LegalizeDAG.cpp revision a1eaa3c52b75d4fe2bcd4f7c52e56c405ee91d3c
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include <map>
42using namespace llvm;
43
44//===----------------------------------------------------------------------===//
45/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
46/// hacks on it until the target machine can handle it.  This involves
47/// eliminating value sizes the machine cannot handle (promoting small sizes to
48/// large sizes or splitting up large values into small values) as well as
49/// eliminating operations the machine cannot handle.
50///
51/// This code also does a small amount of optimization and recognition of idioms
52/// as part of its processing.  For example, if a target does not support a
53/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
54/// will attempt merge setcc and brc instructions into brcc's.
55///
56namespace {
57class SelectionDAGLegalize {
58  TargetLowering &TLI;
59  SelectionDAG &DAG;
60  CodeGenOpt::Level OptLevel;
61
62  // Libcall insertion helpers.
63
64  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65  /// legalized.  We use this to ensure that calls are properly serialized
66  /// against each other, including inserted libcalls.
67  SDValue LastCALLSEQ_END;
68
69  /// IsLegalizingCall - This member is used *only* for purposes of providing
70  /// helpful assertions that a libcall isn't created while another call is
71  /// being legalized (which could lead to non-serialized call sequences).
72  bool IsLegalizingCall;
73
74  enum LegalizeAction {
75    Legal,      // The target natively supports this operation.
76    Promote,    // This operation should be executed in a larger type.
77    Expand      // Try to expand this to other ops, otherwise use a libcall.
78  };
79
80  /// ValueTypeActions - This is a bitvector that contains two bits for each
81  /// value type, where the two bits correspond to the LegalizeAction enum.
82  /// This can be queried with "getTypeAction(VT)".
83  TargetLowering::ValueTypeActionImpl ValueTypeActions;
84
85  /// LegalizedNodes - For nodes that are of legal width, and that have more
86  /// than one use, this map indicates what regularized operand to use.  This
87  /// allows us to avoid legalizing the same thing more than once.
88  DenseMap<SDValue, SDValue> LegalizedNodes;
89
90  void AddLegalizedOperand(SDValue From, SDValue To) {
91    LegalizedNodes.insert(std::make_pair(From, To));
92    // If someone requests legalization of the new node, return itself.
93    if (From != To)
94      LegalizedNodes.insert(std::make_pair(To, To));
95  }
96
97public:
98  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
99
100  /// getTypeAction - Return how we should legalize values of this type, either
101  /// it is already legal or we need to expand it into multiple registers of
102  /// smaller integer type, or we need to promote it to a larger type.
103  LegalizeAction getTypeAction(EVT VT) const {
104    return
105        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
106  }
107
108  /// isTypeLegal - Return true if this type is legal on this target.
109  ///
110  bool isTypeLegal(EVT VT) const {
111    return getTypeAction(VT) == Legal;
112  }
113
114  void LegalizeDAG();
115
116private:
117  /// LegalizeOp - We know that the specified value has a legal type.
118  /// Recursively ensure that the operands have legal types, then return the
119  /// result.
120  SDValue LegalizeOp(SDValue O);
121
122  SDValue OptimizeFloatStore(StoreSDNode *ST);
123
124  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
125  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
126  /// is necessary to spill the vector being inserted into to memory, perform
127  /// the insert there, and then read the result back.
128  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
129                                         SDValue Idx, DebugLoc dl);
130  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
131                                  SDValue Idx, DebugLoc dl);
132
133  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
134  /// performs the same shuffe in terms of order or result bytes, but on a type
135  /// whose vector element type is narrower than the original shuffle type.
136  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
137  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
138                                     SDValue N1, SDValue N2,
139                                     SmallVectorImpl<int> &Mask) const;
140
141  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
142                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
143
144  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
145                             DebugLoc dl);
146
147  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
148  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
149                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
150                          RTLIB::Libcall Call_PPCF128);
151  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
152                           RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
153                           RTLIB::Libcall Call_I128);
154
155  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
156  SDValue ExpandBUILD_VECTOR(SDNode *Node);
157  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
158  SDValue ExpandDBG_STOPPOINT(SDNode *Node);
159  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
160                                SmallVectorImpl<SDValue> &Results);
161  SDValue ExpandFCOPYSIGN(SDNode *Node);
162  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
163                               DebugLoc dl);
164  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
165                                DebugLoc dl);
166  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168
169  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
170  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
171
172  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
173  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
174
175  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
176  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
177};
178}
179
180/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
181/// performs the same shuffe in terms of order or result bytes, but on a type
182/// whose vector element type is narrower than the original shuffle type.
183/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
184SDValue
185SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
186                                                 SDValue N1, SDValue N2,
187                                             SmallVectorImpl<int> &Mask) const {
188  EVT EltVT = NVT.getVectorElementType();
189  unsigned NumMaskElts = VT.getVectorNumElements();
190  unsigned NumDestElts = NVT.getVectorNumElements();
191  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
192
193  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
194
195  if (NumEltsGrowth == 1)
196    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
197
198  SmallVector<int, 8> NewMask;
199  for (unsigned i = 0; i != NumMaskElts; ++i) {
200    int Idx = Mask[i];
201    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
202      if (Idx < 0)
203        NewMask.push_back(-1);
204      else
205        NewMask.push_back(Idx * NumEltsGrowth + j);
206    }
207  }
208  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
209  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
210  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
211}
212
213SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
214                                           CodeGenOpt::Level ol)
215  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
216    ValueTypeActions(TLI.getValueTypeActions()) {
217  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
218         "Too many value types for ValueTypeActions to hold!");
219}
220
221void SelectionDAGLegalize::LegalizeDAG() {
222  LastCALLSEQ_END = DAG.getEntryNode();
223  IsLegalizingCall = false;
224
225  // The legalize process is inherently a bottom-up recursive process (users
226  // legalize their uses before themselves).  Given infinite stack space, we
227  // could just start legalizing on the root and traverse the whole graph.  In
228  // practice however, this causes us to run out of stack space on large basic
229  // blocks.  To avoid this problem, compute an ordering of the nodes where each
230  // node is only legalized after all of its operands are legalized.
231  DAG.AssignTopologicalOrder();
232  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
233       E = prior(DAG.allnodes_end()); I != next(E); ++I)
234    LegalizeOp(SDValue(I, 0));
235
236  // Finally, it's possible the root changed.  Get the new root.
237  SDValue OldRoot = DAG.getRoot();
238  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
239  DAG.setRoot(LegalizedNodes[OldRoot]);
240
241  LegalizedNodes.clear();
242
243  // Remove dead nodes now.
244  DAG.RemoveDeadNodes();
245}
246
247
248/// FindCallEndFromCallStart - Given a chained node that is part of a call
249/// sequence, find the CALLSEQ_END node that terminates the call sequence.
250static SDNode *FindCallEndFromCallStart(SDNode *Node) {
251  if (Node->getOpcode() == ISD::CALLSEQ_END)
252    return Node;
253  if (Node->use_empty())
254    return 0;   // No CallSeqEnd
255
256  // The chain is usually at the end.
257  SDValue TheChain(Node, Node->getNumValues()-1);
258  if (TheChain.getValueType() != MVT::Other) {
259    // Sometimes it's at the beginning.
260    TheChain = SDValue(Node, 0);
261    if (TheChain.getValueType() != MVT::Other) {
262      // Otherwise, hunt for it.
263      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
264        if (Node->getValueType(i) == MVT::Other) {
265          TheChain = SDValue(Node, i);
266          break;
267        }
268
269      // Otherwise, we walked into a node without a chain.
270      if (TheChain.getValueType() != MVT::Other)
271        return 0;
272    }
273  }
274
275  for (SDNode::use_iterator UI = Node->use_begin(),
276       E = Node->use_end(); UI != E; ++UI) {
277
278    // Make sure to only follow users of our token chain.
279    SDNode *User = *UI;
280    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
281      if (User->getOperand(i) == TheChain)
282        if (SDNode *Result = FindCallEndFromCallStart(User))
283          return Result;
284  }
285  return 0;
286}
287
288/// FindCallStartFromCallEnd - Given a chained node that is part of a call
289/// sequence, find the CALLSEQ_START node that initiates the call sequence.
290static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
291  assert(Node && "Didn't find callseq_start for a call??");
292  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
293
294  assert(Node->getOperand(0).getValueType() == MVT::Other &&
295         "Node doesn't have a token chain argument!");
296  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
297}
298
299/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
300/// see if any uses can reach Dest.  If no dest operands can get to dest,
301/// legalize them, legalize ourself, and return false, otherwise, return true.
302///
303/// Keep track of the nodes we fine that actually do lead to Dest in
304/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
305///
306bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
307                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
308  if (N == Dest) return true;  // N certainly leads to Dest :)
309
310  // If we've already processed this node and it does lead to Dest, there is no
311  // need to reprocess it.
312  if (NodesLeadingTo.count(N)) return true;
313
314  // If the first result of this node has been already legalized, then it cannot
315  // reach N.
316  if (LegalizedNodes.count(SDValue(N, 0))) return false;
317
318  // Okay, this node has not already been legalized.  Check and legalize all
319  // operands.  If none lead to Dest, then we can legalize this node.
320  bool OperandsLeadToDest = false;
321  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
322    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
323      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
324
325  if (OperandsLeadToDest) {
326    NodesLeadingTo.insert(N);
327    return true;
328  }
329
330  // Okay, this node looks safe, legalize it and return false.
331  LegalizeOp(SDValue(N, 0));
332  return false;
333}
334
335/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
336/// a load from the constant pool.
337static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
338                                SelectionDAG &DAG, const TargetLowering &TLI) {
339  bool Extend = false;
340  DebugLoc dl = CFP->getDebugLoc();
341
342  // If a FP immediate is precise when represented as a float and if the
343  // target can do an extending load from float to double, we put it into
344  // the constant pool as a float, even if it's is statically typed as a
345  // double.  This shrinks FP constants and canonicalizes them for targets where
346  // an FP extending load is the same cost as a normal load (such as on the x87
347  // fp stack or PPC FP unit).
348  EVT VT = CFP->getValueType(0);
349  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
350  if (!UseCP) {
351    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
352    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
353                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
354  }
355
356  EVT OrigVT = VT;
357  EVT SVT = VT;
358  while (SVT != MVT::f32) {
359    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
360    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
361        // Only do this if the target has a native EXTLOAD instruction from
362        // smaller type.
363        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
364        TLI.ShouldShrinkFPConstant(OrigVT)) {
365      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
366      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
367      VT = SVT;
368      Extend = true;
369    }
370  }
371
372  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
373  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
374  if (Extend)
375    return DAG.getExtLoad(ISD::EXTLOAD, dl,
376                          OrigVT, DAG.getEntryNode(),
377                          CPIdx, PseudoSourceValue::getConstantPool(),
378                          0, VT, false, Alignment);
379  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
380                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
381}
382
383/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
384static
385SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
386                             const TargetLowering &TLI) {
387  SDValue Chain = ST->getChain();
388  SDValue Ptr = ST->getBasePtr();
389  SDValue Val = ST->getValue();
390  EVT VT = Val.getValueType();
391  int Alignment = ST->getAlignment();
392  int SVOffset = ST->getSrcValueOffset();
393  DebugLoc dl = ST->getDebugLoc();
394  if (ST->getMemoryVT().isFloatingPoint() ||
395      ST->getMemoryVT().isVector()) {
396    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
397    if (TLI.isTypeLegal(intVT)) {
398      // Expand to a bitconvert of the value to the integer type of the
399      // same size, then a (misaligned) int store.
400      // FIXME: Does not handle truncating floating point stores!
401      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
402      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
403                          SVOffset, ST->isVolatile(), Alignment);
404    } else {
405      // Do a (aligned) store to a stack slot, then copy from the stack slot
406      // to the final destination using (unaligned) integer loads and stores.
