LegalizeDAG.cpp revision a26ebbe5cc71869e8fc0194756f6584f7c4b4d03
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/DebugInfo.h"
15#include "llvm/CodeGen/Analysis.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/Target/TargetFrameLowering.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/CallingConv.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38/// hacks on it until the target machine can handle it.  This involves
39/// eliminating value sizes the machine cannot handle (promoting small sizes to
40/// large sizes or splitting up large values into small values) as well as
41/// eliminating operations the machine cannot handle.
42///
43/// This code also does a small amount of optimization and recognition of idioms
44/// as part of its processing.  For example, if a target does not support a
45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46/// will attempt merge setcc and brc instructions into brcc's.
47///
48namespace {
49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
50  const TargetMachine &TM;
51  const TargetLowering &TLI;
52  SelectionDAG &DAG;
53
54  /// LegalizePosition - The iterator for walking through the node list.
55  SelectionDAG::allnodes_iterator LegalizePosition;
56
57  /// LegalizedNodes - The set of nodes which have already been legalized.
58  SmallPtrSet<SDNode *, 16> LegalizedNodes;
59
60  // Libcall insertion helpers.
61
62public:
63  explicit SelectionDAGLegalize(SelectionDAG &DAG);
64
65  void LegalizeDAG();
66
67private:
68  /// LegalizeOp - Legalizes the given operation.
69  void LegalizeOp(SDNode *Node);
70
71  SDValue OptimizeFloatStore(StoreSDNode *ST);
72
73  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
74  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
75  /// is necessary to spill the vector being inserted into to memory, perform
76  /// the insert there, and then read the result back.
77  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
78                                         SDValue Idx, DebugLoc dl);
79  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
80                                  SDValue Idx, DebugLoc dl);
81
82  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
83  /// performs the same shuffe in terms of order or result bytes, but on a type
84  /// whose vector element type is narrower than the original shuffle type.
85  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
86  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
87                                     SDValue N1, SDValue N2,
88                                     SmallVectorImpl<int> &Mask) const;
89
90  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
91                             DebugLoc dl);
92
93  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
94  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
95                        unsigned NumOps, bool isSigned, DebugLoc dl);
96
97  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
98                                                 SDNode *Node, bool isSigned);
99  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
100                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
101                          RTLIB::Libcall Call_PPCF128);
102  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
103                           RTLIB::Libcall Call_I8,
104                           RTLIB::Libcall Call_I16,
105                           RTLIB::Libcall Call_I32,
106                           RTLIB::Libcall Call_I64,
107                           RTLIB::Libcall Call_I128);
108  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
109
110  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
111  SDValue ExpandBUILD_VECTOR(SDNode *Node);
112  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
113  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
114                                SmallVectorImpl<SDValue> &Results);
115  SDValue ExpandFCOPYSIGN(SDNode *Node);
116  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
117                               DebugLoc dl);
118  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
119                                DebugLoc dl);
120  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
121                                DebugLoc dl);
122
123  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
124  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
125
126  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
127  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
128  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
129
130  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
131
132  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
133
134  void ExpandNode(SDNode *Node);
135  void PromoteNode(SDNode *Node);
136
137  // DAGUpdateListener implementation.
138  virtual void NodeDeleted(SDNode *N, SDNode *E) {
139    LegalizedNodes.erase(N);
140    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
141      ++LegalizePosition;
142  }
143
144  virtual void NodeUpdated(SDNode *N) {}
145};
146}
147
148/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
149/// performs the same shuffe in terms of order or result bytes, but on a type
150/// whose vector element type is narrower than the original shuffle type.
151/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
152SDValue
153SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
154                                                 SDValue N1, SDValue N2,
155                                             SmallVectorImpl<int> &Mask) const {
156  unsigned NumMaskElts = VT.getVectorNumElements();
157  unsigned NumDestElts = NVT.getVectorNumElements();
158  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
159
160  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
161
162  if (NumEltsGrowth == 1)
163    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
164
165  SmallVector<int, 8> NewMask;
166  for (unsigned i = 0; i != NumMaskElts; ++i) {
167    int Idx = Mask[i];
168    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
169      if (Idx < 0)
170        NewMask.push_back(-1);
171      else
172        NewMask.push_back(Idx * NumEltsGrowth + j);
173    }
174  }
175  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
176  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
177  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
178}
179
180SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
181  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
182    DAG(dag) {
183}
184
185void SelectionDAGLegalize::LegalizeDAG() {
186  DAG.AssignTopologicalOrder();
187
188  // Visit all the nodes. We start in topological order, so that we see
189  // nodes with their original operands intact. Legalization can produce
190  // new nodes which may themselves need to be legalized. Iterate until all
191  // nodes have been legalized.
192  for (;;) {
193    bool AnyLegalized = false;
194    for (LegalizePosition = DAG.allnodes_end();
195         LegalizePosition != DAG.allnodes_begin(); ) {
196      --LegalizePosition;
197
198      SDNode *N = LegalizePosition;
199      if (LegalizedNodes.insert(N)) {
200        AnyLegalized = true;
201        LegalizeOp(N);
202      }
203    }
204    if (!AnyLegalized)
205      break;
206
207  }
208
209  // Remove dead nodes now.
210  DAG.RemoveDeadNodes();
211}
212
213/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
214/// a load from the constant pool.
215SDValue
216SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
217  bool Extend = false;
218  DebugLoc dl = CFP->getDebugLoc();
219
220  // If a FP immediate is precise when represented as a float and if the
221  // target can do an extending load from float to double, we put it into
222  // the constant pool as a float, even if it's is statically typed as a
223  // double.  This shrinks FP constants and canonicalizes them for targets where
224  // an FP extending load is the same cost as a normal load (such as on the x87
225  // fp stack or PPC FP unit).
226  EVT VT = CFP->getValueType(0);
227  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
228  if (!UseCP) {
229    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
230    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
231                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
232  }
233
234  EVT OrigVT = VT;
235  EVT SVT = VT;
236  while (SVT != MVT::f32) {
237    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
238    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
239        // Only do this if the target has a native EXTLOAD instruction from
240        // smaller type.
241        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
242        TLI.ShouldShrinkFPConstant(OrigVT)) {
243      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
244      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
245      VT = SVT;
246      Extend = true;
247    }
248  }
249
250  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
251  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
252  if (Extend) {
253    SDValue Result =
254      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
255                     DAG.getEntryNode(),
256                     CPIdx, MachinePointerInfo::getConstantPool(),
257                     VT, false, false, Alignment);
258    return Result;
259  }
260  SDValue Result =
261    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
262                MachinePointerInfo::getConstantPool(), false, false,
263                Alignment);
264  return Result;
265}
266
267/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
268static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
269                                 const TargetLowering &TLI,
270                                 SelectionDAG::DAGUpdateListener *DUL) {
271  SDValue Chain = ST->getChain();
272  SDValue Ptr = ST->getBasePtr();
273  SDValue Val = ST->getValue();
274  EVT VT = Val.getValueType();
275  int Alignment = ST->getAlignment();
276  DebugLoc dl = ST->getDebugLoc();
277  if (ST->getMemoryVT().isFloatingPoint() ||
278      ST->getMemoryVT().isVector()) {
279    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
280    if (TLI.isTypeLegal(intVT)) {
281      // Expand to a bitconvert of the value to the integer type of the
282      // same size, then a (misaligned) int store.
283      // FIXME: Does not handle truncating floating point stores!
284      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
285      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
286                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
287      DAG.ReplaceAllUsesWith(SDValue(ST, 0), Result, DUL);
288      DAG.RemoveDeadNode(ST, DUL);
289      return;
290    }
291    // Do a (aligned) store to a stack slot, then copy from the stack slot
292    // to the final destination using (unaligned) integer loads and stores.
293    EVT StoredVT = ST->getMemoryVT();
294    EVT RegVT =
295      TLI.getRegisterType(*DAG.getContext(),
296                          EVT::getIntegerVT(*DAG.getContext(),
297                                            StoredVT.getSizeInBits()));
298    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
299    unsigned RegBytes = RegVT.getSizeInBits() / 8;
300    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
301
302    // Make sure the stack slot is also aligned for the register type.
303    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
304
305    // Perform the original store, only redirected to the stack slot.
306    SDValue Store = DAG.getTruncStore(Chain, dl,
307                                      Val, StackPtr, MachinePointerInfo(),
308                                      StoredVT, false, false, 0);
309    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
310    SmallVector<SDValue, 8> Stores;
311    unsigned Offset = 0;
312
313    // Do all but one copies using the full register width.
314    for (unsigned i = 1; i < NumRegs; i++) {
315      // Load one integer register's worth from the stack slot.
316      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
317                                 MachinePointerInfo(),
318                                 false, false, 0);
319      // Store it to the final location.  Remember the store.
320      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
321                                  ST->getPointerInfo().getWithOffset(Offset),
322                                    ST->isVolatile(), ST->isNonTemporal(),
323                                    MinAlign(ST->getAlignment(), Offset)));
324      // Increment the pointers.
325      Offset += RegBytes;
326      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
327                             Increment);
328      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
329    }
330
331    // The last store may be partial.  Do a truncating store.  On big-endian
332    // machines this requires an extending load from the stack slot to ensure
333    // that the bits are in the right place.
334    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
335                                  8 * (StoredBytes - Offset));
336
337    // Load from the stack slot.
338    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
339                                  MachinePointerInfo(),
340                                  MemVT, false, false, 0);
341
342    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
343                                       ST->getPointerInfo()
344                                         .getWithOffset(Offset),
345                                       MemVT, ST->isVolatile(),
346                                       ST->isNonTemporal(),
347                                       MinAlign(ST->getAlignment(), Offset)));
348    // The order of the stores doesn't matter - say it with a TokenFactor.
349    SDValue Result =
350      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
351                  Stores.size());
352    DAG.ReplaceAllUsesWith(SDValue(ST, 0), Result, DUL);
353    DAG.RemoveDeadNode(ST, DUL);
354    return;
355  }
356  assert(ST->getMemoryVT().isInteger() &&
357         !ST->getMemoryVT().isVector() &&
358         "Unaligned store of unknown type.");
359  // Get the half-size VT
360  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
361  int NumBits = NewStoredVT.getSizeInBits();
362  int IncrementSize = NumBits / 8;
363
364  // Divide the stored value in two parts.
365  SDValue ShiftAmount = DAG.getConstant(NumBits,
366                                      TLI.getShiftAmountTy(Val.getValueType()));
367  SDValue Lo = Val;
368  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
369
370  // Store the two parts
371  SDValue Store1, Store2;
372  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
373                             ST->getPointerInfo(), NewStoredVT,
374                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
375  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
376                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
377  Alignment = MinAlign(Alignment, IncrementSize);
378  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
379                             ST->getPointerInfo().getWithOffset(IncrementSize),
380                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
381                             Alignment);
382
383  SDValue Result =
384    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
385  DAG.ReplaceAllUsesWith(SDValue(ST, 0), Result, DUL);
386  DAG.RemoveDeadNode(ST, DUL);
387}
388
389/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
390static void
391ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
392                    const TargetLowering &TLI,
393                    SDValue &ValResult, SDValue &ChainResult) {
394  SDValue Chain = LD->getChain();
395  SDValue Ptr = LD->getBasePtr();
396  EVT VT = LD->getValueType(0);
397  EVT LoadedVT = LD->getMemoryVT();
398  DebugLoc dl = LD->getDebugLoc();
399  if (VT.isFloatingPoint() || VT.isVector()) {
400    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
401    if (TLI.isTypeLegal(intVT)) {
402      // Expand to a (misaligned) integer load of the same size,
403      // then bitconvert to floating point or vector.
404      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
405                                    LD->isVolatile(),
406                                    LD->isNonTemporal(), LD->getAlignment());
407      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
408      if (VT.isFloatingPoint() && LoadedVT != VT)
409        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
410
411      ValResult = Result;
412      ChainResult = Chain;
413      return;
414    }
415
416    // Copy the value to a (aligned) stack slot using (unaligned) integer
417    // loads and stores, then do a (aligned) load from the stack slot.
418    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
419    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
420    unsigned RegBytes = RegVT.getSizeInBits() / 8;
421    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
422
423    // Make sure the stack slot is also aligned for the register type.
424    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
425
426    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
427    SmallVector<SDValue, 8> Stores;
428    SDValue StackPtr = StackBase;
429    unsigned Offset = 0;
430
431    // Do all but one copies using the full register width.
432    for (unsigned i = 1; i < NumRegs; i++) {
433      // Load one integer register's worth from the original location.
