frame.
2223  SDValue Rem = DAG.getLoad(RetVT, dl, LastCALLSEQ_END, FIPtr,
2224                            MachinePointerInfo(), false, false, 0);
2225  return isDIV ? CallInfo.first : Rem;
2226}
2227
2228/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2229/// INT_TO_FP operation of the specified operand when the target requests that
2230/// we expand it.  At this point, we know that the result and operand types are
2231/// legal for the target.
2232SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2233                                                   SDValue Op0,
2234                                                   EVT DestVT,
2235                                                   DebugLoc dl) {
2236  if (Op0.getValueType() == MVT::i32) {
2237    // simple 32-bit [signed|unsigned] integer to float/double expansion
2238
2239    // Get the stack frame index of a 8 byte buffer.
2240    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2241
2242    // word offset constant for Hi/Lo address computation
2243    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2244    // set up Hi and Lo (into buffer) address based on endian
2245    SDValue Hi = StackSlot;
2246    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2247                             TLI.getPointerTy(), StackSlot, WordOff);
2248    if (TLI.isLittleEndian())
2249      std::swap(Hi, Lo);
2250
2251    // if signed map to unsigned space
2252    SDValue Op0Mapped;
2253    if (isSigned) {
2254      // constant used to invert sign bit (signed to unsigned mapping)
2255      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2256      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2257    } else {
2258      Op0Mapped = Op0;
2259    }
2260    // store the lo of the constructed double - based on integer input
2261    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2262                                  Op0Mapped, Lo, MachinePointerInfo(),
2263                                  false, false, 0);
2264    // initial hi portion of constructed double
2265    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2266    // store the hi of the constructed double - biased exponent
2267    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2268                                  MachinePointerInfo(),
2269                                  false, false, 0);
2270    // load the constructed double
2271    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2272                               MachinePointerInfo(), false, false, 0);
2273    // FP constant to bias correct the final result
2274    SDValue Bias = DAG.getConstantFP(isSigned ?
2275                                     BitsToDouble(0x4330000080000000ULL) :
2276                                     BitsToDouble(0x4330000000000000ULL),
2277                                     MVT::f64);
2278    // subtract the bias
2279    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2280    // final result
2281    SDValue Result;
2282    // handle final rounding
2283    if (DestVT == MVT::f64) {
2284      // do nothing
2285      Result = Sub;
2286    } else if (DestVT.bitsLT(MVT::f64)) {
2287      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2288                           DAG.getIntPtrConstant(0));
2289    } else if (DestVT.bitsGT(MVT::f64)) {
2290      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2291    }
2292    return Result;
2293  }
2294  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2295  // Code below here assumes !isSigned without checking again.
2296
2297  // Implementation of unsigned i64 to f64 following the algorithm in
2298  // __floatundidf in compiler_rt. This implementation has the advantage
2299  // of performing rounding correctly, both in the default rounding mode
2300  // and in all alternate rounding modes.
2301  // TODO: Generalize this for use with other types.
2302  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2303    SDValue TwoP52 =
2304      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2305    SDValue TwoP84PlusTwoP52 =
2306      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2307    SDValue TwoP84 =
2308      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2309
2310    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2311    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2312                             DAG.getConstant(32, MVT::i64));
2313    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2314    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2315    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2316    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2317    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2318                                TwoP84PlusTwoP52);
2319    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2320  }
2321
2322  // Implementation of unsigned i64 to f32.
2323  // TODO: Generalize this for use with other types.
2324  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2325    // For unsigned conversions, convert them to signed conversions using the
2326    // algorithm from the x86_64 __floatundidf in compiler_rt.
2327    if (!isSigned) {
2328      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2329
2330      SDValue ShiftConst =
2331          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2332      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2333      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2334      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2335      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2336
2337      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2338      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2339
2340      // TODO: This really should be implemented using a branch rather than a
2341      // select.  We happen to get lucky and machinesink does the right
2342      // thing most of the time.  This would be a good candidate for a
2343      //pseudo-op, or, even better, for whole-function isel.
2344      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2345        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2346      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2347    }
2348
2349    // Otherwise, implement the fully general conversion.
2350
2351    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2352         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2353    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2354         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2355    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2356         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2357    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2358                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2359    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2360    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2361                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2362                   ISD::SETUGE);
2363    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2364    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2365
2366    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2367                             DAG.getConstant(32, SHVT));
2368    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2369    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2370    SDValue TwoP32 =
2371      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2372    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2373    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2374    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2375    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2376    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2377                       DAG.getIntPtrConstant(0));
2378  }
2379
2380  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2381
2382  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2383                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2384                                 ISD::SETLT);
2385  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2386  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2387                                    SignSet, Four, Zero);
2388
2389  // If the sign bit of the integer is set, the large number will be treated
2390  // as a negative number.  To counteract this, the dynamic code adds an
2391  // offset depending on the data type.
2392  uint64_t FF;
2393  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2394  default: assert(0 && "Unsupported integer type!");
2395  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2396  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2397  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2398  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2399  }
2400  if (TLI.isLittleEndian()) FF <<= 32;
2401  Constant *FudgeFactor = ConstantInt::get(
2402                                       Type::getInt64Ty(*DAG.getContext()), FF);
2403
2404  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2405  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2406  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2407  Alignment = std::min(Alignment, 4u);
2408  SDValue FudgeInReg;
2409  if (DestVT == MVT::f32)
2410    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2411                             MachinePointerInfo::getConstantPool(),
2412                             false, false, Alignment);
2413  else {
2414    FudgeInReg =
2415      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2416                                DAG.getEntryNode(), CPIdx,
2417                                MachinePointerInfo::getConstantPool(),
2418                                MVT::f32, false, false, Alignment));
2419  }
2420
2421  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2422}
2423
2424/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2425/// *INT_TO_FP operation of the specified operand when the target requests that
2426/// we promote it.  At this point, we know that the result and operand types are
2427/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2428/// operation that takes a larger input.