407      EVT StoredVT = ST->getMemoryVT();
408      EVT RegVT =
409        TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits()));
410      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
411      unsigned RegBytes = RegVT.getSizeInBits() / 8;
412      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
413
414      // Make sure the stack slot is also aligned for the register type.
415      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
416
417      // Perform the original store, only redirected to the stack slot.
418      SDValue Store = DAG.getTruncStore(Chain, dl,
419                                        Val, StackPtr, NULL, 0, StoredVT);
420      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
421      SmallVector<SDValue, 8> Stores;
422      unsigned Offset = 0;
423
424      // Do all but one copies using the full register width.
425      for (unsigned i = 1; i < NumRegs; i++) {
426        // Load one integer register's worth from the stack slot.
427        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
428        // Store it to the final location.  Remember the store.
429        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
430                                      ST->getSrcValue(), SVOffset + Offset,
431                                      ST->isVolatile(),
432                                      MinAlign(ST->getAlignment(), Offset)));
433        // Increment the pointers.
434        Offset += RegBytes;
435        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
436                               Increment);
437        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
438      }
439
440      // The last store may be partial.  Do a truncating store.  On big-endian
441      // machines this requires an extending load from the stack slot to ensure
442      // that the bits are in the right place.
443      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
444
445      // Load from the stack slot.
446      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
447                                    NULL, 0, MemVT);
448
449      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
450                                         ST->getSrcValue(), SVOffset + Offset,
451                                         MemVT, ST->isVolatile(),
452                                         MinAlign(ST->getAlignment(), Offset)));
453      // The order of the stores doesn't matter - say it with a TokenFactor.
454      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
455                         Stores.size());
456    }
457  }
458  assert(ST->getMemoryVT().isInteger() &&
459         !ST->getMemoryVT().isVector() &&
460         "Unaligned store of unknown type.");
461  // Get the half-size VT
462  EVT NewStoredVT =
463    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT().SimpleTy - 1);
464  int NumBits = NewStoredVT.getSizeInBits();
465  int IncrementSize = NumBits / 8;
466
467  // Divide the stored value in two parts.
468  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
469  SDValue Lo = Val;
470  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
471
472  // Store the two parts
473  SDValue Store1, Store2;
474  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
475                             ST->getSrcValue(), SVOffset, NewStoredVT,
476                             ST->isVolatile(), Alignment);
477  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
478                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
479  Alignment = MinAlign(Alignment, IncrementSize);
480  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
481                             ST->getSrcValue(), SVOffset + IncrementSize,
482                             NewStoredVT, ST->isVolatile(), Alignment);
483
484  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
485}
486
487/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
488static
489SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
490                            const TargetLowering &TLI) {
491  int SVOffset = LD->getSrcValueOffset();
492  SDValue Chain = LD->getChain();
493  SDValue Ptr = LD->getBasePtr();
494  EVT VT = LD->getValueType(0);
495  EVT LoadedVT = LD->getMemoryVT();
496  DebugLoc dl = LD->getDebugLoc();
497  if (VT.isFloatingPoint() || VT.isVector()) {
498    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
499    if (TLI.isTypeLegal(intVT)) {
500      // Expand to a (misaligned) integer load of the same size,
501      // then bitconvert to floating point or vector.
502      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
503                                    SVOffset, LD->isVolatile(),
504                                    LD->getAlignment());
505      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
506      if (VT.isFloatingPoint() && LoadedVT != VT)
507        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
508
509      SDValue Ops[] = { Result, Chain };
510      return DAG.getMergeValues(Ops, 2, dl);
511    } else {
512      // Copy the value to a (aligned) stack slot using (unaligned) integer
513      // loads and stores, then do a (aligned) load from the stack slot.
514      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
515      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
516      unsigned RegBytes = RegVT.getSizeInBits() / 8;
517      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
518
519      // Make sure the stack slot is also aligned for the register type.
520      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
521
522      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
523      SmallVector<SDValue, 8> Stores;
524      SDValue StackPtr = StackBase;
525      unsigned Offset = 0;
526
527      // Do all but one copies using the full register width.
528      for (unsigned i = 1; i < NumRegs; i++) {
529        // Load one integer register's worth from the original location.
530        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
531                                   SVOffset + Offset, LD->isVolatile(),
532                                   MinAlign(LD->getAlignment(), Offset));
533        // Follow the load with a store to the stack slot.  Remember the store.
534        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
535                                      NULL, 0));
536        // Increment the pointers.
537        Offset += RegBytes;
538        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
539        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
540                               Increment);
541      }
542
543      // The last copy may be partial.  Do an extending load.
544      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset));
545      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
546                                    LD->getSrcValue(), SVOffset + Offset,
547                                    MemVT, LD->isVolatile(),
548                                    MinAlign(LD->getAlignment(), Offset));
549      // Follow the load with a store to the stack slot.  Remember the store.
550      // On big-endian machines this requires a truncating store to ensure
551      // that the bits end up in the right place.
552      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
553                                         NULL, 0, MemVT));
554
555      // The order of the stores doesn't matter - say it with a TokenFactor.
556      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
557                               Stores.size());
558
559      // Finally, perform the original load only redirected to the stack slot.
560      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
561                            NULL, 0, LoadedVT);
562
563      // Callers expect a MERGE_VALUES node.
564      SDValue Ops[] = { Load, TF };
565      return DAG.getMergeValues(Ops, 2, dl);
566    }
567  }
568  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
569         "Unaligned load of unsupported type.");
570
571  // Compute the new VT that is half the size of the old one.  This is an
572  // integer MVT.
573  unsigned NumBits = LoadedVT.getSizeInBits();
574  EVT NewLoadedVT;
575  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
576  NumBits >>= 1;
577
578  unsigned Alignment = LD->getAlignment();
579  unsigned IncrementSize = NumBits / 8;
580  ISD::LoadExtType HiExtType = LD->getExtensionType();
581
582  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
583  if (HiExtType == ISD::NON_EXTLOAD)
584    HiExtType = ISD::ZEXTLOAD;
585
586  // Load the value in two parts
587  SDValue Lo, Hi;
588  if (TLI.isLittleEndian()) {
589    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
590                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
591    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
592                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
593    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
594                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
595                        MinAlign(Alignment, IncrementSize));
596  } else {
597    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
598                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
599    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
600                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
601    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
602                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
603                        MinAlign(Alignment, IncrementSize));
604  }
605
606  // aggregate the two parts
607  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
608  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
609  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
610
611  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
612                             Hi.getValue(1));
613
614  SDValue Ops[] = { Result, TF };
615  return DAG.getMergeValues(Ops, 2, dl);
616}
617
618/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
619/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
620/// is necessary to spill the vector being inserted into to memory, perform
621/// the insert there, and then read the result back.
622SDValue SelectionDAGLegalize::
623PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
624                               DebugLoc dl) {
625  SDValue Tmp1 = Vec;
626  SDValue Tmp2 = Val;
627  SDValue Tmp3 = Idx;
628
629  // If the target doesn't support this, we have to spill the input vector
630  // to a temporary stack slot, update the element, then reload it.  This is
631  // badness.  We could also load the value into a vector register (either
632  // with a "move to register" or "extload into register" instruction, then
633  // permute it into place, if the idx is a constant and if the idx is
634  // supported by the target.
635  EVT VT    = Tmp1.getValueType();
636  EVT EltVT = VT.getVectorElementType();
637  EVT IdxVT = Tmp3.getValueType();
638  EVT PtrVT = TLI.getPointerTy();
639  SDValue StackPtr = DAG.CreateStackTemporary(VT);
640
641  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
642
643  // Store the vector.
644  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
645                            PseudoSourceValue::getFixedStack(SPFI), 0);
646
647  // Truncate or zero extend offset to target pointer type.
648  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
649  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
650  // Add the offset to the index.
651  unsigned EltSize = EltVT.getSizeInBits()/8;
652  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
653  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
654  // Store the scalar value.
655  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
656                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
657  // Load the updated vector.
658  return DAG.getLoad(VT, dl, Ch, StackPtr,
659                     PseudoSourceValue::getFixedStack(SPFI), 0);
660}
661
662
663SDValue SelectionDAGLegalize::
664ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
665  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
666    // SCALAR_TO_VECTOR requires that the type of the value being inserted
667    // match the element type of the vector being created, except for
668    // integers in which case the inserted value can be over width.
669    EVT EltVT = Vec.getValueType().getVectorElementType();
670    if (Val.getValueType() == EltVT ||
671        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
672      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
673                                  Vec.getValueType(), Val);
674
675      unsigned NumElts = Vec.getValueType().getVectorNumElements();
676      // We generate a shuffle of InVec and ScVec, so the shuffle mask
677      // should be 0,1,2,3,4,5... with the appropriate element replaced with
678      // elt 0 of the RHS.
679      SmallVector<int, 8> ShufOps;
680      for (unsigned i = 0; i != NumElts; ++i)
681        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
682
683      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
684                                  &ShufOps[0]);
685    }
686  }
687  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
688}
689
690SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
691  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
692  // FIXME: We shouldn't do this for TargetConstantFP's.
693  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
694  // to phase ordering between legalized code and the dag combiner.  This
695  // probably means that we need to integrate dag combiner and legalizer
696  // together.
697  // We generally can't do this one for long doubles.
698  SDValue Tmp1 = ST->getChain();
699  SDValue Tmp2 = ST->getBasePtr();
700  SDValue Tmp3;
701  int SVOffset = ST->getSrcValueOffset();
702  unsigned Alignment = ST->getAlignment();
703  bool isVolatile = ST->isVolatile();
704  DebugLoc dl = ST->getDebugLoc();
705  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
706    if (CFP->getValueType(0) == MVT::f32 &&
707        getTypeAction(MVT::i32) == Legal) {
708      Tmp3 = DAG.getConstant(CFP->getValueAPF().
709                                      bitcastToAPInt().zextOrTrunc(32),
710                              MVT::i32);
711      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
712                          SVOffset, isVolatile, Alignment);
713    } else if (CFP->getValueType(0) == MVT::f64) {
714      // If this target supports 64-bit registers, do a single 64-bit store.
715      if (getTypeAction(MVT::i64) == Legal) {
716        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
717                                  zextOrTrunc(64), MVT::i64);
718        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
719                            SVOffset, isVolatile, Alignment);
720      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
721        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
722        // stores.  If the target supports neither 32- nor 64-bits, this
723        // xform is certainly not worth it.
724        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
725        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
726        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
727        if (TLI.isBigEndian()) std::swap(Lo, Hi);
728
729        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
730                          SVOffset, isVolatile, Alignment);
731        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
732                            DAG.getIntPtrConstant(4));
733        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
734                          isVolatile, MinAlign(Alignment, 4U));
735
736        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
737      }
738    }
739  }
740  return SDValue();
741}
742
743/// LegalizeOp - We know that the specified value has a legal type, and
744/// that its operands are legal.  Now ensure that the operation itself
745/// is legal, recursively ensuring that the operands' operations remain
746/// legal.
747SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
748  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
749    return Op;
750
751  SDNode *Node = Op.getNode();
752  DebugLoc dl = Node->getDebugLoc();
753
754  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
755    assert(getTypeAction(Node->getValueType(i)) == Legal &&
756           "Unexpected illegal type!");
757
758  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
759    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
760            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
761           "Unexpected illegal type!");
762
763  // Note that LegalizeOp may be reentered even from single-use nodes, which
764  // means that we always must cache transformed nodes.