434      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
435                                 LD->getPointerInfo().getWithOffset(Offset),
436                                 LD->isVolatile(), LD->isNonTemporal(),
437                                 MinAlign(LD->getAlignment(), Offset));
438      // Follow the load with a store to the stack slot.  Remember the store.
439      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
440                                    MachinePointerInfo(), false, false, 0));
441      // Increment the pointers.
442      Offset += RegBytes;
443      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
444      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
445                             Increment);
446    }
447
448    // The last copy may be partial.  Do an extending load.
449    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
450                                  8 * (LoadedBytes - Offset));
451    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
452                                  LD->getPointerInfo().getWithOffset(Offset),
453                                  MemVT, LD->isVolatile(),
454                                  LD->isNonTemporal(),
455                                  MinAlign(LD->getAlignment(), Offset));
456    // Follow the load with a store to the stack slot.  Remember the store.
457    // On big-endian machines this requires a truncating store to ensure
458    // that the bits end up in the right place.
459    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
460                                       MachinePointerInfo(), MemVT,
461                                       false, false, 0));
462
463    // The order of the stores doesn't matter - say it with a TokenFactor.
464    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
465                             Stores.size());
466
467    // Finally, perform the original load only redirected to the stack slot.
468    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
469                          MachinePointerInfo(), LoadedVT, false, false, 0);
470
471    // Callers expect a MERGE_VALUES node.
472    ValResult = Load;
473    ChainResult = TF;
474    return;
475  }
476  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
477         "Unaligned load of unsupported type.");
478
479  // Compute the new VT that is half the size of the old one.  This is an
480  // integer MVT.
481  unsigned NumBits = LoadedVT.getSizeInBits();
482  EVT NewLoadedVT;
483  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
484  NumBits >>= 1;
485
486  unsigned Alignment = LD->getAlignment();
487  unsigned IncrementSize = NumBits / 8;
488  ISD::LoadExtType HiExtType = LD->getExtensionType();
489
490  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
491  if (HiExtType == ISD::NON_EXTLOAD)
492    HiExtType = ISD::ZEXTLOAD;
493
494  // Load the value in two parts
495  SDValue Lo, Hi;
496  if (TLI.isLittleEndian()) {
497    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
498                        NewLoadedVT, LD->isVolatile(),
499                        LD->isNonTemporal(), Alignment);
500    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
501                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
502    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
503                        LD->getPointerInfo().getWithOffset(IncrementSize),
504                        NewLoadedVT, LD->isVolatile(),
505                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
506  } else {
507    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
508                        NewLoadedVT, LD->isVolatile(),
509                        LD->isNonTemporal(), Alignment);
510    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
511                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
512    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
513                        LD->getPointerInfo().getWithOffset(IncrementSize),
514                        NewLoadedVT, LD->isVolatile(),
515                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
516  }
517
518  // aggregate the two parts
519  SDValue ShiftAmount = DAG.getConstant(NumBits,
520                                       TLI.getShiftAmountTy(Hi.getValueType()));
521  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
522  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
523
524  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
525                             Hi.getValue(1));
526
527  ValResult = Result;
528  ChainResult = TF;
529}
530
531/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
532/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
533/// is necessary to spill the vector being inserted into to memory, perform
534/// the insert there, and then read the result back.
535SDValue SelectionDAGLegalize::
536PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
537                               DebugLoc dl) {
538  SDValue Tmp1 = Vec;
539  SDValue Tmp2 = Val;
540  SDValue Tmp3 = Idx;
541
542  // If the target doesn't support this, we have to spill the input vector
543  // to a temporary stack slot, update the element, then reload it.  This is
544  // badness.  We could also load the value into a vector register (either
545  // with a "move to register" or "extload into register" instruction, then
546  // permute it into place, if the idx is a constant and if the idx is
547  // supported by the target.
548  EVT VT    = Tmp1.getValueType();
549  EVT EltVT = VT.getVectorElementType();
550  EVT IdxVT = Tmp3.getValueType();
551  EVT PtrVT = TLI.getPointerTy();
552  SDValue StackPtr = DAG.CreateStackTemporary(VT);
553
554  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
555
556  // Store the vector.
557  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
558                            MachinePointerInfo::getFixedStack(SPFI),
559                            false, false, 0);
560
561  // Truncate or zero extend offset to target pointer type.
562  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
563  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
564  // Add the offset to the index.
565  unsigned EltSize = EltVT.getSizeInBits()/8;
566  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
567  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
568  // Store the scalar value.
569  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
570                         false, false, 0);
571  // Load the updated vector.
572  return DAG.getLoad(VT, dl, Ch, StackPtr,
573                     MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
574}
575
576
577SDValue SelectionDAGLegalize::
578ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
579  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
580    // SCALAR_TO_VECTOR requires that the type of the value being inserted
581    // match the element type of the vector being created, except for
582    // integers in which case the inserted value can be over width.
583    EVT EltVT = Vec.getValueType().getVectorElementType();
584    if (Val.getValueType() == EltVT ||
585        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
586      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
587                                  Vec.getValueType(), Val);
588
589      unsigned NumElts = Vec.getValueType().getVectorNumElements();
590      // We generate a shuffle of InVec and ScVec, so the shuffle mask
591      // should be 0,1,2,3,4,5... with the appropriate element replaced with
592      // elt 0 of the RHS.
593      SmallVector<int, 8> ShufOps;
594      for (unsigned i = 0; i != NumElts; ++i)
595        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
596
597      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
598                                  &ShufOps[0]);
599    }
600  }
601  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
602}
603
604SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
605  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
606  // FIXME: We shouldn't do this for TargetConstantFP's.
607  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
608  // to phase ordering between legalized code and the dag combiner.  This
609  // probably means that we need to integrate dag combiner and legalizer
610  // together.
611  // We generally can't do this one for long doubles.
612  SDValue Tmp1 = ST->getChain();
613  SDValue Tmp2 = ST->getBasePtr();
614  SDValue Tmp3;
615  unsigned Alignment = ST->getAlignment();
616  bool isVolatile = ST->isVolatile();
617  bool isNonTemporal = ST->isNonTemporal();
618  DebugLoc dl = ST->getDebugLoc();
619  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
620    if (CFP->getValueType(0) == MVT::f32 &&
621        TLI.isTypeLegal(MVT::i32)) {
622      Tmp3 = DAG.getConstant(CFP->getValueAPF().
623                                      bitcastToAPInt().zextOrTrunc(32),
624                              MVT::i32);
625      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
626                          isVolatile, isNonTemporal, Alignment);
627    }
628
629    if (CFP->getValueType(0) == MVT::f64) {
630      // If this target supports 64-bit registers, do a single 64-bit store.
631      if (TLI.isTypeLegal(MVT::i64)) {
632        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
633                                  zextOrTrunc(64), MVT::i64);
634        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
635                            isVolatile, isNonTemporal, Alignment);
636      }
637
638      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
639        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
640        // stores.  If the target supports neither 32- nor 64-bits, this
641        // xform is certainly not worth it.
642        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
643        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
644        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
645        if (TLI.isBigEndian()) std::swap(Lo, Hi);
646
647        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
648                          isNonTemporal, Alignment);
649        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
650                            DAG.getIntPtrConstant(4));
651        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
652                          ST->getPointerInfo().getWithOffset(4),
653                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
654
655        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
656      }
657    }
658  }
659  return SDValue(0, 0);
660}
661
662/// LegalizeOp - Return a legal replacement for the given operation, with
663/// all legal operands.
664void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
665  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
666    return;
667
668  DebugLoc dl = Node->getDebugLoc();
669
670  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
671    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
672             TargetLowering::TypeLegal &&
673           "Unexpected illegal type!");
674
675  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
676    assert((TLI.getTypeAction(*DAG.getContext(),
677                              Node->getOperand(i).getValueType()) ==
678              TargetLowering::TypeLegal ||
679            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
680           "Unexpected illegal type!");
681
682  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
683  bool isCustom = false;
684
685  // Figure out the correct action; the way to query this varies by opcode
686  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
687  bool SimpleFinishLegalizing = true;
688  switch (Node->getOpcode()) {
689  case ISD::INTRINSIC_W_CHAIN:
690  case ISD::INTRINSIC_WO_CHAIN:
691  case ISD::INTRINSIC_VOID:
692  case ISD::VAARG:
693  case ISD::STACKSAVE:
694    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
695    break;
696  case ISD::SINT_TO_FP:
697  case ISD::UINT_TO_FP:
698  case ISD::EXTRACT_VECTOR_ELT:
699    Action = TLI.getOperationAction(Node->getOpcode(),
700                                    Node->getOperand(0).getValueType());
701    break;
702  case ISD::FP_ROUND_INREG:
703  case ISD::SIGN_EXTEND_INREG: {
704    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
705    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
706    break;
707  }
708  case ISD::ATOMIC_STORE: {
709    Action = TLI.getOperationAction(Node->getOpcode(),
710                                    Node->getOperand(2).getValueType());
711    break;
712  }
713  case ISD::SELECT_CC:
714  case ISD::SETCC:
715  case ISD::BR_CC: {
716    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
717                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
718    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
719    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
720    ISD::CondCode CCCode =
721        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
722    Action = TLI.getCondCodeAction(CCCode, OpVT);
723    if (Action == TargetLowering::Legal) {
724      if (Node->getOpcode() == ISD::SELECT_CC)
725        Action = TLI.getOperationAction(Node->getOpcode(),
726                                        Node->getValueType(0));
727      else
728        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
729    }
730    break;
731  }
732  case ISD::LOAD:
733  case ISD::STORE:
734    // FIXME: Model these properly.  LOAD and STORE are complicated, and
735    // STORE expects the unlegalized operand in some cases.
736    SimpleFinishLegalizing = false;
737    break;
738  case ISD::CALLSEQ_START:
739  case ISD::CALLSEQ_END:
740    // FIXME: This shouldn't be necessary.  These nodes have special properties
741    // dealing with the recursive nature of legalization.  Removing this
742    // special case should be done as part of making LegalizeDAG non-recursive.
743    SimpleFinishLegalizing = false;
744    break;
745  case ISD::EXTRACT_ELEMENT:
746  case ISD::FLT_ROUNDS_:
747  case ISD::SADDO:
748  case ISD::SSUBO:
749  case ISD::UADDO:
750  case ISD::USUBO:
751  case ISD::SMULO:
752  case ISD::UMULO:
753  case ISD::FPOWI:
754  case ISD::MERGE_VALUES:
755  case ISD::EH_RETURN:
756  case ISD::FRAME_TO_ARGS_OFFSET:
757  case ISD::EH_SJLJ_SETJMP:
758  case ISD::EH_SJLJ_LONGJMP:
759  case ISD::EH_SJLJ_DISPATCHSETUP:
760    // These operations lie about being legal: when they claim to be legal,
761    // they should actually be expanded.
762    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
763    if (Action == TargetLowering::Legal)
764      Action = TargetLowering::Expand;
765    break;
766  case ISD::INIT_TRAMPOLINE:
767  case ISD::ADJUST_TRAMPOLINE:
768  case ISD::FRAMEADDR:
769  case ISD::RETURNADDR:
770    // These operations lie about being legal: when they claim to be legal,
771    // they should actually be custom-lowered.
772    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
773    if (Action == TargetLowering::Legal)
774      Action = TargetLowering::Custom;
775    break;
776  default:
777    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
778      Action = TargetLowering::Legal;
779    } else {
780      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
781    }
782    break;
783  }
784
785  if (SimpleFinishLegalizing) {
786    SmallVector<SDValue, 8> Ops;
787    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
788      Ops.push_back(Node->getOperand(i));
789    switch (Node->getOpcode()) {
790    default: break;
791    case ISD::SHL:
792    case ISD::SRL:
793    case ISD::SRA:
794    case ISD::ROTL:
795    case ISD::ROTR:
796      // Legalizing shifts/rotates requires adjusting the shift amount
797      // to the appropriate width.
798      if (!Ops[1].getValueType().isVector()) {
799        SDValue SAO = DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[1]);
800        HandleSDNode Handle(SAO);
801        LegalizeOp(SAO.getNode());
802        Ops[1] = Handle.getValue();
803      }
804      break;
805    case ISD::SRL_PARTS:
806    case ISD::SRA_PARTS:
807    case ISD::SHL_PARTS:
808      // Legalizing shifts/rotates requires adjusting the shift amount
809      // to the appropriate width.
810      if (!Ops[2].getValueType().isVector()) {
811        SDValue SAO = DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[2]);
812        HandleSDNode Handle(SAO);
813        LegalizeOp(SAO.getNode());
814        Ops[2] = Handle.getValue();
815      }
816      break;
817    }
818
819    SDNode *NewNode = DAG.UpdateNodeOperands(Node, Ops.data(), Ops.size());
820    if (NewNode != Node) {
821      DAG.ReplaceAllUsesWith(Node, NewNode, this);
822      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
823        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
824      DAG.RemoveDeadNode(Node, this);
825      Node = NewNode;
826    }
827    switch (Action) {
828    case TargetLowering::Legal:
829      return;
830    case TargetLowering::Custom:
831      // FIXME: The handling for custom lowering with multiple results is
832      // a complete mess.