2429SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2430                                                    EVT DestVT,
2431                                                    bool isSigned,
2432                                                    DebugLoc dl) {
2433  // First step, figure out the appropriate *INT_TO_FP operation to use.
2434  EVT NewInTy = LegalOp.getValueType();
2435
2436  unsigned OpToUse = 0;
2437
2438  // Scan for the appropriate larger type to use.
2439  while (1) {
2440    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2441    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2442
2443    // If the target supports SINT_TO_FP of this type, use it.
2444    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2445      OpToUse = ISD::SINT_TO_FP;
2446      break;
2447    }
2448    if (isSigned) continue;
2449
2450    // If the target supports UINT_TO_FP of this type, use it.
2451    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2452      OpToUse = ISD::UINT_TO_FP;
2453      break;
2454    }
2455
2456    // Otherwise, try a larger type.
2457  }
2458
2459  // Okay, we found the operation and type to use.  Zero extend our input to the
2460  // desired type then run the operation on it.
2461  return DAG.getNode(OpToUse, dl, DestVT,
2462                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2463                                 dl, NewInTy, LegalOp));
2464}
2465
2466/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2467/// FP_TO_*INT operation of the specified operand when the target requests that
2468/// we promote it.  At this point, we know that the result and operand types are
2469/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2470/// operation that returns a larger result.
2471SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2472                                                    EVT DestVT,
2473                                                    bool isSigned,
2474                                                    DebugLoc dl) {
2475  // First step, figure out the appropriate FP_TO*INT operation to use.
2476  EVT NewOutTy = DestVT;
2477
2478  unsigned OpToUse = 0;
2479
2480  // Scan for the appropriate larger type to use.
2481  while (1) {
2482    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2483    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2484
2485    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2486      OpToUse = ISD::FP_TO_SINT;
2487      break;
2488    }
2489
2490    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2491      OpToUse = ISD::FP_TO_UINT;
2492      break;
2493    }
2494
2495    // Otherwise, try a larger type.
2496  }
2497
2498
2499  // Okay, we found the operation and type to use.
2500  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2501
2502  // Truncate the result of the extended FP_TO_*INT operation to the desired
2503  // size.
2504  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2505}
2506
2507/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2508///
2509SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2510  EVT VT = Op.getValueType();
2511  EVT SHVT = TLI.getShiftAmountTy(VT);
2512  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2513  switch (VT.getSimpleVT().SimpleTy) {
2514  default: assert(0 && "Unhandled Expand type in BSWAP!");
2515  case MVT::i16:
2516    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2517    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2518    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2519  case MVT::i32:
2520    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2521    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2522    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2523    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2524    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2525    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2526    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2527    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2528    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2529  case MVT::i64:
2530    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2531    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2532    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2533    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2534    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2535    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2536    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2537    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2538    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2539    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2540    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2541    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2542    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2543    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2544    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2545    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2546    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2547    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2548    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2549    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2550    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2551  }
2552}
2553
2554/// SplatByte - Distribute ByteVal over NumBits bits.
2555// FIXME: Move this helper to a common place.
2556static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2557  APInt Val = APInt(NumBits, ByteVal);
2558  unsigned Shift = 8;
2559  for (unsigned i = NumBits; i > 8; i >>= 1) {
2560    Val = (Val << Shift) | Val;
2561    Shift <<= 1;
2562  }
2563  return Val;
2564}
2565
2566/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2567///
2568SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2569                                             DebugLoc dl) {
2570  switch (Opc) {
2571  default: assert(0 && "Cannot expand this yet!");
2572  case ISD::CTPOP: {
2573    EVT VT = Op.getValueType();
2574    EVT ShVT = TLI.getShiftAmountTy(VT);
2575    unsigned Len = VT.getSizeInBits();
2576
2577    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2578           "CTPOP not implemented for this type.");
2579
2580    // This is the "best" algorithm from
2581    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2582
2583    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2584    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2585    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2586    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2587
2588    // v = v - ((v >> 1) & 0x55555555...)
2589    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2590                     DAG.getNode(ISD::AND, dl, VT,
2591                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2592                                             DAG.getConstant(1, ShVT)),
2593                                 Mask55));
2594    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2595    Op = DAG.getNode(ISD::ADD, dl, VT,
2596                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2597                     DAG.getNode(ISD::AND, dl, VT,
2598                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2599                                             DAG.getConstant(2, ShVT)),
2600                                 Mask33));
2601    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2602    Op = DAG.getNode(ISD::AND, dl, VT,
2603                     DAG.getNode(ISD::ADD, dl, VT, Op,
2604                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2605                                             DAG.getConstant(4, ShVT))),
2606                     Mask0F);
2607    // v = (v * 0x01010101...) >> (Len - 8)
2608    Op = DAG.getNode(ISD::SRL, dl, VT,
2609                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2610                     DAG.getConstant(Len - 8, ShVT));
2611
2612    return Op;
2613  }
2614  case ISD::CTLZ: {
2615    // for now, we do this:
2616    // x = x | (x >> 1);
2617    // x = x | (x >> 2);
2618    // ...