765  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
766  if (I != LegalizedNodes.end()) return I->second;
767
768  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
769  SDValue Result = Op;
770  bool isCustom = false;
771
772  // Figure out the correct action; the way to query this varies by opcode
773  TargetLowering::LegalizeAction Action;
774  bool SimpleFinishLegalizing = true;
775  switch (Node->getOpcode()) {
776  case ISD::INTRINSIC_W_CHAIN:
777  case ISD::INTRINSIC_WO_CHAIN:
778  case ISD::INTRINSIC_VOID:
779  case ISD::VAARG:
780  case ISD::STACKSAVE:
781    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
782    break;
783  case ISD::SINT_TO_FP:
784  case ISD::UINT_TO_FP:
785  case ISD::EXTRACT_VECTOR_ELT:
786    Action = TLI.getOperationAction(Node->getOpcode(),
787                                    Node->getOperand(0).getValueType());
788    break;
789  case ISD::FP_ROUND_INREG:
790  case ISD::SIGN_EXTEND_INREG: {
791    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
792    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
793    break;
794  }
795  case ISD::SELECT_CC:
796  case ISD::SETCC:
797  case ISD::BR_CC: {
798    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
799                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
800    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
801    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
802    ISD::CondCode CCCode =
803        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
804    Action = TLI.getCondCodeAction(CCCode, OpVT);
805    if (Action == TargetLowering::Legal) {
806      if (Node->getOpcode() == ISD::SELECT_CC)
807        Action = TLI.getOperationAction(Node->getOpcode(),
808                                        Node->getValueType(0));
809      else
810        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
811    }
812    break;
813  }
814  case ISD::LOAD:
815  case ISD::STORE:
816    // FIXME: Model these properly.  LOAD and STORE are complicated, and
817    // STORE expects the unlegalized operand in some cases.
818    SimpleFinishLegalizing = false;
819    break;
820  case ISD::CALLSEQ_START:
821  case ISD::CALLSEQ_END:
822    // FIXME: This shouldn't be necessary.  These nodes have special properties
823    // dealing with the recursive nature of legalization.  Removing this
824    // special case should be done as part of making LegalizeDAG non-recursive.
825    SimpleFinishLegalizing = false;
826    break;
827  case ISD::EXTRACT_ELEMENT:
828  case ISD::FLT_ROUNDS_:
829  case ISD::SADDO:
830  case ISD::SSUBO:
831  case ISD::UADDO:
832  case ISD::USUBO:
833  case ISD::SMULO:
834  case ISD::UMULO:
835  case ISD::FPOWI:
836  case ISD::MERGE_VALUES:
837  case ISD::EH_RETURN:
838  case ISD::FRAME_TO_ARGS_OFFSET:
839    // These operations lie about being legal: when they claim to be legal,
840    // they should actually be expanded.
841    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
842    if (Action == TargetLowering::Legal)
843      Action = TargetLowering::Expand;
844    break;
845  case ISD::TRAMPOLINE:
846  case ISD::FRAMEADDR:
847  case ISD::RETURNADDR:
848    // These operations lie about being legal: when they claim to be legal,
849    // they should actually be custom-lowered.
850    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
851    if (Action == TargetLowering::Legal)
852      Action = TargetLowering::Custom;
853    break;
854  case ISD::BUILD_VECTOR:
855    // A weird case: legalization for BUILD_VECTOR never legalizes the
856    // operands!
857    // FIXME: This really sucks... changing it isn't semantically incorrect,
858    // but it massively pessimizes the code for floating-point BUILD_VECTORs
859    // because ConstantFP operands get legalized into constant pool loads
860    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
861    // though, because BUILD_VECTORS usually get lowered into other nodes
862    // which get legalized properly.
863    SimpleFinishLegalizing = false;
864    break;
865  default:
866    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
867      Action = TargetLowering::Legal;
868    } else {
869      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
870    }
871    break;
872  }
873
874  if (SimpleFinishLegalizing) {
875    SmallVector<SDValue, 8> Ops, ResultVals;
876    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
877      Ops.push_back(LegalizeOp(Node->getOperand(i)));
878    switch (Node->getOpcode()) {
879    default: break;
880    case ISD::BR:
881    case ISD::BRIND:
882    case ISD::BR_JT:
883    case ISD::BR_CC:
884    case ISD::BRCOND:
885      // Branches tweak the chain to include LastCALLSEQ_END
886      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
887                            LastCALLSEQ_END);
888      Ops[0] = LegalizeOp(Ops[0]);
889      LastCALLSEQ_END = DAG.getEntryNode();
890      break;
891    case ISD::SHL:
892    case ISD::SRL:
893    case ISD::SRA:
894    case ISD::ROTL:
895    case ISD::ROTR:
896      // Legalizing shifts/rotates requires adjusting the shift amount
897      // to the appropriate width.
898      if (!Ops[1].getValueType().isVector())
899        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
900      break;
901    case ISD::SRL_PARTS:
902    case ISD::SRA_PARTS:
903    case ISD::SHL_PARTS:
904      // Legalizing shifts/rotates requires adjusting the shift amount
905      // to the appropriate width.
906      if (!Ops[2].getValueType().isVector())
907        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
908      break;
909    }
910
911    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
912                                    Ops.size());
913    switch (Action) {
914    case TargetLowering::Legal:
915      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
916        ResultVals.push_back(Result.getValue(i));
917      break;
918    case TargetLowering::Custom:
919      // FIXME: The handling for custom lowering with multiple results is
920      // a complete mess.
921      Tmp1 = TLI.LowerOperation(Result, DAG);
922      if (Tmp1.getNode()) {
923        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
924          if (e == 1)
925            ResultVals.push_back(Tmp1);
926          else
927            ResultVals.push_back(Tmp1.getValue(i));
928        }
929        break;
930      }
931
932      // FALL THROUGH
933    case TargetLowering::Expand:
934      ExpandNode(Result.getNode(), ResultVals);
935      break;
936    case TargetLowering::Promote:
937      PromoteNode(Result.getNode(), ResultVals);
938      break;
939    }
940    if (!ResultVals.empty()) {
941      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
942        if (ResultVals[i] != SDValue(Node, i))
943          ResultVals[i] = LegalizeOp(ResultVals[i]);
944        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
945      }
946      return ResultVals[Op.getResNo()];
947    }
948  }
949
950  switch (Node->getOpcode()) {
951  default:
952#ifndef NDEBUG
953    errs() << "NODE: ";
954    Node->dump(&DAG);
955    errs() << "\n";
956#endif
957    llvm_unreachable("Do not know how to legalize this operator!");
958
959  case ISD::BUILD_VECTOR:
960    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
961    default: llvm_unreachable("This action is not supported yet!");
962    case TargetLowering::Custom:
963      Tmp3 = TLI.LowerOperation(Result, DAG);
964      if (Tmp3.getNode()) {
965        Result = Tmp3;
966        break;
967      }
968      // FALLTHROUGH
969    case TargetLowering::Expand:
970      Result = ExpandBUILD_VECTOR(Result.getNode());
971      break;
972    }
973    break;
974  case ISD::CALLSEQ_START: {
975    SDNode *CallEnd = FindCallEndFromCallStart(Node);
976
977    // Recursively Legalize all of the inputs of the call end that do not lead
978    // to this call start.  This ensures that any libcalls that need be inserted
979    // are inserted *before* the CALLSEQ_START.
980    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
981    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
982      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
983                                   NodesLeadingTo);
984    }
985
986    // Now that we legalized all of the inputs (which may have inserted
987    // libcalls) create the new CALLSEQ_START node.
988    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
989
990    // Merge in the last call, to ensure that this call start after the last
991    // call ended.
992    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
993      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
994                         Tmp1, LastCALLSEQ_END);
995      Tmp1 = LegalizeOp(Tmp1);
996    }
997
998    // Do not try to legalize the target-specific arguments (#1+).
999    if (Tmp1 != Node->getOperand(0)) {
1000      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1001      Ops[0] = Tmp1;
1002      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1003    }
1004
1005    // Remember that the CALLSEQ_START is legalized.
1006    AddLegalizedOperand(Op.getValue(0), Result);
1007    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1008      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1009
1010    // Now that the callseq_start and all of the non-call nodes above this call
1011    // sequence have been legalized, legalize the call itself.  During this
1012    // process, no libcalls can/will be inserted, guaranteeing that no calls
1013    // can overlap.
1014    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1015    // Note that we are selecting this call!
1016    LastCALLSEQ_END = SDValue(CallEnd, 0);
1017    IsLegalizingCall = true;
1018
1019    // Legalize the call, starting from the CALLSEQ_END.
1020    LegalizeOp(LastCALLSEQ_END);
1021    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1022    return Result;
1023  }
1024  case ISD::CALLSEQ_END:
1025    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1026    // will cause this node to be legalized as well as handling libcalls right.
1027    if (LastCALLSEQ_END.getNode() != Node) {
1028      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1029      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1030      assert(I != LegalizedNodes.end() &&
1031             "Legalizing the call start should have legalized this node!");
1032      return I->second;
1033    }
1034
1035    // Otherwise, the call start has been legalized and everything is going
1036    // according to plan.  Just legalize ourselves normally here.
1037    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1038    // Do not try to legalize the target-specific arguments (#1+), except for
1039    // an optional flag input.
1040    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1041      if (Tmp1 != Node->getOperand(0)) {
1042        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1043        Ops[0] = Tmp1;
1044        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1045      }
1046    } else {
1047      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1048      if (Tmp1 != Node->getOperand(0) ||
1049          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1050        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1051        Ops[0] = Tmp1;
1052        Ops.back() = Tmp2;
1053        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1054      }
1055    }
1056    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1057    // This finishes up call legalization.
1058    IsLegalizingCall = false;
1059
1060    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1061    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1062    if (Node->getNumValues() == 2)
1063      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1064    return Result.getValue(Op.getResNo());
1065  case ISD::LOAD: {
1066    LoadSDNode *LD = cast<LoadSDNode>(Node);
1067    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1068    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1069
1070    ISD::LoadExtType ExtType = LD->getExtensionType();
1071    if (ExtType == ISD::NON_EXTLOAD) {
1072      EVT VT = Node->getValueType(0);
1073      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1074      Tmp3 = Result.getValue(0);
1075      Tmp4 = Result.getValue(1);
1076
1077      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1078      default: llvm_unreachable("This action is not supported yet!");
1079      case TargetLowering::Legal:
1080        // If this is an unaligned load and the target doesn't support it,
1081        // expand it.
1082        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1083          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1084          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1085          if (LD->getAlignment() < ABIAlignment){
1086            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1087                                         DAG, TLI);
1088            Tmp3 = Result.getOperand(0);
1089            Tmp4 = Result.getOperand(1);
1090            Tmp3 = LegalizeOp(Tmp3);
1091            Tmp4 = LegalizeOp(Tmp4);
1092          }
1093        }
1094        break;
1095      case TargetLowering::Custom:
1096        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1097        if (Tmp1.getNode()) {
1098          Tmp3 = LegalizeOp(Tmp1);
1099          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1100        }
1101        break;
1102      case TargetLowering::Promote: {
1103        // Only promote a load of vector type to another.
1104        assert(VT.isVector() && "Cannot promote this load!");
1105        // Change base type to a different vector type.
1106        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1107
1108        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1109                           LD->getSrcValueOffset(),
1110                           LD->isVolatile(), LD->getAlignment());
1111        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1112        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1113        break;
1114      }
1115      }
1116      // Since loads produce two values, make sure to remember that we
1117      // legalized both of them.
1118      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1119      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1120      return Op.getResNo() ? Tmp4 : Tmp3;
1121    } else {
1122      EVT SrcVT = LD->getMemoryVT();
1123      unsigned SrcWidth = SrcVT.getSizeInBits();
1124      int SVOffset = LD->getSrcValueOffset();
1125      unsigned Alignment = LD->getAlignment();
1126      bool isVolatile = LD->isVolatile();
1127
1128      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1129          // Some targets pretend to have an i1 loading operation, and actually
1130          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1131          // bits are guaranteed to be zero; it helps the optimizers understand
1132          // that these bits are zero.  It is also useful for EXTLOAD, since it
1133          // tells the optimizers that those bits are undefined.  It would be
1134          // nice to have an effective generic way of getting these benefits...