833      Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
834      if (Tmp1.getNode()) {
835        SmallVector<SDValue, 8> ResultVals;
836        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
837          if (e == 1)
838            ResultVals.push_back(Tmp1);
839          else
840            ResultVals.push_back(Tmp1.getValue(i));
841        }
842        if (Tmp1.getNode() != Node || Tmp1.getResNo() != 0) {
843          DAG.ReplaceAllUsesWith(Node, ResultVals.data(), this);
844          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
845            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
846          DAG.RemoveDeadNode(Node, this);
847        }
848        return;
849      }
850
851      // FALL THROUGH
852    case TargetLowering::Expand:
853      ExpandNode(Node);
854      return;
855    case TargetLowering::Promote:
856      PromoteNode(Node);
857      return;
858    }
859  }
860
861  switch (Node->getOpcode()) {
862  default:
863#ifndef NDEBUG
864    dbgs() << "NODE: ";
865    Node->dump( &DAG);
866    dbgs() << "\n";
867#endif
868    assert(0 && "Do not know how to legalize this operator!");
869
870  case ISD::CALLSEQ_START:
871  case ISD::CALLSEQ_END:
872    break;
873  case ISD::LOAD: {
874    LoadSDNode *LD = cast<LoadSDNode>(Node);
875    Tmp1 = LD->getChain();   // Legalize the chain.
876    Tmp2 = LD->getBasePtr(); // Legalize the base pointer.
877
878    ISD::LoadExtType ExtType = LD->getExtensionType();
879    if (ExtType == ISD::NON_EXTLOAD) {
880      EVT VT = Node->getValueType(0);
881      Node = DAG.UpdateNodeOperands(Node, Tmp1, Tmp2, LD->getOffset());
882      Tmp3 = SDValue(Node, 0);
883      Tmp4 = SDValue(Node, 1);
884
885      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
886      default: assert(0 && "This action is not supported yet!");
887      case TargetLowering::Legal:
888        // If this is an unaligned load and the target doesn't support it,
889        // expand it.
890        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
891          Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
892          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
893          if (LD->getAlignment() < ABIAlignment){
894            ExpandUnalignedLoad(cast<LoadSDNode>(Node),
895                                DAG, TLI, Tmp3, Tmp4);
896          }
897        }
898        break;
899      case TargetLowering::Custom:
900        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
901        if (Tmp1.getNode()) {
902          Tmp3 = Tmp1;
903          Tmp4 = Tmp1.getValue(1);
904        }
905        break;
906      case TargetLowering::Promote: {
907        // Only promote a load of vector type to another.
908        assert(VT.isVector() && "Cannot promote this load!");
909        // Change base type to a different vector type.
910        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
911
912        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
913                           LD->isVolatile(), LD->isNonTemporal(),
914                           LD->getAlignment());
915        Tmp3 = DAG.getNode(ISD::BITCAST, dl, VT, Tmp1);
916        Tmp4 = Tmp1.getValue(1);
917        break;
918      }
919      }
920      // Since loads produce two values, make sure to remember that we
921      // legalized both of them.
922      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp3);
923      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp4);
924      return;
925    }
926
927    EVT SrcVT = LD->getMemoryVT();
928    unsigned SrcWidth = SrcVT.getSizeInBits();
929    unsigned Alignment = LD->getAlignment();
930    bool isVolatile = LD->isVolatile();
931    bool isNonTemporal = LD->isNonTemporal();
932
933    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
934        // Some targets pretend to have an i1 loading operation, and actually
935        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
936        // bits are guaranteed to be zero; it helps the optimizers understand
937        // that these bits are zero.  It is also useful for EXTLOAD, since it
938        // tells the optimizers that those bits are undefined.  It would be
939        // nice to have an effective generic way of getting these benefits...
940        // Until such a way is found, don't insist on promoting i1 here.
941        (SrcVT != MVT::i1 ||
942         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
943      // Promote to a byte-sized load if not loading an integral number of
944      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
945      unsigned NewWidth = SrcVT.getStoreSizeInBits();
946      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
947      SDValue Ch;
948
949      // The extra bits are guaranteed to be zero, since we stored them that
950      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
951
952      ISD::LoadExtType NewExtType =
953        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
954
955      SDValue Result =
956        DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
957                       Tmp1, Tmp2, LD->getPointerInfo(),
958                       NVT, isVolatile, isNonTemporal, Alignment);
959
960      Ch = Result.getValue(1); // The chain.
961
962      if (ExtType == ISD::SEXTLOAD)
963        // Having the top bits zero doesn't help when sign extending.
964        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
965                             Result.getValueType(),
966                             Result, DAG.getValueType(SrcVT));
967      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
968        // All the top bits are guaranteed to be zero - inform the optimizers.
969        Result = DAG.getNode(ISD::AssertZext, dl,
970                             Result.getValueType(), Result,
971                             DAG.getValueType(SrcVT));
972
973      Tmp1 = Result;
974      Tmp2 = Ch;
975    } else if (SrcWidth & (SrcWidth - 1)) {
976      // If not loading a power-of-2 number of bits, expand as two loads.
977      assert(!SrcVT.isVector() && "Unsupported extload!");
978      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
979      assert(RoundWidth < SrcWidth);
980      unsigned ExtraWidth = SrcWidth - RoundWidth;
981      assert(ExtraWidth < RoundWidth);
982      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
983             "Load size not an integral number of bytes!");
984      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
985      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
986      SDValue Lo, Hi, Ch;
987      unsigned IncrementSize;
988
989      if (TLI.isLittleEndian()) {
990        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
991        // Load the bottom RoundWidth bits.
992        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
993                            Tmp1, Tmp2,
994                            LD->getPointerInfo(), RoundVT, isVolatile,
995                            isNonTemporal, Alignment);
996
997        // Load the remaining ExtraWidth bits.
998        IncrementSize = RoundWidth / 8;
999        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1000                           DAG.getIntPtrConstant(IncrementSize));
1001        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1002                            LD->getPointerInfo().getWithOffset(IncrementSize),
1003                            ExtraVT, isVolatile, isNonTemporal,
1004                            MinAlign(Alignment, IncrementSize));
1005
1006        // Build a factor node to remember that this load is independent of
1007        // the other one.
1008        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1009                         Hi.getValue(1));
1010
1011        // Move the top bits to the right place.
1012        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1013                         DAG.getConstant(RoundWidth,
1014                                      TLI.getShiftAmountTy(Hi.getValueType())));
1015
1016        // Join the hi and lo parts.
1017        Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1018      } else {
1019        // Big endian - avoid unaligned loads.
1020        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1021        // Load the top RoundWidth bits.
1022        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1023                            LD->getPointerInfo(), RoundVT, isVolatile,
1024                            isNonTemporal, Alignment);
1025
1026        // Load the remaining ExtraWidth bits.
1027        IncrementSize = RoundWidth / 8;
1028        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1029                           DAG.getIntPtrConstant(IncrementSize));
1030        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1031                            dl, Node->getValueType(0), Tmp1, Tmp2,
1032                            LD->getPointerInfo().getWithOffset(IncrementSize),
1033                            ExtraVT, isVolatile, isNonTemporal,
1034                            MinAlign(Alignment, IncrementSize));
1035
1036        // Build a factor node to remember that this load is independent of
1037        // the other one.
1038        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1039                         Hi.getValue(1));
1040
1041        // Move the top bits to the right place.
1042        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1043                         DAG.getConstant(ExtraWidth,
1044                                      TLI.getShiftAmountTy(Hi.getValueType())));
1045
1046        // Join the hi and lo parts.
1047        Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1048      }
1049
1050      Tmp2 = Ch;
1051    } else {
1052      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1053      default: assert(0 && "This action is not supported yet!");
1054      case TargetLowering::Custom:
1055        isCustom = true;
1056        // FALLTHROUGH
1057      case TargetLowering::Legal:
1058        Node = DAG.UpdateNodeOperands(Node,
1059                                      Tmp1, Tmp2, LD->getOffset());
1060        Tmp1 = SDValue(Node, 0);
1061        Tmp2 = SDValue(Node, 1);
1062
1063        if (isCustom) {
1064          Tmp3 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1065          if (Tmp3.getNode()) {
1066            Tmp1 = Tmp3;
1067            Tmp2 = Tmp3.getValue(1);
1068          }
1069        } else {
1070          // If this is an unaligned load and the target doesn't support it,
1071          // expand it.
1072          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1073            Type *Ty =
1074              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1075            unsigned ABIAlignment =
1076              TLI.getTargetData()->getABITypeAlignment(Ty);
1077            if (LD->getAlignment() < ABIAlignment){
1078              ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1079                                  DAG, TLI, Tmp1, Tmp2);
1080            }
1081          }
1082        }
1083        break;
1084      case TargetLowering::Expand:
1085        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1086          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1087                                     LD->getPointerInfo(),
1088                                     LD->isVolatile(), LD->isNonTemporal(),
1089                                     LD->getAlignment());
1090          unsigned ExtendOp;
1091          switch (ExtType) {
1092          case ISD::EXTLOAD:
1093            ExtendOp = (SrcVT.isFloatingPoint() ?
1094                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1095            break;
1096          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1097          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1098          default: llvm_unreachable("Unexpected extend load type!");
1099          }
1100          Tmp1 = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1101          Tmp2 = Load.getValue(1);
1102          break;
1103        }
1104
1105        assert(!SrcVT.isVector() &&
1106               "Vector Loads are handled in LegalizeVectorOps");
1107
1108        // FIXME: This does not work for vectors on most targets.  Sign- and
1109        // zero-extend operations are currently folded into extending loads,
1110        // whether they are legal or not, and then we end up here without any
1111        // support for legalizing them.
1112        assert(ExtType != ISD::EXTLOAD &&
1113               "EXTLOAD should always be supported!");
1114        // Turn the unsupported load into an EXTLOAD followed by an explicit
1115        // zero/sign extend inreg.
1116        SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1117                                        Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1118                                        LD->isVolatile(), LD->isNonTemporal(),
1119                                        LD->getAlignment());
1120        SDValue ValRes;
1121        if (ExtType == ISD::SEXTLOAD)
1122          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1123                               Result.getValueType(),
1124                               Result, DAG.getValueType(SrcVT));
1125        else
1126          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1127        Tmp1 = ValRes;
1128        Tmp2 = Result.getValue(1);
1129        break;
1130      }
1131    }
1132
1133    // Since loads produce two values, make sure to remember that we legalized
1134    // both of them.
1135    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp1);
1136    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp2);
1137    break;
1138  }
1139  case ISD::STORE: {
1140    StoreSDNode *ST = cast<StoreSDNode>(Node);
1141    Tmp1 = ST->getChain();
1142    Tmp2 = ST->getBasePtr();
1143    unsigned Alignment = ST->getAlignment();
1144    bool isVolatile = ST->isVolatile();
1145    bool isNonTemporal = ST->isNonTemporal();
1146
1147    if (!ST->isTruncatingStore()) {
1148      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1149        DAG.ReplaceAllUsesWith(ST, OptStore, this);
1150        DAG.RemoveDeadNode(ST, this);
1151        break;
1152      }
1153
1154      {
1155        Tmp3 = ST->getValue();
1156        Node = DAG.UpdateNodeOperands(Node,
1157                                      Tmp1, Tmp3, Tmp2,
1158                                      ST->getOffset());
1159
1160        EVT VT = Tmp3.getValueType();
1161        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1162        default: assert(0 && "This action is not supported yet!");
1163        case TargetLowering::Legal:
1164          // If this is an unaligned store and the target doesn't support it,
1165          // expand it.
