LegalizeDAG.cpp revision 91053d585abf6b20b770532d007a8b7648d0621f
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/CodeGen/Analysis.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineJumpTableInfo.h"
21#include "llvm/DebugInfo.h"
22#include "llvm/IR/CallingConv.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/LLVMContext.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Target/TargetFrameLowering.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetMachine.h"
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
39/// hacks on it until the target machine can handle it.  This involves
40/// eliminating value sizes the machine cannot handle (promoting small sizes to
41/// large sizes or splitting up large values into small values) as well as
42/// eliminating operations the machine cannot handle.
43///
44/// This code also does a small amount of optimization and recognition of idioms
45/// as part of its processing.  For example, if a target does not support a
46/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
47/// will attempt merge setcc and brc instructions into brcc's.
48///
49namespace {
50class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
51  const TargetMachine &TM;
52  const TargetLowering &TLI;
53  SelectionDAG &DAG;
54
55  /// LegalizePosition - The iterator for walking through the node list.
56  SelectionDAG::allnodes_iterator LegalizePosition;
57
58  /// LegalizedNodes - The set of nodes which have already been legalized.
59  SmallPtrSet<SDNode *, 16> LegalizedNodes;
60
61  EVT getSetCCResultType(EVT VT) const {
62    return TLI.getSetCCResultType(*DAG.getContext(), VT);
63  }
64
65  // Libcall insertion helpers.
66
67public:
68  explicit SelectionDAGLegalize(SelectionDAG &DAG);
69
70  void LegalizeDAG();
71
72private:
73  /// LegalizeOp - Legalizes the given operation.
74  void LegalizeOp(SDNode *Node);
75
76  SDValue OptimizeFloatStore(StoreSDNode *ST);
77
78  void LegalizeLoadOps(SDNode *Node);
79  void LegalizeStoreOps(SDNode *Node);
80
81  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
82  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
83  /// is necessary to spill the vector being inserted into to memory, perform
84  /// the insert there, and then read the result back.
85  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
86                                         SDValue Idx, SDLoc dl);
87  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
88                                  SDValue Idx, SDLoc dl);
89
90  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
91  /// performs the same shuffe in terms of order or result bytes, but on a type
92  /// whose vector element type is narrower than the original shuffle type.
93  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
94  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
95                                     SDValue N1, SDValue N2,
96                                     ArrayRef<int> Mask) const;
97
98  bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
99                             SDLoc dl);
100
101  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
102  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
103                        unsigned NumOps, bool isSigned, SDLoc dl);
104
105  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
106                                                 SDNode *Node, bool isSigned);
107  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
108                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
109                          RTLIB::Libcall Call_F128,
110                          RTLIB::Libcall Call_PPCF128);
111  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
112                           RTLIB::Libcall Call_I8,
113                           RTLIB::Libcall Call_I16,
114                           RTLIB::Libcall Call_I32,
115                           RTLIB::Libcall Call_I64,
116                           RTLIB::Libcall Call_I128);
117  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
118  void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
119
120  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl);
121  SDValue ExpandBUILD_VECTOR(SDNode *Node);
122  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
123  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
124                                SmallVectorImpl<SDValue> &Results);
125  SDValue ExpandFCOPYSIGN(SDNode *Node);
126  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
127                               SDLoc dl);
128  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
129                                SDLoc dl);
130  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
131                                SDLoc dl);
132
133  SDValue ExpandBSWAP(SDValue Op, SDLoc dl);
134  SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl);
135
136  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
137  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
138  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
139
140  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
141
142  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
143
144  void ExpandNode(SDNode *Node);
145  void PromoteNode(SDNode *Node);
146
147  void ForgetNode(SDNode *N) {
148    LegalizedNodes.erase(N);
149    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
150      ++LegalizePosition;
151  }
152
153public:
154  // DAGUpdateListener implementation.
155  virtual void NodeDeleted(SDNode *N, SDNode *E) {
156    ForgetNode(N);
157  }
158  virtual void NodeUpdated(SDNode *N) {}
159
160  // Node replacement helpers
161  void ReplacedNode(SDNode *N) {
162    if (N->use_empty()) {
163      DAG.RemoveDeadNode(N);
164    } else {
165      ForgetNode(N);
166    }
167  }
168  void ReplaceNode(SDNode *Old, SDNode *New) {
169    DAG.ReplaceAllUsesWith(Old, New);
170    ReplacedNode(Old);
171  }
172  void ReplaceNode(SDValue Old, SDValue New) {
173    DAG.ReplaceAllUsesWith(Old, New);
174    ReplacedNode(Old.getNode());
175  }
176  void ReplaceNode(SDNode *Old, const SDValue *New) {
177    DAG.ReplaceAllUsesWith(Old, New);
178    ReplacedNode(Old);
179  }
180};
181}
182
183/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
184/// performs the same shuffe in terms of order or result bytes, but on a type
185/// whose vector element type is narrower than the original shuffle type.
186/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
187SDValue
188SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  SDLoc dl,
189                                                 SDValue N1, SDValue N2,
190                                                 ArrayRef<int> Mask) const {
191  unsigned NumMaskElts = VT.getVectorNumElements();
192  unsigned NumDestElts = NVT.getVectorNumElements();
193  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
194
195  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
196
197  if (NumEltsGrowth == 1)
198    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
199
200  SmallVector<int, 8> NewMask;
201  for (unsigned i = 0; i != NumMaskElts; ++i) {
202    int Idx = Mask[i];
203    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
204      if (Idx < 0)
205        NewMask.push_back(-1);
206      else
207        NewMask.push_back(Idx * NumEltsGrowth + j);
208    }
209  }
210  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
211  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
212  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
213}
214
215SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
216  : SelectionDAG::DAGUpdateListener(dag),
217    TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
218    DAG(dag) {
219}
220
221void SelectionDAGLegalize::LegalizeDAG() {
222  DAG.AssignTopologicalOrder();
223
224  // Visit all the nodes. We start in topological order, so that we see
225  // nodes with their original operands intact. Legalization can produce
226  // new nodes which may themselves need to be legalized. Iterate until all
227  // nodes have been legalized.
228  for (;;) {
229    bool AnyLegalized = false;
230    for (LegalizePosition = DAG.allnodes_end();
231         LegalizePosition != DAG.allnodes_begin(); ) {
232      --LegalizePosition;
233
234      SDNode *N = LegalizePosition;
235      if (LegalizedNodes.insert(N)) {
236        AnyLegalized = true;
237        LegalizeOp(N);
238      }
239    }
240    if (!AnyLegalized)
241      break;
242
243  }
244
245  // Remove dead nodes now.
246  DAG.RemoveDeadNodes();
247}
248
249/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
250/// a load from the constant pool.
251SDValue
252SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
253  bool Extend = false;
254  SDLoc dl(CFP);
255
256  // If a FP immediate is precise when represented as a float and if the
257  // target can do an extending load from float to double, we put it into
258  // the constant pool as a float, even if it's is statically typed as a
259  // double.  This shrinks FP constants and canonicalizes them for targets where
260  // an FP extending load is the same cost as a normal load (such as on the x87
261  // fp stack or PPC FP unit).
262  EVT VT = CFP->getValueType(0);
263  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
264  if (!UseCP) {
265    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
266    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
267                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
268  }
269
270  EVT OrigVT = VT;
271  EVT SVT = VT;
272  while (SVT != MVT::f32) {
273    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
274    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
275        // Only do this if the target has a native EXTLOAD instruction from
276        // smaller type.
277        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
278        TLI.ShouldShrinkFPConstant(OrigVT)) {
279      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
280      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
281      VT = SVT;
282      Extend = true;
283    }
284  }
285
286  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
287  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
288  if (Extend) {
289    SDValue Result =
290      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
291                     DAG.getEntryNode(),
292                     CPIdx, MachinePointerInfo::getConstantPool(),
293                     VT, false, false, Alignment);
294    return Result;
295  }
296  SDValue Result =
297    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
298                MachinePointerInfo::getConstantPool(), false, false, false,
299                Alignment);
300  return Result;
301}
302
303/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
304static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
305                                 const TargetLowering &TLI,
306                                 SelectionDAGLegalize *DAGLegalize) {
307  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
308         "unaligned indexed stores not implemented!");
309  SDValue Chain = ST->getChain();
310  SDValue Ptr = ST->getBasePtr();
311  SDValue Val = ST->getValue();
312  EVT VT = Val.getValueType();
313  int Alignment = ST->getAlignment();
314  unsigned AS = ST->getAddressSpace();
315
316  SDLoc dl(ST);
317  if (ST->getMemoryVT().isFloatingPoint() ||
318      ST->getMemoryVT().isVector()) {
319    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
320    if (TLI.isTypeLegal(intVT)) {
321      // Expand to a bitconvert of the value to the integer type of the
322      // same size, then a (misaligned) int store.
323      // FIXME: Does not handle truncating floating point stores!
324      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
325      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
326                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
327      DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
328      return;
329    }
330    // Do a (aligned) store to a stack slot, then copy from the stack slot
331    // to the final destination using (unaligned) integer loads and stores.
332    EVT StoredVT = ST->getMemoryVT();
333    MVT RegVT =
334      TLI.getRegisterType(*DAG.getContext(),
335                          EVT::getIntegerVT(*DAG.getContext(),
336                                            StoredVT.getSizeInBits()));
337    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
338    unsigned RegBytes = RegVT.getSizeInBits() / 8;
339    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
340
341    // Make sure the stack slot is also aligned for the register type.
342    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
343
344    // Perform the original store, only redirected to the stack slot.
345    SDValue Store = DAG.getTruncStore(Chain, dl,
346                                      Val, StackPtr, MachinePointerInfo(),
347                                      StoredVT, false, false, 0);
348    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy(AS));
349    SmallVector<SDValue, 8> Stores;
350    unsigned Offset = 0;
351
352    // Do all but one copies using the full register width.
353    for (unsigned i = 1; i < NumRegs; i++) {
354      // Load one integer register's worth from the stack slot.
355      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
356                                 MachinePointerInfo(),
357                                 false, false, false, 0);
358      // Store it to the final location.  Remember the store.
359      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
360                                  ST->getPointerInfo().getWithOffset(Offset),
361                                    ST->isVolatile(), ST->isNonTemporal(),
362                                    MinAlign(ST->getAlignment(), Offset)));
363      // Increment the pointers.
364      Offset += RegBytes;
365      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
366                             Increment);
367      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
368    }
369
370    // The last store may be partial.  Do a truncating store.  On big-endian
371    // machines this requires an extending load from the stack slot to ensure
372    // that the bits are in the right place.
373    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
374                                  8 * (StoredBytes - Offset));
375
376    // Load from the stack slot.
377    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
378                                  MachinePointerInfo(),
379                                  MemVT, false, false, 0);
380
381    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
382                                       ST->getPointerInfo()
383                                         .getWithOffset(Offset),
384                                       MemVT, ST->isVolatile(),
385                                       ST->isNonTemporal(),
386                                       MinAlign(ST->getAlignment(), Offset),
387                                       ST->getTBAAInfo()));
388    // The order of the stores doesn't matter - say it with a TokenFactor.
389    SDValue Result =
390      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
391                  Stores.size());
392    DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
393    return;
394  }
395  assert(ST->getMemoryVT().isInteger() &&
396         !ST->getMemoryVT().isVector() &&
397         "Unaligned store of unknown type.");
398  // Get the half-size VT
399  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
400  int NumBits = NewStoredVT.getSizeInBits();
401  int IncrementSize = NumBits / 8;
402
403  // Divide the stored value in two parts.
404  SDValue ShiftAmount = DAG.getConstant(NumBits,
405                                      TLI.getShiftAmountTy(Val.getValueType()));
406  SDValue Lo = Val;
407  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
408
409  // Store the two parts
410  SDValue Store1, Store2;
411  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
412                             ST->getPointerInfo(), NewStoredVT,
413                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
414
415  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
416                    DAG.getConstant(IncrementSize, TLI.getPointerTy(AS)));
417  Alignment = MinAlign(Alignment, IncrementSize);
418  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
419                             ST->getPointerInfo().getWithOffset(IncrementSize),
420                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
421                             Alignment, ST->getTBAAInfo());
422
423  SDValue Result =
424    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
425  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
426}
427
428/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
429static void
430ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
431                    const TargetLowering &TLI,
432                    SDValue &ValResult, SDValue &ChainResult) {
433  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
434         "unaligned indexed loads not implemented!");
435  SDValue Chain = LD->getChain();
436  SDValue Ptr = LD->getBasePtr();
437  EVT VT = LD->getValueType(0);
438  EVT LoadedVT = LD->getMemoryVT();
439  SDLoc dl(LD);
440  if (VT.isFloatingPoint() || VT.isVector()) {
441    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
442    if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
443      // Expand to a (misaligned) integer load of the same size,
444      // then bitconvert to floating point or vector.
445      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
446                                    LD->getMemOperand());
447      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
448      if (LoadedVT != VT)
449        Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
450                             ISD::ANY_EXTEND, dl, VT, Result);
451
452      ValResult = Result;
453      ChainResult = Chain;
454      return;
455    }
456
457    // Copy the value to a (aligned) stack slot using (unaligned) integer
458    // loads and stores, then do a (aligned) load from the stack slot.
459    MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
460    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
461    unsigned RegBytes = RegVT.getSizeInBits() / 8;
462    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
463
464    // Make sure the stack slot is also aligned for the register type.
465    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
466
467    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
468    SmallVector<SDValue, 8> Stores;
469    SDValue StackPtr = StackBase;
470    unsigned Offset = 0;
471
472    // Do all but one copies using the full register width.
473    for (unsigned i = 1; i < NumRegs; i++) {
474      // Load one integer register's worth from the original location.
475      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
476                                 LD->getPointerInfo().getWithOffset(Offset),
477                                 LD->isVolatile(), LD->isNonTemporal(),
478                                 LD->isInvariant(),
479                                 MinAlign(LD->getAlignment(), Offset),
480                                 LD->getTBAAInfo());
481      // Follow the load with a store to the stack slot.  Remember the store.
482      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
483                                    MachinePointerInfo(), false, false, 0));
484      // Increment the pointers.
485      Offset += RegBytes;
486      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
487      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
488                             Increment);
489    }
490
491    // The last copy may be partial.  Do an extending load.
492    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
493                                  8 * (LoadedBytes - Offset));
494    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
495                                  LD->getPointerInfo().getWithOffset(Offset),
496                                  MemVT, LD->isVolatile(),
497                                  LD->isNonTemporal(),
498                                  MinAlign(LD->getAlignment(), Offset),
499                                  LD->getTBAAInfo());
500    // Follow the load with a store to the stack slot.  Remember the store.
501    // On big-endian machines this requires a truncating store to ensure
502    // that the bits end up in the right place.
503    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
504                                       MachinePointerInfo(), MemVT,
505                                       false, false, 0));
506
507    // The order of the stores doesn't matter - say it with a TokenFactor.
508    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
509                             Stores.size());
510
511    // Finally, perform the original load only redirected to the stack slot.
512    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
513                          MachinePointerInfo(), LoadedVT, false, false, 0);
514
515    // Callers expect a MERGE_VALUES node.
516    ValResult = Load;
517    ChainResult = TF;
518    return;
519  }
520  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
521         "Unaligned load of unsupported type.");
522
523  // Compute the new VT that is half the size of the old one.  This is an
524  // integer MVT.