1135          // Until such a way is found, don't insist on promoting i1 here.
1136          (SrcVT != MVT::i1 ||
1137           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1138        // Promote to a byte-sized load if not loading an integral number of
1139        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1140        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1141        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1142        SDValue Ch;
1143
1144        // The extra bits are guaranteed to be zero, since we stored them that
1145        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1146
1147        ISD::LoadExtType NewExtType =
1148          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1149
1150        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1151                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1152                                NVT, isVolatile, Alignment);
1153
1154        Ch = Result.getValue(1); // The chain.
1155
1156        if (ExtType == ISD::SEXTLOAD)
1157          // Having the top bits zero doesn't help when sign extending.
1158          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1159                               Result.getValueType(),
1160                               Result, DAG.getValueType(SrcVT));
1161        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1162          // All the top bits are guaranteed to be zero - inform the optimizers.
1163          Result = DAG.getNode(ISD::AssertZext, dl,
1164                               Result.getValueType(), Result,
1165                               DAG.getValueType(SrcVT));
1166
1167        Tmp1 = LegalizeOp(Result);
1168        Tmp2 = LegalizeOp(Ch);
1169      } else if (SrcWidth & (SrcWidth - 1)) {
1170        // If not loading a power-of-2 number of bits, expand as two loads.
1171        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1172               "Unsupported extload!");
1173        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1174        assert(RoundWidth < SrcWidth);
1175        unsigned ExtraWidth = SrcWidth - RoundWidth;
1176        assert(ExtraWidth < RoundWidth);
1177        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1178               "Load size not an integral number of bytes!");
1179        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1180        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1181        SDValue Lo, Hi, Ch;
1182        unsigned IncrementSize;
1183
1184        if (TLI.isLittleEndian()) {
1185          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1186          // Load the bottom RoundWidth bits.
1187          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1188                              Node->getValueType(0), Tmp1, Tmp2,
1189                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1190                              Alignment);
1191
1192          // Load the remaining ExtraWidth bits.
1193          IncrementSize = RoundWidth / 8;
1194          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1195                             DAG.getIntPtrConstant(IncrementSize));
1196          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1197                              LD->getSrcValue(), SVOffset + IncrementSize,
1198                              ExtraVT, isVolatile,
1199                              MinAlign(Alignment, IncrementSize));
1200
1201          // Build a factor node to remember that this load is independent of the
1202          // other one.
1203          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1204                           Hi.getValue(1));
1205
1206          // Move the top bits to the right place.
1207          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1208                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1209
1210          // Join the hi and lo parts.
1211          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1212        } else {
1213          // Big endian - avoid unaligned loads.
1214          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1215          // Load the top RoundWidth bits.
1216          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1217                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1218                              Alignment);
1219
1220          // Load the remaining ExtraWidth bits.
1221          IncrementSize = RoundWidth / 8;
1222          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1223                             DAG.getIntPtrConstant(IncrementSize));
1224          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1225                              Node->getValueType(0), Tmp1, Tmp2,
1226                              LD->getSrcValue(), SVOffset + IncrementSize,
1227                              ExtraVT, isVolatile,
1228                              MinAlign(Alignment, IncrementSize));
1229
1230          // Build a factor node to remember that this load is independent of the
1231          // other one.
1232          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1233                           Hi.getValue(1));
1234
1235          // Move the top bits to the right place.
1236          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1237                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1238
1239          // Join the hi and lo parts.
1240          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1241        }
1242
1243        Tmp1 = LegalizeOp(Result);
1244        Tmp2 = LegalizeOp(Ch);
1245      } else {
1246        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1247        default: llvm_unreachable("This action is not supported yet!");
1248        case TargetLowering::Custom:
1249          isCustom = true;
1250          // FALLTHROUGH
1251        case TargetLowering::Legal:
1252          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1253          Tmp1 = Result.getValue(0);
1254          Tmp2 = Result.getValue(1);
1255
1256          if (isCustom) {
1257            Tmp3 = TLI.LowerOperation(Result, DAG);
1258            if (Tmp3.getNode()) {
1259              Tmp1 = LegalizeOp(Tmp3);
1260              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1261            }
1262          } else {
1263            // If this is an unaligned load and the target doesn't support it,
1264            // expand it.
1265            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1266              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1267              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1268              if (LD->getAlignment() < ABIAlignment){
1269                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1270                                             DAG, TLI);
1271                Tmp1 = Result.getOperand(0);
1272                Tmp2 = Result.getOperand(1);
1273                Tmp1 = LegalizeOp(Tmp1);
1274                Tmp2 = LegalizeOp(Tmp2);
1275              }
1276            }
1277          }
1278          break;
1279        case TargetLowering::Expand:
1280          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1281          // f128 = EXTLOAD {f32,f64} too
1282          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1283                                     Node->getValueType(0) == MVT::f128)) ||
1284              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1285            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1286                                       LD->getSrcValueOffset(),
1287                                       LD->isVolatile(), LD->getAlignment());
1288            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1289                                 Node->getValueType(0), Load);
1290            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1291            Tmp2 = LegalizeOp(Load.getValue(1));
1292            break;
1293          }
1294          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1295          // Turn the unsupported load into an EXTLOAD followed by an explicit
1296          // zero/sign extend inreg.
1297          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1298                                  Tmp1, Tmp2, LD->getSrcValue(),
1299                                  LD->getSrcValueOffset(), SrcVT,
1300                                  LD->isVolatile(), LD->getAlignment());
1301          SDValue ValRes;
1302          if (ExtType == ISD::SEXTLOAD)
1303            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1304                                 Result.getValueType(),
1305                                 Result, DAG.getValueType(SrcVT));
1306          else
1307            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1308          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1309          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1310          break;
1311        }
1312      }
1313
1314      // Since loads produce two values, make sure to remember that we legalized
1315      // both of them.
1316      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1317      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1318      return Op.getResNo() ? Tmp2 : Tmp1;
1319    }
1320  }
1321  case ISD::STORE: {
1322    StoreSDNode *ST = cast<StoreSDNode>(Node);
1323    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1324    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1325    int SVOffset = ST->getSrcValueOffset();
1326    unsigned Alignment = ST->getAlignment();
1327    bool isVolatile = ST->isVolatile();
1328
1329    if (!ST->isTruncatingStore()) {
1330      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1331        Result = SDValue(OptStore, 0);
1332        break;
1333      }
1334
1335      {
1336        Tmp3 = LegalizeOp(ST->getValue());
1337        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1338                                        ST->getOffset());
1339
1340        EVT VT = Tmp3.getValueType();
1341        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1342        default: llvm_unreachable("This action is not supported yet!");
1343        case TargetLowering::Legal:
1344          // If this is an unaligned store and the target doesn't support it,
1345          // expand it.
1346          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1347            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1348            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1349            if (ST->getAlignment() < ABIAlignment)
1350              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1351                                            DAG, TLI);
1352          }
1353          break;
1354        case TargetLowering::Custom:
1355          Tmp1 = TLI.LowerOperation(Result, DAG);
1356          if (Tmp1.getNode()) Result = Tmp1;
1357          break;
1358        case TargetLowering::Promote:
1359          assert(VT.isVector() && "Unknown legal promote case!");
1360          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1361                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1362          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1363                                ST->getSrcValue(), SVOffset, isVolatile,
1364                                Alignment);
1365          break;
1366        }
1367        break;
1368      }
1369    } else {
1370      Tmp3 = LegalizeOp(ST->getValue());
1371
1372      EVT StVT = ST->getMemoryVT();
1373      unsigned StWidth = StVT.getSizeInBits();
1374
1375      if (StWidth != StVT.getStoreSizeInBits()) {
1376        // Promote to a byte-sized store with upper bits zero if not
1377        // storing an integral number of bytes.  For example, promote
1378        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1379        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits());
1380        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1381        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1382                                   SVOffset, NVT, isVolatile, Alignment);
1383      } else if (StWidth & (StWidth - 1)) {
1384        // If not storing a power-of-2 number of bits, expand as two stores.
1385        assert(StVT.isExtended() && !StVT.isVector() &&
1386               "Unsupported truncstore!");
1387        unsigned RoundWidth = 1 << Log2_32(StWidth);
1388        assert(RoundWidth < StWidth);
1389        unsigned ExtraWidth = StWidth - RoundWidth;
1390        assert(ExtraWidth < RoundWidth);
1391        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1392               "Store size not an integral number of bytes!");
1393        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1394        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1395        SDValue Lo, Hi;
1396        unsigned IncrementSize;
1397
1398        if (TLI.isLittleEndian()) {
1399          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1400          // Store the bottom RoundWidth bits.
1401          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1402                                 SVOffset, RoundVT,
1403                                 isVolatile, Alignment);
1404
1405          // Store the remaining ExtraWidth bits.
1406          IncrementSize = RoundWidth / 8;
1407          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1408                             DAG.getIntPtrConstant(IncrementSize));
1409          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1410                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1411          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1412                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1413                                 MinAlign(Alignment, IncrementSize));
1414        } else {
1415          // Big endian - avoid unaligned stores.
1416          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1417          // Store the top RoundWidth bits.
1418          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1419                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1420          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1421                                 SVOffset, RoundVT, isVolatile, Alignment);
1422
1423          // Store the remaining ExtraWidth bits.
1424          IncrementSize = RoundWidth / 8;
1425          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1426                             DAG.getIntPtrConstant(IncrementSize));
1427          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1428                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1429                                 MinAlign(Alignment, IncrementSize));
1430        }
1431
1432        // The order of the stores doesn't matter.
1433        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1434      } else {
1435        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1436            Tmp2 != ST->getBasePtr())
1437          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1438                                          ST->getOffset());
1439
1440        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1441        default: llvm_unreachable("This action is not supported yet!");
1442        case TargetLowering::Legal:
1443          // If this is an unaligned store and the target doesn't support it,
1444          // expand it.
1445          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1446            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1447            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1448            if (ST->getAlignment() < ABIAlignment)
1449              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1450                                            DAG, TLI);
1451          }
1452          break;
1453        case TargetLowering::Custom:
1454          Result = TLI.LowerOperation(Result, DAG);
1455          break;
1456        case Expand:
1457          // TRUNCSTORE:i16 i32 -> STORE i16
1458          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1459          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1460          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1461                                SVOffset, isVolatile, Alignment);
1462          break;
1463        }
1464      }
1465    }
1466    break;
1467  }
1468  }
1469  assert(Result.getValueType() == Op.getValueType() &&
1470         "Bad legalization!");
1471
1472  // Make sure that the generated code is itself legal.
1473  if (Result != Op)
1474    Result = LegalizeOp(Result);
1475
1476  // Note that LegalizeOp may be reentered even from single-use nodes, which
1477  // means that we always must cache transformed nodes.
1478  AddLegalizedOperand(Op, Result);
1479  return Result;
1480}
1481
1482SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1483  SDValue Vec = Op.getOperand(0);
1484  SDValue Idx = Op.getOperand(1);
1485  DebugLoc dl = Op.getDebugLoc();
1486  // Store the value to a temporary stack slot, then LOAD the returned part.
1487  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1488  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1489
1490  // Add the offset to the index.
1491  unsigned EltSize =
1492      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1493  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1494                    DAG.getConstant(EltSize, Idx.getValueType()));
1495
1496  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1497    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1498  else
1499    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1500
1501  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1502
1503  if (Op.getValueType().isVector())
1504    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1505  else
1506    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1507                          NULL, 0, Vec.getValueType().getVectorElementType());
1508}
1509
1510SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1511  // We can't handle this case efficiently.  Allocate a sufficiently
1512  // aligned object on the stack, store each element into it, then load
1513  // the result as a vector.
1514  // Create the stack frame object.
1515  EVT VT = Node->getValueType(0);
1516  EVT OpVT = Node->getOperand(0).getValueType();
1517  DebugLoc dl = Node->getDebugLoc();
1518  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1519  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1520  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1521
1522  // Emit a store of each element to the stack slot.