1166          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1167            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1168            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1169            if (ST->getAlignment() < ABIAlignment)
1170              ExpandUnalignedStore(cast<StoreSDNode>(Node),
1171                                   DAG, TLI, this);
1172          }
1173          break;
1174        case TargetLowering::Custom:
1175          Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1176          if (Tmp1.getNode()) {
1177            DAG.ReplaceAllUsesWith(SDValue(Node, 0), Tmp1, this);
1178            DAG.RemoveDeadNode(Node, this);
1179          }
1180          break;
1181        case TargetLowering::Promote: {
1182          assert(VT.isVector() && "Unknown legal promote case!");
1183          Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1184                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1185          SDValue Result =
1186            DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1187                         ST->getPointerInfo(), isVolatile,
1188                         isNonTemporal, Alignment);
1189          DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this);
1190          DAG.RemoveDeadNode(Node, this);
1191          break;
1192        }
1193        }
1194        break;
1195      }
1196    } else {
1197      Tmp3 = ST->getValue();
1198
1199      EVT StVT = ST->getMemoryVT();
1200      unsigned StWidth = StVT.getSizeInBits();
1201
1202      if (StWidth != StVT.getStoreSizeInBits()) {
1203        // Promote to a byte-sized store with upper bits zero if not
1204        // storing an integral number of bytes.  For example, promote
1205        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1206        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1207                                    StVT.getStoreSizeInBits());
1208        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1209        SDValue Result =
1210          DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1211                            NVT, isVolatile, isNonTemporal, Alignment);
1212        DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this);
1213        DAG.RemoveDeadNode(Node, this);
1214      } else if (StWidth & (StWidth - 1)) {
1215        // If not storing a power-of-2 number of bits, expand as two stores.
1216        assert(!StVT.isVector() && "Unsupported truncstore!");
1217        unsigned RoundWidth = 1 << Log2_32(StWidth);
1218        assert(RoundWidth < StWidth);
1219        unsigned ExtraWidth = StWidth - RoundWidth;
1220        assert(ExtraWidth < RoundWidth);
1221        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1222               "Store size not an integral number of bytes!");
1223        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1224        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1225        SDValue Lo, Hi;
1226        unsigned IncrementSize;
1227
1228        if (TLI.isLittleEndian()) {
1229          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1230          // Store the bottom RoundWidth bits.
1231          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1232                                 RoundVT,
1233                                 isVolatile, isNonTemporal, Alignment);
1234
1235          // Store the remaining ExtraWidth bits.
1236          IncrementSize = RoundWidth / 8;
1237          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1238                             DAG.getIntPtrConstant(IncrementSize));
1239          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1240                           DAG.getConstant(RoundWidth,
1241                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1242          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1243                             ST->getPointerInfo().getWithOffset(IncrementSize),
1244                                 ExtraVT, isVolatile, isNonTemporal,
1245                                 MinAlign(Alignment, IncrementSize));
1246        } else {
1247          // Big endian - avoid unaligned stores.
1248          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1249          // Store the top RoundWidth bits.
1250          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1251                           DAG.getConstant(ExtraWidth,
1252                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1253          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1254                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1255
1256          // Store the remaining ExtraWidth bits.
1257          IncrementSize = RoundWidth / 8;
1258          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1259                             DAG.getIntPtrConstant(IncrementSize));
1260          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1261                              ST->getPointerInfo().getWithOffset(IncrementSize),
1262                                 ExtraVT, isVolatile, isNonTemporal,
1263                                 MinAlign(Alignment, IncrementSize));
1264        }
1265
1266        // The order of the stores doesn't matter.
1267        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1268        DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this);
1269        DAG.RemoveDeadNode(Node, this);
1270      } else {
1271        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1272            Tmp2 != ST->getBasePtr())
1273          Node = DAG.UpdateNodeOperands(Node, Tmp1, Tmp3, Tmp2,
1274                                        ST->getOffset());
1275
1276        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1277        default: assert(0 && "This action is not supported yet!");
1278        case TargetLowering::Legal:
1279          // If this is an unaligned store and the target doesn't support it,
1280          // expand it.
1281          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1282            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1283            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1284            if (ST->getAlignment() < ABIAlignment)
1285              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
1286          }
1287          break;
1288        case TargetLowering::Custom:
1289          DAG.ReplaceAllUsesWith(SDValue(Node, 0),
1290                                 TLI.LowerOperation(SDValue(Node, 0), DAG),
1291                                 this);
1292          DAG.RemoveDeadNode(Node, this);
1293          break;
1294        case TargetLowering::Expand:
1295          assert(!StVT.isVector() &&
1296                 "Vector Stores are handled in LegalizeVectorOps");
1297
1298          // TRUNCSTORE:i16 i32 -> STORE i16
1299          assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!");
1300          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1301          SDValue Result =
1302            DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1303                         isVolatile, isNonTemporal, Alignment);
1304          DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this);
1305          DAG.RemoveDeadNode(Node, this);
1306          break;
1307        }
1308      }
1309    }
1310    break;
1311  }
1312  }
1313}
1314
1315SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1316  SDValue Vec = Op.getOperand(0);
1317  SDValue Idx = Op.getOperand(1);
1318  DebugLoc dl = Op.getDebugLoc();
1319  // Store the value to a temporary stack slot, then LOAD the returned part.
1320  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1321  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1322                            MachinePointerInfo(), false, false, 0);
1323
1324  // Add the offset to the index.
1325  unsigned EltSize =
1326      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1327  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1328                    DAG.getConstant(EltSize, Idx.getValueType()));
1329
1330  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1331    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1332  else
1333    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1334
1335  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1336
1337  if (Op.getValueType().isVector())
1338    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1339                       false, false, 0);
1340  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1341                        MachinePointerInfo(),
1342                        Vec.getValueType().getVectorElementType(),
1343                        false, false, 0);
1344}
1345
1346SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1347  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1348
1349  SDValue Vec  = Op.getOperand(0);
1350  SDValue Part = Op.getOperand(1);
1351  SDValue Idx  = Op.getOperand(2);
1352  DebugLoc dl  = Op.getDebugLoc();
1353
1354  // Store the value to a temporary stack slot, then LOAD the returned part.
1355
1356  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1357  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1358  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1359
1360  // First store the whole vector.
1361  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1362                            false, false, 0);
1363
1364  // Then store the inserted part.
1365
1366  // Add the offset to the index.
1367  unsigned EltSize =
1368      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1369
1370  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1371                    DAG.getConstant(EltSize, Idx.getValueType()));
1372
1373  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1374    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1375  else
1376    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1377
1378  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1379                                    StackPtr);
1380
1381  // Store the subvector.
1382  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1383                    MachinePointerInfo(), false, false, 0);
1384
1385  // Finally, load the updated vector.
1386  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1387                     false, false, 0);
1388}
1389
1390SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1391  // We can't handle this case efficiently.  Allocate a sufficiently
1392  // aligned object on the stack, store each element into it, then load
1393  // the result as a vector.
1394  // Create the stack frame object.
1395  EVT VT = Node->getValueType(0);
1396  EVT EltVT = VT.getVectorElementType();
1397  DebugLoc dl = Node->getDebugLoc();
1398  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1399  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1400  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1401
1402  // Emit a store of each element to the stack slot.
1403  SmallVector<SDValue, 8> Stores;
1404  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1405  // Store (in the right endianness) the elements to memory.
1406  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1407    // Ignore undef elements.
1408    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1409
1410    unsigned Offset = TypeByteSize*i;
1411
1412    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1413    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1414
1415    // If the destination vector element type is narrower than the source
1416    // element type, only store the bits necessary.
1417    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1418      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1419                                         Node->getOperand(i), Idx,
1420                                         PtrInfo.getWithOffset(Offset),
1421                                         EltVT, false, false, 0));
1422    } else
1423      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1424                                    Node->getOperand(i), Idx,
1425                                    PtrInfo.getWithOffset(Offset),
1426                                    false, false, 0));
1427  }
1428
1429  SDValue StoreChain;
1430  if (!Stores.empty())    // Not all undef elements?
1431    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1432                             &Stores[0], Stores.size());
1433  else
1434    StoreChain = DAG.getEntryNode();
1435
1436  // Result is a load from the stack slot.
1437  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1438}
1439
1440SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1441  DebugLoc dl = Node->getDebugLoc();
1442  SDValue Tmp1 = Node->getOperand(0);
1443  SDValue Tmp2 = Node->getOperand(1);
1444
1445  // Get the sign bit of the RHS.  First obtain a value that has the same
1446  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1447  SDValue SignBit;
1448  EVT FloatVT = Tmp2.getValueType();
1449  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1450  if (TLI.isTypeLegal(IVT)) {
1451    // Convert to an integer with the same sign bit.
1452    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1453  } else {
1454    // Store the float to memory, then load the sign part out as an integer.
1455    MVT LoadTy = TLI.getPointerTy();
1456    // First create a temporary that is aligned for both the load and store.
1457    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1458    // Then store the float to it.
1459    SDValue Ch =
1460      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1461                   false, false, 0);
1462    if (TLI.isBigEndian()) {
1463      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1464      // Load out a legal integer with the same sign bit as the float.
1465      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1466                            false, false, 0);
1467    } else { // Little endian
1468      SDValue LoadPtr = StackPtr;
1469      // The float may be wider than the integer we are going to load.  Advance
1470      // the pointer so that the loaded integer will contain the sign bit.
1471      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1472      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1473      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1474                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1475      // Load a legal integer containing the sign bit.
1476      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1477                            false, false, 0);
1478      // Move the sign bit to the top bit of the loaded integer.
1479      unsigned BitShift = LoadTy.getSizeInBits() -
1480        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1481      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1482      if (BitShift)
1483        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1484                              DAG.getConstant(BitShift,
1485                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1486    }
1487  }
1488  // Now get the sign bit proper, by seeing whether the value is negative.
1489  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1490                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1491                         ISD::SETLT);
1492  // Get the absolute value of the result.
1493  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1494  // Select between the nabs and abs value based on the sign bit of
1495  // the input.
1496  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1497                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1498                     AbsVal);
1499}
1500
1501void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1502                                           SmallVectorImpl<SDValue> &Results) {
1503  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1504  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1505          " not tell us which reg is the stack pointer!");
1506  DebugLoc dl = Node->getDebugLoc();
1507  EVT VT = Node->getValueType(0);
1508  SDValue Tmp1 = SDValue(Node, 0);
1509  SDValue Tmp2 = SDValue(Node, 1);
1510  SDValue Tmp3 = Node->getOperand(2);
1511  SDValue Chain = Tmp1.getOperand(0);
1512
1513  // Chain the dynamic stack allocation so that it doesn't modify the stack
1514  // pointer when other instructions are using the stack.
1515  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1516
1517  SDValue Size  = Tmp2.getOperand(1);
1518  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1519  Chain = SP.getValue(1);
1520  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1521  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1522  if (Align > StackAlign)
1523    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1524                      DAG.getConstant(-(uint64_t)Align, VT));
1525  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1526  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1527
1528  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1529                            DAG.getIntPtrConstant(0, true), SDValue());
1530
1531  Results.push_back(Tmp1);
1532  Results.push_back(Tmp2);
1533}
1534
1535/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1536/// condition code CC on the current target. This routine expands SETCC with
1537/// illegal condition code into AND / OR of multiple SETCC values.
1538void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1539                                                 SDValue &LHS, SDValue &RHS,
1540                                                 SDValue &CC,
1541                                                 DebugLoc dl) {
1542  EVT OpVT = LHS.getValueType();
1543  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1544  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1545  default: assert(0 && "Unknown condition code action!");
1546  case TargetLowering::Legal:
1547    // Nothing to do.
1548    break;
1549  case TargetLowering::Expand: {
1550    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1551    unsigned Opc = 0;
1552    switch (CCCode) {
1553    default: assert(0 && "Don't know how to expand this condition!");
1554    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1555    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1556    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1557    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1558    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1559    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1560    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1561    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1562    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1563    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1564    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1565    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1566    // FIXME: Implement more expansions.
1567    }
1568
1569    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1570    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1571    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1572    RHS = SDValue();
1573    CC  = SDValue();
1574    break;
1575  }
1576  }
1577}
1578
1579/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1580/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1581/// a load from the stack slot to DestVT, extending it if needed.
1582/// The resultant code need not be legal.
1583SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1584                                               EVT SlotVT,
1585                                               EVT DestVT,
1586                                               DebugLoc dl) {
1587  // Create the stack frame object.
1588  unsigned SrcAlign =
1589    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1590                                              getTypeForEVT(*DAG.getContext()));
1591  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1592
1593  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1594  int SPFI = StackPtrFI->getIndex();
1595  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1596
1597  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1598  unsigned SlotSize = SlotVT.getSizeInBits();
1599  unsigned DestSize = DestVT.getSizeInBits();
1600  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1601  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1602
1603  // Emit a store to the stack slot.  Use a truncstore if the input value is
1604  // later than DestVT.
1605  SDValue Store;
1606
1607  if (SrcSize > SlotSize)
1608    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1609                              PtrInfo, SlotVT, false, false, SrcAlign);
1610  else {
1611    assert(SrcSize == SlotSize && "Invalid store");
1612    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1613                         PtrInfo, false, false, SrcAlign);
1614  }
1615
1616  // Result is a load from the stack slot.