2619    // x = x | (x >>16);
2620    // x = x | (x >>32); // for 64-bit input
2621    // return popcount(~x);
2622    //
2623    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2624    EVT VT = Op.getValueType();
2625    EVT ShVT = TLI.getShiftAmountTy(VT);
2626    unsigned len = VT.getSizeInBits();
2627    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2628      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2629      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2630                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2631    }
2632    Op = DAG.getNOT(dl, Op, VT);
2633    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2634  }
2635  case ISD::CTTZ: {
2636    // for now, we use: { return popcount(~x & (x - 1)); }
2637    // unless the target has ctlz but not ctpop, in which case we use:
2638    // { return 32 - nlz(~x & (x-1)); }
2639    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2640    EVT VT = Op.getValueType();
2641    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2642                               DAG.getNOT(dl, Op, VT),
2643                               DAG.getNode(ISD::SUB, dl, VT, Op,
2644                                           DAG.getConstant(1, VT)));
2645    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2646    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2647        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2648      return DAG.getNode(ISD::SUB, dl, VT,
2649                         DAG.getConstant(VT.getSizeInBits(), VT),
2650                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2651    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2652  }
2653  }
2654}
2655
2656std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2657  unsigned Opc = Node->getOpcode();
2658  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2659  RTLIB::Libcall LC;
2660
2661  switch (Opc) {
2662  default:
2663    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2664    break;
2665  case ISD::ATOMIC_SWAP:
2666    switch (VT.SimpleTy) {
2667    default: llvm_unreachable("Unexpected value type for atomic!");
2668    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2669    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2670    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2671    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2672    }
2673    break;
2674  case ISD::ATOMIC_CMP_SWAP:
2675    switch (VT.SimpleTy) {
2676    default: llvm_unreachable("Unexpected value type for atomic!");
2677    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2678    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2679    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2680    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2681    }
2682    break;
2683  case ISD::ATOMIC_LOAD_ADD:
2684    switch (VT.SimpleTy) {
2685    default: llvm_unreachable("Unexpected value type for atomic!");
2686    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2687    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2688    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2689    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2690    }
2691    break;
2692  case ISD::ATOMIC_LOAD_SUB:
2693    switch (VT.SimpleTy) {
2694    default: llvm_unreachable("Unexpected value type for atomic!");
2695    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2696    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2697    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2698    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2699    }
2700    break;
2701  case ISD::ATOMIC_LOAD_AND:
2702    switch (VT.SimpleTy) {
2703    default: llvm_unreachable("Unexpected value type for atomic!");
2704    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2705    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2706    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2707    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2708    }
2709    break;
2710  case ISD::ATOMIC_LOAD_OR:
2711    switch (VT.SimpleTy) {
2712    default: llvm_unreachable("Unexpected value type for atomic!");
2713    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2714    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2715    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2716    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2717    }
2718    break;
2719  case ISD::ATOMIC_LOAD_XOR:
2720    switch (VT.SimpleTy) {
2721    default: llvm_unreachable("Unexpected value type for atomic!");
2722    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2723    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2724    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2725    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2726    }
2727    break;
2728  case ISD::ATOMIC_LOAD_NAND:
2729    switch (VT.SimpleTy) {
2730    default: llvm_unreachable("Unexpected value type for atomic!");
2731    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2732    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2733    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2734    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2735    }
2736    break;
2737  }
2738
2739  return ExpandChainLibCall(LC, Node, false);
2740}
2741
2742void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2743                                      SmallVectorImpl<SDValue> &Results) {
2744  DebugLoc dl = Node->getDebugLoc();
2745  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2746  switch (Node->getOpcode()) {
2747  case ISD::CTPOP:
2748  case ISD::CTLZ:
2749  case ISD::CTTZ:
2750    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2751    Results.push_back(Tmp1);
2752    break;
2753  case ISD::BSWAP:
2754    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2755    break;
2756  case ISD::FRAMEADDR:
2757  case ISD::RETURNADDR:
2758  case ISD::FRAME_TO_ARGS_OFFSET:
2759    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2760    break;
2761  case ISD::FLT_ROUNDS_:
2762    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2763    break;
2764  case ISD::EH_RETURN:
2765  case ISD::EH_LABEL:
2766  case ISD::PREFETCH:
2767  case ISD::VAEND:
2768  case ISD::EH_SJLJ_LONGJMP:
2769  case ISD::EH_SJLJ_DISPATCHSETUP:
2770    // If the target didn't expand these, there's nothing to do, so just
2771    // preserve the chain and be done.
2772    Results.push_back(Node->getOperand(0));
2773    break;
2774  case ISD::EH_SJLJ_SETJMP:
2775    // If the target didn't expand this, just return 'zero' and preserve the
2776    // chain.
2777    Results.push_back(DAG.getConstant(0, MVT::i32));
2778    Results.push_back(Node->getOperand(0));
2779    break;
2780  case ISD::MEMBARRIER: {
2781    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2782    TargetLowering::ArgListTy Args;
2783    std::pair<SDValue, SDValue> CallResult =
2784      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2785                      false, false, false, false, 0, CallingConv::C,
2786                      /*isTailCall=*/false,
2787                      /*isReturnValueUsed=*/true,
2788                      DAG.getExternalSymbol("__sync_synchronize",
2789                                            TLI.getPointerTy()),
2790                      Args, DAG, dl);
2791    Results.push_back(CallResult.second);
2792    break;
2793  }
2794  // By default, atomic intrinsics are marked Legal and lowered. Targets
2795  // which don't support them directly, however, may want libcalls, in which
2796  // case they mark them Expand, and we get here.