1523  SmallVector<SDValue, 8> Stores;
1524  unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1525  // Store (in the right endianness) the elements to memory.
1526  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1527    // Ignore undef elements.
1528    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1529
1530    unsigned Offset = TypeByteSize*i;
1531
1532    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1533    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1534
1535    Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1536                                  Idx, SV, Offset));
1537  }
1538
1539  SDValue StoreChain;
1540  if (!Stores.empty())    // Not all undef elements?
1541    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1542                             &Stores[0], Stores.size());
1543  else
1544    StoreChain = DAG.getEntryNode();
1545
1546  // Result is a load from the stack slot.
1547  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1548}
1549
1550SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1551  DebugLoc dl = Node->getDebugLoc();
1552  SDValue Tmp1 = Node->getOperand(0);
1553  SDValue Tmp2 = Node->getOperand(1);
1554  assert((Tmp2.getValueType() == MVT::f32 ||
1555          Tmp2.getValueType() == MVT::f64) &&
1556          "Ugly special-cased code!");
1557  // Get the sign bit of the RHS.
1558  SDValue SignBit;
1559  EVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1560  if (isTypeLegal(IVT)) {
1561    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1562  } else {
1563    assert(isTypeLegal(TLI.getPointerTy()) &&
1564            (TLI.getPointerTy() == MVT::i32 ||
1565            TLI.getPointerTy() == MVT::i64) &&
1566            "Legal type for load?!");
1567    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1568    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1569    SDValue Ch =
1570        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1571    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1572      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1573                            LoadPtr, DAG.getIntPtrConstant(4));
1574    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1575                              Ch, LoadPtr, NULL, 0, MVT::i32);
1576  }
1577  SignBit =
1578      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1579                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1580                    ISD::SETLT);
1581  // Get the absolute value of the result.
1582  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1583  // Select between the nabs and abs value based on the sign bit of
1584  // the input.
1585  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1586                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1587                     AbsVal);
1588}
1589
1590SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1591  DebugLoc dl = Node->getDebugLoc();
1592  DwarfWriter *DW = DAG.getDwarfWriter();
1593  bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1594                                                    MVT::Other);
1595  bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1596
1597  const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1598  MDNode *CU_Node = DSP->getCompileUnit();
1599  if (DW && (useDEBUG_LOC || useLABEL)) {
1600
1601    unsigned Line = DSP->getLine();
1602    unsigned Col = DSP->getColumn();
1603
1604    if (OptLevel == CodeGenOpt::None) {
1605      // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1606      // won't hurt anything.
1607      if (useDEBUG_LOC) {
1608        return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1609                           DAG.getConstant(Line, MVT::i32),
1610                           DAG.getConstant(Col, MVT::i32),
1611                           DAG.getSrcValue(CU_Node));
1612      } else {
1613        unsigned ID = DW->RecordSourceLine(Line, Col, CU_Node);
1614        return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1615      }
1616    }
1617  }
1618  return Node->getOperand(0);
1619}
1620
1621void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1622                                           SmallVectorImpl<SDValue> &Results) {
1623  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1624  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1625          " not tell us which reg is the stack pointer!");
1626  DebugLoc dl = Node->getDebugLoc();
1627  EVT VT = Node->getValueType(0);
1628  SDValue Tmp1 = SDValue(Node, 0);
1629  SDValue Tmp2 = SDValue(Node, 1);
1630  SDValue Tmp3 = Node->getOperand(2);
1631  SDValue Chain = Tmp1.getOperand(0);
1632
1633  // Chain the dynamic stack allocation so that it doesn't modify the stack
1634  // pointer when other instructions are using the stack.
1635  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1636
1637  SDValue Size  = Tmp2.getOperand(1);
1638  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1639  Chain = SP.getValue(1);
1640  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1641  unsigned StackAlign =
1642    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1643  if (Align > StackAlign)
1644    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1645                      DAG.getConstant(-(uint64_t)Align, VT));
1646  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1647  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1648
1649  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1650                            DAG.getIntPtrConstant(0, true), SDValue());
1651
1652  Results.push_back(Tmp1);
1653  Results.push_back(Tmp2);
1654}
1655
1656/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1657/// condition code CC on the current target. This routine expands SETCC with
1658/// illegal condition code into AND / OR of multiple SETCC values.
1659void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1660                                                 SDValue &LHS, SDValue &RHS,
1661                                                 SDValue &CC,
1662                                                 DebugLoc dl) {
1663  EVT OpVT = LHS.getValueType();
1664  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1665  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1666  default: llvm_unreachable("Unknown condition code action!");
1667  case TargetLowering::Legal:
1668    // Nothing to do.
1669    break;
1670  case TargetLowering::Expand: {
1671    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1672    unsigned Opc = 0;
1673    switch (CCCode) {
1674    default: llvm_unreachable("Don't know how to expand this condition!");
1675    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1676    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1677    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1678    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1679    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1680    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1681    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1682    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1683    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1684    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1685    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1686    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1687    // FIXME: Implement more expansions.
1688    }
1689
1690    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1691    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1692    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1693    RHS = SDValue();
1694    CC  = SDValue();
1695    break;
1696  }
1697  }
1698}
1699
1700/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1701/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1702/// a load from the stack slot to DestVT, extending it if needed.
1703/// The resultant code need not be legal.
1704SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1705                                               EVT SlotVT,
1706                                               EVT DestVT,
1707                                               DebugLoc dl) {
1708  // Create the stack frame object.
1709  unsigned SrcAlign =
1710    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1711                                              getTypeForEVT(*DAG.getContext()));
1712  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1713
1714  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1715  int SPFI = StackPtrFI->getIndex();
1716  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1717
1718  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1719  unsigned SlotSize = SlotVT.getSizeInBits();
1720  unsigned DestSize = DestVT.getSizeInBits();
1721  unsigned DestAlign =
1722    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext()));
1723
1724  // Emit a store to the stack slot.  Use a truncstore if the input value is
1725  // later than DestVT.
1726  SDValue Store;
1727
1728  if (SrcSize > SlotSize)
1729    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1730                              SV, 0, SlotVT, false, SrcAlign);
1731  else {
1732    assert(SrcSize == SlotSize && "Invalid store");
1733    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1734                         SV, 0, false, SrcAlign);
1735  }
1736
1737  // Result is a load from the stack slot.
1738  if (SlotSize == DestSize)
1739    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1740
1741  assert(SlotSize < DestSize && "Unknown extension!");
1742  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1743                        false, DestAlign);
1744}
1745
1746SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1747  DebugLoc dl = Node->getDebugLoc();
1748  // Create a vector sized/aligned stack slot, store the value to element #0,
1749  // then load the whole vector back out.
1750  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1751
1752  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1753  int SPFI = StackPtrFI->getIndex();
1754
1755  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1756                                 StackPtr,
1757                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1758                                 Node->getValueType(0).getVectorElementType());
1759  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1760                     PseudoSourceValue::getFixedStack(SPFI), 0);
1761}
1762
1763
1764/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1765/// support the operation, but do support the resultant vector type.
1766SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1767  unsigned NumElems = Node->getNumOperands();
1768  SDValue Value1, Value2;
1769  DebugLoc dl = Node->getDebugLoc();
1770  EVT VT = Node->getValueType(0);
1771  EVT OpVT = Node->getOperand(0).getValueType();
1772  EVT EltVT = VT.getVectorElementType();
1773
1774  // If the only non-undef value is the low element, turn this into a
1775  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1776  bool isOnlyLowElement = true;
1777  bool MoreThanTwoValues = false;
1778  bool isConstant = true;
1779  for (unsigned i = 0; i < NumElems; ++i) {
1780    SDValue V = Node->getOperand(i);
1781    if (V.getOpcode() == ISD::UNDEF)
1782      continue;
1783    if (i > 0)
1784      isOnlyLowElement = false;
1785    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1786      isConstant = false;
1787
1788    if (!Value1.getNode()) {
1789      Value1 = V;
1790    } else if (!Value2.getNode()) {
1791      if (V != Value1)
1792        Value2 = V;
1793    } else if (V != Value1 && V != Value2) {
1794      MoreThanTwoValues = true;
1795    }
1796  }
1797
1798  if (!Value1.getNode())
1799    return DAG.getUNDEF(VT);
1800
1801  if (isOnlyLowElement)
1802    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1803
1804  // If all elements are constants, create a load from the constant pool.
1805  if (isConstant) {
1806    std::vector<Constant*> CV;
1807    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1808      if (ConstantFPSDNode *V =
1809          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1810        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1811      } else if (ConstantSDNode *V =
1812                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1813        CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1814      } else {
1815        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1816        const Type *OpNTy = OpVT.getTypeForEVT(*DAG.getContext());
1817        CV.push_back(UndefValue::get(OpNTy));
1818      }
1819    }
1820    Constant *CP = ConstantVector::get(CV);
1821    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1822    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1823    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1824                       PseudoSourceValue::getConstantPool(), 0,
1825                       false, Alignment);
1826  }
1827
1828  if (!MoreThanTwoValues) {
1829    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1830    for (unsigned i = 0; i < NumElems; ++i) {
1831      SDValue V = Node->getOperand(i);
1832      if (V.getOpcode() == ISD::UNDEF)
1833        continue;
1834      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1835    }
1836    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1837      // Get the splatted value into the low element of a vector register.
1838      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1839      SDValue Vec2;
1840      if (Value2.getNode())
1841        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1842      else
1843        Vec2 = DAG.getUNDEF(VT);
1844
1845      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1846      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1847    }
1848  }
1849
1850  // Otherwise, we can't handle this case efficiently.
1851  return ExpandVectorBuildThroughStack(Node);
1852}
1853
1854// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1855// does not fit into a register, return the lo part and set the hi part to the
1856// by-reg argument.  If it does fit into a single register, return the result
1857// and leave the Hi part unset.
1858SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1859                                            bool isSigned) {
1860  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1861  // The input chain to this libcall is the entry node of the function.
1862  // Legalizing the call will automatically add the previous call to the
1863  // dependence.
1864  SDValue InChain = DAG.getEntryNode();
1865
1866  TargetLowering::ArgListTy Args;
1867  TargetLowering::ArgListEntry Entry;
1868  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1869    EVT ArgVT = Node->getOperand(i).getValueType();
1870    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1871    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1872    Entry.isSExt = isSigned;
1873    Entry.isZExt = !isSigned;
1874    Args.push_back(Entry);
1875  }
1876  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1877                                         TLI.getPointerTy());
1878
1879  // Splice the libcall in wherever FindInputOutputChains tells us to.
1880  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1881  std::pair<SDValue, SDValue> CallInfo =
1882    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1883                    0, TLI.getLibcallCallingConv(LC), false,
1884                    /*isReturnValueUsed=*/true,
1885                    Callee, Args, DAG,
1886                    Node->getDebugLoc());
1887
1888  // Legalize the call sequence, starting with the chain.  This will advance
1889  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1890  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1891  LegalizeOp(CallInfo.second);
1892  return CallInfo.first;
1893}
1894
1895SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1896                                              RTLIB::Libcall Call_F32,
1897                                              RTLIB::Libcall Call_F64,
1898                                              RTLIB::Libcall Call_F80,
1899                                              RTLIB::Libcall Call_PPCF128) {
1900  RTLIB::Libcall LC;
1901  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1902  default: llvm_unreachable("Unexpected request for libcall!");
1903  case MVT::f32: LC = Call_F32; break;
1904  case MVT::f64: LC = Call_F64; break;
1905  case MVT::f80: LC = Call_F80; break;
1906  case MVT::ppcf128: LC = Call_PPCF128; break;
1907  }
1908  return ExpandLibCall(LC, Node, false);
1909}
1910
1911SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1912                                               RTLIB::Libcall Call_I16,
1913                                               RTLIB::Libcall Call_I32,
1914                                               RTLIB::Libcall Call_I64,
1915                                               RTLIB::Libcall Call_I128) {
1916  RTLIB::Libcall LC;
1917  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1918  default: llvm_unreachable("Unexpected request for libcall!");
1919  case MVT::i16: LC = Call_I16; break;
1920  case MVT::i32: LC = Call_I32; break;
1921  case MVT::i64: LC = Call_I64; break;
1922  case MVT::i128: LC = Call_I128; break;
1923  }
1924  return ExpandLibCall(LC, Node, isSigned);
1925}
1926
1927/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1928/// INT_TO_FP operation of the specified operand when the target requests that
1929/// we expand it.  At this point, we know that the result and operand types are
1930/// legal for the target.