1617  if (SlotSize == DestSize)
1618    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1619                       false, false, DestAlign);
1620
1621  assert(SlotSize < DestSize && "Unknown extension!");
1622  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1623                        PtrInfo, SlotVT, false, false, DestAlign);
1624}
1625
1626SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1627  DebugLoc dl = Node->getDebugLoc();
1628  // Create a vector sized/aligned stack slot, store the value to element #0,
1629  // then load the whole vector back out.
1630  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1631
1632  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1633  int SPFI = StackPtrFI->getIndex();
1634
1635  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1636                                 StackPtr,
1637                                 MachinePointerInfo::getFixedStack(SPFI),
1638                                 Node->getValueType(0).getVectorElementType(),
1639                                 false, false, 0);
1640  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1641                     MachinePointerInfo::getFixedStack(SPFI),
1642                     false, false, 0);
1643}
1644
1645
1646/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1647/// support the operation, but do support the resultant vector type.
1648SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1649  unsigned NumElems = Node->getNumOperands();
1650  SDValue Value1, Value2;
1651  DebugLoc dl = Node->getDebugLoc();
1652  EVT VT = Node->getValueType(0);
1653  EVT OpVT = Node->getOperand(0).getValueType();
1654  EVT EltVT = VT.getVectorElementType();
1655
1656  // If the only non-undef value is the low element, turn this into a
1657  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1658  bool isOnlyLowElement = true;
1659  bool MoreThanTwoValues = false;
1660  bool isConstant = true;
1661  for (unsigned i = 0; i < NumElems; ++i) {
1662    SDValue V = Node->getOperand(i);
1663    if (V.getOpcode() == ISD::UNDEF)
1664      continue;
1665    if (i > 0)
1666      isOnlyLowElement = false;
1667    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1668      isConstant = false;
1669
1670    if (!Value1.getNode()) {
1671      Value1 = V;
1672    } else if (!Value2.getNode()) {
1673      if (V != Value1)
1674        Value2 = V;
1675    } else if (V != Value1 && V != Value2) {
1676      MoreThanTwoValues = true;
1677    }
1678  }
1679
1680  if (!Value1.getNode())
1681    return DAG.getUNDEF(VT);
1682
1683  if (isOnlyLowElement)
1684    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1685
1686  // If all elements are constants, create a load from the constant pool.
1687  if (isConstant) {
1688    std::vector<Constant*> CV;
1689    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1690      if (ConstantFPSDNode *V =
1691          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1692        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1693      } else if (ConstantSDNode *V =
1694                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1695        if (OpVT==EltVT)
1696          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1697        else {
1698          // If OpVT and EltVT don't match, EltVT is not legal and the
1699          // element values have been promoted/truncated earlier.  Undo this;
1700          // we don't want a v16i8 to become a v16i32 for example.
1701          const ConstantInt *CI = V->getConstantIntValue();
1702          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1703                                        CI->getZExtValue()));
1704        }
1705      } else {
1706        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1707        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1708        CV.push_back(UndefValue::get(OpNTy));
1709      }
1710    }
1711    Constant *CP = ConstantVector::get(CV);
1712    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1713    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1714    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1715                       MachinePointerInfo::getConstantPool(),
1716                       false, false, Alignment);
1717  }
1718
1719  if (!MoreThanTwoValues) {
1720    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1721    for (unsigned i = 0; i < NumElems; ++i) {
1722      SDValue V = Node->getOperand(i);
1723      if (V.getOpcode() == ISD::UNDEF)
1724        continue;
1725      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1726    }
1727    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1728      // Get the splatted value into the low element of a vector register.
1729      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1730      SDValue Vec2;
1731      if (Value2.getNode())
1732        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1733      else
1734        Vec2 = DAG.getUNDEF(VT);
1735
1736      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1737      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1738    }
1739  }
1740
1741  // Otherwise, we can't handle this case efficiently.
1742  return ExpandVectorBuildThroughStack(Node);
1743}
1744
1745// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1746// does not fit into a register, return the lo part and set the hi part to the
1747// by-reg argument.  If it does fit into a single register, return the result
1748// and leave the Hi part unset.
1749SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1750                                            bool isSigned) {
1751  // The input chain to this libcall is the entry node of the function.
1752  // Legalizing the call will automatically add the previous call to the
1753  // dependence.
1754  SDValue InChain = DAG.getEntryNode();
1755
1756  TargetLowering::ArgListTy Args;
1757  TargetLowering::ArgListEntry Entry;
1758  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1759    EVT ArgVT = Node->getOperand(i).getValueType();
1760    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1761    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1762    Entry.isSExt = isSigned;
1763    Entry.isZExt = !isSigned;
1764    Args.push_back(Entry);
1765  }
1766  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1767                                         TLI.getPointerTy());
1768
1769  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1770
1771  // isTailCall may be true since the callee does not reference caller stack
1772  // frame. Check if it's in the right position.
1773  bool isTailCall = isInTailCallPosition(DAG, Node, TLI);
1774  std::pair<SDValue, SDValue> CallInfo =
1775    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1776                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1777                    /*isReturnValueUsed=*/true,
1778                    Callee, Args, DAG, Node->getDebugLoc());
1779
1780  if (!CallInfo.second.getNode())
1781    // It's a tailcall, return the chain (which is the DAG root).
1782    return DAG.getRoot();
1783
1784  return CallInfo.first;
1785}
1786
1787/// ExpandLibCall - Generate a libcall taking the given operands as arguments
1788/// and returning a result of type RetVT.
1789SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1790                                            const SDValue *Ops, unsigned NumOps,
1791                                            bool isSigned, DebugLoc dl) {
1792  TargetLowering::ArgListTy Args;
1793  Args.reserve(NumOps);
1794
1795  TargetLowering::ArgListEntry Entry;
1796  for (unsigned i = 0; i != NumOps; ++i) {
1797    Entry.Node = Ops[i];
1798    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1799    Entry.isSExt = isSigned;
1800    Entry.isZExt = !isSigned;
1801    Args.push_back(Entry);
1802  }
1803  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1804                                         TLI.getPointerTy());
1805
1806  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1807  std::pair<SDValue,SDValue> CallInfo =
1808  TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1809                  false, 0, TLI.getLibcallCallingConv(LC), false,
1810                  /*isReturnValueUsed=*/true,
1811                  Callee, Args, DAG, dl);
1812
1813  return CallInfo.first;
1814}
1815
1816// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1817// ExpandLibCall except that the first operand is the in-chain.
1818std::pair<SDValue, SDValue>
1819SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1820                                         SDNode *Node,
1821                                         bool isSigned) {
1822  SDValue InChain = Node->getOperand(0);
1823
1824  TargetLowering::ArgListTy Args;
1825  TargetLowering::ArgListEntry Entry;
1826  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1827    EVT ArgVT = Node->getOperand(i).getValueType();
1828    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1829    Entry.Node = Node->getOperand(i);
1830    Entry.Ty = ArgTy;
1831    Entry.isSExt = isSigned;
1832    Entry.isZExt = !isSigned;
1833    Args.push_back(Entry);
1834  }
1835  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1836                                         TLI.getPointerTy());
1837
1838  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1839  std::pair<SDValue, SDValue> CallInfo =
1840    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1841                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1842                    /*isReturnValueUsed=*/true,
1843                    Callee, Args, DAG, Node->getDebugLoc());
1844
1845  return CallInfo;
1846}
1847
1848SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1849                                              RTLIB::Libcall Call_F32,
1850                                              RTLIB::Libcall Call_F64,
1851                                              RTLIB::Libcall Call_F80,
1852                                              RTLIB::Libcall Call_PPCF128) {
1853  RTLIB::Libcall LC;
1854  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1855  default: assert(0 && "Unexpected request for libcall!");
1856  case MVT::f32: LC = Call_F32; break;
1857  case MVT::f64: LC = Call_F64; break;
1858  case MVT::f80: LC = Call_F80; break;
1859  case MVT::ppcf128: LC = Call_PPCF128; break;
1860  }
1861  return ExpandLibCall(LC, Node, false);
1862}
1863
1864SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1865                                               RTLIB::Libcall Call_I8,
1866                                               RTLIB::Libcall Call_I16,
1867                                               RTLIB::Libcall Call_I32,
1868                                               RTLIB::Libcall Call_I64,
1869                                               RTLIB::Libcall Call_I128) {
1870  RTLIB::Libcall LC;
1871  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1872  default: assert(0 && "Unexpected request for libcall!");
1873  case MVT::i8:   LC = Call_I8; break;
1874  case MVT::i16:  LC = Call_I16; break;
1875  case MVT::i32:  LC = Call_I32; break;
1876  case MVT::i64:  LC = Call_I64; break;
1877  case MVT::i128: LC = Call_I128; break;
1878  }
1879  return ExpandLibCall(LC, Node, isSigned);
1880}
1881
1882/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
1883static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
1884                                     const TargetLowering &TLI) {
1885  RTLIB::Libcall LC;
1886  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1887  default: assert(0 && "Unexpected request for libcall!");
1888  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1889  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1890  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1891  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1892  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1893  }
1894
1895  return TLI.getLibcallName(LC) != 0;
1896}
1897
1898/// UseDivRem - Only issue divrem libcall if both quotient and remainder are
1899/// needed.
1900static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) {
1901  unsigned OtherOpcode = 0;
1902  if (isSigned)
1903    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
1904  else
1905    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
1906
1907  SDValue Op0 = Node->getOperand(0);
1908  SDValue Op1 = Node->getOperand(1);
1909  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
1910         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
1911    SDNode *User = *UI;
1912    if (User == Node)
1913      continue;
1914    if (User->getOpcode() == OtherOpcode &&
1915        User->getOperand(0) == Op0 &&
1916        User->getOperand(1) == Op1)
1917      return true;
1918  }
1919  return false;
1920}
1921
1922/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
1923/// pairs.
1924void
1925SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
1926                                          SmallVectorImpl<SDValue> &Results) {
1927  unsigned Opcode = Node->getOpcode();
1928  bool isSigned = Opcode == ISD::SDIVREM;
1929
1930  RTLIB::Libcall LC;
1931  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1932  default: assert(0 && "Unexpected request for libcall!");
1933  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1934  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1935  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1936  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1937  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1938  }
1939
1940  // The input chain to this libcall is the entry node of the function.
1941  // Legalizing the call will automatically add the previous call to the
1942  // dependence.
1943  SDValue InChain = DAG.getEntryNode();
1944
1945  EVT RetVT = Node->getValueType(0);
1946  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1947
1948  TargetLowering::ArgListTy Args;
1949  TargetLowering::ArgListEntry Entry;
1950  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1951    EVT ArgVT = Node->getOperand(i).getValueType();
1952    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1953    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1954    Entry.isSExt = isSigned;
1955    Entry.isZExt = !isSigned;
1956    Args.push_back(Entry);
1957  }
1958
1959  // Also pass the return address of the remainder.
1960  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
1961  Entry.Node = FIPtr;
1962  Entry.Ty = RetTy->getPointerTo();
1963  Entry.isSExt = isSigned;
1964  Entry.isZExt = !isSigned;
1965  Args.push_back(Entry);
1966
1967  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1968                                         TLI.getPointerTy());
1969
1970  DebugLoc dl = Node->getDebugLoc();
1971  std::pair<SDValue, SDValue> CallInfo =
1972    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1973                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1974                    /*isReturnValueUsed=*/true, Callee, Args, DAG, dl);
1975
1976  // Remainder is loaded back from the stack frame.
1977  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
1978                            MachinePointerInfo(), false, false, 0);
1979  Results.push_back(CallInfo.first);
1980  Results.push_back(Rem);
1981}
1982
1983/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1984/// INT_TO_FP operation of the specified operand when the target requests that
1985/// we expand it.  At this point, we know that the result and operand types are
1986/// legal for the target.
1987SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1988                                                   SDValue Op0,
1989                                                   EVT DestVT,
1990                                                   DebugLoc dl) {
1991  if (Op0.getValueType() == MVT::i32) {
1992    // simple 32-bit [signed|unsigned] integer to float/double expansion
1993
1994    // Get the stack frame index of a 8 byte buffer.