525  unsigned NumBits = LoadedVT.getSizeInBits();
526  EVT NewLoadedVT;
527  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
528  NumBits >>= 1;
529
530  unsigned Alignment = LD->getAlignment();
531  unsigned IncrementSize = NumBits / 8;
532  ISD::LoadExtType HiExtType = LD->getExtensionType();
533
534  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
535  if (HiExtType == ISD::NON_EXTLOAD)
536    HiExtType = ISD::ZEXTLOAD;
537
538  // Load the value in two parts
539  SDValue Lo, Hi;
540  if (TLI.isLittleEndian()) {
541    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
542                        NewLoadedVT, LD->isVolatile(),
543                        LD->isNonTemporal(), Alignment, LD->getTBAAInfo());
544    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
545                      DAG.getConstant(IncrementSize, Ptr.getValueType()));
546    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
547                        LD->getPointerInfo().getWithOffset(IncrementSize),
548                        NewLoadedVT, LD->isVolatile(),
549                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize),
550                        LD->getTBAAInfo());
551  } else {
552    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
553                        NewLoadedVT, LD->isVolatile(),
554                        LD->isNonTemporal(), Alignment, LD->getTBAAInfo());
555    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
556                      DAG.getConstant(IncrementSize, Ptr.getValueType()));
557    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
558                        LD->getPointerInfo().getWithOffset(IncrementSize),
559                        NewLoadedVT, LD->isVolatile(),
560                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize),
561                        LD->getTBAAInfo());
562  }
563
564  // aggregate the two parts
565  SDValue ShiftAmount = DAG.getConstant(NumBits,
566                                       TLI.getShiftAmountTy(Hi.getValueType()));
567  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
568  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
569
570  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
571                             Hi.getValue(1));
572
573  ValResult = Result;
574  ChainResult = TF;
575}
576
577/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
578/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
579/// is necessary to spill the vector being inserted into to memory, perform
580/// the insert there, and then read the result back.
581SDValue SelectionDAGLegalize::
582PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
583                               SDLoc dl) {
584  SDValue Tmp1 = Vec;
585  SDValue Tmp2 = Val;
586  SDValue Tmp3 = Idx;
587
588  // If the target doesn't support this, we have to spill the input vector
589  // to a temporary stack slot, update the element, then reload it.  This is
590  // badness.  We could also load the value into a vector register (either
591  // with a "move to register" or "extload into register" instruction, then
592  // permute it into place, if the idx is a constant and if the idx is
593  // supported by the target.
594  EVT VT    = Tmp1.getValueType();
595  EVT EltVT = VT.getVectorElementType();
596  EVT IdxVT = Tmp3.getValueType();
597  EVT PtrVT = TLI.getPointerTy();
598  SDValue StackPtr = DAG.CreateStackTemporary(VT);
599
600  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
601
602  // Store the vector.
603  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
604                            MachinePointerInfo::getFixedStack(SPFI),
605                            false, false, 0);
606
607  // Truncate or zero extend offset to target pointer type.
608  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
609  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
610  // Add the offset to the index.
611  unsigned EltSize = EltVT.getSizeInBits()/8;
612  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
613  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
614  // Store the scalar value.
615  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
616                         false, false, 0);
617  // Load the updated vector.
618  return DAG.getLoad(VT, dl, Ch, StackPtr,
619                     MachinePointerInfo::getFixedStack(SPFI), false, false,
620                     false, 0);
621}
622
623
624SDValue SelectionDAGLegalize::
625ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) {
626  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
627    // SCALAR_TO_VECTOR requires that the type of the value being inserted
628    // match the element type of the vector being created, except for
629    // integers in which case the inserted value can be over width.
630    EVT EltVT = Vec.getValueType().getVectorElementType();
631    if (Val.getValueType() == EltVT ||
632        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
633      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
634                                  Vec.getValueType(), Val);
635
636      unsigned NumElts = Vec.getValueType().getVectorNumElements();
637      // We generate a shuffle of InVec and ScVec, so the shuffle mask
638      // should be 0,1,2,3,4,5... with the appropriate element replaced with
639      // elt 0 of the RHS.
640      SmallVector<int, 8> ShufOps;
641      for (unsigned i = 0; i != NumElts; ++i)
642        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
643
644      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
645                                  &ShufOps[0]);
646    }
647  }
648  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
649}
650
651SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
652  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
653  // FIXME: We shouldn't do this for TargetConstantFP's.
654  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
655  // to phase ordering between legalized code and the dag combiner.  This
656  // probably means that we need to integrate dag combiner and legalizer
657  // together.
658  // We generally can't do this one for long doubles.
659  SDValue Chain = ST->getChain();
660  SDValue Ptr = ST->getBasePtr();
661  unsigned Alignment = ST->getAlignment();
662  bool isVolatile = ST->isVolatile();
663  bool isNonTemporal = ST->isNonTemporal();
664  const MDNode *TBAAInfo = ST->getTBAAInfo();
665  SDLoc dl(ST);
666  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
667    if (CFP->getValueType(0) == MVT::f32 &&
668        TLI.isTypeLegal(MVT::i32)) {
669      SDValue Con = DAG.getConstant(CFP->getValueAPF().
670                                      bitcastToAPInt().zextOrTrunc(32),
671                              MVT::i32);
672      return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
673                          isVolatile, isNonTemporal, Alignment, TBAAInfo);
674    }
675
676    if (CFP->getValueType(0) == MVT::f64) {
677      // If this target supports 64-bit registers, do a single 64-bit store.
678      if (TLI.isTypeLegal(MVT::i64)) {
679        SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
680                                  zextOrTrunc(64), MVT::i64);
681        return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
682                            isVolatile, isNonTemporal, Alignment, TBAAInfo);
683      }
684
685      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
686        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
687        // stores.  If the target supports neither 32- nor 64-bits, this
688        // xform is certainly not worth it.
689        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
690        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
691        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
692        if (TLI.isBigEndian()) std::swap(Lo, Hi);
693
694        Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
695                          isNonTemporal, Alignment, TBAAInfo);
696        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
697                          DAG.getConstant(4, Ptr.getValueType()));
698        Hi = DAG.getStore(Chain, dl, Hi, Ptr,
699                          ST->getPointerInfo().getWithOffset(4),
700                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U),
701                          TBAAInfo);
702
703        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
704      }
705    }
706  }
707  return SDValue(0, 0);
708}
709
710void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
711    StoreSDNode *ST = cast<StoreSDNode>(Node);
712    SDValue Chain = ST->getChain();
713    SDValue Ptr = ST->getBasePtr();
714    SDLoc dl(Node);
715
716    unsigned Alignment = ST->getAlignment();
717    bool isVolatile = ST->isVolatile();
718    bool isNonTemporal = ST->isNonTemporal();
719    const MDNode *TBAAInfo = ST->getTBAAInfo();
720
721    if (!ST->isTruncatingStore()) {
722      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
723        ReplaceNode(ST, OptStore);
724        return;
725      }
726
727      {
728        SDValue Value = ST->getValue();
729        MVT VT = Value.getSimpleValueType();
730        switch (TLI.getOperationAction(ISD::STORE, VT)) {
731        default: llvm_unreachable("This action is not supported yet!");
732        case TargetLowering::Legal:
733          // If this is an unaligned store and the target doesn't support it,
734          // expand it.
735          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
736            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
737            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
738            if (ST->getAlignment() < ABIAlignment)
739              ExpandUnalignedStore(cast<StoreSDNode>(Node),
740                                   DAG, TLI, this);
741          }
742          break;
743        case TargetLowering::Custom: {
744          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
745          if (Res.getNode())
746            ReplaceNode(SDValue(Node, 0), Res);
747          return;
748        }
749        case TargetLowering::Promote: {
750          MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
751          assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
752                 "Can only promote stores to same size type");
753          Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
754          SDValue Result =
755            DAG.getStore(Chain, dl, Value, Ptr,
756                         ST->getPointerInfo(), isVolatile,
757                         isNonTemporal, Alignment, TBAAInfo);
758          ReplaceNode(SDValue(Node, 0), Result);
759          break;
760        }
761        }
762        return;
763      }
764    } else {
765      SDValue Value = ST->getValue();
766
767      EVT StVT = ST->getMemoryVT();
768      unsigned StWidth = StVT.getSizeInBits();
769
770      if (StWidth != StVT.getStoreSizeInBits()) {
771        // Promote to a byte-sized store with upper bits zero if not
772        // storing an integral number of bytes.  For example, promote
773        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
774        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
775                                    StVT.getStoreSizeInBits());
776        Value = DAG.getZeroExtendInReg(Value, dl, StVT);
777        SDValue Result =
778          DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
779                            NVT, isVolatile, isNonTemporal, Alignment,
780                            TBAAInfo);
781        ReplaceNode(SDValue(Node, 0), Result);
782      } else if (StWidth & (StWidth - 1)) {
783        // If not storing a power-of-2 number of bits, expand as two stores.
784        assert(!StVT.isVector() && "Unsupported truncstore!");
785        unsigned RoundWidth = 1 << Log2_32(StWidth);
786        assert(RoundWidth < StWidth);
787        unsigned ExtraWidth = StWidth - RoundWidth;
788        assert(ExtraWidth < RoundWidth);
789        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
790               "Store size not an integral number of bytes!");
791        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
792        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
793        SDValue Lo, Hi;
794        unsigned IncrementSize;
795
796        if (TLI.isLittleEndian()) {
797          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
798          // Store the bottom RoundWidth bits.
799          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
800                                 RoundVT,
801                                 isVolatile, isNonTemporal, Alignment,
802                                 TBAAInfo);
803
804          // Store the remaining ExtraWidth bits.
805          IncrementSize = RoundWidth / 8;
806          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
807                            DAG.getConstant(IncrementSize, Ptr.getValueType()));
808          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
809                           DAG.getConstant(RoundWidth,
810                                    TLI.getShiftAmountTy(Value.getValueType())));
811          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
812                             ST->getPointerInfo().getWithOffset(IncrementSize),
813                                 ExtraVT, isVolatile, isNonTemporal,
814                                 MinAlign(Alignment, IncrementSize), TBAAInfo);
815        } else {
816          // Big endian - avoid unaligned stores.
817          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
818          // Store the top RoundWidth bits.
819          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
820                           DAG.getConstant(ExtraWidth,
821                                    TLI.getShiftAmountTy(Value.getValueType())));
822          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
823                                 RoundVT, isVolatile, isNonTemporal, Alignment,
824                                 TBAAInfo);
825
826          // Store the remaining ExtraWidth bits.
827          IncrementSize = RoundWidth / 8;
828          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
829                             DAG.getConstant(IncrementSize, Ptr.getValueType()));
830          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
831                              ST->getPointerInfo().getWithOffset(IncrementSize),
832                                 ExtraVT, isVolatile, isNonTemporal,
833                                 MinAlign(Alignment, IncrementSize), TBAAInfo);
834        }
835
836        // The order of the stores doesn't matter.
837        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
838        ReplaceNode(SDValue(Node, 0), Result);
839      } else {
840        switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(),
841                                        StVT.getSimpleVT())) {
842        default: llvm_unreachable("This action is not supported yet!");
843        case TargetLowering::Legal:
844          // If this is an unaligned store and the target doesn't support it,
845          // expand it.
846          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
847            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
848            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
849            if (ST->getAlignment() < ABIAlignment)
850              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
851          }
852          break;
853        case TargetLowering::Custom: {
854          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
855          if (Res.getNode())
856            ReplaceNode(SDValue(Node, 0), Res);
857          return;
858        }
859        case TargetLowering::Expand:
860          assert(!StVT.isVector() &&
861                 "Vector Stores are handled in LegalizeVectorOps");
862
863          // TRUNCSTORE:i16 i32 -> STORE i16
864          assert(TLI.isTypeLegal(StVT) &&
865                 "Do not know how to expand this store!");
866          Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
867          SDValue Result =
868            DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
869                         isVolatile, isNonTemporal, Alignment, TBAAInfo);
870          ReplaceNode(SDValue(Node, 0), Result);
871          break;
872        }
873      }
874    }
875}
876
877void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
878  LoadSDNode *LD = cast<LoadSDNode>(Node);
879  SDValue Chain = LD->getChain();  // The chain.
880  SDValue Ptr = LD->getBasePtr();  // The base pointer.
881  SDValue Value;                   // The value returned by the load op.
882  SDLoc dl(Node);
883
884  ISD::LoadExtType ExtType = LD->getExtensionType();
885  if (ExtType == ISD::NON_EXTLOAD) {
886    MVT VT = Node->getSimpleValueType(0);
887    SDValue RVal = SDValue(Node, 0);
888    SDValue RChain = SDValue(Node, 1);
889
890    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
891    default: llvm_unreachable("This action is not supported yet!");
892    case TargetLowering::Legal:
893      // If this is an unaligned load and the target doesn't support it,
894      // expand it.
895      if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
896        Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
897        unsigned ABIAlignment =
898          TLI.getDataLayout()->getABITypeAlignment(Ty);
899        if (LD->getAlignment() < ABIAlignment){
900          ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
901        }
902      }
903      break;
904    case TargetLowering::Custom: {
905      SDValue Res = TLI.LowerOperation(RVal, DAG);
906      if (Res.getNode()) {
907        RVal = Res;
908        RChain = Res.getValue(1);
909      }
910      break;
911    }
912    case TargetLowering::Promote: {
913      MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
914      assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
915             "Can only promote loads to same size type");
916
917      SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
918      RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
919      RChain = Res.getValue(1);
920      break;
921    }
922    }
923    if (RChain.getNode() != Node) {
924      assert(RVal.getNode() != Node && "Load must be completely replaced");
925      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
926      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
927      ReplacedNode(Node);
928    }
929    return;
930  }
931
932  EVT SrcVT = LD->getMemoryVT();
933  unsigned SrcWidth = SrcVT.getSizeInBits();
934  unsigned Alignment = LD->getAlignment();
935  bool isVolatile = LD->isVolatile();
936  bool isNonTemporal = LD->isNonTemporal();
937  const MDNode *TBAAInfo = LD->getTBAAInfo();
938
939  if (SrcWidth != SrcVT.getStoreSizeInBits() &&
940      // Some targets pretend to have an i1 loading operation, and actually
941      // load an i8.  This trick is correct for ZEXTLOAD because the top 7
942      // bits are guaranteed to be zero; it helps the optimizers understand
943      // that these bits are zero.  It is also useful for EXTLOAD, since it
944      // tells the optimizers that those bits are undefined.  It would be
945      // nice to have an effective generic way of getting these benefits...
946      // Until such a way is found, don't insist on promoting i1 here.
947      (SrcVT != MVT::i1 ||
948       TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
949    // Promote to a byte-sized load if not loading an integral number of
950    // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
951    unsigned NewWidth = SrcVT.getStoreSizeInBits();
952    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
953    SDValue Ch;
954
955    // The extra bits are guaranteed to be zero, since we stored them that
956    // way.  A zext load from NVT thus automatically gives zext from SrcVT.
957
958    ISD::LoadExtType NewExtType =
959      ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
960
961    SDValue Result =
962      DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
963                     Chain, Ptr, LD->getPointerInfo(),
964                     NVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
965
966    Ch = Result.getValue(1); // The chain.
967
968    if (ExtType == ISD::SEXTLOAD)
969      // Having the top bits zero doesn't help when sign extending.
970      Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
971                           Result.getValueType(),
972                           Result, DAG.getValueType(SrcVT));
973    else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
974      // All the top bits are guaranteed to be zero - inform the optimizers.
975      Result = DAG.getNode(ISD::AssertZext, dl,
976                           Result.getValueType(), Result,
977                           DAG.getValueType(SrcVT));
978
979    Value = Result;
980    Chain = Ch;
981  } else if (SrcWidth & (SrcWidth - 1)) {
982    // If not loading a power-of-2 number of bits, expand as two loads.
983    assert(!SrcVT.isVector() && "Unsupported extload!");
984    unsigned RoundWidth = 1 << Log2_32(SrcWidth);
985    assert(RoundWidth < SrcWidth);
986    unsigned ExtraWidth = SrcWidth - RoundWidth;
987    assert(ExtraWidth < RoundWidth);
988    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
989           "Load size not an integral number of bytes!");
990    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
991    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
992    SDValue Lo, Hi, Ch;
993    unsigned IncrementSize;
994
995    if (TLI.isLittleEndian()) {
996      // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
997      // Load the bottom RoundWidth bits.
998      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
999                          Chain, Ptr,
1000                          LD->getPointerInfo(), RoundVT, isVolatile,
1001                          isNonTemporal, Alignment, TBAAInfo);
1002
1003      // Load the remaining ExtraWidth bits.