1931SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1932                                                   SDValue Op0,
1933                                                   EVT DestVT,
1934                                                   DebugLoc dl) {
1935  if (Op0.getValueType() == MVT::i32) {
1936    // simple 32-bit [signed|unsigned] integer to float/double expansion
1937
1938    // Get the stack frame index of a 8 byte buffer.
1939    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1940
1941    // word offset constant for Hi/Lo address computation
1942    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1943    // set up Hi and Lo (into buffer) address based on endian
1944    SDValue Hi = StackSlot;
1945    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1946                             TLI.getPointerTy(), StackSlot, WordOff);
1947    if (TLI.isLittleEndian())
1948      std::swap(Hi, Lo);
1949
1950    // if signed map to unsigned space
1951    SDValue Op0Mapped;
1952    if (isSigned) {
1953      // constant used to invert sign bit (signed to unsigned mapping)
1954      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1955      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1956    } else {
1957      Op0Mapped = Op0;
1958    }
1959    // store the lo of the constructed double - based on integer input
1960    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1961                                  Op0Mapped, Lo, NULL, 0);
1962    // initial hi portion of constructed double
1963    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1964    // store the hi of the constructed double - biased exponent
1965    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1966    // load the constructed double
1967    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1968    // FP constant to bias correct the final result
1969    SDValue Bias = DAG.getConstantFP(isSigned ?
1970                                     BitsToDouble(0x4330000080000000ULL) :
1971                                     BitsToDouble(0x4330000000000000ULL),
1972                                     MVT::f64);
1973    // subtract the bias
1974    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
1975    // final result
1976    SDValue Result;
1977    // handle final rounding
1978    if (DestVT == MVT::f64) {
1979      // do nothing
1980      Result = Sub;
1981    } else if (DestVT.bitsLT(MVT::f64)) {
1982      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
1983                           DAG.getIntPtrConstant(0));
1984    } else if (DestVT.bitsGT(MVT::f64)) {
1985      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
1986    }
1987    return Result;
1988  }
1989  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
1990  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
1991
1992  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
1993                                 Op0, DAG.getConstant(0, Op0.getValueType()),
1994                                 ISD::SETLT);
1995  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
1996  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
1997                                    SignSet, Four, Zero);
1998
1999  // If the sign bit of the integer is set, the large number will be treated
2000  // as a negative number.  To counteract this, the dynamic code adds an
2001  // offset depending on the data type.
2002  uint64_t FF;
2003  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2004  default: llvm_unreachable("Unsupported integer type!");
2005  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2006  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2007  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2008  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2009  }
2010  if (TLI.isLittleEndian()) FF <<= 32;
2011  Constant *FudgeFactor = ConstantInt::get(
2012                                       Type::getInt64Ty(*DAG.getContext()), FF);
2013
2014  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2015  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2016  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2017  Alignment = std::min(Alignment, 4u);
2018  SDValue FudgeInReg;
2019  if (DestVT == MVT::f32)
2020    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2021                             PseudoSourceValue::getConstantPool(), 0,
2022                             false, Alignment);
2023  else {
2024    FudgeInReg =
2025      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2026                                DAG.getEntryNode(), CPIdx,
2027                                PseudoSourceValue::getConstantPool(), 0,
2028                                MVT::f32, false, Alignment));
2029  }
2030
2031  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2032}
2033
2034/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2035/// *INT_TO_FP operation of the specified operand when the target requests that
2036/// we promote it.  At this point, we know that the result and operand types are
2037/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2038/// operation that takes a larger input.
2039SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2040                                                    EVT DestVT,
2041                                                    bool isSigned,
2042                                                    DebugLoc dl) {
2043  // First step, figure out the appropriate *INT_TO_FP operation to use.
2044  EVT NewInTy = LegalOp.getValueType();
2045
2046  unsigned OpToUse = 0;
2047
2048  // Scan for the appropriate larger type to use.
2049  while (1) {
2050    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2051    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2052
2053    // If the target supports SINT_TO_FP of this type, use it.
2054    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2055      OpToUse = ISD::SINT_TO_FP;
2056      break;
2057    }
2058    if (isSigned) continue;
2059
2060    // If the target supports UINT_TO_FP of this type, use it.
2061    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2062      OpToUse = ISD::UINT_TO_FP;
2063      break;
2064    }
2065
2066    // Otherwise, try a larger type.
2067  }
2068
2069  // Okay, we found the operation and type to use.  Zero extend our input to the
2070  // desired type then run the operation on it.
2071  return DAG.getNode(OpToUse, dl, DestVT,
2072                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2073                                 dl, NewInTy, LegalOp));
2074}
2075
2076/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2077/// FP_TO_*INT operation of the specified operand when the target requests that
2078/// we promote it.  At this point, we know that the result and operand types are
2079/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2080/// operation that returns a larger result.
2081SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2082                                                    EVT DestVT,
2083                                                    bool isSigned,
2084                                                    DebugLoc dl) {
2085  // First step, figure out the appropriate FP_TO*INT operation to use.
2086  EVT NewOutTy = DestVT;
2087
2088  unsigned OpToUse = 0;
2089
2090  // Scan for the appropriate larger type to use.
2091  while (1) {
2092    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2093    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2094
2095    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2096      OpToUse = ISD::FP_TO_SINT;
2097      break;
2098    }
2099
2100    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2101      OpToUse = ISD::FP_TO_UINT;
2102      break;
2103    }
2104
2105    // Otherwise, try a larger type.
2106  }
2107
2108
2109  // Okay, we found the operation and type to use.
2110  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2111
2112  // Truncate the result of the extended FP_TO_*INT operation to the desired
2113  // size.
2114  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2115}
2116
2117/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2118///
2119SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2120  EVT VT = Op.getValueType();
2121  EVT SHVT = TLI.getShiftAmountTy();
2122  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2123  switch (VT.getSimpleVT().SimpleTy) {
2124  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2125  case MVT::i16:
2126    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2127    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2128    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2129  case MVT::i32:
2130    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2131    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2132    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2133    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2134    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2135    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2136    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2137    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2138    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2139  case MVT::i64:
2140    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2141    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2142    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2143    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2144    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2145    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2146    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2147    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2148    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2149    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2150    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2151    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2152    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2153    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2154    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2155    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2156    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2157    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2158    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2159    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2160    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2161  }
2162}
2163
2164/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2165///
2166SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2167                                             DebugLoc dl) {
2168  switch (Opc) {
2169  default: llvm_unreachable("Cannot expand this yet!");
2170  case ISD::CTPOP: {
2171    static const uint64_t mask[6] = {
2172      0x5555555555555555ULL, 0x3333333333333333ULL,
2173      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2174      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2175    };
2176    EVT VT = Op.getValueType();
2177    EVT ShVT = TLI.getShiftAmountTy();
2178    unsigned len = VT.getSizeInBits();
2179    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2180      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2181      unsigned EltSize = VT.isVector() ?
2182        VT.getVectorElementType().getSizeInBits() : len;
2183      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2184      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2185      Op = DAG.getNode(ISD::ADD, dl, VT,
2186                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2187                       DAG.getNode(ISD::AND, dl, VT,
2188                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2189                                   Tmp2));
2190    }
2191    return Op;
2192  }
2193  case ISD::CTLZ: {
2194    // for now, we do this:
2195    // x = x | (x >> 1);
2196    // x = x | (x >> 2);
2197    // ...
2198    // x = x | (x >>16);
2199    // x = x | (x >>32); // for 64-bit input
2200    // return popcount(~x);
2201    //
2202    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2203    EVT VT = Op.getValueType();
2204    EVT ShVT = TLI.getShiftAmountTy();
2205    unsigned len = VT.getSizeInBits();
2206    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2207      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2208      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2209                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2210    }
2211    Op = DAG.getNOT(dl, Op, VT);
2212    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2213  }
2214  case ISD::CTTZ: {
2215    // for now, we use: { return popcount(~x & (x - 1)); }
2216    // unless the target has ctlz but not ctpop, in which case we use:
2217    // { return 32 - nlz(~x & (x-1)); }
2218    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2219    EVT VT = Op.getValueType();
2220    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2221                               DAG.getNOT(dl, Op, VT),
2222                               DAG.getNode(ISD::SUB, dl, VT, Op,
2223                                           DAG.getConstant(1, VT)));
2224    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2225    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2226        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2227      return DAG.getNode(ISD::SUB, dl, VT,
2228                         DAG.getConstant(VT.getSizeInBits(), VT),
2229                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2230    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2231  }
2232  }
2233}
2234
2235void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2236                                      SmallVectorImpl<SDValue> &Results) {
2237  DebugLoc dl = Node->getDebugLoc();
2238  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2239  switch (Node->getOpcode()) {
2240  case ISD::CTPOP:
2241  case ISD::CTLZ:
2242  case ISD::CTTZ:
2243    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2244    Results.push_back(Tmp1);
2245    break;
2246  case ISD::BSWAP:
2247    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2248    break;
2249  case ISD::FRAMEADDR:
2250  case ISD::RETURNADDR:
2251  case ISD::FRAME_TO_ARGS_OFFSET:
2252    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2253    break;
2254  case ISD::FLT_ROUNDS_:
2255    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2256    break;
2257  case ISD::EH_RETURN:
2258  case ISD::DBG_LABEL:
2259  case ISD::EH_LABEL:
2260  case ISD::PREFETCH:
2261  case ISD::MEMBARRIER:
2262  case ISD::VAEND:
2263    Results.push_back(Node->getOperand(0));
2264    break;
2265  case ISD::DBG_STOPPOINT:
2266    Results.push_back(ExpandDBG_STOPPOINT(Node));
2267    break;
2268  case ISD::DYNAMIC_STACKALLOC:
2269    ExpandDYNAMIC_STACKALLOC(Node, Results);
2270    break;
2271  case ISD::MERGE_VALUES:
2272    for (unsigned i = 0; i < Node->getNumValues(); i++)
2273      Results.push_back(Node->getOperand(i));
2274    break;
2275  case ISD::UNDEF: {
2276    EVT VT = Node->getValueType(0);
2277    if (VT.isInteger())
2278      Results.push_back(DAG.getConstant(0, VT));
2279    else if (VT.isFloatingPoint())
2280      Results.push_back(DAG.getConstantFP(0, VT));
2281    else
2282      llvm_unreachable("Unknown value type!");
2283    break;
2284  }
2285  case ISD::TRAP: {
2286    // If this operation is not supported, lower it to 'abort()' call
2287    TargetLowering::ArgListTy Args;
2288    std::pair<SDValue, SDValue> CallResult =
2289      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2290                      false, false, false, false, 0, CallingConv::C, false,
2291                      /*isReturnValueUsed=*/true,
2292                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2293                      Args, DAG, dl);
2294    Results.push_back(CallResult.second);
2295    break;
2296  }
2297  case ISD::FP_ROUND:
2298  case ISD::BIT_CONVERT:
2299    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2300                            Node->getValueType(0), dl);
2301    Results.push_back(Tmp1);
2302    break;
2303  case ISD::FP_EXTEND:
2304    Tmp1 = EmitStackConvert(Node->getOperand(0),
2305                            Node->getOperand(0).getValueType(),
2306                            Node->getValueType(0), dl);
2307    Results.push_back(Tmp1);
2308    break;
2309  case ISD::SIGN_EXTEND_INREG: {
2310    // NOTE: we could fall back on load/store here too for targets without
2311    // SAR.  However, it is doubtful that any exist.