1995    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1996
1997    // word offset constant for Hi/Lo address computation
1998    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1999    // set up Hi and Lo (into buffer) address based on endian
2000    SDValue Hi = StackSlot;
2001    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2002                             TLI.getPointerTy(), StackSlot, WordOff);
2003    if (TLI.isLittleEndian())
2004      std::swap(Hi, Lo);
2005
2006    // if signed map to unsigned space
2007    SDValue Op0Mapped;
2008    if (isSigned) {
2009      // constant used to invert sign bit (signed to unsigned mapping)
2010      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2011      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2012    } else {
2013      Op0Mapped = Op0;
2014    }
2015    // store the lo of the constructed double - based on integer input
2016    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2017                                  Op0Mapped, Lo, MachinePointerInfo(),
2018                                  false, false, 0);
2019    // initial hi portion of constructed double
2020    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2021    // store the hi of the constructed double - biased exponent
2022    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2023                                  MachinePointerInfo(),
2024                                  false, false, 0);
2025    // load the constructed double
2026    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2027                               MachinePointerInfo(), false, false, 0);
2028    // FP constant to bias correct the final result
2029    SDValue Bias = DAG.getConstantFP(isSigned ?
2030                                     BitsToDouble(0x4330000080000000ULL) :
2031                                     BitsToDouble(0x4330000000000000ULL),
2032                                     MVT::f64);
2033    // subtract the bias
2034    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2035    // final result
2036    SDValue Result;
2037    // handle final rounding
2038    if (DestVT == MVT::f64) {
2039      // do nothing
2040      Result = Sub;
2041    } else if (DestVT.bitsLT(MVT::f64)) {
2042      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2043                           DAG.getIntPtrConstant(0));
2044    } else if (DestVT.bitsGT(MVT::f64)) {
2045      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2046    }
2047    return Result;
2048  }
2049  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2050  // Code below here assumes !isSigned without checking again.
2051
2052  // Implementation of unsigned i64 to f64 following the algorithm in
2053  // __floatundidf in compiler_rt. This implementation has the advantage
2054  // of performing rounding correctly, both in the default rounding mode
2055  // and in all alternate rounding modes.
2056  // TODO: Generalize this for use with other types.
2057  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2058    SDValue TwoP52 =
2059      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2060    SDValue TwoP84PlusTwoP52 =
2061      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2062    SDValue TwoP84 =
2063      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2064
2065    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2066    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2067                             DAG.getConstant(32, MVT::i64));
2068    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2069    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2070    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2071    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2072    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2073                                TwoP84PlusTwoP52);
2074    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2075  }
2076
2077  // Implementation of unsigned i64 to f32.
2078  // TODO: Generalize this for use with other types.
2079  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2080    // For unsigned conversions, convert them to signed conversions using the
2081    // algorithm from the x86_64 __floatundidf in compiler_rt.
2082    if (!isSigned) {
2083      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2084
2085      SDValue ShiftConst =
2086          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2087      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2088      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2089      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2090      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2091
2092      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2093      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2094
2095      // TODO: This really should be implemented using a branch rather than a
2096      // select.  We happen to get lucky and machinesink does the right
2097      // thing most of the time.  This would be a good candidate for a
2098      //pseudo-op, or, even better, for whole-function isel.
2099      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2100        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2101      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2102    }
2103
2104    // Otherwise, implement the fully general conversion.
2105
2106    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2107         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2108    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2109         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2110    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2111         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2112    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2113                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2114    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2115    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2116                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2117                   ISD::SETUGE);
2118    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2119    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2120
2121    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2122                             DAG.getConstant(32, SHVT));
2123    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2124    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2125    SDValue TwoP32 =
2126      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2127    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2128    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2129    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2130    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2131    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2132                       DAG.getIntPtrConstant(0));
2133  }
2134
2135  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2136
2137  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2138                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2139                                 ISD::SETLT);
2140  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2141  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2142                                    SignSet, Four, Zero);
2143
2144  // If the sign bit of the integer is set, the large number will be treated
2145  // as a negative number.  To counteract this, the dynamic code adds an
2146  // offset depending on the data type.
2147  uint64_t FF;
2148  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2149  default: assert(0 && "Unsupported integer type!");
2150  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2151  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2152  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2153  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2154  }
2155  if (TLI.isLittleEndian()) FF <<= 32;
2156  Constant *FudgeFactor = ConstantInt::get(
2157                                       Type::getInt64Ty(*DAG.getContext()), FF);
2158
2159  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2160  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2161  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2162  Alignment = std::min(Alignment, 4u);
2163  SDValue FudgeInReg;
2164  if (DestVT == MVT::f32)
2165    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2166                             MachinePointerInfo::getConstantPool(),
2167                             false, false, Alignment);
2168  else {
2169    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2170                                  DAG.getEntryNode(), CPIdx,
2171                                  MachinePointerInfo::getConstantPool(),
2172                                  MVT::f32, false, false, Alignment);
2173    HandleSDNode Handle(Load);
2174    LegalizeOp(Load.getNode());
2175    FudgeInReg = Handle.getValue();
2176  }
2177
2178  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2179}
2180
2181/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2182/// *INT_TO_FP operation of the specified operand when the target requests that
2183/// we promote it.  At this point, we know that the result and operand types are
2184/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2185/// operation that takes a larger input.
2186SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2187                                                    EVT DestVT,
2188                                                    bool isSigned,
2189                                                    DebugLoc dl) {
2190  // First step, figure out the appropriate *INT_TO_FP operation to use.
2191  EVT NewInTy = LegalOp.getValueType();
2192
2193  unsigned OpToUse = 0;
2194
2195  // Scan for the appropriate larger type to use.
2196  while (1) {
2197    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2198    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2199
2200    // If the target supports SINT_TO_FP of this type, use it.
2201    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2202      OpToUse = ISD::SINT_TO_FP;
2203      break;
2204    }
2205    if (isSigned) continue;
2206
2207    // If the target supports UINT_TO_FP of this type, use it.
2208    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2209      OpToUse = ISD::UINT_TO_FP;
2210      break;
2211    }
2212
2213    // Otherwise, try a larger type.
2214  }
2215
2216  // Okay, we found the operation and type to use.  Zero extend our input to the
2217  // desired type then run the operation on it.
2218  return DAG.getNode(OpToUse, dl, DestVT,
2219                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2220                                 dl, NewInTy, LegalOp));
2221}
2222
2223/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2224/// FP_TO_*INT operation of the specified operand when the target requests that
2225/// we promote it.  At this point, we know that the result and operand types are
2226/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2227/// operation that returns a larger result.
2228SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2229                                                    EVT DestVT,
2230                                                    bool isSigned,
2231                                                    DebugLoc dl) {
2232  // First step, figure out the appropriate FP_TO*INT operation to use.
2233  EVT NewOutTy = DestVT;
2234
2235  unsigned OpToUse = 0;
2236
2237  // Scan for the appropriate larger type to use.
2238  while (1) {
2239    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2240    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2241
2242    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2243      OpToUse = ISD::FP_TO_SINT;
2244      break;
2245    }
2246
2247    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2248      OpToUse = ISD::FP_TO_UINT;
2249      break;
2250    }
2251
2252    // Otherwise, try a larger type.
2253  }
2254
2255
2256  // Okay, we found the operation and type to use.
2257  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2258
2259  // Truncate the result of the extended FP_TO_*INT operation to the desired
2260  // size.
2261  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2262}
2263
2264/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2265///
2266SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2267  EVT VT = Op.getValueType();
2268  EVT SHVT = TLI.getShiftAmountTy(VT);
2269  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2270  switch (VT.getSimpleVT().SimpleTy) {
2271  default: assert(0 && "Unhandled Expand type in BSWAP!");
2272  case MVT::i16:
2273    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2274    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2275    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2276  case MVT::i32:
2277    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2278    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2279    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2280    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2281    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2282    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2283    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2284    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2285    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2286  case MVT::i64:
2287    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2288    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2289    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2290    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2291    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2292    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2293    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2294    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2295    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2296    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2297    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2298    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2299    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2300    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2301    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2302    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2303    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2304    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2305    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2306    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2307    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2308  }
2309}
2310
2311/// SplatByte - Distribute ByteVal over NumBits bits.
2312// FIXME: Move this helper to a common place.
2313static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2314  APInt Val = APInt(NumBits, ByteVal);
2315  unsigned Shift = 8;
2316  for (unsigned i = NumBits; i > 8; i >>= 1) {
2317    Val = (Val << Shift) | Val;
2318    Shift <<= 1;
2319  }
2320  return Val;
2321}
2322
2323/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2324///
2325SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2326                                             DebugLoc dl) {
2327  switch (Opc) {
2328  default: assert(0 && "Cannot expand this yet!");
2329  case ISD::CTPOP: {
2330    EVT VT = Op.getValueType();
2331    EVT ShVT = TLI.getShiftAmountTy(VT);
2332    unsigned Len = VT.getSizeInBits();
2333
2334    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2335           "CTPOP not implemented for this type.");
2336
2337    // This is the "best" algorithm from
2338    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2339
2340    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2341    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2342    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2343    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2344
2345    // v = v - ((v >> 1) & 0x55555555...)
2346    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2347                     DAG.getNode(ISD::AND, dl, VT,
2348                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2349                                             DAG.getConstant(1, ShVT)),
2350                                 Mask55));
2351    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2352    Op = DAG.getNode(ISD::ADD, dl, VT,
2353                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2354                     DAG.getNode(ISD::AND, dl, VT,
2355                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2356                                             DAG.getConstant(2, ShVT)),
2357                                 Mask33));
2358    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2359    Op = DAG.getNode(ISD::AND, dl, VT,
2360                     DAG.getNode(ISD::ADD, dl, VT, Op,
2361                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2362                                             DAG.getConstant(4, ShVT))),
2363                     Mask0F);
2364    // v = (v * 0x01010101...) >> (Len - 8)
2365    Op = DAG.getNode(ISD::SRL, dl, VT,
2366                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2367                     DAG.getConstant(Len - 8, ShVT));
2368
2369    return Op;
2370  }
2371  case ISD::CTLZ: {
2372    // for now, we do this:
2373    // x = x | (x >> 1);
2374    // x = x | (x >> 2);
2375    // ...
2376    // x = x | (x >>16);
2377    // x = x | (x >>32); // for 64-bit input
2378    // return popcount(~x);
2379    //
2380    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2381    EVT VT = Op.getValueType();
2382    EVT ShVT = TLI.getShiftAmountTy(VT);
2383    unsigned len = VT.getSizeInBits();
2384    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2385      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2386      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2387                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2388    }
2389    Op = DAG.getNOT(dl, Op, VT);
2390    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2391  }
2392  case ISD::CTTZ: {
2393    // for now, we use: { return popcount(~x & (x - 1)); }
2394    // unless the target has ctlz but not ctpop, in which case we use:
2395    // { return 32 - nlz(~x & (x-1)); }
2396    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2397    EVT VT = Op.getValueType();
2398    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2399                               DAG.getNOT(dl, Op, VT),
2400                               DAG.getNode(ISD::SUB, dl, VT, Op,
2401                                           DAG.getConstant(1, VT)));
2402    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2403    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2404        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2405      return DAG.getNode(ISD::SUB, dl, VT,
2406                         DAG.getConstant(VT.getSizeInBits(), VT),
2407                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2408    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2409  }
2410  }
2411}
2412
2413std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2414  unsigned Opc = Node->getOpcode();
2415  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2416  RTLIB::Libcall LC;
2417
2418  switch (Opc) {
2419  default:
2420    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2421    break;
2422  case ISD::ATOMIC_SWAP:
2423    switch (VT.SimpleTy) {
2424    default: llvm_unreachable("Unexpected value type for atomic!");
2425    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2426    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2427    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2428    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2429    }
2430    break;
2431  case ISD::ATOMIC_CMP_SWAP:
2432    switch (VT.SimpleTy) {
2433    default: llvm_unreachable("Unexpected value type for atomic!");
2434    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2435    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2436    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2437    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2438    }
2439    break;
2440  case ISD::ATOMIC_LOAD_ADD:
2441    switch (VT.SimpleTy) {
2442    default: llvm_unreachable("Unexpected value type for atomic!");
2443    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2444    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2445    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2446    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2447    }
2448    break;
2449  case ISD::ATOMIC_LOAD_SUB:
2450    switch (VT.SimpleTy) {
2451    default: llvm_unreachable("Unexpected value type for atomic!");
2452    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2453    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2454    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2455    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2456    }
2457    break;
2458  case ISD::ATOMIC_LOAD_AND:
2459    switch (VT.SimpleTy) {
2460    default: llvm_unreachable("Unexpected value type for atomic!");
2461    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2462    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2463    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2464    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2465    }
2466    break;
2467  case ISD::ATOMIC_LOAD_OR:
2468    switch (VT.SimpleTy) {
2469    default: llvm_unreachable("Unexpected value type for atomic!");
2470    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2471    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2472    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2473    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2474    }
2475    break;
2476  case ISD::ATOMIC_LOAD_XOR:
2477    switch (VT.SimpleTy) {
2478    default: llvm_unreachable("Unexpected value type for atomic!");
2479    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2480    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2481    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2482    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2483    }
2484    break;
2485  case ISD::ATOMIC_LOAD_NAND:
2486    switch (VT.SimpleTy) {
2487    default: llvm_unreachable("Unexpected value type for atomic!");
2488    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2489    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2490    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2491    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2492    }
2493    break;
2494  }
2495
2496  return ExpandChainLibCall(LC, Node, false);
2497}
2498
2499void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2500  SmallVector<SDValue, 8> Results;
2501  DebugLoc dl = Node->getDebugLoc();
2502  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2503  switch (Node->getOpcode()) {
2504  case ISD::CTPOP:
2505  case ISD::CTLZ:
2506  case ISD::CTTZ:
2507    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2508    Results.push_back(Tmp1);
2509    break;
2510  case ISD::BSWAP:
2511    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2512    break;
2513  case ISD::FRAMEADDR:
2514  case ISD::RETURNADDR:
2515  case ISD::FRAME_TO_ARGS_OFFSET:
2516    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2517    break;
2518  case ISD::FLT_ROUNDS_:
2519    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2520    break;
2521  case ISD::EH_RETURN:
2522  case ISD::EH_LABEL:
2523  case ISD::PREFETCH:
2524  case ISD::VAEND:
2525  case ISD::EH_SJLJ_LONGJMP:
2526  case ISD::EH_SJLJ_DISPATCHSETUP:
2527    // If the target didn't expand these, there's nothing to do, so just
2528    // preserve the chain and be done.