2797  case ISD::ATOMIC_SWAP:
2798  case ISD::ATOMIC_LOAD_ADD:
2799  case ISD::ATOMIC_LOAD_SUB:
2800  case ISD::ATOMIC_LOAD_AND:
2801  case ISD::ATOMIC_LOAD_OR:
2802  case ISD::ATOMIC_LOAD_XOR:
2803  case ISD::ATOMIC_LOAD_NAND:
2804  case ISD::ATOMIC_LOAD_MIN:
2805  case ISD::ATOMIC_LOAD_MAX:
2806  case ISD::ATOMIC_LOAD_UMIN:
2807  case ISD::ATOMIC_LOAD_UMAX:
2808  case ISD::ATOMIC_CMP_SWAP: {
2809    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2810    Results.push_back(Tmp.first);
2811    Results.push_back(Tmp.second);
2812    break;
2813  }
2814  case ISD::DYNAMIC_STACKALLOC:
2815    ExpandDYNAMIC_STACKALLOC(Node, Results);
2816    break;
2817  case ISD::MERGE_VALUES:
2818    for (unsigned i = 0; i < Node->getNumValues(); i++)
2819      Results.push_back(Node->getOperand(i));
2820    break;
2821  case ISD::UNDEF: {
2822    EVT VT = Node->getValueType(0);
2823    if (VT.isInteger())
2824      Results.push_back(DAG.getConstant(0, VT));
2825    else {
2826      assert(VT.isFloatingPoint() && "Unknown value type!");
2827      Results.push_back(DAG.getConstantFP(0, VT));
2828    }
2829    break;
2830  }
2831  case ISD::TRAP: {
2832    // If this operation is not supported, lower it to 'abort()' call
2833    TargetLowering::ArgListTy Args;
2834    std::pair<SDValue, SDValue> CallResult =
2835      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2836                      false, false, false, false, 0, CallingConv::C,
2837                      /*isTailCall=*/false,
2838                      /*isReturnValueUsed=*/true,
2839                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2840                      Args, DAG, dl);
2841    Results.push_back(CallResult.second);
2842    break;
2843  }
2844  case ISD::FP_ROUND:
2845  case ISD::BITCAST:
2846    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2847                            Node->getValueType(0), dl);
2848    Results.push_back(Tmp1);
2849    break;
2850  case ISD::FP_EXTEND:
2851    Tmp1 = EmitStackConvert(Node->getOperand(0),
2852                            Node->getOperand(0).getValueType(),
2853                            Node->getValueType(0), dl);
2854    Results.push_back(Tmp1);
2855    break;
2856  case ISD::SIGN_EXTEND_INREG: {
2857    // NOTE: we could fall back on load/store here too for targets without
2858    // SAR.  However, it is doubtful that any exist.
2859    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2860    EVT VT = Node->getValueType(0);
2861    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2862    if (VT.isVector())
2863      ShiftAmountTy = VT;
2864    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2865                        ExtraVT.getScalarType().getSizeInBits();
2866    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2867    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2868                       Node->getOperand(0), ShiftCst);
2869    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2870    Results.push_back(Tmp1);
2871    break;
2872  }
2873  case ISD::FP_ROUND_INREG: {
2874    // The only way we can lower this is to turn it into a TRUNCSTORE,
2875    // EXTLOAD pair, targetting a temporary location (a stack slot).
2876
2877    // NOTE: there is a choice here between constantly creating new stack
2878    // slots and always reusing the same one.  We currently always create
2879    // new ones, as reuse may inhibit scheduling.
2880    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2881    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2882                            Node->getValueType(0), dl);
2883    Results.push_back(Tmp1);
2884    break;
2885  }
2886  case ISD::SINT_TO_FP:
2887  case ISD::UINT_TO_FP:
2888    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2889                                Node->getOperand(0), Node->getValueType(0), dl);
2890    Results.push_back(Tmp1);
2891    break;
2892  case ISD::FP_TO_UINT: {
2893    SDValue True, False;
2894    EVT VT =  Node->getOperand(0).getValueType();
2895    EVT NVT = Node->getValueType(0);
2896    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2897    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2898    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2899    Tmp1 = DAG.getConstantFP(apf, VT);
2900    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2901                        Node->getOperand(0),
2902                        Tmp1, ISD::SETLT);
2903    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2904    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2905                        DAG.getNode(ISD::FSUB, dl, VT,
2906                                    Node->getOperand(0), Tmp1));
2907    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2908                        DAG.getConstant(x, NVT));
2909    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2910    Results.push_back(Tmp1);
2911    break;
2912  }
2913  case ISD::VAARG: {
2914    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2915    EVT VT = Node->getValueType(0);
2916    Tmp1 = Node->getOperand(0);
2917    Tmp2 = Node->getOperand(1);
2918    unsigned Align = Node->getConstantOperandVal(3);
2919
2920    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2921                                     MachinePointerInfo(V), false, false, 0);
2922    SDValue VAList = VAListLoad;
2923
2924    if (Align > TLI.getMinStackArgumentAlignment()) {
2925      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2926
2927      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2928                           DAG.getConstant(Align - 1,
2929                                           TLI.getPointerTy()));
2930
2931      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2932                           DAG.getConstant(-(int64_t)Align,
2933                                           TLI.getPointerTy()));
2934    }
2935
2936    // Increment the pointer, VAList, to the next vaarg
2937    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2938                       DAG.getConstant(TLI.getTargetData()->
2939                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2940                                       TLI.getPointerTy()));
2941    // Store the incremented VAList to the legalized pointer
2942    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2943                        MachinePointerInfo(V), false, false, 0);
2944    // Load the actual argument out of the pointer VAList
2945    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2946                                  false, false, 0));
2947    Results.push_back(Results[0].getValue(1));
2948    break;
2949  }
2950  case ISD::VACOPY: {
2951    // This defaults to loading a pointer from the input and storing it to the
2952    // output, returning the chain.
2953    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2954    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2955    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2956                       Node->getOperand(2), MachinePointerInfo(VS),
2957                       false, false, 0);
2958    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2959                        MachinePointerInfo(VD), false, false, 0);
2960    Results.push_back(Tmp1);
2961    break;
2962  }
2963  case ISD::EXTRACT_VECTOR_ELT:
2964    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2965      // This must be an access of the only element.  Return it.