1004      IncrementSize = RoundWidth / 8;
1005      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1006                         DAG.getConstant(IncrementSize, Ptr.getValueType()));
1007      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1008                          LD->getPointerInfo().getWithOffset(IncrementSize),
1009                          ExtraVT, isVolatile, isNonTemporal,
1010                          MinAlign(Alignment, IncrementSize), TBAAInfo);
1011
1012      // Build a factor node to remember that this load is independent of
1013      // the other one.
1014      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1015                       Hi.getValue(1));
1016
1017      // Move the top bits to the right place.
1018      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1019                       DAG.getConstant(RoundWidth,
1020                                       TLI.getShiftAmountTy(Hi.getValueType())));
1021
1022      // Join the hi and lo parts.
1023      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1024    } else {
1025      // Big endian - avoid unaligned loads.
1026      // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1027      // Load the top RoundWidth bits.
1028      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1029                          LD->getPointerInfo(), RoundVT, isVolatile,
1030                          isNonTemporal, Alignment, TBAAInfo);
1031
1032      // Load the remaining ExtraWidth bits.
1033      IncrementSize = RoundWidth / 8;
1034      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1035                         DAG.getConstant(IncrementSize, Ptr.getValueType()));
1036      Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1037                          dl, Node->getValueType(0), Chain, Ptr,
1038                          LD->getPointerInfo().getWithOffset(IncrementSize),
1039                          ExtraVT, isVolatile, isNonTemporal,
1040                          MinAlign(Alignment, IncrementSize), TBAAInfo);
1041
1042      // Build a factor node to remember that this load is independent of
1043      // the other one.
1044      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1045                       Hi.getValue(1));
1046
1047      // Move the top bits to the right place.
1048      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1049                       DAG.getConstant(ExtraWidth,
1050                                       TLI.getShiftAmountTy(Hi.getValueType())));
1051
1052      // Join the hi and lo parts.
1053      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1054    }
1055
1056    Chain = Ch;
1057  } else {
1058    bool isCustom = false;
1059    switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) {
1060    default: llvm_unreachable("This action is not supported yet!");
1061    case TargetLowering::Custom:
1062             isCustom = true;
1063             // FALLTHROUGH
1064    case TargetLowering::Legal: {
1065             Value = SDValue(Node, 0);
1066             Chain = SDValue(Node, 1);
1067
1068             if (isCustom) {
1069               SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1070               if (Res.getNode()) {
1071                 Value = Res;
1072                 Chain = Res.getValue(1);
1073               }
1074             } else {
1075               // If this is an unaligned load and the target doesn't support it,
1076               // expand it.
1077               if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1078                 Type *Ty =
1079                   LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1080                 unsigned ABIAlignment =
1081                   TLI.getDataLayout()->getABITypeAlignment(Ty);
1082                 if (LD->getAlignment() < ABIAlignment){
1083                   ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1084                                       DAG, TLI, Value, Chain);
1085                 }
1086               }
1087             }
1088             break;
1089    }
1090    case TargetLowering::Expand:
1091             if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1092               SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
1093                                          LD->getMemOperand());
1094               unsigned ExtendOp;
1095               switch (ExtType) {
1096               case ISD::EXTLOAD:
1097                 ExtendOp = (SrcVT.isFloatingPoint() ?
1098                             ISD::FP_EXTEND : ISD::ANY_EXTEND);
1099                 break;
1100               case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1101               case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1102               default: llvm_unreachable("Unexpected extend load type!");
1103               }
1104               Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1105               Chain = Load.getValue(1);
1106               break;
1107             }
1108
1109             assert(!SrcVT.isVector() &&
1110                    "Vector Loads are handled in LegalizeVectorOps");
1111
1112             // FIXME: This does not work for vectors on most targets.  Sign- and
1113             // zero-extend operations are currently folded into extending loads,
1114             // whether they are legal or not, and then we end up here without any
1115             // support for legalizing them.
1116             assert(ExtType != ISD::EXTLOAD &&
1117                    "EXTLOAD should always be supported!");
1118             // Turn the unsupported load into an EXTLOAD followed by an explicit
1119             // zero/sign extend inreg.
1120             SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1121                                             Chain, Ptr, SrcVT,
1122                                             LD->getMemOperand());
1123             SDValue ValRes;
1124             if (ExtType == ISD::SEXTLOAD)
1125               ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1126                                    Result.getValueType(),
1127                                    Result, DAG.getValueType(SrcVT));
1128             else
1129               ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1130             Value = ValRes;
1131             Chain = Result.getValue(1);
1132             break;
1133    }
1134  }
1135
1136  // Since loads produce two values, make sure to remember that we legalized
1137  // both of them.
1138  if (Chain.getNode() != Node) {
1139    assert(Value.getNode() != Node && "Load must be completely replaced");
1140    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
1141    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1142    ReplacedNode(Node);
1143  }
1144}
1145
1146/// LegalizeOp - Return a legal replacement for the given operation, with
1147/// all legal operands.
1148void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
1149  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
1150    return;
1151
1152  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1153    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
1154             TargetLowering::TypeLegal &&
1155           "Unexpected illegal type!");
1156
1157  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1158    assert((TLI.getTypeAction(*DAG.getContext(),
1159                              Node->getOperand(i).getValueType()) ==
1160              TargetLowering::TypeLegal ||
1161            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
1162           "Unexpected illegal type!");
1163
1164  // Figure out the correct action; the way to query this varies by opcode
1165  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
1166  bool SimpleFinishLegalizing = true;
1167  switch (Node->getOpcode()) {
1168  case ISD::INTRINSIC_W_CHAIN:
1169  case ISD::INTRINSIC_WO_CHAIN:
1170  case ISD::INTRINSIC_VOID:
1171  case ISD::STACKSAVE:
1172    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1173    break;
1174  case ISD::VAARG:
1175    Action = TLI.getOperationAction(Node->getOpcode(),
1176                                    Node->getValueType(0));
1177    if (Action != TargetLowering::Promote)
1178      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1179    break;
1180  case ISD::SINT_TO_FP:
1181  case ISD::UINT_TO_FP:
1182  case ISD::EXTRACT_VECTOR_ELT:
1183    Action = TLI.getOperationAction(Node->getOpcode(),
1184                                    Node->getOperand(0).getValueType());
1185    break;
1186  case ISD::FP_ROUND_INREG:
1187  case ISD::SIGN_EXTEND_INREG: {
1188    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1189    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1190    break;
1191  }
1192  case ISD::ATOMIC_STORE: {
1193    Action = TLI.getOperationAction(Node->getOpcode(),
1194                                    Node->getOperand(2).getValueType());
1195    break;
1196  }
1197  case ISD::SELECT_CC:
1198  case ISD::SETCC:
1199  case ISD::BR_CC: {
1200    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1201                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
1202    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1203    MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1204    ISD::CondCode CCCode =
1205        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1206    Action = TLI.getCondCodeAction(CCCode, OpVT);
1207    if (Action == TargetLowering::Legal) {
1208      if (Node->getOpcode() == ISD::SELECT_CC)
1209        Action = TLI.getOperationAction(Node->getOpcode(),
1210                                        Node->getValueType(0));
1211      else
1212        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1213    }
1214    break;
1215  }
1216  case ISD::LOAD:
1217  case ISD::STORE:
1218    // FIXME: Model these properly.  LOAD and STORE are complicated, and
1219    // STORE expects the unlegalized operand in some cases.
1220    SimpleFinishLegalizing = false;
1221    break;
1222  case ISD::CALLSEQ_START:
1223  case ISD::CALLSEQ_END:
1224    // FIXME: This shouldn't be necessary.  These nodes have special properties
1225    // dealing with the recursive nature of legalization.  Removing this
1226    // special case should be done as part of making LegalizeDAG non-recursive.
1227    SimpleFinishLegalizing = false;
1228    break;
1229  case ISD::EXTRACT_ELEMENT:
1230  case ISD::FLT_ROUNDS_:
1231  case ISD::SADDO:
1232  case ISD::SSUBO:
1233  case ISD::UADDO:
1234  case ISD::USUBO:
1235  case ISD::SMULO:
1236  case ISD::UMULO:
1237  case ISD::FPOWI:
1238  case ISD::MERGE_VALUES:
1239  case ISD::EH_RETURN:
1240  case ISD::FRAME_TO_ARGS_OFFSET:
1241  case ISD::EH_SJLJ_SETJMP:
1242  case ISD::EH_SJLJ_LONGJMP:
1243    // These operations lie about being legal: when they claim to be legal,
1244    // they should actually be expanded.
1245    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1246    if (Action == TargetLowering::Legal)
1247      Action = TargetLowering::Expand;
1248    break;
1249  case ISD::INIT_TRAMPOLINE:
1250  case ISD::ADJUST_TRAMPOLINE:
1251  case ISD::FRAMEADDR:
1252  case ISD::RETURNADDR:
1253    // These operations lie about being legal: when they claim to be legal,
1254    // they should actually be custom-lowered.
1255    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1256    if (Action == TargetLowering::Legal)
1257      Action = TargetLowering::Custom;
1258    break;
1259  case ISD::DEBUGTRAP:
1260    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1261    if (Action == TargetLowering::Expand) {
1262      // replace ISD::DEBUGTRAP with ISD::TRAP
1263      SDValue NewVal;
1264      NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1265                           Node->getOperand(0));
1266      ReplaceNode(Node, NewVal.getNode());
1267      LegalizeOp(NewVal.getNode());
1268      return;
1269    }
1270    break;
1271
1272  default:
1273    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1274      Action = TargetLowering::Legal;
1275    } else {
1276      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1277    }
1278    break;
1279  }
1280
1281  if (SimpleFinishLegalizing) {
1282    SDNode *NewNode = Node;
1283    switch (Node->getOpcode()) {
1284    default: break;
1285    case ISD::SHL:
1286    case ISD::SRL:
1287    case ISD::SRA:
1288    case ISD::ROTL:
1289    case ISD::ROTR:
1290      // Legalizing shifts/rotates requires adjusting the shift amount
1291      // to the appropriate width.
1292      if (!Node->getOperand(1).getValueType().isVector()) {
1293        SDValue SAO =
1294          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1295                                    Node->getOperand(1));
1296        HandleSDNode Handle(SAO);
1297        LegalizeOp(SAO.getNode());
1298        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1299                                         Handle.getValue());
1300      }
1301      break;
1302    case ISD::SRL_PARTS:
1303    case ISD::SRA_PARTS:
1304    case ISD::SHL_PARTS:
1305      // Legalizing shifts/rotates requires adjusting the shift amount
1306      // to the appropriate width.
1307      if (!Node->getOperand(2).getValueType().isVector()) {
1308        SDValue SAO =
1309          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1310                                    Node->getOperand(2));
1311        HandleSDNode Handle(SAO);
1312        LegalizeOp(SAO.getNode());
1313        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1314                                         Node->getOperand(1),
1315                                         Handle.getValue());
1316      }
1317      break;
1318    }
1319
1320    if (NewNode != Node) {
1321      DAG.ReplaceAllUsesWith(Node, NewNode);
1322      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1323        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
1324      ReplacedNode(Node);
1325      Node = NewNode;
1326    }
1327    switch (Action) {
1328    case TargetLowering::Legal:
1329      return;
1330    case TargetLowering::Custom: {
1331      // FIXME: The handling for custom lowering with multiple results is
1332      // a complete mess.
1333      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1334      if (Res.getNode()) {
1335        SmallVector<SDValue, 8> ResultVals;
1336        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
1337          if (e == 1)
1338            ResultVals.push_back(Res);
1339          else
1340            ResultVals.push_back(Res.getValue(i));
1341        }
1342        if (Res.getNode() != Node || Res.getResNo() != 0) {
1343          DAG.ReplaceAllUsesWith(Node, ResultVals.data());
1344          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1345            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
1346          ReplacedNode(Node);
1347        }
1348        return;
1349      }
1350    }
1351      // FALL THROUGH
1352    case TargetLowering::Expand:
1353      ExpandNode(Node);
1354      return;
1355    case TargetLowering::Promote:
1356      PromoteNode(Node);
1357      return;
1358    }
1359  }
1360
1361  switch (Node->getOpcode()) {
1362  default:
1363#ifndef NDEBUG
1364    dbgs() << "NODE: ";
1365    Node->dump( &DAG);
1366    dbgs() << "\n";
1367#endif
1368    llvm_unreachable("Do not know how to legalize this operator!");
1369
1370  case ISD::CALLSEQ_START:
1371  case ISD::CALLSEQ_END:
1372    break;
1373  case ISD::LOAD: {
1374    return LegalizeLoadOps(Node);
1375  }
1376  case ISD::STORE: {
1377    return LegalizeStoreOps(Node);
1378  }
1379  }
1380}
1381
1382SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1383  SDValue Vec = Op.getOperand(0);
1384  SDValue Idx = Op.getOperand(1);
1385  SDLoc dl(Op);
1386  // Store the value to a temporary stack slot, then LOAD the returned part.
1387  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1388  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1389                            MachinePointerInfo(), false, false, 0);
1390
1391  // Add the offset to the index.
1392  unsigned EltSize =
1393      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1394  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1395                    DAG.getConstant(EltSize, Idx.getValueType()));
1396
1397  Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy());
1398  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1399
1400  if (Op.getValueType().isVector())
1401    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1402                       false, false, false, 0);
1403  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1404                        MachinePointerInfo(),
1405                        Vec.getValueType().getVectorElementType(),
1406                        false, false, 0);
1407}
1408
1409SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1410  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1411
1412  SDValue Vec  = Op.getOperand(0);
1413  SDValue Part = Op.getOperand(1);
1414  SDValue Idx  = Op.getOperand(2);
1415  SDLoc dl(Op);
1416
1417  // Store the value to a temporary stack slot, then LOAD the returned part.
1418
1419  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1420  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1421  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1422
1423  // First store the whole vector.
1424  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1425                            false, false, 0);
1426
1427  // Then store the inserted part.
1428
1429  // Add the offset to the index.
1430  unsigned EltSize =
1431      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1432
1433  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1434                    DAG.getConstant(EltSize, Idx.getValueType()));
1435
1436  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1437    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1438  else
1439    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1440
1441  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1442                                    StackPtr);
1443
1444  // Store the subvector.
1445  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1446                    MachinePointerInfo(), false, false, 0);
1447
1448  // Finally, load the updated vector.
1449  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1450                     false, false, false, 0);
1451}
1452
1453SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1454  // We can't handle this case efficiently.  Allocate a sufficiently
1455  // aligned object on the stack, store each element into it, then load
1456  // the result as a vector.
1457  // Create the stack frame object.
1458  EVT VT = Node->getValueType(0);
1459  EVT EltVT = VT.getVectorElementType();
1460  SDLoc dl(Node);
1461  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1462  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1463  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1464
1465  // Emit a store of each element to the stack slot.
1466  SmallVector<SDValue, 8> Stores;
1467  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1468  // Store (in the right endianness) the elements to memory.
1469  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1470    // Ignore undef elements.
1471    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1472
1473    unsigned Offset = TypeByteSize*i;
1474
1475    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1476    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1477
1478    // If the destination vector element type is narrower than the source
1479    // element type, only store the bits necessary.
1480    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1481      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1482                                         Node->getOperand(i), Idx,
1483                                         PtrInfo.getWithOffset(Offset),
1484                                         EltVT, false, false, 0));
1485    } else
1486      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1487                                    Node->getOperand(i), Idx,
1488                                    PtrInfo.getWithOffset(Offset),
1489                                    false, false, 0));
1490  }
1491
1492  SDValue StoreChain;
1493  if (!Stores.empty())    // Not all undef elements?
1494    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1495                             &Stores[0], Stores.size());
1496  else
1497    StoreChain = DAG.getEntryNode();
1498
1499  // Result is a load from the stack slot.
1500  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1501                     false, false, false, 0);
1502}
1503
1504SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1505  SDLoc dl(Node);
1506  SDValue Tmp1 = Node->getOperand(0);
1507  SDValue Tmp2 = Node->getOperand(1);
1508
1509  // Get the sign bit of the RHS.  First obtain a value that has the same
1510  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1511  SDValue SignBit;
1512  EVT FloatVT = Tmp2.getValueType();
1513  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1514  if (TLI.isTypeLegal(IVT)) {
1515    // Convert to an integer with the same sign bit.