2529    Results.push_back(Node->getOperand(0));
2530    break;
2531  case ISD::EH_SJLJ_SETJMP:
2532    // If the target didn't expand this, just return 'zero' and preserve the
2533    // chain.
2534    Results.push_back(DAG.getConstant(0, MVT::i32));
2535    Results.push_back(Node->getOperand(0));
2536    break;
2537  case ISD::ATOMIC_FENCE:
2538  case ISD::MEMBARRIER: {
2539    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2540    // FIXME: handle "fence singlethread" more efficiently.
2541    TargetLowering::ArgListTy Args;
2542    std::pair<SDValue, SDValue> CallResult =
2543      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2544                      false, false, false, false, 0, CallingConv::C,
2545                      /*isTailCall=*/false,
2546                      /*isReturnValueUsed=*/true,
2547                      DAG.getExternalSymbol("__sync_synchronize",
2548                                            TLI.getPointerTy()),
2549                      Args, DAG, dl);
2550    Results.push_back(CallResult.second);
2551    break;
2552  }
2553  case ISD::ATOMIC_LOAD: {
2554    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2555    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2556    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2557                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2558                                 Node->getOperand(0),
2559                                 Node->getOperand(1), Zero, Zero,
2560                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2561                                 cast<AtomicSDNode>(Node)->getOrdering(),
2562                                 cast<AtomicSDNode>(Node)->getSynchScope());
2563    Results.push_back(Swap.getValue(0));
2564    Results.push_back(Swap.getValue(1));
2565    break;
2566  }
2567  case ISD::ATOMIC_STORE: {
2568    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2569    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2570                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2571                                 Node->getOperand(0),
2572                                 Node->getOperand(1), Node->getOperand(2),
2573                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2574                                 cast<AtomicSDNode>(Node)->getOrdering(),
2575                                 cast<AtomicSDNode>(Node)->getSynchScope());
2576    Results.push_back(Swap.getValue(1));
2577    break;
2578  }
2579  // By default, atomic intrinsics are marked Legal and lowered. Targets
2580  // which don't support them directly, however, may want libcalls, in which
2581  // case they mark them Expand, and we get here.
2582  case ISD::ATOMIC_SWAP:
2583  case ISD::ATOMIC_LOAD_ADD:
2584  case ISD::ATOMIC_LOAD_SUB:
2585  case ISD::ATOMIC_LOAD_AND:
2586  case ISD::ATOMIC_LOAD_OR:
2587  case ISD::ATOMIC_LOAD_XOR:
2588  case ISD::ATOMIC_LOAD_NAND:
2589  case ISD::ATOMIC_LOAD_MIN:
2590  case ISD::ATOMIC_LOAD_MAX:
2591  case ISD::ATOMIC_LOAD_UMIN:
2592  case ISD::ATOMIC_LOAD_UMAX:
2593  case ISD::ATOMIC_CMP_SWAP: {
2594    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2595    Results.push_back(Tmp.first);
2596    Results.push_back(Tmp.second);
2597    break;
2598  }
2599  case ISD::DYNAMIC_STACKALLOC:
2600    ExpandDYNAMIC_STACKALLOC(Node, Results);
2601    break;
2602  case ISD::MERGE_VALUES:
2603    for (unsigned i = 0; i < Node->getNumValues(); i++)
2604      Results.push_back(Node->getOperand(i));
2605    break;
2606  case ISD::UNDEF: {
2607    EVT VT = Node->getValueType(0);
2608    if (VT.isInteger())
2609      Results.push_back(DAG.getConstant(0, VT));
2610    else {
2611      assert(VT.isFloatingPoint() && "Unknown value type!");
2612      Results.push_back(DAG.getConstantFP(0, VT));
2613    }
2614    break;
2615  }
2616  case ISD::TRAP: {
2617    // If this operation is not supported, lower it to 'abort()' call
2618    TargetLowering::ArgListTy Args;
2619    std::pair<SDValue, SDValue> CallResult =
2620      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2621                      false, false, false, false, 0, CallingConv::C,
2622                      /*isTailCall=*/false,
2623                      /*isReturnValueUsed=*/true,
2624                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2625                      Args, DAG, dl);
2626    Results.push_back(CallResult.second);
2627    break;
2628  }
2629  case ISD::FP_ROUND:
2630  case ISD::BITCAST:
2631    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2632                            Node->getValueType(0), dl);
2633    Results.push_back(Tmp1);
2634    break;
2635  case ISD::FP_EXTEND:
2636    Tmp1 = EmitStackConvert(Node->getOperand(0),
2637                            Node->getOperand(0).getValueType(),
2638                            Node->getValueType(0), dl);
2639    Results.push_back(Tmp1);
2640    break;
2641  case ISD::SIGN_EXTEND_INREG: {
2642    // NOTE: we could fall back on load/store here too for targets without
2643    // SAR.  However, it is doubtful that any exist.
2644    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2645    EVT VT = Node->getValueType(0);
2646    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2647    if (VT.isVector())
2648      ShiftAmountTy = VT;
2649    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2650                        ExtraVT.getScalarType().getSizeInBits();
2651    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2652    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2653                       Node->getOperand(0), ShiftCst);
2654    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2655    Results.push_back(Tmp1);
2656    break;
2657  }
2658  case ISD::FP_ROUND_INREG: {
2659    // The only way we can lower this is to turn it into a TRUNCSTORE,
2660    // EXTLOAD pair, targeting a temporary location (a stack slot).
2661
2662    // NOTE: there is a choice here between constantly creating new stack
2663    // slots and always reusing the same one.  We currently always create
2664    // new ones, as reuse may inhibit scheduling.
2665    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2666    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2667                            Node->getValueType(0), dl);
2668    Results.push_back(Tmp1);
2669    break;
2670  }
2671  case ISD::SINT_TO_FP:
2672  case ISD::UINT_TO_FP:
2673    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2674                                Node->getOperand(0), Node->getValueType(0), dl);
2675    Results.push_back(Tmp1);
2676    break;
2677  case ISD::FP_TO_UINT: {
2678    SDValue True, False;
2679    EVT VT =  Node->getOperand(0).getValueType();
2680    EVT NVT = Node->getValueType(0);
2681    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2682    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2683    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2684    Tmp1 = DAG.getConstantFP(apf, VT);
2685    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2686                        Node->getOperand(0),
2687                        Tmp1, ISD::SETLT);
2688    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2689    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2690                        DAG.getNode(ISD::FSUB, dl, VT,
2691                                    Node->getOperand(0), Tmp1));
2692    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2693                        DAG.getConstant(x, NVT));
2694    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2695    Results.push_back(Tmp1);
2696    break;
2697  }
2698  case ISD::VAARG: {
2699    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2700    EVT VT = Node->getValueType(0);
2701    Tmp1 = Node->getOperand(0);
2702    Tmp2 = Node->getOperand(1);
2703    unsigned Align = Node->getConstantOperandVal(3);
2704
2705    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2706                                     MachinePointerInfo(V), false, false, 0);
2707    SDValue VAList = VAListLoad;
2708
2709    if (Align > TLI.getMinStackArgumentAlignment()) {
2710      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2711
2712      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2713                           DAG.getConstant(Align - 1,
2714                                           TLI.getPointerTy()));
2715
2716      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2717                           DAG.getConstant(-(int64_t)Align,
2718                                           TLI.getPointerTy()));
2719    }
2720
2721    // Increment the pointer, VAList, to the next vaarg
2722    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2723                       DAG.getConstant(TLI.getTargetData()->
2724                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2725                                       TLI.getPointerTy()));
2726    // Store the incremented VAList to the legalized pointer
2727    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2728                        MachinePointerInfo(V), false, false, 0);
2729    // Load the actual argument out of the pointer VAList
2730    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2731                                  false, false, 0));
2732    Results.push_back(Results[0].getValue(1));
2733    break;
2734  }
2735  case ISD::VACOPY: {
2736    // This defaults to loading a pointer from the input and storing it to the
2737    // output, returning the chain.
2738    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2739    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2740    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2741                       Node->getOperand(2), MachinePointerInfo(VS),
2742                       false, false, 0);
2743    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2744                        MachinePointerInfo(VD), false, false, 0);
2745    Results.push_back(Tmp1);
2746    break;
2747  }
2748  case ISD::EXTRACT_VECTOR_ELT:
2749    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2750      // This must be an access of the only element.  Return it.
2751      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2752                         Node->getOperand(0));
2753    else
2754      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2755    Results.push_back(Tmp1);
2756    break;
2757  case ISD::EXTRACT_SUBVECTOR:
2758    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2759    break;
2760  case ISD::INSERT_SUBVECTOR:
2761    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2762    break;
2763  case ISD::CONCAT_VECTORS: {
2764    Results.push_back(ExpandVectorBuildThroughStack(Node));
2765    break;
2766  }
2767  case ISD::SCALAR_TO_VECTOR:
2768    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2769    break;
2770  case ISD::INSERT_VECTOR_ELT:
2771    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2772                                              Node->getOperand(1),
2773                                              Node->getOperand(2), dl));
2774    break;
2775  case ISD::VECTOR_SHUFFLE: {
2776    SmallVector<int, 8> Mask;
2777    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2778
2779    EVT VT = Node->getValueType(0);
2780    EVT EltVT = VT.getVectorElementType();
2781    if (!TLI.isTypeLegal(EltVT))
2782      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2783    unsigned NumElems = VT.getVectorNumElements();
2784    SmallVector<SDValue, 8> Ops;
2785    for (unsigned i = 0; i != NumElems; ++i) {
2786      if (Mask[i] < 0) {
2787        Ops.push_back(DAG.getUNDEF(EltVT));
2788        continue;
2789      }
2790      unsigned Idx = Mask[i];
2791      if (Idx < NumElems)
2792        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2793                                  Node->getOperand(0),
2794                                  DAG.getIntPtrConstant(Idx)));
2795      else
2796        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2797                                  Node->getOperand(1),
2798                                  DAG.getIntPtrConstant(Idx - NumElems)));
2799    }
2800    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2801    Results.push_back(Tmp1);
2802    break;
2803  }
2804  case ISD::EXTRACT_ELEMENT: {
2805    EVT OpTy = Node->getOperand(0).getValueType();
2806    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2807      // 1 -> Hi
2808      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2809                         DAG.getConstant(OpTy.getSizeInBits()/2,
2810                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
2811      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2812    } else {
2813      // 0 -> Lo
2814      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2815                         Node->getOperand(0));
2816    }
2817    Results.push_back(Tmp1);
2818    break;
2819  }
2820  case ISD::STACKSAVE:
2821    // Expand to CopyFromReg if the target set
2822    // StackPointerRegisterToSaveRestore.
2823    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2824      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2825                                           Node->getValueType(0)));
2826      Results.push_back(Results[0].getValue(1));
2827    } else {
2828      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2829      Results.push_back(Node->getOperand(0));
2830    }
2831    break;
2832  case ISD::STACKRESTORE:
2833    // Expand to CopyToReg if the target set
2834    // StackPointerRegisterToSaveRestore.