2312    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2313    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2314                        ExtraVT.getSizeInBits();
2315    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2316    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2317                       Node->getOperand(0), ShiftCst);
2318    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2319    Results.push_back(Tmp1);
2320    break;
2321  }
2322  case ISD::FP_ROUND_INREG: {
2323    // The only way we can lower this is to turn it into a TRUNCSTORE,
2324    // EXTLOAD pair, targetting a temporary location (a stack slot).
2325
2326    // NOTE: there is a choice here between constantly creating new stack
2327    // slots and always reusing the same one.  We currently always create
2328    // new ones, as reuse may inhibit scheduling.
2329    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2330    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2331                            Node->getValueType(0), dl);
2332    Results.push_back(Tmp1);
2333    break;
2334  }
2335  case ISD::SINT_TO_FP:
2336  case ISD::UINT_TO_FP:
2337    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2338                                Node->getOperand(0), Node->getValueType(0), dl);
2339    Results.push_back(Tmp1);
2340    break;
2341  case ISD::FP_TO_UINT: {
2342    SDValue True, False;
2343    EVT VT =  Node->getOperand(0).getValueType();
2344    EVT NVT = Node->getValueType(0);
2345    const uint64_t zero[] = {0, 0};
2346    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2347    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2348    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2349    Tmp1 = DAG.getConstantFP(apf, VT);
2350    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2351                        Node->getOperand(0),
2352                        Tmp1, ISD::SETLT);
2353    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2354    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2355                        DAG.getNode(ISD::FSUB, dl, VT,
2356                                    Node->getOperand(0), Tmp1));
2357    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2358                        DAG.getConstant(x, NVT));
2359    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2360    Results.push_back(Tmp1);
2361    break;
2362  }
2363  case ISD::VAARG: {
2364    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2365    EVT VT = Node->getValueType(0);
2366    Tmp1 = Node->getOperand(0);
2367    Tmp2 = Node->getOperand(1);
2368    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2369    // Increment the pointer, VAList, to the next vaarg
2370    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2371                       DAG.getConstant(TLI.getTargetData()->
2372                                       getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2373                                       TLI.getPointerTy()));
2374    // Store the incremented VAList to the legalized pointer
2375    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2376    // Load the actual argument out of the pointer VAList
2377    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2378    Results.push_back(Results[0].getValue(1));
2379    break;
2380  }
2381  case ISD::VACOPY: {
2382    // This defaults to loading a pointer from the input and storing it to the
2383    // output, returning the chain.
2384    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2385    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2386    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2387                       Node->getOperand(2), VS, 0);
2388    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2389    Results.push_back(Tmp1);
2390    break;
2391  }
2392  case ISD::EXTRACT_VECTOR_ELT:
2393    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2394      // This must be an access of the only element.  Return it.
2395      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2396                         Node->getOperand(0));
2397    else
2398      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2399    Results.push_back(Tmp1);
2400    break;
2401  case ISD::EXTRACT_SUBVECTOR:
2402    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2403    break;
2404  case ISD::CONCAT_VECTORS: {
2405    Results.push_back(ExpandVectorBuildThroughStack(Node));
2406    break;
2407  }
2408  case ISD::SCALAR_TO_VECTOR:
2409    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2410    break;
2411  case ISD::INSERT_VECTOR_ELT:
2412    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2413                                              Node->getOperand(1),
2414                                              Node->getOperand(2), dl));
2415    break;
2416  case ISD::VECTOR_SHUFFLE: {
2417    SmallVector<int, 8> Mask;
2418    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2419
2420    EVT VT = Node->getValueType(0);
2421    EVT EltVT = VT.getVectorElementType();
2422    unsigned NumElems = VT.getVectorNumElements();
2423    SmallVector<SDValue, 8> Ops;
2424    for (unsigned i = 0; i != NumElems; ++i) {
2425      if (Mask[i] < 0) {
2426        Ops.push_back(DAG.getUNDEF(EltVT));
2427        continue;
2428      }
2429      unsigned Idx = Mask[i];
2430      if (Idx < NumElems)
2431        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2432                                  Node->getOperand(0),
2433                                  DAG.getIntPtrConstant(Idx)));
2434      else
2435        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2436                                  Node->getOperand(1),
2437                                  DAG.getIntPtrConstant(Idx - NumElems)));
2438    }
2439    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2440    Results.push_back(Tmp1);
2441    break;
2442  }
2443  case ISD::EXTRACT_ELEMENT: {
2444    EVT OpTy = Node->getOperand(0).getValueType();
2445    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2446      // 1 -> Hi
2447      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2448                         DAG.getConstant(OpTy.getSizeInBits()/2,
2449                                         TLI.getShiftAmountTy()));
2450      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2451    } else {
2452      // 0 -> Lo
2453      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2454                         Node->getOperand(0));
2455    }
2456    Results.push_back(Tmp1);
2457    break;
2458  }
2459  case ISD::STACKSAVE:
2460    // Expand to CopyFromReg if the target set
2461    // StackPointerRegisterToSaveRestore.
2462    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2463      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2464                                           Node->getValueType(0)));
2465      Results.push_back(Results[0].getValue(1));
2466    } else {
2467      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2468      Results.push_back(Node->getOperand(0));
2469    }
2470    break;
2471  case ISD::STACKRESTORE:
2472    // Expand to CopyToReg if the target set
2473    // StackPointerRegisterToSaveRestore.
2474    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2475      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2476                                         Node->getOperand(1)));
2477    } else {
2478      Results.push_back(Node->getOperand(0));
2479    }
2480    break;
2481  case ISD::FCOPYSIGN:
2482    Results.push_back(ExpandFCOPYSIGN(Node));
2483    break;
2484  case ISD::FNEG:
2485    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2486    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2487    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2488                       Node->getOperand(0));
2489    Results.push_back(Tmp1);
2490    break;
2491  case ISD::FABS: {
2492    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2493    EVT VT = Node->getValueType(0);
2494    Tmp1 = Node->getOperand(0);
2495    Tmp2 = DAG.getConstantFP(0.0, VT);
2496    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2497                        Tmp1, Tmp2, ISD::SETUGT);
2498    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2499    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2500    Results.push_back(Tmp1);
2501    break;
2502  }
2503  case ISD::FSQRT:
2504    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2505                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2506    break;
2507  case ISD::FSIN:
2508    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2509                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2510    break;
2511  case ISD::FCOS:
2512    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2513                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2514    break;
2515  case ISD::FLOG:
2516    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2517                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2518    break;
2519  case ISD::FLOG2:
2520    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2521                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2522    break;
2523  case ISD::FLOG10:
2524    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2525                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2526    break;
2527  case ISD::FEXP:
2528    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2529                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2530    break;
2531  case ISD::FEXP2:
2532    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2533                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2534    break;
2535  case ISD::FTRUNC:
2536    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2537                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2538    break;
2539  case ISD::FFLOOR:
2540    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2541                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2542    break;
2543  case ISD::FCEIL:
2544    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2545                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2546    break;
2547  case ISD::FRINT:
2548    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2549                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2550    break;
2551  case ISD::FNEARBYINT:
2552    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2553                                      RTLIB::NEARBYINT_F64,
2554                                      RTLIB::NEARBYINT_F80,
2555                                      RTLIB::NEARBYINT_PPCF128));
2556    break;
2557  case ISD::FPOWI:
2558    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2559                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2560    break;
2561  case ISD::FPOW:
2562    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2563                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2564    break;
2565  case ISD::FDIV:
2566    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2567                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2568    break;
2569  case ISD::FREM:
2570    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2571                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2572    break;
2573  case ISD::ConstantFP: {
2574    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2575    // Check to see if this FP immediate is already legal.
2576    // If this is a legal constant, turn it into a TargetConstantFP node.
2577    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2578      Results.push_back(SDValue(Node, 0));
2579    else
2580      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2581    break;
2582  }
2583  case ISD::EHSELECTION: {
2584    unsigned Reg = TLI.getExceptionSelectorRegister();
2585    assert(Reg && "Can't expand to unknown register!");
2586    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2587                                         Node->getValueType(0)));
2588    Results.push_back(Results[0].getValue(1));
2589    break;
2590  }
2591  case ISD::EXCEPTIONADDR: {
2592    unsigned Reg = TLI.getExceptionAddressRegister();
2593    assert(Reg && "Can't expand to unknown register!");
2594    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2595                                         Node->getValueType(0)));
2596    Results.push_back(Results[0].getValue(1));
2597    break;
2598  }
2599  case ISD::SUB: {
2600    EVT VT = Node->getValueType(0);
2601    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2602           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2603           "Don't know how to expand this subtraction!");
2604    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2605               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2606    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2607    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2608    break;
2609  }
2610  case ISD::UREM:
2611  case ISD::SREM: {
2612    EVT VT = Node->getValueType(0);
2613    SDVTList VTs = DAG.getVTList(VT, VT);
2614    bool isSigned = Node->getOpcode() == ISD::SREM;
2615    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2616    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2617    Tmp2 = Node->getOperand(0);
2618    Tmp3 = Node->getOperand(1);
2619    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2620      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2621    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2622      // X % Y -> X-X/Y*Y
2623      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2624      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2625      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2626    } else if (isSigned) {
2627      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2628                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2629    } else {
2630      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2631                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2632    }
2633    Results.push_back(Tmp1);
2634    break;
2635  }
2636  case ISD::UDIV:
2637  case ISD::SDIV: {
2638    bool isSigned = Node->getOpcode() == ISD::SDIV;
2639    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2640    EVT VT = Node->getValueType(0);
2641    SDVTList VTs = DAG.getVTList(VT, VT);
2642    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2643      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2644                         Node->getOperand(1));
2645    else if (isSigned)
2646      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2647                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2648    else
2649      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2650                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2651    Results.push_back(Tmp1);
2652    break;
2653  }
2654  case ISD::MULHU:
2655  case ISD::MULHS: {
2656    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2657                                                              ISD::SMUL_LOHI;
2658    EVT VT = Node->getValueType(0);
2659    SDVTList VTs = DAG.getVTList(VT, VT);
2660    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2661           "If this wasn't legal, it shouldn't have been created!");
2662    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2663                       Node->getOperand(1));
2664    Results.push_back(Tmp1.getValue(1));
2665    break;
2666  }
2667  case ISD::MUL: {
2668    EVT VT = Node->getValueType(0);
2669    SDVTList VTs = DAG.getVTList(VT, VT);
2670    // See if multiply or divide can be lowered using two-result operations.
2671    // We just need the low half of the multiply; try both the signed
2672    // and unsigned forms. If the target supports both SMUL_LOHI and
2673    // UMUL_LOHI, form a preference by checking which forms of plain
2674    // MULH it supports.
2675    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2676    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2677    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2678    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2679    unsigned OpToUse = 0;
2680    if (HasSMUL_LOHI && !HasMULHS) {
2681      OpToUse = ISD::SMUL_LOHI;
2682    } else if (HasUMUL_LOHI && !HasMULHU) {
2683      OpToUse = ISD::UMUL_LOHI;
2684    } else if (HasSMUL_LOHI) {
2685      OpToUse = ISD::SMUL_LOHI;
2686    } else if (HasUMUL_LOHI) {
2687      OpToUse = ISD::UMUL_LOHI;
2688    }
2689    if (OpToUse) {
2690      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2691                                    Node->getOperand(1)));
2692      break;
2693    }
2694    Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2695                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2696    Results.push_back(Tmp1);
2697    break;
2698  }
2699  case ISD::SADDO:
2700  case ISD::SSUBO: {
2701    SDValue LHS = Node->getOperand(0);
2702    SDValue RHS = Node->getOperand(1);
2703    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2704                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2705                              LHS, RHS);
2706    Results.push_back(Sum);
2707    EVT OType = Node->getValueType(1);
2708
2709    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2710
2711    //   LHSSign -> LHS >= 0
2712    //   RHSSign -> RHS >= 0
2713    //   SumSign -> Sum >= 0
2714    //
2715    //   Add:
2716    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2717    //   Sub:
2718    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2719    //
2720    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2721    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2722    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2723                                      Node->getOpcode() == ISD::SADDO ?