2966      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2967                         Node->getOperand(0));
2968    else
2969      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2970    Results.push_back(Tmp1);
2971    break;
2972  case ISD::EXTRACT_SUBVECTOR:
2973    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2974    break;
2975  case ISD::INSERT_SUBVECTOR:
2976    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2977    break;
2978  case ISD::CONCAT_VECTORS: {
2979    Results.push_back(ExpandVectorBuildThroughStack(Node));
2980    break;
2981  }
2982  case ISD::SCALAR_TO_VECTOR:
2983    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2984    break;
2985  case ISD::INSERT_VECTOR_ELT:
2986    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2987                                              Node->getOperand(1),
2988                                              Node->getOperand(2), dl));
2989    break;
2990  case ISD::VECTOR_SHUFFLE: {
2991    SmallVector<int, 8> Mask;
2992    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2993
2994    EVT VT = Node->getValueType(0);
2995    EVT EltVT = VT.getVectorElementType();
2996    if (getTypeAction(EltVT) == Promote)
2997      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2998    unsigned NumElems = VT.getVectorNumElements();
2999    SmallVector<SDValue, 8> Ops;
3000    for (unsigned i = 0; i != NumElems; ++i) {
3001      if (Mask[i] < 0) {
3002        Ops.push_back(DAG.getUNDEF(EltVT));
3003        continue;
3004      }
3005      unsigned Idx = Mask[i];
3006      if (Idx < NumElems)
3007        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3008                                  Node->getOperand(0),
3009                                  DAG.getIntPtrConstant(Idx)));
3010      else
3011        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3012                                  Node->getOperand(1),
3013                                  DAG.getIntPtrConstant(Idx - NumElems)));
3014    }
3015    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
3016    Results.push_back(Tmp1);
3017    break;
3018  }
3019  case ISD::EXTRACT_ELEMENT: {
3020    EVT OpTy = Node->getOperand(0).getValueType();
3021    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3022      // 1 -> Hi
3023      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3024                         DAG.getConstant(OpTy.getSizeInBits()/2,
3025                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3026      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3027    } else {
3028      // 0 -> Lo
3029      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3030                         Node->getOperand(0));
3031    }
3032    Results.push_back(Tmp1);
3033    break;
3034  }
3035  case ISD::STACKSAVE:
3036    // Expand to CopyFromReg if the target set
3037    // StackPointerRegisterToSaveRestore.
3038    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3039      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3040                                           Node->getValueType(0)));
3041      Results.push_back(Results[0].getValue(1));
3042    } else {
3043      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3044      Results.push_back(Node->getOperand(0));
3045    }
3046    break;
3047  case ISD::STACKRESTORE:
3048    // Expand to CopyToReg if the target set
3049    // StackPointerRegisterToSaveRestore.
3050    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3051      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3052                                         Node->getOperand(1)));
3053    } else {
3054      Results.push_back(Node->getOperand(0));
3055    }
3056    break;
3057  case ISD::FCOPYSIGN:
3058    Results.push_back(ExpandFCOPYSIGN(Node));
3059    break;
3060  case ISD::FNEG:
3061    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3062    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3063    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3064                       Node->getOperand(0));
3065    Results.push_back(Tmp1);
3066    break;
3067  case ISD::FABS: {
3068    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3069    EVT VT = Node->getValueType(0);
3070    Tmp1 = Node->getOperand(0);
3071    Tmp2 = DAG.getConstantFP(0.0, VT);
3072    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3073                        Tmp1, Tmp2, ISD::SETUGT);
3074    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3075    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
3076    Results.push_back(Tmp1);
3077    break;
3078  }
3079  case ISD::FSQRT:
3080    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3081                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
3082    break;
3083  case ISD::FSIN:
3084    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3085                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
3086    break;
3087  case ISD::FCOS:
3088    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3089                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
3090    break;
3091  case ISD::FLOG:
3092    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3093                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
3094    break;
3095  case ISD::FLOG2:
3096    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3097                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
3098    break;
3099  case ISD::FLOG10:
3100    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3101                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
3102    break;
3103  case ISD::FEXP:
3104    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3105                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
3106    break;
3107  case ISD::FEXP2:
3108    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3109                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
3110    break;
3111  case ISD::FTRUNC:
3112    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3113                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
3114    break;
3115  case ISD::FFLOOR:
3116    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3117                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
3118    break;
3119  case ISD::FCEIL:
3120    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3121                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
3122    break;
3123  case ISD::FRINT:
3124    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3125                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
3126    break;
3127  case ISD::FNEARBYINT:
3128    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3129                                      RTLIB::NEARBYINT_F64,
3130                                      RTLIB::NEARBYINT_F80,
3131                                      RTLIB::NEARBYINT_PPCF128));
3132    break;
3133  case ISD::FPOWI:
3134    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3135                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3136    break;
3137  case ISD::FPOW:
3138    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3139                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
3140    break;
3141  case ISD::FDIV:
3142    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3143                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3144    break;
3145  case ISD::FREM:
3146    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3147                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3148    break;
3149  case ISD::FP16_TO_FP32:
3150    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3151    break;
3152  case ISD::FP32_TO_FP16:
3153    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3154    break;
3155  case ISD::ConstantFP: {
3156    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3157    // Check to see if this FP immediate is already legal.
3158    // If this is a legal constant, turn it into a TargetConstantFP node.