1516    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1517  } else {
1518    // Store the float to memory, then load the sign part out as an integer.
1519    MVT LoadTy = TLI.getPointerTy();
1520    // First create a temporary that is aligned for both the load and store.
1521    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1522    // Then store the float to it.
1523    SDValue Ch =
1524      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1525                   false, false, 0);
1526    if (TLI.isBigEndian()) {
1527      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1528      // Load out a legal integer with the same sign bit as the float.
1529      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1530                            false, false, false, 0);
1531    } else { // Little endian
1532      SDValue LoadPtr = StackPtr;
1533      // The float may be wider than the integer we are going to load.  Advance
1534      // the pointer so that the loaded integer will contain the sign bit.
1535      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1536      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1537      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1538                            LoadPtr,
1539                            DAG.getConstant(ByteOffset, LoadPtr.getValueType()));
1540      // Load a legal integer containing the sign bit.
1541      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1542                            false, false, false, 0);
1543      // Move the sign bit to the top bit of the loaded integer.
1544      unsigned BitShift = LoadTy.getSizeInBits() -
1545        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1546      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1547      if (BitShift)
1548        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1549                              DAG.getConstant(BitShift,
1550                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1551    }
1552  }
1553  // Now get the sign bit proper, by seeing whether the value is negative.
1554  SignBit = DAG.getSetCC(dl, getSetCCResultType(SignBit.getValueType()),
1555                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1556                         ISD::SETLT);
1557  // Get the absolute value of the result.
1558  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1559  // Select between the nabs and abs value based on the sign bit of
1560  // the input.
1561  return DAG.getSelect(dl, AbsVal.getValueType(), SignBit,
1562                       DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1563                       AbsVal);
1564}
1565
1566void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1567                                           SmallVectorImpl<SDValue> &Results) {
1568  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1569  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1570          " not tell us which reg is the stack pointer!");
1571  SDLoc dl(Node);
1572  EVT VT = Node->getValueType(0);
1573  SDValue Tmp1 = SDValue(Node, 0);
1574  SDValue Tmp2 = SDValue(Node, 1);
1575  SDValue Tmp3 = Node->getOperand(2);
1576  SDValue Chain = Tmp1.getOperand(0);
1577
1578  // Chain the dynamic stack allocation so that it doesn't modify the stack
1579  // pointer when other instructions are using the stack.
1580  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
1581                               SDLoc(Node));
1582
1583  SDValue Size  = Tmp2.getOperand(1);
1584  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1585  Chain = SP.getValue(1);
1586  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1587  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1588  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1589  if (Align > StackAlign)
1590    Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1591                       DAG.getConstant(-(uint64_t)Align, VT));
1592  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1593
1594  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1595                            DAG.getIntPtrConstant(0, true), SDValue(),
1596                            SDLoc(Node));
1597
1598  Results.push_back(Tmp1);
1599  Results.push_back(Tmp2);
1600}
1601
1602/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1603/// condition code CC on the current target.
1604/// If the SETCC has been legalized using AND / OR, then the legalized node
1605/// will be stored in LHS.  RHS and CC will be set to SDValue().
1606/// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1607/// then the values of LHS and RHS will be swapped and CC will be set to the
1608/// new condition.
1609/// \returns true if the SetCC has been legalized, false if it hasn't.
1610bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1611                                                 SDValue &LHS, SDValue &RHS,
1612                                                 SDValue &CC,
1613                                                 SDLoc dl) {
1614  MVT OpVT = LHS.getSimpleValueType();
1615  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1616  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1617  default: llvm_unreachable("Unknown condition code action!");
1618  case TargetLowering::Legal:
1619    // Nothing to do.
1620    break;
1621  case TargetLowering::Expand: {
1622    ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1623    if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1624      std::swap(LHS, RHS);
1625      CC = DAG.getCondCode(InvCC);
1626      return true;
1627    }
1628    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1629    unsigned Opc = 0;
1630    switch (CCCode) {
1631    default: llvm_unreachable("Don't know how to expand this condition!");
1632    case ISD::SETO:
1633        assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
1634            == TargetLowering::Legal
1635            && "If SETO is expanded, SETOEQ must be legal!");
1636        CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1637    case ISD::SETUO:
1638        assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
1639            == TargetLowering::Legal
1640            && "If SETUO is expanded, SETUNE must be legal!");
1641        CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1642    case ISD::SETOEQ:
1643    case ISD::SETOGT:
1644    case ISD::SETOGE:
1645    case ISD::SETOLT:
1646    case ISD::SETOLE:
1647    case ISD::SETONE:
1648    case ISD::SETUEQ:
1649    case ISD::SETUNE:
1650    case ISD::SETUGT:
1651    case ISD::SETUGE:
1652    case ISD::SETULT:
1653    case ISD::SETULE:
1654        // If we are floating point, assign and break, otherwise fall through.
1655        if (!OpVT.isInteger()) {
1656          // We can use the 4th bit to tell if we are the unordered
1657          // or ordered version of the opcode.
1658          CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1659          Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1660          CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1661          break;
1662        }
1663        // Fallthrough if we are unsigned integer.
1664    case ISD::SETLE:
1665    case ISD::SETGT:
1666    case ISD::SETGE:
1667    case ISD::SETLT:
1668    case ISD::SETNE:
1669    case ISD::SETEQ:
1670      // We only support using the inverted operation, which is computed above
1671      // and not a different manner of supporting expanding these cases.
1672      llvm_unreachable("Don't know how to expand this condition!");
1673    }
1674
1675    SDValue SetCC1, SetCC2;
1676    if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1677      // If we aren't the ordered or unorder operation,
1678      // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1679      SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1680      SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1681    } else {
1682      // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1683      SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1684      SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1685    }
1686    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1687    RHS = SDValue();
1688    CC  = SDValue();
1689    return true;
1690  }
1691  }
1692  return false;
1693}
1694
1695/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1696/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1697/// a load from the stack slot to DestVT, extending it if needed.
1698/// The resultant code need not be legal.
1699SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1700                                               EVT SlotVT,
1701                                               EVT DestVT,
1702                                               SDLoc dl) {
1703  // Create the stack frame object.
1704  unsigned SrcAlign =
1705    TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
1706                                              getTypeForEVT(*DAG.getContext()));
1707  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1708
1709  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1710  int SPFI = StackPtrFI->getIndex();
1711  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1712
1713  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1714  unsigned SlotSize = SlotVT.getSizeInBits();
1715  unsigned DestSize = DestVT.getSizeInBits();
1716  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1717  unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
1718
1719  // Emit a store to the stack slot.  Use a truncstore if the input value is
1720  // later than DestVT.
1721  SDValue Store;
1722
1723  if (SrcSize > SlotSize)
1724    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1725                              PtrInfo, SlotVT, false, false, SrcAlign);
1726  else {
1727    assert(SrcSize == SlotSize && "Invalid store");
1728    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1729                         PtrInfo, false, false, SrcAlign);
1730  }
1731
1732  // Result is a load from the stack slot.
1733  if (SlotSize == DestSize)
1734    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1735                       false, false, false, DestAlign);
1736
1737  assert(SlotSize < DestSize && "Unknown extension!");
1738  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1739                        PtrInfo, SlotVT, false, false, DestAlign);
1740}
1741
1742SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1743  SDLoc dl(Node);
1744  // Create a vector sized/aligned stack slot, store the value to element #0,
1745  // then load the whole vector back out.
1746  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1747
1748  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1749  int SPFI = StackPtrFI->getIndex();
1750
1751  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1752                                 StackPtr,
1753                                 MachinePointerInfo::getFixedStack(SPFI),
1754                                 Node->getValueType(0).getVectorElementType(),
1755                                 false, false, 0);
1756  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1757                     MachinePointerInfo::getFixedStack(SPFI),
1758                     false, false, false, 0);
1759}
1760
1761
1762/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1763/// support the operation, but do support the resultant vector type.
1764SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1765  unsigned NumElems = Node->getNumOperands();
1766  SDValue Value1, Value2;
1767  SDLoc dl(Node);
1768  EVT VT = Node->getValueType(0);
1769  EVT OpVT = Node->getOperand(0).getValueType();
1770  EVT EltVT = VT.getVectorElementType();
1771
1772  // If the only non-undef value is the low element, turn this into a
1773  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1774  bool isOnlyLowElement = true;
1775  bool MoreThanTwoValues = false;
1776  bool isConstant = true;
1777  for (unsigned i = 0; i < NumElems; ++i) {
1778    SDValue V = Node->getOperand(i);
1779    if (V.getOpcode() == ISD::UNDEF)
1780      continue;
1781    if (i > 0)
1782      isOnlyLowElement = false;
1783    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1784      isConstant = false;
1785
1786    if (!Value1.getNode()) {
1787      Value1 = V;
1788    } else if (!Value2.getNode()) {
1789      if (V != Value1)
1790        Value2 = V;
1791    } else if (V != Value1 && V != Value2) {
1792      MoreThanTwoValues = true;
1793    }
1794  }
1795
1796  if (!Value1.getNode())
1797    return DAG.getUNDEF(VT);
1798
1799  if (isOnlyLowElement)
1800    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1801
1802  // If all elements are constants, create a load from the constant pool.
1803  if (isConstant) {
1804    SmallVector<Constant*, 16> CV;
1805    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1806      if (ConstantFPSDNode *V =
1807          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1808        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1809      } else if (ConstantSDNode *V =
1810                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1811        if (OpVT==EltVT)
1812          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1813        else {
1814          // If OpVT and EltVT don't match, EltVT is not legal and the
1815          // element values have been promoted/truncated earlier.  Undo this;
1816          // we don't want a v16i8 to become a v16i32 for example.
1817          const ConstantInt *CI = V->getConstantIntValue();
1818          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1819                                        CI->getZExtValue()));
1820        }
1821      } else {
1822        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1823        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1824        CV.push_back(UndefValue::get(OpNTy));
1825      }
1826    }
1827    Constant *CP = ConstantVector::get(CV);
1828    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1829    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1830    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1831                       MachinePointerInfo::getConstantPool(),
1832                       false, false, false, Alignment);
1833  }
1834
1835  if (!MoreThanTwoValues) {
1836    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1837    for (unsigned i = 0; i < NumElems; ++i) {
1838      SDValue V = Node->getOperand(i);
1839      if (V.getOpcode() == ISD::UNDEF)
1840        continue;
1841      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1842    }
1843    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1844      // Get the splatted value into the low element of a vector register.
1845      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1846      SDValue Vec2;
1847      if (Value2.getNode())
1848        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1849      else
1850        Vec2 = DAG.getUNDEF(VT);
1851
1852      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1853      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1854    }
1855  }
1856
1857  // Otherwise, we can't handle this case efficiently.
1858  return ExpandVectorBuildThroughStack(Node);
1859}
1860
1861// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1862// does not fit into a register, return the lo part and set the hi part to the
1863// by-reg argument.  If it does fit into a single register, return the result
1864// and leave the Hi part unset.
1865SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1866                                            bool isSigned) {
1867  TargetLowering::ArgListTy Args;
1868  TargetLowering::ArgListEntry Entry;
1869  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1870    EVT ArgVT = Node->getOperand(i).getValueType();
1871    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1872    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1873    Entry.isSExt = isSigned;
1874    Entry.isZExt = !isSigned;
1875    Args.push_back(Entry);
1876  }
1877  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1878                                         TLI.getPointerTy());
1879
1880  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1881
1882  // By default, the input chain to this libcall is the entry node of the
1883  // function. If the libcall is going to be emitted as a tail call then
1884  // TLI.isUsedByReturnOnly will change it to the right chain if the return
1885  // node which is being folded has a non-entry input chain.
1886  SDValue InChain = DAG.getEntryNode();
1887
1888  // isTailCall may be true since the callee does not reference caller stack
1889  // frame. Check if it's in the right position.
1890  SDValue TCChain = InChain;
1891  bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain);
1892  if (isTailCall)
1893    InChain = TCChain;
1894
1895  TargetLowering::
1896  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1897                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1898                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1899                    Callee, Args, DAG, SDLoc(Node));
1900  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1901
1902
1903  if (!CallInfo.second.getNode())
1904    // It's a tailcall, return the chain (which is the DAG root).
1905    return DAG.getRoot();
1906
1907  return CallInfo.first;
1908}
1909
1910/// ExpandLibCall - Generate a libcall taking the given operands as arguments
1911/// and returning a result of type RetVT.
1912SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1913                                            const SDValue *Ops, unsigned NumOps,
1914                                            bool isSigned, SDLoc dl) {
1915  TargetLowering::ArgListTy Args;
1916  Args.reserve(NumOps);
1917
1918  TargetLowering::ArgListEntry Entry;
1919  for (unsigned i = 0; i != NumOps; ++i) {
1920    Entry.Node = Ops[i];
1921    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1922    Entry.isSExt = isSigned;
1923    Entry.isZExt = !isSigned;
1924    Args.push_back(Entry);
1925  }
1926  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1927                                         TLI.getPointerTy());
1928
1929  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1930  TargetLowering::
1931  CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1932                       false, 0, TLI.getLibcallCallingConv(LC),
1933                       /*isTailCall=*/false,
1934                  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1935                  Callee, Args, DAG, dl);
1936  std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
1937
1938  return CallInfo.first;
1939}
1940
1941// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1942// ExpandLibCall except that the first operand is the in-chain.
1943std::pair<SDValue, SDValue>
1944SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1945                                         SDNode *Node,
1946                                         bool isSigned) {
1947  SDValue InChain = Node->getOperand(0);
1948
1949  TargetLowering::ArgListTy Args;
1950  TargetLowering::ArgListEntry Entry;
1951  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1952    EVT ArgVT = Node->getOperand(i).getValueType();
1953    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1954    Entry.Node = Node->getOperand(i);
1955    Entry.Ty = ArgTy;
1956    Entry.isSExt = isSigned;
1957    Entry.isZExt = !isSigned;
1958    Args.push_back(Entry);
1959  }
1960  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1961                                         TLI.getPointerTy());
1962
1963  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1964  TargetLowering::
1965  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1966                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1967                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1968                    Callee, Args, DAG, SDLoc(Node));
1969  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1970
1971  return CallInfo;
1972}
1973
1974SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1975                                              RTLIB::Libcall Call_F32,
1976                                              RTLIB::Libcall Call_F64,
1977                                              RTLIB::Libcall Call_F80,
1978                                              RTLIB::Libcall Call_F128,
1979                                              RTLIB::Libcall Call_PPCF128) {
1980  RTLIB::Libcall LC;
1981  switch (Node->getSimpleValueType(0).SimpleTy) {
1982  default: llvm_unreachable("Unexpected request for libcall!");
1983  case MVT::f32: LC = Call_F32; break;
1984  case MVT::f64: LC = Call_F64; break;
1985  case MVT::f80: LC = Call_F80; break;
1986  case MVT::f128: LC = Call_F128; break;
1987  case MVT::ppcf128: LC = Call_PPCF128; break;
1988  }
1989  return ExpandLibCall(LC, Node, false);
1990}
1991
1992SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1993                                               RTLIB::Libcall Call_I8,
1994                                               RTLIB::Libcall Call_I16,
1995                                               RTLIB::Libcall Call_I32,
1996                                               RTLIB::Libcall Call_I64,
1997                                               RTLIB::Libcall Call_I128) {
1998  RTLIB::Libcall LC;
1999  switch (Node->getSimpleValueType(0).SimpleTy) {
2000  default: llvm_unreachable("Unexpected request for libcall!");
2001  case MVT::i8:   LC = Call_I8; break;
2002  case MVT::i16:  LC = Call_I16; break;
2003  case MVT::i32:  LC = Call_I32; break;
2004  case MVT::i64:  LC = Call_I64; break;
2005  case MVT::i128: LC = Call_I128; break;
2006  }
2007  return ExpandLibCall(LC, Node, isSigned);
2008}
2009
2010/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
2011static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2012                                     const TargetLowering &TLI) {
2013  RTLIB::Libcall LC;
2014  switch (Node->getSimpleValueType(0).SimpleTy) {
2015  default: llvm_unreachable("Unexpected request for libcall!");
2016  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2017  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2018  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2019  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2020  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2021  }
2022
2023  return TLI.getLibcallName(LC) != 0;
2024}
2025
2026/// useDivRem - Only issue divrem libcall if both quotient and remainder are
2027/// needed.