2724                                      ISD::SETEQ : ISD::SETNE);
2725
2726    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2727    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2728
2729    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2730    Results.push_back(Cmp);
2731    break;
2732  }
2733  case ISD::UADDO:
2734  case ISD::USUBO: {
2735    SDValue LHS = Node->getOperand(0);
2736    SDValue RHS = Node->getOperand(1);
2737    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2738                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2739                              LHS, RHS);
2740    Results.push_back(Sum);
2741    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2742                                   Node->getOpcode () == ISD::UADDO ?
2743                                   ISD::SETULT : ISD::SETUGT));
2744    break;
2745  }
2746  case ISD::UMULO:
2747  case ISD::SMULO: {
2748    EVT VT = Node->getValueType(0);
2749    SDValue LHS = Node->getOperand(0);
2750    SDValue RHS = Node->getOperand(1);
2751    SDValue BottomHalf;
2752    SDValue TopHalf;
2753    static unsigned Ops[2][3] =
2754        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2755          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2756    bool isSigned = Node->getOpcode() == ISD::SMULO;
2757    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2758      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2759      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2760    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2761      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2762                               RHS);
2763      TopHalf = BottomHalf.getValue(1);
2764    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) {
2765      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2766      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2767      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2768      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2769      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2770                               DAG.getIntPtrConstant(0));
2771      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2772                            DAG.getIntPtrConstant(1));
2773    } else {
2774      // FIXME: We should be able to fall back to a libcall with an illegal
2775      // type in some cases cases.
2776      // Also, we can fall back to a division in some cases, but that's a big
2777      // performance hit in the general case.
2778      llvm_unreachable("Don't know how to expand this operation yet!");
2779    }
2780    if (isSigned) {
2781      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2782      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2783      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2784                             ISD::SETNE);
2785    } else {
2786      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2787                             DAG.getConstant(0, VT), ISD::SETNE);
2788    }
2789    Results.push_back(BottomHalf);
2790    Results.push_back(TopHalf);
2791    break;
2792  }
2793  case ISD::BUILD_PAIR: {
2794    EVT PairTy = Node->getValueType(0);
2795    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2796    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2797    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2798                       DAG.getConstant(PairTy.getSizeInBits()/2,
2799                                       TLI.getShiftAmountTy()));
2800    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2801    break;
2802  }
2803  case ISD::SELECT:
2804    Tmp1 = Node->getOperand(0);
2805    Tmp2 = Node->getOperand(1);
2806    Tmp3 = Node->getOperand(2);
2807    if (Tmp1.getOpcode() == ISD::SETCC) {
2808      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2809                             Tmp2, Tmp3,
2810                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2811    } else {
2812      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2813                             DAG.getConstant(0, Tmp1.getValueType()),
2814                             Tmp2, Tmp3, ISD::SETNE);
2815    }
2816    Results.push_back(Tmp1);
2817    break;
2818  case ISD::BR_JT: {
2819    SDValue Chain = Node->getOperand(0);
2820    SDValue Table = Node->getOperand(1);
2821    SDValue Index = Node->getOperand(2);
2822
2823    EVT PTy = TLI.getPointerTy();
2824    MachineFunction &MF = DAG.getMachineFunction();
2825    unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2826    Index= DAG.getNode(ISD::MUL, dl, PTy,
2827                        Index, DAG.getConstant(EntrySize, PTy));
2828    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2829
2830    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2831    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2832                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2833    Addr = LD;
2834    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2835      // For PIC, the sequence is:
2836      // BRIND(load(Jumptable + index) + RelocBase)
2837      // RelocBase can be JumpTable, GOT or some sort of global base.
2838      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2839                          TLI.getPICJumpTableRelocBase(Table, DAG));
2840    }
2841    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2842    Results.push_back(Tmp1);
2843    break;
2844  }
2845  case ISD::BRCOND:
2846    // Expand brcond's setcc into its constituent parts and create a BR_CC
2847    // Node.
2848    Tmp1 = Node->getOperand(0);
2849    Tmp2 = Node->getOperand(1);
2850    if (Tmp2.getOpcode() == ISD::SETCC) {
2851      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2852                         Tmp1, Tmp2.getOperand(2),
2853                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2854                         Node->getOperand(2));
2855    } else {
2856      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2857                         DAG.getCondCode(ISD::SETNE), Tmp2,
2858                         DAG.getConstant(0, Tmp2.getValueType()),
2859                         Node->getOperand(2));
2860    }
2861    Results.push_back(Tmp1);
2862    break;
2863  case ISD::SETCC: {
2864    Tmp1 = Node->getOperand(0);
2865    Tmp2 = Node->getOperand(1);
2866    Tmp3 = Node->getOperand(2);
2867    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2868
2869    // If we expanded the SETCC into an AND/OR, return the new node
2870    if (Tmp2.getNode() == 0) {
2871      Results.push_back(Tmp1);
2872      break;
2873    }
2874
2875    // Otherwise, SETCC for the given comparison type must be completely
2876    // illegal; expand it into a SELECT_CC.
2877    EVT VT = Node->getValueType(0);
2878    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2879                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2880    Results.push_back(Tmp1);
2881    break;
2882  }
2883  case ISD::SELECT_CC: {
2884    Tmp1 = Node->getOperand(0);   // LHS
2885    Tmp2 = Node->getOperand(1);   // RHS
2886    Tmp3 = Node->getOperand(2);   // True
2887    Tmp4 = Node->getOperand(3);   // False
2888    SDValue CC = Node->getOperand(4);
2889
2890    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2891                          Tmp1, Tmp2, CC, dl);
2892
2893    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2894    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2895    CC = DAG.getCondCode(ISD::SETNE);
2896    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2897                       Tmp3, Tmp4, CC);
2898    Results.push_back(Tmp1);
2899    break;
2900  }
2901  case ISD::BR_CC: {
2902    Tmp1 = Node->getOperand(0);              // Chain
2903    Tmp2 = Node->getOperand(2);              // LHS
2904    Tmp3 = Node->getOperand(3);              // RHS
2905    Tmp4 = Node->getOperand(1);              // CC
2906
2907    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2908                          Tmp2, Tmp3, Tmp4, dl);
2909    LastCALLSEQ_END = DAG.getEntryNode();
2910
2911    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2912    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2913    Tmp4 = DAG.getCondCode(ISD::SETNE);
2914    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2915                       Tmp3, Node->getOperand(4));
2916    Results.push_back(Tmp1);
2917    break;
2918  }
2919  case ISD::GLOBAL_OFFSET_TABLE:
2920  case ISD::GlobalAddress:
2921  case ISD::GlobalTLSAddress:
2922  case ISD::ExternalSymbol:
2923  case ISD::ConstantPool:
2924  case ISD::JumpTable:
2925  case ISD::INTRINSIC_W_CHAIN:
2926  case ISD::INTRINSIC_WO_CHAIN:
2927  case ISD::INTRINSIC_VOID:
2928    // FIXME: Custom lowering for these operations shouldn't return null!
2929    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2930      Results.push_back(SDValue(Node, i));
2931    break;
2932  }
2933}
2934void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2935                                       SmallVectorImpl<SDValue> &Results) {
2936  EVT OVT = Node->getValueType(0);
2937  if (Node->getOpcode() == ISD::UINT_TO_FP ||
2938      Node->getOpcode() == ISD::SINT_TO_FP ||
2939      Node->getOpcode() == ISD::SETCC) {
2940    OVT = Node->getOperand(0).getValueType();
2941  }
2942  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2943  DebugLoc dl = Node->getDebugLoc();
2944  SDValue Tmp1, Tmp2, Tmp3;
2945  switch (Node->getOpcode()) {
2946  case ISD::CTTZ:
2947  case ISD::CTLZ:
2948  case ISD::CTPOP:
2949    // Zero extend the argument.
2950    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2951    // Perform the larger operation.
2952    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
2953    if (Node->getOpcode() == ISD::CTTZ) {
2954      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2955      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
2956                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2957                          ISD::SETEQ);
2958      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2959                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2960    } else if (Node->getOpcode() == ISD::CTLZ) {
2961      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2962      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
2963                          DAG.getConstant(NVT.getSizeInBits() -
2964                                          OVT.getSizeInBits(), NVT));
2965    }
2966    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
2967    break;
2968  case ISD::BSWAP: {
2969    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
2970    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
2971    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
2972    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
2973                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
2974    Results.push_back(Tmp1);
2975    break;
2976  }
2977  case ISD::FP_TO_UINT:
2978  case ISD::FP_TO_SINT:
2979    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
2980                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
2981    Results.push_back(Tmp1);
2982    break;
2983  case ISD::UINT_TO_FP:
2984  case ISD::SINT_TO_FP:
2985    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
2986                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
2987    Results.push_back(Tmp1);
2988    break;
2989  case ISD::AND:
2990  case ISD::OR:
2991  case ISD::XOR: {
2992    unsigned ExtOp, TruncOp;
2993    if (OVT.isVector()) {
2994      ExtOp   = ISD::BIT_CONVERT;
2995      TruncOp = ISD::BIT_CONVERT;
2996    } else if (OVT.isInteger()) {
2997      ExtOp   = ISD::ANY_EXTEND;
2998      TruncOp = ISD::TRUNCATE;
2999    } else {
3000      llvm_report_error("Cannot promote logic operation");
3001    }
3002    // Promote each of the values to the new type.
3003    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3004    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3005    // Perform the larger operation, then convert back
3006    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3007    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3008    break;
3009  }
3010  case ISD::SELECT: {
3011    unsigned ExtOp, TruncOp;
3012    if (Node->getValueType(0).isVector()) {
3013      ExtOp   = ISD::BIT_CONVERT;
3014      TruncOp = ISD::BIT_CONVERT;
3015    } else if (Node->getValueType(0).isInteger()) {
3016      ExtOp   = ISD::ANY_EXTEND;
3017      TruncOp = ISD::TRUNCATE;
3018    } else {
3019      ExtOp   = ISD::FP_EXTEND;
3020      TruncOp = ISD::FP_ROUND;
3021    }
3022    Tmp1 = Node->getOperand(0);
3023    // Promote each of the values to the new type.
3024    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3025    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3026    // Perform the larger operation, then round down.
3027    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3028    if (TruncOp != ISD::FP_ROUND)
3029      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3030    else
3031      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3032                         DAG.getIntPtrConstant(0));
3033    Results.push_back(Tmp1);
3034    break;
3035  }
3036  case ISD::VECTOR_SHUFFLE: {
3037    SmallVector<int, 8> Mask;
3038    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3039
3040    // Cast the two input vectors.
3041    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3042    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3043
3044    // Convert the shuffle mask to the right # elements.
3045    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3046    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3047    Results.push_back(Tmp1);
3048    break;
3049  }
3050  case ISD::SETCC: {
3051    unsigned ExtOp = ISD::FP_EXTEND;
3052    if (NVT.isInteger()) {
3053      ISD::CondCode CCCode =
3054        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3055      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3056    }
3057    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3058    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3059    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3060                                  Tmp1, Tmp2, Node->getOperand(2)));
3061    break;
3062  }
3063  }
3064}
3065
3066// SelectionDAG::Legalize - This is the entry point for the file.
3067//
3068void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3069                            CodeGenOpt::Level OptLevel) {
3070  /// run - This is the main entry point to this class.
3071  ///
3072  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3073}
3074
3075