3159    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3160      Results.push_back(SDValue(Node, 0));
3161    else
3162      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
3163    break;
3164  }
3165  case ISD::EHSELECTION: {
3166    unsigned Reg = TLI.getExceptionSelectorRegister();
3167    assert(Reg && "Can't expand to unknown register!");
3168    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3169                                         Node->getValueType(0)));
3170    Results.push_back(Results[0].getValue(1));
3171    break;
3172  }
3173  case ISD::EXCEPTIONADDR: {
3174    unsigned Reg = TLI.getExceptionAddressRegister();
3175    assert(Reg && "Can't expand to unknown register!");
3176    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3177                                         Node->getValueType(0)));
3178    Results.push_back(Results[0].getValue(1));
3179    break;
3180  }
3181  case ISD::SUB: {
3182    EVT VT = Node->getValueType(0);
3183    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3184           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3185           "Don't know how to expand this subtraction!");
3186    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3187               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3188    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
3189    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3190    break;
3191  }
3192  case ISD::UREM:
3193  case ISD::SREM: {
3194    EVT VT = Node->getValueType(0);
3195    SDVTList VTs = DAG.getVTList(VT, VT);
3196    bool isSigned = Node->getOpcode() == ISD::SREM;
3197    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3198    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3199    Tmp2 = Node->getOperand(0);
3200    Tmp3 = Node->getOperand(1);
3201    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3202      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3203    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3204      // X % Y -> X-X/Y*Y
3205      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3206      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3207      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3208    } else if (isSigned) {
3209      Tmp1 = ExpandDivRemLibCall(Node, true, false);
3210      if (!Tmp1.getNode())
3211        Tmp1 = ExpandIntLibCall(Node, true,
3212                                RTLIB::SREM_I8,
3213                                RTLIB::SREM_I16, RTLIB::SREM_I32,
3214                                RTLIB::SREM_I64, RTLIB::SREM_I128);
3215    } else {
3216      Tmp1 = ExpandDivRemLibCall(Node, false, false);
3217      if (!Tmp1.getNode())
3218        Tmp1 = ExpandIntLibCall(Node, false,
3219                                RTLIB::UREM_I8,
3220                                RTLIB::UREM_I16, RTLIB::UREM_I32,
3221                                RTLIB::UREM_I64, RTLIB::UREM_I128);
3222    }
3223    Results.push_back(Tmp1);
3224    break;
3225  }
3226  case ISD::UDIV:
3227  case ISD::SDIV: {
3228    bool isSigned = Node->getOpcode() == ISD::SDIV;
3229    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3230    EVT VT = Node->getValueType(0);
3231    SDVTList VTs = DAG.getVTList(VT, VT);
3232    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
3233      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3234                         Node->getOperand(1));
3235    else if (isSigned) {
3236      Tmp1 = ExpandDivRemLibCall(Node, true, true);
3237      if (!Tmp1.getNode()) {
3238        Tmp1 = ExpandIntLibCall(Node, true,
3239                                RTLIB::SDIV_I8,
3240                                RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3241                                RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3242      }
3243    } else {
3244      Tmp1 = ExpandDivRemLibCall(Node, false, true);
3245      if (!Tmp1.getNode()) {
3246        Tmp1 = ExpandIntLibCall(Node, false,
3247                                RTLIB::UDIV_I8,
3248                                RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3249                                RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3250      }
3251    }
3252    Results.push_back(Tmp1);
3253    break;
3254  }
3255  case ISD::MULHU:
3256  case ISD::MULHS: {
3257    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3258                                                              ISD::SMUL_LOHI;
3259    EVT VT = Node->getValueType(0);
3260    SDVTList VTs = DAG.getVTList(VT, VT);
3261    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3262           "If this wasn't legal, it shouldn't have been created!");
3263    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3264                       Node->getOperand(1));
3265    Results.push_back(Tmp1.getValue(1));
3266    break;
3267  }
3268  case ISD::MUL: {
3269    EVT VT = Node->getValueType(0);
3270    SDVTList VTs = DAG.getVTList(VT, VT);
3271    // See if multiply or divide can be lowered using two-result operations.
3272    // We just need the low half of the multiply; try both the signed
3273    // and unsigned forms. If the target supports both SMUL_LOHI and
3274    // UMUL_LOHI, form a preference by checking which forms of plain
3275    // MULH it supports.
3276    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3277    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3278    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3279    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3280    unsigned OpToUse = 0;
3281    if (HasSMUL_LOHI && !HasMULHS) {
3282      OpToUse = ISD::SMUL_LOHI;
3283    } else if (HasUMUL_LOHI && !HasMULHU) {
3284      OpToUse = ISD::UMUL_LOHI;
3285    } else if (HasSMUL_LOHI) {
3286      OpToUse = ISD::SMUL_LOHI;
3287    } else if (HasUMUL_LOHI) {
3288      OpToUse = ISD::UMUL_LOHI;
3289    }
3290    if (OpToUse) {
3291      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3292                                    Node->getOperand(1)));
3293      break;
3294    }
3295    Tmp1 = ExpandIntLibCall(Node, false,
3296                            RTLIB::MUL_I8,
3297                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3298                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3299    Results.push_back(Tmp1);
3300    break;
3301  }
3302  case ISD::SADDO:
3303  case ISD::SSUBO: {
3304    SDValue LHS = Node->getOperand(0);
3305    SDValue RHS = Node->getOperand(1);
3306    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3307                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3308                              LHS, RHS);
3309    Results.push_back(Sum);
3310    EVT OType = Node->getValueType(1);
3311
3312    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3313
3314    //   LHSSign -> LHS >= 0
3315    //   RHSSign -> RHS >= 0
3316    //   SumSign -> Sum >= 0
3317    //
3318    //   Add:
3319    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3320    //   Sub:
3321    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3322    //
3323    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3324    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3325    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3326                                      Node->getOpcode() == ISD::SADDO ?
3327                                      ISD::SETEQ : ISD::SETNE);
3328
3329    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3330    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3331
3332    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3333    Results.push_back(Cmp);
3334    break;
3335  }
3336  case ISD::UADDO:
3337  case ISD::USUBO: {
3338    SDValue LHS = Node->getOperand(0);
3339    SDValue RHS = Node->getOperand(1);
3340    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3341                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3342                              LHS, RHS);
3343    Results.push_back(Sum);
3344    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3345                                   Node->getOpcode () == ISD::UADDO ?