2028static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2029  // The other use might have been replaced with a divrem already.
2030  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2031  unsigned OtherOpcode = 0;
2032  if (isSigned)
2033    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2034  else
2035    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2036
2037  SDValue Op0 = Node->getOperand(0);
2038  SDValue Op1 = Node->getOperand(1);
2039  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2040         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2041    SDNode *User = *UI;
2042    if (User == Node)
2043      continue;
2044    if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
2045        User->getOperand(0) == Op0 &&
2046        User->getOperand(1) == Op1)
2047      return true;
2048  }
2049  return false;
2050}
2051
2052/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2053/// pairs.
2054void
2055SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2056                                          SmallVectorImpl<SDValue> &Results) {
2057  unsigned Opcode = Node->getOpcode();
2058  bool isSigned = Opcode == ISD::SDIVREM;
2059
2060  RTLIB::Libcall LC;
2061  switch (Node->getSimpleValueType(0).SimpleTy) {
2062  default: llvm_unreachable("Unexpected request for libcall!");
2063  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2064  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2065  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2066  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2067  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2068  }
2069
2070  // The input chain to this libcall is the entry node of the function.
2071  // Legalizing the call will automatically add the previous call to the
2072  // dependence.
2073  SDValue InChain = DAG.getEntryNode();
2074
2075  EVT RetVT = Node->getValueType(0);
2076  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2077
2078  TargetLowering::ArgListTy Args;
2079  TargetLowering::ArgListEntry Entry;
2080  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2081    EVT ArgVT = Node->getOperand(i).getValueType();
2082    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2083    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2084    Entry.isSExt = isSigned;
2085    Entry.isZExt = !isSigned;
2086    Args.push_back(Entry);
2087  }
2088
2089  // Also pass the return address of the remainder.
2090  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2091  Entry.Node = FIPtr;
2092  Entry.Ty = RetTy->getPointerTo();
2093  Entry.isSExt = isSigned;
2094  Entry.isZExt = !isSigned;
2095  Args.push_back(Entry);
2096
2097  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2098                                         TLI.getPointerTy());
2099
2100  SDLoc dl(Node);
2101  TargetLowering::
2102  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
2103                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2104                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2105                    Callee, Args, DAG, dl);
2106  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2107
2108  // Remainder is loaded back from the stack frame.
2109  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2110                            MachinePointerInfo(), false, false, false, 0);
2111  Results.push_back(CallInfo.first);
2112  Results.push_back(Rem);
2113}
2114
2115/// isSinCosLibcallAvailable - Return true if sincos libcall is available.
2116static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2117  RTLIB::Libcall LC;
2118  switch (Node->getSimpleValueType(0).SimpleTy) {
2119  default: llvm_unreachable("Unexpected request for libcall!");
2120  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2121  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2122  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2123  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2124  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2125  }
2126  return TLI.getLibcallName(LC) != 0;
2127}
2128
2129/// canCombineSinCosLibcall - Return true if sincos libcall is available and
2130/// can be used to combine sin and cos.
2131static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
2132                                    const TargetMachine &TM) {
2133  if (!isSinCosLibcallAvailable(Node, TLI))
2134    return false;
2135  // GNU sin/cos functions set errno while sincos does not. Therefore
2136  // combining sin and cos is only safe if unsafe-fpmath is enabled.
2137  bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU;
2138  if (isGNU && !TM.Options.UnsafeFPMath)
2139    return false;
2140  return true;
2141}
2142
2143/// useSinCos - Only issue sincos libcall if both sin and cos are
2144/// needed.
2145static bool useSinCos(SDNode *Node) {
2146  unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2147    ? ISD::FCOS : ISD::FSIN;
2148
2149  SDValue Op0 = Node->getOperand(0);
2150  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2151       UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2152    SDNode *User = *UI;
2153    if (User == Node)
2154      continue;
2155    // The other user might have been turned into sincos already.
2156    if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2157      return true;
2158  }
2159  return false;
2160}
2161
2162/// ExpandSinCosLibCall - Issue libcalls to sincos to compute sin / cos
2163/// pairs.
2164void
2165SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2166                                          SmallVectorImpl<SDValue> &Results) {
2167  RTLIB::Libcall LC;
2168  switch (Node->getSimpleValueType(0).SimpleTy) {
2169  default: llvm_unreachable("Unexpected request for libcall!");
2170  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2171  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2172  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2173  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2174  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2175  }
2176
2177  // The input chain to this libcall is the entry node of the function.
2178  // Legalizing the call will automatically add the previous call to the
2179  // dependence.
2180  SDValue InChain = DAG.getEntryNode();
2181
2182  EVT RetVT = Node->getValueType(0);
2183  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2184
2185  TargetLowering::ArgListTy Args;
2186  TargetLowering::ArgListEntry Entry;
2187
2188  // Pass the argument.
2189  Entry.Node = Node->getOperand(0);
2190  Entry.Ty = RetTy;
2191  Entry.isSExt = false;
2192  Entry.isZExt = false;
2193  Args.push_back(Entry);
2194
2195  // Pass the return address of sin.
2196  SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2197  Entry.Node = SinPtr;
2198  Entry.Ty = RetTy->getPointerTo();
2199  Entry.isSExt = false;
2200  Entry.isZExt = false;
2201  Args.push_back(Entry);
2202
2203  // Also pass the return address of the cos.
2204  SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2205  Entry.Node = CosPtr;
2206  Entry.Ty = RetTy->getPointerTo();
2207  Entry.isSExt = false;
2208  Entry.isZExt = false;
2209  Args.push_back(Entry);
2210
2211  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2212                                         TLI.getPointerTy());
2213
2214  SDLoc dl(Node);
2215  TargetLowering::
2216  CallLoweringInfo CLI(InChain, Type::getVoidTy(*DAG.getContext()),
2217                       false, false, false, false,
2218                       0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2219                       /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2220                       Callee, Args, DAG, dl);
2221  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2222
2223  Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
2224                                MachinePointerInfo(), false, false, false, 0));
2225  Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
2226                                MachinePointerInfo(), false, false, false, 0));
2227}
2228
2229/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2230/// INT_TO_FP operation of the specified operand when the target requests that
2231/// we expand it.  At this point, we know that the result and operand types are
2232/// legal for the target.
2233SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2234                                                   SDValue Op0,
2235                                                   EVT DestVT,
2236                                                   SDLoc dl) {
2237  if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2238    // simple 32-bit [signed|unsigned] integer to float/double expansion
2239
2240    // Get the stack frame index of a 8 byte buffer.
2241    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2242
2243    // word offset constant for Hi/Lo address computation
2244    SDValue WordOff = DAG.getConstant(sizeof(int), StackSlot.getValueType());
2245    // set up Hi and Lo (into buffer) address based on endian
2246    SDValue Hi = StackSlot;
2247    SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2248                             StackSlot, WordOff);
2249    if (TLI.isLittleEndian())
2250      std::swap(Hi, Lo);
2251
2252    // if signed map to unsigned space
2253    SDValue Op0Mapped;
2254    if (isSigned) {
2255      // constant used to invert sign bit (signed to unsigned mapping)
2256      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2257      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2258    } else {
2259      Op0Mapped = Op0;
2260    }
2261    // store the lo of the constructed double - based on integer input
2262    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2263                                  Op0Mapped, Lo, MachinePointerInfo(),
2264                                  false, false, 0);
2265    // initial hi portion of constructed double
2266    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2267    // store the hi of the constructed double - biased exponent
2268    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2269                                  MachinePointerInfo(),
2270                                  false, false, 0);
2271    // load the constructed double
2272    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2273                               MachinePointerInfo(), false, false, false, 0);
2274    // FP constant to bias correct the final result
2275    SDValue Bias = DAG.getConstantFP(isSigned ?
2276                                     BitsToDouble(0x4330000080000000ULL) :
2277                                     BitsToDouble(0x4330000000000000ULL),
2278                                     MVT::f64);
2279    // subtract the bias
2280    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2281    // final result
2282    SDValue Result;
2283    // handle final rounding
2284    if (DestVT == MVT::f64) {
2285      // do nothing
2286      Result = Sub;
2287    } else if (DestVT.bitsLT(MVT::f64)) {
2288      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2289                           DAG.getIntPtrConstant(0));
2290    } else if (DestVT.bitsGT(MVT::f64)) {
2291      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2292    }
2293    return Result;
2294  }
2295  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2296  // Code below here assumes !isSigned without checking again.
2297
2298  // Implementation of unsigned i64 to f64 following the algorithm in
2299  // __floatundidf in compiler_rt. This implementation has the advantage
2300  // of performing rounding correctly, both in the default rounding mode
2301  // and in all alternate rounding modes.
2302  // TODO: Generalize this for use with other types.
2303  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2304    SDValue TwoP52 =
2305      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2306    SDValue TwoP84PlusTwoP52 =
2307      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2308    SDValue TwoP84 =
2309      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2310
2311    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2312    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2313                             DAG.getConstant(32, MVT::i64));
2314    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2315    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2316    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2317    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2318    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2319                                TwoP84PlusTwoP52);
2320    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2321  }
2322
2323  // Implementation of unsigned i64 to f32.
2324  // TODO: Generalize this for use with other types.
2325  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2326    // For unsigned conversions, convert them to signed conversions using the
2327    // algorithm from the x86_64 __floatundidf in compiler_rt.
2328    if (!isSigned) {
2329      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2330
2331      SDValue ShiftConst =
2332          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2333      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2334      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2335      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2336      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2337
2338      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2339      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2340
2341      // TODO: This really should be implemented using a branch rather than a
2342      // select.  We happen to get lucky and machinesink does the right
2343      // thing most of the time.  This would be a good candidate for a
2344      //pseudo-op, or, even better, for whole-function isel.
2345      SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2346        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2347      return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast);
2348    }
2349
2350    // Otherwise, implement the fully general conversion.
2351
2352    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2353         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2354    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2355         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2356    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2357         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2358    SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2359                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2360    SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0);
2361    SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2362                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2363                   ISD::SETUGE);
2364    SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0);
2365    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2366
2367    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2368                             DAG.getConstant(32, SHVT));
2369    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2370    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2371    SDValue TwoP32 =
2372      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2373    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2374    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2375    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2376    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2377    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2378                       DAG.getIntPtrConstant(0));
2379  }
2380
2381  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2382
2383  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()),
2384                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2385                                 ISD::SETLT);
2386  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2387  SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2388                                    SignSet, Four, Zero);
2389
2390  // If the sign bit of the integer is set, the large number will be treated
2391  // as a negative number.  To counteract this, the dynamic code adds an
2392  // offset depending on the data type.
2393  uint64_t FF;
2394  switch (Op0.getSimpleValueType().SimpleTy) {
2395  default: llvm_unreachable("Unsupported integer type!");
2396  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2397  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2398  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2399  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2400  }
2401  if (TLI.isLittleEndian()) FF <<= 32;
2402  Constant *FudgeFactor = ConstantInt::get(
2403                                       Type::getInt64Ty(*DAG.getContext()), FF);
2404
2405  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2406  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2407  CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2408  Alignment = std::min(Alignment, 4u);
2409  SDValue FudgeInReg;
2410  if (DestVT == MVT::f32)
2411    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2412                             MachinePointerInfo::getConstantPool(),
2413                             false, false, false, Alignment);
2414  else {
2415    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2416                                  DAG.getEntryNode(), CPIdx,
2417                                  MachinePointerInfo::getConstantPool(),
2418                                  MVT::f32, false, false, Alignment);
2419    HandleSDNode Handle(Load);
2420    LegalizeOp(Load.getNode());
2421    FudgeInReg = Handle.getValue();
2422  }
2423
2424  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2425}
2426
2427/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2428/// *INT_TO_FP operation of the specified operand when the target requests that
2429/// we promote it.  At this point, we know that the result and operand types are
2430/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2431/// operation that takes a larger input.
2432SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2433                                                    EVT DestVT,
2434                                                    bool isSigned,
2435                                                    SDLoc dl) {
2436  // First step, figure out the appropriate *INT_TO_FP operation to use.
2437  EVT NewInTy = LegalOp.getValueType();
2438
2439  unsigned OpToUse = 0;
2440
2441  // Scan for the appropriate larger type to use.
2442  while (1) {
2443    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2444    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2445
2446    // If the target supports SINT_TO_FP of this type, use it.
2447    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2448      OpToUse = ISD::SINT_TO_FP;
2449      break;
2450    }
2451    if (isSigned) continue;
2452
2453    // If the target supports UINT_TO_FP of this type, use it.
2454    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2455      OpToUse = ISD::UINT_TO_FP;
2456      break;
2457    }
2458
2459    // Otherwise, try a larger type.
2460  }
2461
2462  // Okay, we found the operation and type to use.  Zero extend our input to the
2463  // desired type then run the operation on it.
2464  return DAG.getNode(OpToUse, dl, DestVT,
2465                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2466                                 dl, NewInTy, LegalOp));
2467}
2468
2469/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2470/// FP_TO_*INT operation of the specified operand when the target requests that
2471/// we promote it.  At this point, we know that the result and operand types are
2472/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2473/// operation that returns a larger result.
2474SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2475                                                    EVT DestVT,
2476                                                    bool isSigned,
2477                                                    SDLoc dl) {
2478  // First step, figure out the appropriate FP_TO*INT operation to use.
2479  EVT NewOutTy = DestVT;
2480
2481  unsigned OpToUse = 0;
2482
2483  // Scan for the appropriate larger type to use.
2484  while (1) {
2485    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2486    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2487
2488    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2489      OpToUse = ISD::FP_TO_SINT;
2490      break;
2491    }
2492
2493    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2494      OpToUse = ISD::FP_TO_UINT;
2495      break;
2496    }
2497
2498    // Otherwise, try a larger type.
2499  }
2500
2501
2502  // Okay, we found the operation and type to use.
2503  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2504
2505  // Truncate the result of the extended FP_TO_*INT operation to the desired
2506  // size.
2507  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2508}
2509
2510/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2511///
2512SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) {
2513  EVT VT = Op.getValueType();
2514  EVT SHVT = TLI.getShiftAmountTy(VT);
2515  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2516  switch (VT.getSimpleVT().SimpleTy) {
2517  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2518  case MVT::i16:
2519    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2520    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2521    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2522  case MVT::i32:
2523    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2524    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2525    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2526    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2527    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2528    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2529    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2530    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2531    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2532  case MVT::i64:
2533    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2534    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2535    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2536    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2537    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2538    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2539    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2540    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2541    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2542    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2543    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2544    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2545    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2546    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2547    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2548    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2549    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2550    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2551    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2552    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2553    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2554  }
2555}
2556
2557/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2558///
2559SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2560                                             SDLoc dl) {
2561  switch (Opc) {
2562  default: llvm_unreachable("Cannot expand this yet!");
2563  case ISD::CTPOP: {
2564    EVT VT = Op.getValueType();
2565    EVT ShVT = TLI.getShiftAmountTy(VT);
2566    unsigned Len = VT.getSizeInBits();
2567
2568    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2569           "CTPOP not implemented for this type.");
2570
2571    // This is the "best" algorithm from
2572    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2573
2574    SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), VT);
2575    SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), VT);
2576    SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), VT);
2577    SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), VT);
2578
2579    // v = v - ((v >> 1) & 0x55555555...)