3346                                   ISD::SETULT : ISD::SETUGT));
3347    break;
3348  }
3349  case ISD::UMULO:
3350  case ISD::SMULO: {
3351    EVT VT = Node->getValueType(0);
3352    SDValue LHS = Node->getOperand(0);
3353    SDValue RHS = Node->getOperand(1);
3354    SDValue BottomHalf;
3355    SDValue TopHalf;
3356    static const unsigned Ops[2][3] =
3357        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3358          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3359    bool isSigned = Node->getOpcode() == ISD::SMULO;
3360    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3361      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3362      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3363    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3364      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3365                               RHS);
3366      TopHalf = BottomHalf.getValue(1);
3367    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3368                                                 VT.getSizeInBits() * 2))) {
3369      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3370      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3371      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3372      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3373      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3374                               DAG.getIntPtrConstant(0));
3375      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3376                            DAG.getIntPtrConstant(1));
3377    } else {
3378      // We can fall back to a libcall with an illegal type for the MUL if we
3379      // have a libcall big enough.
3380      // Also, we can fall back to a division in some cases, but that's a big
3381      // performance hit in the general case.
3382      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3383      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3384      if (WideVT == MVT::i16)
3385        LC = RTLIB::MUL_I16;
3386      else if (WideVT == MVT::i32)
3387        LC = RTLIB::MUL_I32;
3388      else if (WideVT == MVT::i64)
3389        LC = RTLIB::MUL_I64;
3390      else if (WideVT == MVT::i128)
3391        LC = RTLIB::MUL_I128;
3392      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3393      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3394      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3395
3396      SDValue Ret = ExpandLibCall(LC, Node, isSigned);
3397      BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Ret);
3398      TopHalf = DAG.getNode(ISD::SRL, dl, Ret.getValueType(), Ret,
3399                       DAG.getConstant(VT.getSizeInBits(), TLI.getPointerTy()));
3400      TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, TopHalf);
3401    }
3402    if (isSigned) {
3403      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3404                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3405      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3406      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3407                             ISD::SETNE);
3408    } else {
3409      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3410                             DAG.getConstant(0, VT), ISD::SETNE);
3411    }
3412    Results.push_back(BottomHalf);
3413    Results.push_back(TopHalf);
3414    break;
3415  }
3416  case ISD::BUILD_PAIR: {
3417    EVT PairTy = Node->getValueType(0);
3418    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3419    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3420    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3421                       DAG.getConstant(PairTy.getSizeInBits()/2,
3422                                       TLI.getShiftAmountTy(PairTy)));
3423    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3424    break;
3425  }
3426  case ISD::SELECT:
3427    Tmp1 = Node->getOperand(0);
3428    Tmp2 = Node->getOperand(1);
3429    Tmp3 = Node->getOperand(2);
3430    if (Tmp1.getOpcode() == ISD::SETCC) {
3431      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3432                             Tmp2, Tmp3,
3433                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3434    } else {
3435      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3436                             DAG.getConstant(0, Tmp1.getValueType()),
3437                             Tmp2, Tmp3, ISD::SETNE);
3438    }
3439    Results.push_back(Tmp1);
3440    break;
3441  case ISD::BR_JT: {
3442    SDValue Chain = Node->getOperand(0);
3443    SDValue Table = Node->getOperand(1);
3444    SDValue Index = Node->getOperand(2);
3445
3446    EVT PTy = TLI.getPointerTy();
3447
3448    const TargetData &TD = *TLI.getTargetData();
3449    unsigned EntrySize =
3450      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3451
3452    Index = DAG.getNode(ISD::MUL, dl, PTy,
3453                        Index, DAG.getConstant(EntrySize, PTy));
3454    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3455
3456    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3457    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3458                                MachinePointerInfo::getJumpTable(), MemVT,
3459                                false, false, 0);
3460    Addr = LD;
3461    if (TM.getRelocationModel() == Reloc::PIC_) {
3462      // For PIC, the sequence is:
3463      // BRIND(load(Jumptable + index) + RelocBase)
3464      // RelocBase can be JumpTable, GOT or some sort of global base.
3465      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3466                          TLI.getPICJumpTableRelocBase(Table, DAG));
3467    }
3468    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3469    Results.push_back(Tmp1);
3470    break;
3471  }
3472  case ISD::BRCOND:
3473    // Expand brcond's setcc into its constituent parts and create a BR_CC
3474    // Node.
3475    Tmp1 = Node->getOperand(0);
3476    Tmp2 = Node->getOperand(1);
3477    if (Tmp2.getOpcode() == ISD::SETCC) {
3478      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3479                         Tmp1, Tmp2.getOperand(2),
3480                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3481                         Node->getOperand(2));
3482    } else {
3483      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3484                         DAG.getCondCode(ISD::SETNE), Tmp2,
3485                         DAG.getConstant(0, Tmp2.getValueType()),
3486                         Node->getOperand(2));
3487    }
3488    Results.push_back(Tmp1);
3489    break;
3490  case ISD::SETCC: {
3491    Tmp1 = Node->getOperand(0);
3492    Tmp2 = Node->getOperand(1);
3493    Tmp3 = Node->getOperand(2);
3494    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3495
3496    // If we expanded the SETCC into an AND/OR, return the new node
3497    if (Tmp2.getNode() == 0) {
3498      Results.push_back(Tmp1);
3499      break;
3500    }
3501
3502    // Otherwise, SETCC for the given comparison type must be completely
3503    // illegal; expand it into a SELECT_CC.
3504    EVT VT = Node->getValueType(0);
3505    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3506                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3507    Results.push_back(Tmp1);
3508    break;
3509  }
3510  case ISD::SELECT_CC: {
3511    Tmp1 = Node->getOperand(0);   // LHS
3512    Tmp2 = Node->getOperand(1);   // RHS
3513    Tmp3 = Node->getOperand(2);   // True
3514    Tmp4 = Node->getOperand(3);   // False
3515    SDValue CC = Node->getOperand(4);
3516
3517    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3518                          Tmp1, Tmp2, CC, dl);
3519
3520    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3521    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3522    CC = DAG.getCondCode(ISD::SETNE);
3523    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3524                       Tmp3, Tmp4, CC);
3525    Results.push_back(Tmp1);
3526    break;
3527  }
3528  case ISD::BR_CC: {
3529    Tmp1 = Node->getOperand(0);              // Chain
3530    Tmp2 = Node->getOperand(2);              // LHS
3531    Tmp3 = Node->getOperand(3);              // RHS
3532    Tmp4 = Node->getOperand(1);              // CC
3533
3534    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3535                          Tmp2, Tmp3, Tmp4, dl);
3536    LastCALLSEQ_END = DAG.getEntryNode();
3537
3538    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3539    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3540    Tmp4 = DAG.getCondCode(ISD::SETNE);
3541    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3542                       Tmp3, Node->getOperand(4));
3543    Results.push_back(Tmp1);
3544    break;
3545  }
3546  case ISD::GLOBAL_OFFSET_TABLE:
3547  case ISD::GlobalAddress:
3548  case ISD::GlobalTLSAddress:
3549  case ISD::ExternalSymbol:
3550  case ISD::ConstantPool:
3551  case ISD::JumpTable:
3552  case ISD::INTRINSIC_W_CHAIN:
3553  case ISD::INTRINSIC_WO_CHAIN:
3554  case ISD::INTRINSIC_VOID:
3555    // FIXME: Custom lowering for these operations shouldn't return null!
3556    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3557      Results.push_back(SDValue(Node, i));
3558    break;
3559  }
3560}
3561void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3562                                       SmallVectorImpl<SDValue> &Results) {
3563  EVT OVT = Node->getValueType(0);
3564  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3565      Node->getOpcode() == ISD::SINT_TO_FP ||
3566      Node->getOpcode() == ISD::SETCC) {
3567    OVT = Node->getOperand(0).getValueType();
3568  }
3569  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3570  DebugLoc dl = Node->getDebugLoc();
3571  SDValue Tmp1, Tmp2, Tmp3;
3572  switch (Node->getOpcode()) {
3573  case ISD::CTTZ:
3574  case ISD::CTLZ:
3575  case ISD::CTPOP:
3576    // Zero extend the argument.
3577    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3578    // Perform the larger operation.
3579    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3580    if (Node->getOpcode() == ISD::CTTZ) {
3581      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3582      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3583                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3584                          ISD::SETEQ);
3585      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3586                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3587    } else if (Node->getOpcode() == ISD::CTLZ) {
3588      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3589      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3590                          DAG.getConstant(NVT.getSizeInBits() -
3591                                          OVT.getSizeInBits(), NVT));
3592    }
3593    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3594    break;
3595  case ISD::BSWAP: {
3596    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3597    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3598    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3599    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3600                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3601    Results.push_back(Tmp1);
3602    break;
3603  }
3604  case ISD::FP_TO_UINT:
3605  case ISD::FP_TO_SINT:
3606    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3607                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3608    Results.push_back(Tmp1);
3609    break;
3610  case ISD::UINT_TO_FP:
3611  case ISD::SINT_TO_FP:
3612    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3613                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3614    Results.push_back(Tmp1);
3615    break;
3616  case ISD::AND:
3617  case ISD::OR:
3618  case ISD::XOR: {
3619    unsigned ExtOp, TruncOp;
3620    if (OVT.isVector()) {
3621      ExtOp   = ISD::BITCAST;
3622      TruncOp = ISD::BITCAST;
3623    } else {
3624      assert(OVT.isInteger() && "Cannot promote logic operation");
3625      ExtOp   = ISD::ANY_EXTEND;
3626      TruncOp = ISD::TRUNCATE;
3627    }
3628    // Promote each of the values to the new type.
3629    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3630    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3631    // Perform the larger operation, then convert back
3632    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3633    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3634    break;
3635  }
3636  case ISD::SELECT: {
3637    unsigned ExtOp, TruncOp;
3638    if (Node->getValueType(0).isVector()) {
3639      ExtOp   = ISD::BITCAST;
3640      TruncOp = ISD::BITCAST;
3641    } else if (Node->getValueType(0).isInteger()) {
3642      ExtOp   = ISD::ANY_EXTEND;
3643      TruncOp = ISD::TRUNCATE;
3644    } else {
3645      ExtOp   = ISD::FP_EXTEND;
3646      TruncOp = ISD::FP_ROUND;
3647    }
3648    Tmp1 = Node->getOperand(0);
3649    // Promote each of the values to the new type.
3650    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3651    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3652    // Perform the larger operation, then round down.
3653    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3654    if (TruncOp != ISD::FP_ROUND)
3655      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3656    else
3657      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3658                         DAG.getIntPtrConstant(0));
3659    Results.push_back(Tmp1);
3660    break;
3661  }
3662  case ISD::VECTOR_SHUFFLE: {
3663    SmallVector<int, 8> Mask;
3664    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3665
3666    // Cast the two input vectors.
3667    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3668    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3669
3670    // Convert the shuffle mask to the right # elements.
3671    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3672    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3673    Results.push_back(Tmp1);
3674    break;
3675  }
3676  case ISD::SETCC: {
3677    unsigned ExtOp = ISD::FP_EXTEND;
3678    if (NVT.isInteger()) {
3679      ISD::CondCode CCCode =
3680        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3681      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3682    }
3683    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3684    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3685    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3686                                  Tmp1, Tmp2, Node->getOperand(2)));
3687    break;
3688  }
3689  }
3690}
3691
3692// SelectionDAG::Legalize - This is the entry point for the file.
3693//
3694void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3695  /// run - This is the main entry point to this class.
3696  ///
3697  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3698}
3699
3700