2580    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2581                     DAG.getNode(ISD::AND, dl, VT,
2582                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2583                                             DAG.getConstant(1, ShVT)),
2584                                 Mask55));
2585    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2586    Op = DAG.getNode(ISD::ADD, dl, VT,
2587                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2588                     DAG.getNode(ISD::AND, dl, VT,
2589                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2590                                             DAG.getConstant(2, ShVT)),
2591                                 Mask33));
2592    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2593    Op = DAG.getNode(ISD::AND, dl, VT,
2594                     DAG.getNode(ISD::ADD, dl, VT, Op,
2595                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2596                                             DAG.getConstant(4, ShVT))),
2597                     Mask0F);
2598    // v = (v * 0x01010101...) >> (Len - 8)
2599    Op = DAG.getNode(ISD::SRL, dl, VT,
2600                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2601                     DAG.getConstant(Len - 8, ShVT));
2602
2603    return Op;
2604  }
2605  case ISD::CTLZ_ZERO_UNDEF:
2606    // This trivially expands to CTLZ.
2607    return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2608  case ISD::CTLZ: {
2609    // for now, we do this:
2610    // x = x | (x >> 1);
2611    // x = x | (x >> 2);
2612    // ...
2613    // x = x | (x >>16);
2614    // x = x | (x >>32); // for 64-bit input
2615    // return popcount(~x);
2616    //
2617    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2618    EVT VT = Op.getValueType();
2619    EVT ShVT = TLI.getShiftAmountTy(VT);
2620    unsigned len = VT.getSizeInBits();
2621    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2622      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2623      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2624                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2625    }
2626    Op = DAG.getNOT(dl, Op, VT);
2627    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2628  }
2629  case ISD::CTTZ_ZERO_UNDEF:
2630    // This trivially expands to CTTZ.
2631    return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2632  case ISD::CTTZ: {
2633    // for now, we use: { return popcount(~x & (x - 1)); }
2634    // unless the target has ctlz but not ctpop, in which case we use:
2635    // { return 32 - nlz(~x & (x-1)); }
2636    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2637    EVT VT = Op.getValueType();
2638    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2639                               DAG.getNOT(dl, Op, VT),
2640                               DAG.getNode(ISD::SUB, dl, VT, Op,
2641                                           DAG.getConstant(1, VT)));
2642    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2643    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2644        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2645      return DAG.getNode(ISD::SUB, dl, VT,
2646                         DAG.getConstant(VT.getSizeInBits(), VT),
2647                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2648    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2649  }
2650  }
2651}
2652
2653std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2654  unsigned Opc = Node->getOpcode();
2655  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2656  RTLIB::Libcall LC;
2657
2658  switch (Opc) {
2659  default:
2660    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2661  case ISD::ATOMIC_SWAP:
2662    switch (VT.SimpleTy) {
2663    default: llvm_unreachable("Unexpected value type for atomic!");
2664    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2665    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2666    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2667    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2668    case MVT::i128:LC = RTLIB::SYNC_LOCK_TEST_AND_SET_16;break;
2669    }
2670    break;
2671  case ISD::ATOMIC_CMP_SWAP:
2672    switch (VT.SimpleTy) {
2673    default: llvm_unreachable("Unexpected value type for atomic!");
2674    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2675    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2676    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2677    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2678    case MVT::i128:LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16;break;
2679    }
2680    break;
2681  case ISD::ATOMIC_LOAD_ADD:
2682    switch (VT.SimpleTy) {
2683    default: llvm_unreachable("Unexpected value type for atomic!");
2684    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2685    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2686    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2687    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2688    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_ADD_16;break;
2689    }
2690    break;
2691  case ISD::ATOMIC_LOAD_SUB:
2692    switch (VT.SimpleTy) {
2693    default: llvm_unreachable("Unexpected value type for atomic!");
2694    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2695    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2696    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2697    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2698    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_SUB_16;break;
2699    }
2700    break;
2701  case ISD::ATOMIC_LOAD_AND:
2702    switch (VT.SimpleTy) {
2703    default: llvm_unreachable("Unexpected value type for atomic!");
2704    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2705    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2706    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2707    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2708    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_AND_16;break;
2709    }
2710    break;
2711  case ISD::ATOMIC_LOAD_OR:
2712    switch (VT.SimpleTy) {
2713    default: llvm_unreachable("Unexpected value type for atomic!");
2714    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2715    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2716    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2717    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2718    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_OR_16;break;
2719    }
2720    break;
2721  case ISD::ATOMIC_LOAD_XOR:
2722    switch (VT.SimpleTy) {
2723    default: llvm_unreachable("Unexpected value type for atomic!");
2724    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2725    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2726    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2727    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2728    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_XOR_16;break;
2729    }
2730    break;
2731  case ISD::ATOMIC_LOAD_NAND:
2732    switch (VT.SimpleTy) {
2733    default: llvm_unreachable("Unexpected value type for atomic!");
2734    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2735    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2736    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2737    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2738    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_NAND_16;break;
2739    }
2740    break;
2741  case ISD::ATOMIC_LOAD_MAX:
2742    switch (VT.SimpleTy) {
2743    default: llvm_unreachable("Unexpected value type for atomic!");
2744    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_MAX_1; break;
2745    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_MAX_2; break;
2746    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_MAX_4; break;
2747    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_MAX_8; break;
2748    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_MAX_16;break;
2749    }
2750    break;
2751  case ISD::ATOMIC_LOAD_UMAX:
2752    switch (VT.SimpleTy) {
2753    default: llvm_unreachable("Unexpected value type for atomic!");
2754    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_UMAX_1; break;
2755    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_UMAX_2; break;
2756    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_UMAX_4; break;
2757    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_UMAX_8; break;
2758    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_UMAX_16;break;
2759    }
2760    break;
2761  case ISD::ATOMIC_LOAD_MIN:
2762    switch (VT.SimpleTy) {
2763    default: llvm_unreachable("Unexpected value type for atomic!");
2764    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_MIN_1; break;
2765    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_MIN_2; break;
2766    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_MIN_4; break;
2767    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_MIN_8; break;
2768    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_MIN_16;break;
2769    }
2770    break;
2771  case ISD::ATOMIC_LOAD_UMIN:
2772    switch (VT.SimpleTy) {
2773    default: llvm_unreachable("Unexpected value type for atomic!");
2774    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_UMIN_1; break;
2775    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_UMIN_2; break;
2776    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_UMIN_4; break;
2777    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_UMIN_8; break;
2778    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_UMIN_16;break;
2779    }
2780    break;
2781  }
2782
2783  return ExpandChainLibCall(LC, Node, false);
2784}
2785
2786void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2787  SmallVector<SDValue, 8> Results;
2788  SDLoc dl(Node);
2789  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2790  switch (Node->getOpcode()) {
2791  case ISD::CTPOP:
2792  case ISD::CTLZ:
2793  case ISD::CTLZ_ZERO_UNDEF:
2794  case ISD::CTTZ:
2795  case ISD::CTTZ_ZERO_UNDEF:
2796    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2797    Results.push_back(Tmp1);
2798    break;
2799  case ISD::BSWAP:
2800    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2801    break;
2802  case ISD::FRAMEADDR:
2803  case ISD::RETURNADDR:
2804  case ISD::FRAME_TO_ARGS_OFFSET:
2805    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2806    break;
2807  case ISD::FLT_ROUNDS_:
2808    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2809    break;
2810  case ISD::EH_RETURN:
2811  case ISD::EH_LABEL:
2812  case ISD::PREFETCH:
2813  case ISD::VAEND:
2814  case ISD::EH_SJLJ_LONGJMP:
2815    // If the target didn't expand these, there's nothing to do, so just
2816    // preserve the chain and be done.
2817    Results.push_back(Node->getOperand(0));
2818    break;
2819  case ISD::EH_SJLJ_SETJMP:
2820    // If the target didn't expand this, just return 'zero' and preserve the
2821    // chain.
2822    Results.push_back(DAG.getConstant(0, MVT::i32));
2823    Results.push_back(Node->getOperand(0));
2824    break;
2825  case ISD::ATOMIC_FENCE: {
2826    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2827    // FIXME: handle "fence singlethread" more efficiently.
2828    TargetLowering::ArgListTy Args;
2829    TargetLowering::
2830    CallLoweringInfo CLI(Node->getOperand(0),
2831                         Type::getVoidTy(*DAG.getContext()),
2832                      false, false, false, false, 0, CallingConv::C,
2833                      /*isTailCall=*/false,
2834                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2835                      DAG.getExternalSymbol("__sync_synchronize",
2836                                            TLI.getPointerTy()),
2837                      Args, DAG, dl);
2838    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2839
2840    Results.push_back(CallResult.second);
2841    break;
2842  }
2843  case ISD::ATOMIC_LOAD: {
2844    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2845    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2846    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2847                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2848                                 Node->getOperand(0),
2849                                 Node->getOperand(1), Zero, Zero,
2850                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2851                                 cast<AtomicSDNode>(Node)->getOrdering(),
2852                                 cast<AtomicSDNode>(Node)->getSynchScope());
2853    Results.push_back(Swap.getValue(0));
2854    Results.push_back(Swap.getValue(1));
2855    break;
2856  }
2857  case ISD::ATOMIC_STORE: {
2858    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2859    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2860                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2861                                 Node->getOperand(0),
2862                                 Node->getOperand(1), Node->getOperand(2),
2863                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2864                                 cast<AtomicSDNode>(Node)->getOrdering(),
2865                                 cast<AtomicSDNode>(Node)->getSynchScope());
2866    Results.push_back(Swap.getValue(1));
2867    break;
2868  }
2869  // By default, atomic intrinsics are marked Legal and lowered. Targets
2870  // which don't support them directly, however, may want libcalls, in which
2871  // case they mark them Expand, and we get here.
2872  case ISD::ATOMIC_SWAP:
2873  case ISD::ATOMIC_LOAD_ADD:
2874  case ISD::ATOMIC_LOAD_SUB:
2875  case ISD::ATOMIC_LOAD_AND:
2876  case ISD::ATOMIC_LOAD_OR:
2877  case ISD::ATOMIC_LOAD_XOR:
2878  case ISD::ATOMIC_LOAD_NAND:
2879  case ISD::ATOMIC_LOAD_MIN:
2880  case ISD::ATOMIC_LOAD_MAX:
2881  case ISD::ATOMIC_LOAD_UMIN:
2882  case ISD::ATOMIC_LOAD_UMAX:
2883  case ISD::ATOMIC_CMP_SWAP: {
2884    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2885    Results.push_back(Tmp.first);
2886    Results.push_back(Tmp.second);
2887    break;
2888  }
2889  case ISD::DYNAMIC_STACKALLOC:
2890    ExpandDYNAMIC_STACKALLOC(Node, Results);
2891    break;
2892  case ISD::MERGE_VALUES:
2893    for (unsigned i = 0; i < Node->getNumValues(); i++)
2894      Results.push_back(Node->getOperand(i));
2895    break;
2896  case ISD::UNDEF: {
2897    EVT VT = Node->getValueType(0);
2898    if (VT.isInteger())
2899      Results.push_back(DAG.getConstant(0, VT));
2900    else {
2901      assert(VT.isFloatingPoint() && "Unknown value type!");
2902      Results.push_back(DAG.getConstantFP(0, VT));
2903    }
2904    break;
2905  }
2906  case ISD::TRAP: {
2907    // If this operation is not supported, lower it to 'abort()' call
2908    TargetLowering::ArgListTy Args;
2909    TargetLowering::
2910    CallLoweringInfo CLI(Node->getOperand(0),
2911                         Type::getVoidTy(*DAG.getContext()),
2912                      false, false, false, false, 0, CallingConv::C,
2913                      /*isTailCall=*/false,
2914                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2915                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2916                      Args, DAG, dl);
2917    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2918
2919    Results.push_back(CallResult.second);
2920    break;
2921  }
2922  case ISD::FP_ROUND:
2923  case ISD::BITCAST:
2924    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2925                            Node->getValueType(0), dl);
2926    Results.push_back(Tmp1);
2927    break;
2928  case ISD::FP_EXTEND:
2929    Tmp1 = EmitStackConvert(Node->getOperand(0),
2930                            Node->getOperand(0).getValueType(),
2931                            Node->getValueType(0), dl);
2932    Results.push_back(Tmp1);
2933    break;
2934  case ISD::SIGN_EXTEND_INREG: {
2935    // NOTE: we could fall back on load/store here too for targets without
2936    // SAR.  However, it is doubtful that any exist.
2937    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2938    EVT VT = Node->getValueType(0);
2939    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2940    if (VT.isVector())
2941      ShiftAmountTy = VT;
2942    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2943                        ExtraVT.getScalarType().getSizeInBits();
2944    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2945    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2946                       Node->getOperand(0), ShiftCst);
2947    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2948    Results.push_back(Tmp1);
2949    break;
2950  }
2951  case ISD::FP_ROUND_INREG: {
2952    // The only way we can lower this is to turn it into a TRUNCSTORE,
2953    // EXTLOAD pair, targeting a temporary location (a stack slot).
2954
2955    // NOTE: there is a choice here between constantly creating new stack
2956    // slots and always reusing the same one.  We currently always create
2957    // new ones, as reuse may inhibit scheduling.
2958    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2959    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2960                            Node->getValueType(0), dl);
2961    Results.push_back(Tmp1);
2962    break;
2963  }
2964  case ISD::SINT_TO_FP:
2965  case ISD::UINT_TO_FP:
2966    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2967                                Node->getOperand(0), Node->getValueType(0), dl);
2968    Results.push_back(Tmp1);
2969    break;
2970  case ISD::FP_TO_UINT: {
2971    SDValue True, False;
2972    EVT VT =  Node->getOperand(0).getValueType();
2973    EVT NVT = Node->getValueType(0);
2974    APFloat apf(DAG.EVTToAPFloatSemantics(VT),
2975                APInt::getNullValue(VT.getSizeInBits()));
2976    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2977    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2978    Tmp1 = DAG.getConstantFP(apf, VT);
2979    Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT),
2980                        Node->getOperand(0),
2981                        Tmp1, ISD::SETLT);
2982    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2983    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2984                        DAG.getNode(ISD::FSUB, dl, VT,
2985                                    Node->getOperand(0), Tmp1));
2986    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2987                        DAG.getConstant(x, NVT));
2988    Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False);
2989    Results.push_back(Tmp1);
2990    break;
2991  }
2992  case ISD::VAARG: {
2993    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2994    EVT VT = Node->getValueType(0);
2995    Tmp1 = Node->getOperand(0);
2996    Tmp2 = Node->getOperand(1);
2997    unsigned Align = Node->getConstantOperandVal(3);
2998
2999    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
3000                                     MachinePointerInfo(V),
3001                                     false, false, false, 0);
3002    SDValue VAList = VAListLoad;
3003
3004    if (Align > TLI.getMinStackArgumentAlignment()) {
3005      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
3006
3007      VAList = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
3008                           DAG.getConstant(Align - 1,
3009                                           VAList.getValueType()));
3010
3011      VAList = DAG.getNode(ISD::AND, dl, VAList.getValueType(), VAList,
3012                           DAG.getConstant(-(int64_t)Align,
3013                                           VAList.getValueType()));
3014    }
3015
3016    // Increment the pointer, VAList, to the next vaarg
3017    Tmp3 = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
3018                       DAG.getConstant(TLI.getDataLayout()->
3019                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
3020                                       VAList.getValueType()));
3021    // Store the incremented VAList to the legalized pointer
3022    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
3023                        MachinePointerInfo(V), false, false, 0);
3024    // Load the actual argument out of the pointer VAList
3025    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
3026                                  false, false, false, 0));
3027    Results.push_back(Results[0].getValue(1));
3028    break;
3029  }
3030  case ISD::VACOPY: {
3031    // This defaults to loading a pointer from the input and storing it to the
3032    // output, returning the chain.
3033    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
3034    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
3035    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
3036                       Node->getOperand(2), MachinePointerInfo(VS),
3037                       false, false, false, 0);
3038    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
3039                        MachinePointerInfo(VD), false, false, 0);
3040    Results.push_back(Tmp1);
3041    break;
3042  }
3043  case ISD::EXTRACT_VECTOR_ELT:
3044    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3045      // This must be an access of the only element.  Return it.
3046      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3047                         Node->getOperand(0));
3048    else
3049      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3050    Results.push_back(Tmp1);
3051    break;
3052  case ISD::EXTRACT_SUBVECTOR:
3053    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3054    break;
3055  case ISD::INSERT_SUBVECTOR:
3056    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3057    break;
3058  case ISD::CONCAT_VECTORS: {
3059    Results.push_back(ExpandVectorBuildThroughStack(Node));
3060    break;
3061  }
3062  case ISD::SCALAR_TO_VECTOR:
3063    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3064    break;
3065  case ISD::INSERT_VECTOR_ELT:
3066    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3067                                              Node->getOperand(1),
3068                                              Node->getOperand(2), dl));
3069    break;
3070  case ISD::VECTOR_SHUFFLE: {
3071    SmallVector<int, 32> NewMask;
3072    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3073
3074    EVT VT = Node->getValueType(0);
3075    EVT EltVT = VT.getVectorElementType();
3076    SDValue Op0 = Node->getOperand(0);
3077    SDValue Op1 = Node->getOperand(1);
3078    if (!TLI.isTypeLegal(EltVT)) {
3079
3080      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3081
3082      // BUILD_VECTOR operands are allowed to be wider than the element type.
3083      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
3084      if (NewEltVT.bitsLT(EltVT)) {
3085
3086        // Convert shuffle node.
3087        // If original node was v4i64 and the new EltVT is i32,
3088        // cast operands to v8i32 and re-build the mask.
3089
3090        // Calculate new VT, the size of the new VT should be equal to original.
3091        EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3092                                      VT.getSizeInBits()/NewEltVT.getSizeInBits());
3093        assert(NewVT.bitsEq(VT));
3094
3095        // cast operands to new VT
3096        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3097        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3098
3099        // Convert the shuffle mask
3100        unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
3101
3102        // EltVT gets smaller
3103        assert(factor > 0);
3104
3105        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3106          if (Mask[i] < 0) {
3107            for (unsigned fi = 0; fi < factor; ++fi)
3108              NewMask.push_back(Mask[i]);
3109          }
3110          else {
3111            for (unsigned fi = 0; fi < factor; ++fi)
3112              NewMask.push_back(Mask[i]*factor+fi);
3113          }
3114        }
3115        Mask = NewMask;
3116        VT = NewVT;
3117      }
3118      EltVT = NewEltVT;
3119    }
3120    unsigned NumElems = VT.getVectorNumElements();
3121    SmallVector<SDValue, 16> Ops;
3122    for (unsigned i = 0; i != NumElems; ++i) {
3123      if (Mask[i] < 0) {
3124        Ops.push_back(DAG.getUNDEF(EltVT));
3125        continue;
3126      }
3127      unsigned Idx = Mask[i];
3128      if (Idx < NumElems)
3129        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3130                                  Op0,
3131                                  DAG.getConstant(Idx, TLI.getVectorIdxTy())));
3132      else
3133        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3134                                  Op1,
3135                                  DAG.getConstant(Idx - NumElems,
3136                                                  TLI.getVectorIdxTy())));
3137    }
3138
3139    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
3140    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3141    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3142    Results.push_back(Tmp1);
3143    break;
3144  }
3145  case ISD::EXTRACT_ELEMENT: {
3146    EVT OpTy = Node->getOperand(0).getValueType();
3147    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3148      // 1 -> Hi
3149      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3150                         DAG.getConstant(OpTy.getSizeInBits()/2,
3151                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3152      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3153    } else {
3154      // 0 -> Lo
3155      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3156                         Node->getOperand(0));
3157    }
3158    Results.push_back(Tmp1);
3159    break;
3160  }
3161  case ISD::STACKSAVE:
3162    // Expand to CopyFromReg if the target set
3163    // StackPointerRegisterToSaveRestore.
3164    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3165      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3166                                           Node->getValueType(0)));
3167      Results.push_back(Results[0].getValue(1));
3168    } else {
3169      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3170      Results.push_back(Node->getOperand(0));
3171    }
3172    break;
3173  case ISD::STACKRESTORE:
3174    // Expand to CopyToReg if the target set
3175    // StackPointerRegisterToSaveRestore.
3176    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3177      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3178                                         Node->getOperand(1)));
3179    } else {
3180      Results.push_back(Node->getOperand(0));
3181    }
3182    break;
3183  case ISD::FCOPYSIGN:
3184    Results.push_back(ExpandFCOPYSIGN(Node));
3185    break;
3186  case ISD::FNEG:
3187    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3188    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3189    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3190                       Node->getOperand(0));
3191    Results.push_back(Tmp1);
3192    break;
3193  case ISD::FABS: {
3194    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3195    EVT VT = Node->getValueType(0);
3196    Tmp1 = Node->getOperand(0);
3197    Tmp2 = DAG.getConstantFP(0.0, VT);
3198    Tmp2 = DAG.getSetCC(dl, getSetCCResultType(Tmp1.getValueType()),
3199                        Tmp1, Tmp2, ISD::SETUGT);
3200    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3201    Tmp1 = DAG.getSelect(dl, VT, Tmp2, Tmp1, Tmp3);
3202    Results.push_back(Tmp1);
3203    break;
3204  }
3205  case ISD::FSQRT:
3206    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3207                                      RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3208                                      RTLIB::SQRT_PPCF128));
3209    break;
3210  case ISD::FSIN:
3211  case ISD::FCOS: {
3212    EVT VT = Node->getValueType(0);
3213    bool isSIN = Node->getOpcode() == ISD::FSIN;
3214    // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3215    // fcos which share the same operand and both are used.
3216    if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3217         canCombineSinCosLibcall(Node, TLI, TM))
3218        && useSinCos(Node)) {
3219      SDVTList VTs = DAG.getVTList(VT, VT);
3220      Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3221      if (!isSIN)
3222        Tmp1 = Tmp1.getValue(1);
3223      Results.push_back(Tmp1);
3224    } else if (isSIN) {
3225      Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3226                                        RTLIB::SIN_F80, RTLIB::SIN_F128,
3227                                        RTLIB::SIN_PPCF128));
3228    } else {
3229      Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3230                                        RTLIB::COS_F80, RTLIB::COS_F128,
3231                                        RTLIB::COS_PPCF128));
3232    }
3233    break;
3234  }
3235  case ISD::FSINCOS:
3236    // Expand into sincos libcall.
3237    ExpandSinCosLibCall(Node, Results);
3238    break;
3239  case ISD::FLOG:
3240    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3241                                      RTLIB::LOG_F80, RTLIB::LOG_F128,
3242                                      RTLIB::LOG_PPCF128));
3243    break;
3244  case ISD::FLOG2:
3245    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3246                                      RTLIB::LOG2_F80, RTLIB::LOG2_F128,
3247                                      RTLIB::LOG2_PPCF128));
3248    break;
3249  case ISD::FLOG10:
3250    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3251                                      RTLIB::LOG10_F80, RTLIB::LOG10_F128,
3252                                      RTLIB::LOG10_PPCF128));
3253    break;
3254  case ISD::FEXP:
3255    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3256                                      RTLIB::EXP_F80, RTLIB::EXP_F128,
3257                                      RTLIB::EXP_PPCF128));
3258    break;
3259  case ISD::FEXP2:
3260    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3261                                      RTLIB::EXP2_F80, RTLIB::EXP2_F128,
3262                                      RTLIB::EXP2_PPCF128));
3263    break;
3264  case ISD::FTRUNC:
3265    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3266                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3267                                      RTLIB::TRUNC_PPCF128));
3268    break;
3269  case ISD::FFLOOR:
3270    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3271                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3272                                      RTLIB::FLOOR_PPCF128));
3273    break;
3274  case ISD::FCEIL:
3275    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3276                                      RTLIB::CEIL_F80, RTLIB::CEIL_F128,
3277                                      RTLIB::CEIL_PPCF128));
3278    break;
3279  case ISD::FRINT:
3280    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3281                                      RTLIB::RINT_F80, RTLIB::RINT_F128,
3282                                      RTLIB::RINT_PPCF128));
3283    break;
3284  case ISD::FNEARBYINT:
3285    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3286                                      RTLIB::NEARBYINT_F64,
3287                                      RTLIB::NEARBYINT_F80,
3288                                      RTLIB::NEARBYINT_F128,
3289                                      RTLIB::NEARBYINT_PPCF128));
3290    break;
3291  case ISD::FROUND:
3292    Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
3293                                      RTLIB::ROUND_F64,
3294                                      RTLIB::ROUND_F80,
3295                                      RTLIB::ROUND_F128,
3296                                      RTLIB::ROUND_PPCF128));
3297    break;
3298  case ISD::FPOWI:
3299    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3300                                      RTLIB::POWI_F80, RTLIB::POWI_F128,
3301                                      RTLIB::POWI_PPCF128));
3302    break;
3303  case ISD::FPOW:
3304    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3305                                      RTLIB::POW_F80, RTLIB::POW_F128,
3306                                      RTLIB::POW_PPCF128));
3307    break;
3308  case ISD::FDIV:
3309    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3310                                      RTLIB::DIV_F80, RTLIB::DIV_F128,
3311                                      RTLIB::DIV_PPCF128));
3312    break;
3313  case ISD::FREM:
3314    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3315                                      RTLIB::REM_F80, RTLIB::REM_F128,
3316                                      RTLIB::REM_PPCF128));
3317    break;
3318  case ISD::FMA:
3319    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3320                                      RTLIB::FMA_F80, RTLIB::FMA_F128,
3321                                      RTLIB::FMA_PPCF128));
3322    break;
3323  case ISD::FP16_TO_FP32:
3324    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3325    break;
3326  case ISD::FP32_TO_FP16:
3327    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3328    break;
3329  case ISD::ConstantFP: {
3330    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3331    // Check to see if this FP immediate is already legal.
3332    // If this is a legal constant, turn it into a TargetConstantFP node.
3333    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3334      Results.push_back(ExpandConstantFP(CFP, true));
3335    break;
3336  }
3337  case ISD::FSUB: {
3338    EVT VT = Node->getValueType(0);
3339    assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3340           TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
3341           "Don't know how to expand this FP subtraction!");
3342    Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3343    Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3344    Results.push_back(Tmp1);
3345    break;
3346  }
3347  case ISD::SUB: {
3348    EVT VT = Node->getValueType(0);
3349    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3350           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3351           "Don't know how to expand this subtraction!");
3352    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3353               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3354    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
3355    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3356    break;
3357  }
3358  case ISD::UREM:
3359  case ISD::SREM: {
3360    EVT VT = Node->getValueType(0);
3361    bool isSigned = Node->getOpcode() == ISD::SREM;
3362    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3363    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3364    Tmp2 = Node->getOperand(0);
3365    Tmp3 = Node->getOperand(1);
3366    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3367        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3368         // If div is legal, it's better to do the normal expansion
3369         !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) &&
3370         useDivRem(Node, isSigned, false))) {
3371      SDVTList VTs = DAG.getVTList(VT, VT);
3372      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3373    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3374      // X % Y -> X-X/Y*Y
3375      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3376      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3377      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3378    } else if (isSigned)
3379      Tmp1 = ExpandIntLibCall(Node, true,
3380                              RTLIB::SREM_I8,
3381                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3382                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3383    else
3384      Tmp1 = ExpandIntLibCall(Node, false,
3385                              RTLIB::UREM_I8,
3386                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3387                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3388    Results.push_back(Tmp1);
3389    break;
3390  }
3391  case ISD::UDIV:
3392  case ISD::SDIV: {
3393    bool isSigned = Node->getOpcode() == ISD::SDIV;
3394    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3395    EVT VT = Node->getValueType(0);
3396    SDVTList VTs = DAG.getVTList(VT, VT);
3397    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3398        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3399         useDivRem(Node, isSigned, true)))
3400      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3401                         Node->getOperand(1));
3402    else if (isSigned)
3403      Tmp1 = ExpandIntLibCall(Node, true,
3404                              RTLIB::SDIV_I8,
3405                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3406                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3407    else
3408      Tmp1 = ExpandIntLibCall(Node, false,
3409                              RTLIB::UDIV_I8,
3410                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3411                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3412    Results.push_back(Tmp1);
3413    break;
3414  }
3415  case ISD::MULHU:
3416  case ISD::MULHS: {
3417    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3418                                                              ISD::SMUL_LOHI;
3419    EVT VT = Node->getValueType(0);
3420    SDVTList VTs = DAG.getVTList(VT, VT);
3421    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3422           "If this wasn't legal, it shouldn't have been created!");
3423    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3424                       Node->getOperand(1));
3425    Results.push_back(Tmp1.getValue(1));
3426    break;
3427  }
3428  case ISD::SDIVREM:
3429  case ISD::UDIVREM:
3430    // Expand into divrem libcall
3431    ExpandDivRemLibCall(Node, Results);
3432    break;
3433  case ISD::MUL: {
3434    EVT VT = Node->getValueType(0);
3435    SDVTList VTs = DAG.getVTList(VT, VT);
3436    // See if multiply or divide can be lowered using two-result operations.
3437    // We just need the low half of the multiply; try both the signed
3438    // and unsigned forms. If the target supports both SMUL_LOHI and
3439    // UMUL_LOHI, form a preference by checking which forms of plain
3440    // MULH it supports.
3441    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3442    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3443    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3444    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3445    unsigned OpToUse = 0;
3446    if (HasSMUL_LOHI && !HasMULHS) {
3447      OpToUse = ISD::SMUL_LOHI;
3448    } else if (HasUMUL_LOHI && !HasMULHU) {
3449      OpToUse = ISD::UMUL_LOHI;
3450    } else if (HasSMUL_LOHI) {
3451      OpToUse = ISD::SMUL_LOHI;
3452    } else if (HasUMUL_LOHI) {
3453      OpToUse = ISD::UMUL_LOHI;
3454    }
3455    if (OpToUse) {
3456      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3457                                    Node->getOperand(1)));
3458      break;
3459    }
3460    Tmp1 = ExpandIntLibCall(Node, false,
3461                            RTLIB::MUL_I8,
3462                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3463                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3464    Results.push_back(Tmp1);
3465    break;
3466  }
3467  case ISD::SADDO:
3468  case ISD::SSUBO: {
3469    SDValue LHS = Node->getOperand(0);
3470    SDValue RHS = Node->getOperand(1);
3471    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3472                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3473                              LHS, RHS);
3474    Results.push_back(Sum);
3475    EVT OType = Node->getValueType(1);
3476
3477    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3478
3479    //   LHSSign -> LHS >= 0
3480    //   RHSSign -> RHS >= 0
3481    //   SumSign -> Sum >= 0
3482    //
3483    //   Add:
3484    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3485    //   Sub:
3486    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3487    //
3488    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3489    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3490    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3491                                      Node->getOpcode() == ISD::SADDO ?
3492                                      ISD::SETEQ : ISD::SETNE);
3493
3494    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3495    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3496
3497    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3498    Results.push_back(Cmp);
3499    break;
3500  }
3501  case ISD::UADDO:
3502  case ISD::USUBO: {
3503    SDValue LHS = Node->getOperand(0);
3504    SDValue RHS = Node->getOperand(1);
3505    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3506                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3507                              LHS, RHS);
3508    Results.push_back(Sum);
3509    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3510                                   Node->getOpcode () == ISD::UADDO ?
3511                                   ISD::SETULT : ISD::SETUGT));
3512    break;
3513  }
3514  case ISD::UMULO:
3515  case ISD::SMULO: {
3516    EVT VT = Node->getValueType(0);
3517    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3518    SDValue LHS = Node->getOperand(0);
3519    SDValue RHS = Node->getOperand(1);
3520    SDValue BottomHalf;
3521    SDValue TopHalf;
3522    static const unsigned Ops[2][3] =
3523        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3524          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3525    bool isSigned = Node->getOpcode() == ISD::SMULO;
3526    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3527      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3528      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3529    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3530      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3531                               RHS);
3532      TopHalf = BottomHalf.getValue(1);
3533    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3534                                                 VT.getSizeInBits() * 2))) {
3535      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3536      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3537      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3538      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3539                               DAG.getIntPtrConstant(0));
3540      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3541                            DAG.getIntPtrConstant(1));
3542    } else {
3543      // We can fall back to a libcall with an illegal type for the MUL if we
3544      // have a libcall big enough.
3545      // Also, we can fall back to a division in some cases, but that's a big
3546      // performance hit in the general case.
3547      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3548      if (WideVT == MVT::i16)
3549        LC = RTLIB::MUL_I16;
3550      else if (WideVT == MVT::i32)
3551        LC = RTLIB::MUL_I32;
3552      else if (WideVT == MVT::i64)
3553        LC = RTLIB::MUL_I64;
3554      else if (WideVT == MVT::i128)
3555        LC = RTLIB::MUL_I128;
3556      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3557
3558      // The high part is obtained by SRA'ing all but one of the bits of low
3559      // part.
3560      unsigned LoSize = VT.getSizeInBits();
3561      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3562                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3563      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3564                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3565
3566      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3567      // pre-lowered to the correct types. This all depends upon WideVT not
3568      // being a legal type for the architecture and thus has to be split to
3569      // two arguments.
3570      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3571      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3572      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3573                               DAG.getIntPtrConstant(0));
3574      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3575                            DAG.getIntPtrConstant(1));
3576      // Ret is a node with an illegal type. Because such things are not
3577      // generally permitted during this phase of legalization, delete the
3578      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3579      DAG.DeleteNode(Ret.getNode());
3580    }
3581
3582    if (isSigned) {
3583      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3584                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3585      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3586      TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1,
3587                             ISD::SETNE);
3588    } else {
3589      TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
3590                             DAG.getConstant(0, VT), ISD::SETNE);
3591    }
3592    Results.push_back(BottomHalf);
3593    Results.push_back(TopHalf);
3594    break;
3595  }
3596  case ISD::BUILD_PAIR: {
3597    EVT PairTy = Node->getValueType(0);
3598    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3599    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3600    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3601                       DAG.getConstant(PairTy.getSizeInBits()/2,
3602                                       TLI.getShiftAmountTy(PairTy)));
3603    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3604    break;
3605  }
3606  case ISD::SELECT:
3607    Tmp1 = Node->getOperand(0);
3608    Tmp2 = Node->getOperand(1);
3609    Tmp3 = Node->getOperand(2);
3610    if (Tmp1.getOpcode() == ISD::SETCC) {
3611      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3612                             Tmp2, Tmp3,
3613                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3614    } else {
3615      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3616                             DAG.getConstant(0, Tmp1.getValueType()),
3617                             Tmp2, Tmp3, ISD::SETNE);
3618    }
3619    Results.push_back(Tmp1);
3620    break;
3621  case ISD::BR_JT: {
3622    SDValue Chain = Node->getOperand(0);
3623    SDValue Table = Node->getOperand(1);
3624    SDValue Index = Node->getOperand(2);
3625
3626    EVT PTy = TLI.getPointerTy();
3627
3628    const DataLayout &TD = *TLI.getDataLayout();
3629    unsigned EntrySize =
3630      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3631
3632    Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(),
3633                       Index, DAG.getConstant(EntrySize, Index.getValueType()));
3634    SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3635                               Index, Table);
3636
3637    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3638    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3639                                MachinePointerInfo::getJumpTable(), MemVT,
3640                                false, false, 0);
3641    Addr = LD;
3642    if (TM.getRelocationModel() == Reloc::PIC_) {
3643      // For PIC, the sequence is:
3644      // BRIND(load(Jumptable + index) + RelocBase)
3645      // RelocBase can be JumpTable, GOT or some sort of global base.
3646      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3647                          TLI.getPICJumpTableRelocBase(Table, DAG));
3648    }
3649    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3650    Results.push_back(Tmp1);
3651    break;
3652  }
3653  case ISD::BRCOND:
3654    // Expand brcond's setcc into its constituent parts and create a BR_CC
3655    // Node.
3656    Tmp1 = Node->getOperand(0);
3657    Tmp2 = Node->getOperand(1);
3658    if (Tmp2.getOpcode() == ISD::SETCC) {
3659      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3660                         Tmp1, Tmp2.getOperand(2),
3661                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3662                         Node->getOperand(2));
3663    } else {
3664      // We test only the i1 bit.  Skip the AND if UNDEF.
3665      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3666        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3667                    DAG.getConstant(1, Tmp2.getValueType()));
3668      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3669                         DAG.getCondCode(ISD::SETNE), Tmp3,
3670                         DAG.getConstant(0, Tmp3.getValueType()),
3671                         Node->getOperand(2));
3672    }
3673    Results.push_back(Tmp1);
3674    break;
3675  case ISD::SETCC: {
3676    Tmp1 = Node->getOperand(0);
3677    Tmp2 = Node->getOperand(1);
3678    Tmp3 = Node->getOperand(2);
3679    bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
3680                                           Tmp3, dl);
3681
3682    if (Legalized) {
3683      // If we exapanded the SETCC by swapping LHS and RHS, create a new SETCC
3684      // node.
3685      if (Tmp3.getNode())
3686        Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3687                           Tmp1, Tmp2, Tmp3);
3688
3689      Results.push_back(Tmp1);
3690      break;
3691    }
3692
3693    // Otherwise, SETCC for the given comparison type must be completely
3694    // illegal; expand it into a SELECT_CC.
3695    EVT VT = Node->getValueType(0);
3696    int TrueValue;
3697    switch (TLI.getBooleanContents(VT.isVector())) {
3698    case TargetLowering::ZeroOrOneBooleanContent:
3699    case TargetLowering::UndefinedBooleanContent:
3700      TrueValue = 1;
3701      break;
3702    case TargetLowering::ZeroOrNegativeOneBooleanContent:
3703      TrueValue = -1;
3704      break;
3705    }
3706    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3707                       DAG.getConstant(TrueValue, VT), DAG.getConstant(0, VT),
3708                       Tmp3);
3709    Results.push_back(Tmp1);
3710    break;
3711  }
3712  case ISD::SELECT_CC: {
3713    Tmp1 = Node->getOperand(0);   // LHS
3714    Tmp2 = Node->getOperand(1);   // RHS
3715    Tmp3 = Node->getOperand(2);   // True
3716    Tmp4 = Node->getOperand(3);   // False
3717    SDValue CC = Node->getOperand(4);
3718
3719    bool Legalized = false;
3720    // Try to legalize by inverting the condition.  This is for targets that
3721    // might support an ordered version of a condition, but not the unordered
3722    // version (or vice versa).
3723    ISD::CondCode InvCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3724                                               Tmp1.getValueType().isInteger());
3725    if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) {
3726      // Use the new condition code and swap true and false
3727      Legalized = true;
3728      Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3729    } else {
3730      // If The inverse is not legal, then try to swap the arguments using
3731      // the inverse condition code.
3732      ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3733      if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) {
3734        // The swapped inverse condition is legal, so swap true and false,
3735        // lhs and rhs.
3736        Legalized = true;
3737        Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3738      }
3739    }
3740
3741    if (!Legalized) {
3742      Legalized = LegalizeSetCCCondCode(
3743          getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, dl);
3744
3745      assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3746      // If we exapanded the SETCC by swapping LHS and RHS, create a new
3747      // SELECT_CC node.
3748      if (CC.getNode()) {
3749        Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3750                           Tmp1, Tmp2, Tmp3, Tmp4, CC);
3751      } else {
3752        Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3753        CC = DAG.getCondCode(ISD::SETNE);
3754        Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3755                           Tmp3, Tmp4, CC);
3756      }
3757    }
3758    Results.push_back(Tmp1);
3759    break;
3760  }
3761  case ISD::BR_CC: {
3762    Tmp1 = Node->getOperand(0);              // Chain
3763    Tmp2 = Node->getOperand(2);              // LHS
3764    Tmp3 = Node->getOperand(3);              // RHS
3765    Tmp4 = Node->getOperand(1);              // CC
3766
3767    bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
3768        Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, dl);
3769    (void)Legalized;
3770    assert(Legalized && "Can't legalize BR_CC with legal condition!");
3771
3772    // If we exapanded the SETCC by swapping LHS and RHS, create a new BR_CC
3773    // node.
3774    if (Tmp4.getNode()) {
3775      Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3776                         Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3777    } else {
3778      Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3779      Tmp4 = DAG.getCondCode(ISD::SETNE);
3780      Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3781                         Tmp3, Node->getOperand(4));
3782    }
3783    Results.push_back(Tmp1);
3784    break;
3785  }
3786  case ISD::BUILD_VECTOR:
3787    Results.push_back(ExpandBUILD_VECTOR(Node));
3788    break;
3789  case ISD::SRA:
3790  case ISD::SRL:
3791  case ISD::SHL: {
3792    // Scalarize vector SRA/SRL/SHL.
3793    EVT VT = Node->getValueType(0);
3794    assert(VT.isVector() && "Unable to legalize non-vector shift");
3795    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3796    unsigned NumElem = VT.getVectorNumElements();
3797
3798    SmallVector<SDValue, 8> Scalars;
3799    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3800      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3801                               VT.getScalarType(),
3802                               Node->getOperand(0), DAG.getConstant(Idx,
3803                                                    TLI.getVectorIdxTy()));
3804      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3805                               VT.getScalarType(),
3806                               Node->getOperand(1), DAG.getConstant(Idx,
3807                                                    TLI.getVectorIdxTy()));
3808      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3809                                    VT.getScalarType(), Ex, Sh));
3810    }
3811    SDValue Result =
3812      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3813                  &Scalars[0], Scalars.size());
3814    ReplaceNode(SDValue(Node, 0), Result);
3815    break;
3816  }
3817  case ISD::GLOBAL_OFFSET_TABLE:
3818  case ISD::GlobalAddress:
3819  case ISD::GlobalTLSAddress:
3820  case ISD::ExternalSymbol:
3821  case ISD::ConstantPool:
3822  case ISD::JumpTable:
3823  case ISD::INTRINSIC_W_CHAIN:
3824  case ISD::INTRINSIC_WO_CHAIN:
3825  case ISD::INTRINSIC_VOID:
3826    // FIXME: Custom lowering for these operations shouldn't return null!
3827    break;
3828  }
3829
3830  // Replace the original node with the legalized result.
3831  if (!Results.empty())
3832    ReplaceNode(Node, Results.data());
3833}
3834
3835void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3836  SmallVector<SDValue, 8> Results;
3837  MVT OVT = Node->getSimpleValueType(0);
3838  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3839      Node->getOpcode() == ISD::SINT_TO_FP ||
3840      Node->getOpcode() == ISD::SETCC) {
3841    OVT = Node->getOperand(0).getSimpleValueType();
3842  }
3843  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3844  SDLoc dl(Node);
3845  SDValue Tmp1, Tmp2, Tmp3;
3846  switch (Node->getOpcode()) {
3847  case ISD::CTTZ:
3848  case ISD::CTTZ_ZERO_UNDEF:
3849  case ISD::CTLZ:
3850  case ISD::CTLZ_ZERO_UNDEF:
3851  case ISD::CTPOP:
3852    // Zero extend the argument.
3853    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3854    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3855    // already the correct result.
3856    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3857    if (Node->getOpcode() == ISD::CTTZ) {
3858      // FIXME: This should set a bit in the zero extended value instead.
3859      Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT),
3860                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3861                          ISD::SETEQ);
3862      Tmp1 = DAG.getSelect(dl, NVT, Tmp2,
3863                           DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3864    } else if (Node->getOpcode() == ISD::CTLZ ||
3865               Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
3866      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3867      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3868                          DAG.getConstant(NVT.getSizeInBits() -
3869                                          OVT.getSizeInBits(), NVT));
3870    }
3871    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3872    break;
3873  case ISD::BSWAP: {
3874    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3875    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3876    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3877    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3878                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3879    Results.push_back(Tmp1);
3880    break;
3881  }
3882  case ISD::FP_TO_UINT:
3883  case ISD::FP_TO_SINT:
3884    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3885                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3886    Results.push_back(Tmp1);
3887    break;
3888  case ISD::UINT_TO_FP:
3889  case ISD::SINT_TO_FP:
3890    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3891                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3892    Results.push_back(Tmp1);
3893    break;
3894  case ISD::VAARG: {
3895    SDValue Chain = Node->getOperand(0); // Get the chain.
3896    SDValue Ptr = Node->getOperand(1); // Get the pointer.
3897
3898    unsigned TruncOp;
3899    if (OVT.isVector()) {
3900      TruncOp = ISD::BITCAST;
3901    } else {
3902      assert(OVT.isInteger()
3903        && "VAARG promotion is supported only for vectors or integer types");
3904      TruncOp = ISD::TRUNCATE;
3905    }
3906
3907    // Perform the larger operation, then convert back
3908    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
3909             Node->getConstantOperandVal(3));
3910    Chain = Tmp1.getValue(1);
3911
3912    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
3913
3914    // Modified the chain result - switch anything that used the old chain to
3915    // use the new one.
3916    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
3917    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
3918    ReplacedNode(Node);
3919    break;
3920  }
3921  case ISD::AND:
3922  case ISD::OR:
3923  case ISD::XOR: {
3924    unsigned ExtOp, TruncOp;
3925    if (OVT.isVector()) {
3926      ExtOp   = ISD::BITCAST;
3927      TruncOp = ISD::BITCAST;
3928    } else {
3929      assert(OVT.isInteger() && "Cannot promote logic operation");
3930      ExtOp   = ISD::ANY_EXTEND;
3931      TruncOp = ISD::TRUNCATE;
3932    }
3933    // Promote each of the values to the new type.
3934    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3935    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3936    // Perform the larger operation, then convert back
3937    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3938    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3939    break;
3940  }
3941  case ISD::SELECT: {
3942    unsigned ExtOp, TruncOp;
3943    if (Node->getValueType(0).isVector()) {
3944      ExtOp   = ISD::BITCAST;
3945      TruncOp = ISD::BITCAST;
3946    } else if (Node->getValueType(0).isInteger()) {
3947      ExtOp   = ISD::ANY_EXTEND;
3948      TruncOp = ISD::TRUNCATE;
3949    } else {
3950      ExtOp   = ISD::FP_EXTEND;
3951      TruncOp = ISD::FP_ROUND;
3952    }
3953    Tmp1 = Node->getOperand(0);
3954    // Promote each of the values to the new type.
3955    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3956    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3957    // Perform the larger operation, then round down.
3958    Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
3959    if (TruncOp != ISD::FP_ROUND)
3960      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3961    else
3962      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3963                         DAG.getIntPtrConstant(0));
3964    Results.push_back(Tmp1);
3965    break;
3966  }
3967  case ISD::VECTOR_SHUFFLE: {
3968    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3969
3970    // Cast the two input vectors.
3971    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3972    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3973
3974    // Convert the shuffle mask to the right # elements.
3975    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3976    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3977    Results.push_back(Tmp1);
3978    break;
3979  }
3980  case ISD::SETCC: {
3981    unsigned ExtOp = ISD::FP_EXTEND;
3982    if (NVT.isInteger()) {
3983      ISD::CondCode CCCode =
3984        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3985      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3986    }
3987    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3988    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3989    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3990                                  Tmp1, Tmp2, Node->getOperand(2)));
3991    break;
3992  }
3993  case ISD::FDIV:
3994  case ISD::FREM:
3995  case ISD::FPOW: {
3996    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3997    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
3998    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3999    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4000                                  Tmp3, DAG.getIntPtrConstant(0)));
4001    break;
4002  }
4003  case ISD::FLOG2:
4004  case ISD::FEXP2:
4005  case ISD::FLOG:
4006  case ISD::FEXP: {
4007    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4008    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4009    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4010                                  Tmp2, DAG.getIntPtrConstant(0)));
4011    break;
4012  }
4013  }
4014
4015  // Replace the original node with the legalized result.
4016  if (!Results.empty())
4017    ReplaceNode(Node, Results.data());
4018}
4019
4020// SelectionDAG::Legalize - This is the entry point for the file.
4021//
4022void SelectionDAG::Legalize() {
4023  /// run - This is the main entry point to this class.
4024  ///
4025  SelectionDAGLegalize(*this).LegalizeDAG();
4026}
4027