2835    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2836      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2837                                         Node->getOperand(1)));
2838    } else {
2839      Results.push_back(Node->getOperand(0));
2840    }
2841    break;
2842  case ISD::FCOPYSIGN:
2843    Results.push_back(ExpandFCOPYSIGN(Node));
2844    break;
2845  case ISD::FNEG:
2846    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2847    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2848    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2849                       Node->getOperand(0));
2850    Results.push_back(Tmp1);
2851    break;
2852  case ISD::FABS: {
2853    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2854    EVT VT = Node->getValueType(0);
2855    Tmp1 = Node->getOperand(0);
2856    Tmp2 = DAG.getConstantFP(0.0, VT);
2857    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2858                        Tmp1, Tmp2, ISD::SETUGT);
2859    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2860    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2861    Results.push_back(Tmp1);
2862    break;
2863  }
2864  case ISD::FSQRT:
2865    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2866                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2867    break;
2868  case ISD::FSIN:
2869    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2870                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2871    break;
2872  case ISD::FCOS:
2873    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2874                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2875    break;
2876  case ISD::FLOG:
2877    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2878                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2879    break;
2880  case ISD::FLOG2:
2881    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2882                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2883    break;
2884  case ISD::FLOG10:
2885    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2886                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2887    break;
2888  case ISD::FEXP:
2889    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2890                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2891    break;
2892  case ISD::FEXP2:
2893    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2894                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2895    break;
2896  case ISD::FTRUNC:
2897    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2898                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2899    break;
2900  case ISD::FFLOOR:
2901    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2902                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2903    break;
2904  case ISD::FCEIL:
2905    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2906                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2907    break;
2908  case ISD::FRINT:
2909    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2910                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2911    break;
2912  case ISD::FNEARBYINT:
2913    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2914                                      RTLIB::NEARBYINT_F64,
2915                                      RTLIB::NEARBYINT_F80,
2916                                      RTLIB::NEARBYINT_PPCF128));
2917    break;
2918  case ISD::FPOWI:
2919    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2920                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2921    break;
2922  case ISD::FPOW:
2923    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2924                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2925    break;
2926  case ISD::FDIV:
2927    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2928                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2929    break;
2930  case ISD::FREM:
2931    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2932                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2933    break;
2934  case ISD::FMA:
2935    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
2936                                      RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
2937    break;
2938  case ISD::FP16_TO_FP32:
2939    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2940    break;
2941  case ISD::FP32_TO_FP16:
2942    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2943    break;
2944  case ISD::ConstantFP: {
2945    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2946    // Check to see if this FP immediate is already legal.
2947    // If this is a legal constant, turn it into a TargetConstantFP node.
2948    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2949      Results.push_back(ExpandConstantFP(CFP, true));
2950    break;
2951  }
2952  case ISD::EHSELECTION: {
2953    unsigned Reg = TLI.getExceptionSelectorRegister();
2954    assert(Reg && "Can't expand to unknown register!");
2955    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2956                                         Node->getValueType(0)));
2957    Results.push_back(Results[0].getValue(1));
2958    break;
2959  }
2960  case ISD::EXCEPTIONADDR: {
2961    unsigned Reg = TLI.getExceptionAddressRegister();
2962    assert(Reg && "Can't expand to unknown register!");
2963    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2964                                         Node->getValueType(0)));
2965    Results.push_back(Results[0].getValue(1));
2966    break;
2967  }
2968  case ISD::SUB: {
2969    EVT VT = Node->getValueType(0);
2970    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2971           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2972           "Don't know how to expand this subtraction!");
2973    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2974               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2975    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2976    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2977    break;
2978  }
2979  case ISD::UREM:
2980  case ISD::SREM: {
2981    EVT VT = Node->getValueType(0);
2982    SDVTList VTs = DAG.getVTList(VT, VT);
2983    bool isSigned = Node->getOpcode() == ISD::SREM;
2984    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2985    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2986    Tmp2 = Node->getOperand(0);
2987    Tmp3 = Node->getOperand(1);
2988    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
2989        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
2990         UseDivRem(Node, isSigned, false))) {
2991      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2992    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2993      // X % Y -> X-X/Y*Y
2994      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2995      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2996      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2997    } else if (isSigned)
2998      Tmp1 = ExpandIntLibCall(Node, true,
2999                              RTLIB::SREM_I8,
3000                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3001                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3002    else
3003      Tmp1 = ExpandIntLibCall(Node, false,
3004                              RTLIB::UREM_I8,
3005                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3006                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3007    Results.push_back(Tmp1);
3008    break;
3009  }
3010  case ISD::UDIV:
3011  case ISD::SDIV: {
3012    bool isSigned = Node->getOpcode() == ISD::SDIV;
3013    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3014    EVT VT = Node->getValueType(0);
3015    SDVTList VTs = DAG.getVTList(VT, VT);
3016    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3017        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3018         UseDivRem(Node, isSigned, true)))
3019      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3020                         Node->getOperand(1));
3021    else if (isSigned)
3022      Tmp1 = ExpandIntLibCall(Node, true,
3023                              RTLIB::SDIV_I8,
3024                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3025                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3026    else
3027      Tmp1 = ExpandIntLibCall(Node, false,
3028                              RTLIB::UDIV_I8,
3029                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3030                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3031    Results.push_back(Tmp1);
3032    break;
3033  }
3034  case ISD::MULHU:
3035  case ISD::MULHS: {
3036    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3037                                                              ISD::SMUL_LOHI;
3038    EVT VT = Node->getValueType(0);
3039    SDVTList VTs = DAG.getVTList(VT, VT);
3040    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3041           "If this wasn't legal, it shouldn't have been created!");
3042    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3043                       Node->getOperand(1));
3044    Results.push_back(Tmp1.getValue(1));
3045    break;
3046  }
3047  case ISD::SDIVREM:
3048  case ISD::UDIVREM:
3049    // Expand into divrem libcall
3050    ExpandDivRemLibCall(Node, Results);
3051    break;
3052  case ISD::MUL: {
3053    EVT VT = Node->getValueType(0);
3054    SDVTList VTs = DAG.getVTList(VT, VT);
3055    // See if multiply or divide can be lowered using two-result operations.
3056    // We just need the low half of the multiply; try both the signed
3057    // and unsigned forms. If the target supports both SMUL_LOHI and
3058    // UMUL_LOHI, form a preference by checking which forms of plain
3059    // MULH it supports.
3060    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3061    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3062    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3063    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3064    unsigned OpToUse = 0;
3065    if (HasSMUL_LOHI && !HasMULHS) {
3066      OpToUse = ISD::SMUL_LOHI;
3067    } else if (HasUMUL_LOHI && !HasMULHU) {
3068      OpToUse = ISD::UMUL_LOHI;
3069    } else if (HasSMUL_LOHI) {
3070      OpToUse = ISD::SMUL_LOHI;
3071    } else if (HasUMUL_LOHI) {
3072      OpToUse = ISD::UMUL_LOHI;
3073    }
3074    if (OpToUse) {
3075      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3076                                    Node->getOperand(1)));
3077      break;
3078    }
3079    Tmp1 = ExpandIntLibCall(Node, false,
3080                            RTLIB::MUL_I8,
3081                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3082                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3083    Results.push_back(Tmp1);
3084    break;
3085  }
3086  case ISD::SADDO:
3087  case ISD::SSUBO: {
3088    SDValue LHS = Node->getOperand(0);
3089    SDValue RHS = Node->getOperand(1);
3090    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3091                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3092                              LHS, RHS);
3093    Results.push_back(Sum);
3094    EVT OType = Node->getValueType(1);
3095
3096    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3097
3098    //   LHSSign -> LHS >= 0
3099    //   RHSSign -> RHS >= 0
3100    //   SumSign -> Sum >= 0
3101    //
3102    //   Add:
3103    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3104    //   Sub:
3105    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3106    //
3107    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3108    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3109    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3110                                      Node->getOpcode() == ISD::SADDO ?
3111                                      ISD::SETEQ : ISD::SETNE);
3112
3113    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3114    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3115
3116    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3117    Results.push_back(Cmp);
3118    break;
3119  }
3120  case ISD::UADDO:
3121  case ISD::USUBO: {
3122    SDValue LHS = Node->getOperand(0);
3123    SDValue RHS = Node->getOperand(1);
3124    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3125                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3126                              LHS, RHS);
3127    Results.push_back(Sum);
3128    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3129                                   Node->getOpcode () == ISD::UADDO ?
3130                                   ISD::SETULT : ISD::SETUGT));
3131    break;
3132  }
3133  case ISD::UMULO:
3134  case ISD::SMULO: {
3135    EVT VT = Node->getValueType(0);
3136    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3137    SDValue LHS = Node->getOperand(0);
3138    SDValue RHS = Node->getOperand(1);
3139    SDValue BottomHalf;
3140    SDValue TopHalf;
3141    static const unsigned Ops[2][3] =
3142        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3143          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3144    bool isSigned = Node->getOpcode() == ISD::SMULO;
3145    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3146      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3147      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3148    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3149      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3150                               RHS);
3151      TopHalf = BottomHalf.getValue(1);
3152    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3153                                                 VT.getSizeInBits() * 2))) {
3154      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3155      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3156      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3157      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3158                               DAG.getIntPtrConstant(0));
3159      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3160                            DAG.getIntPtrConstant(1));
3161    } else {
3162      // We can fall back to a libcall with an illegal type for the MUL if we
3163      // have a libcall big enough.
3164      // Also, we can fall back to a division in some cases, but that's a big
3165      // performance hit in the general case.
3166      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3167      if (WideVT == MVT::i16)
3168        LC = RTLIB::MUL_I16;
3169      else if (WideVT == MVT::i32)
3170        LC = RTLIB::MUL_I32;
3171      else if (WideVT == MVT::i64)
3172        LC = RTLIB::MUL_I64;
3173      else if (WideVT == MVT::i128)
3174        LC = RTLIB::MUL_I128;
3175      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3176
3177      // The high part is obtained by SRA'ing all but one of the bits of low
3178      // part.
3179      unsigned LoSize = VT.getSizeInBits();
3180      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3181                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3182      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3183                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3184
3185      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3186      // pre-lowered to the correct types. This all depends upon WideVT not
3187      // being a legal type for the architecture and thus has to be split to
3188      // two arguments.
3189      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3190      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3191      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3192                               DAG.getIntPtrConstant(0));
3193      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3194                            DAG.getIntPtrConstant(1));
3195      // Ret is a node with an illegal type. Because such things are not
3196      // generally permitted during this phase of legalization, delete the
3197      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3198      DAG.DeleteNode(Ret.getNode());
3199    }
3200
3201    if (isSigned) {
3202      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3203                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3204      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3205      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3206                             ISD::SETNE);
3207    } else {
3208      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3209                             DAG.getConstant(0, VT), ISD::SETNE);
3210    }
3211    Results.push_back(BottomHalf);
3212    Results.push_back(TopHalf);
3213    break;
3214  }
3215  case ISD::BUILD_PAIR: {
3216    EVT PairTy = Node->getValueType(0);
3217    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3218    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3219    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3220                       DAG.getConstant(PairTy.getSizeInBits()/2,
3221                                       TLI.getShiftAmountTy(PairTy)));
3222    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3223    break;
3224  }
3225  case ISD::SELECT:
3226    Tmp1 = Node->getOperand(0);
3227    Tmp2 = Node->getOperand(1);
3228    Tmp3 = Node->getOperand(2);
3229    if (Tmp1.getOpcode() == ISD::SETCC) {
3230      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3231                             Tmp2, Tmp3,
3232                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3233    } else {
3234      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3235                             DAG.getConstant(0, Tmp1.getValueType()),
3236                             Tmp2, Tmp3, ISD::SETNE);
3237    }
3238    Results.push_back(Tmp1);
3239    break;
3240  case ISD::BR_JT: {
3241    SDValue Chain = Node->getOperand(0);
3242    SDValue Table = Node->getOperand(1);
3243    SDValue Index = Node->getOperand(2);
3244
3245    EVT PTy = TLI.getPointerTy();
3246
3247    const TargetData &TD = *TLI.getTargetData();
3248    unsigned EntrySize =
3249      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3250
3251    Index = DAG.getNode(ISD::MUL, dl, PTy,
3252                        Index, DAG.getConstant(EntrySize, PTy));
3253    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3254
3255    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3256    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3257                                MachinePointerInfo::getJumpTable(), MemVT,
3258                                false, false, 0);
3259    Addr = LD;
3260    if (TM.getRelocationModel() == Reloc::PIC_) {
3261      // For PIC, the sequence is:
3262      // BRIND(load(Jumptable + index) + RelocBase)
3263      // RelocBase can be JumpTable, GOT or some sort of global base.
3264      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3265                          TLI.getPICJumpTableRelocBase(Table, DAG));
3266    }
3267    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3268    Results.push_back(Tmp1);
3269    break;
3270  }
3271  case ISD::BRCOND:
3272    // Expand brcond's setcc into its constituent parts and create a BR_CC
3273    // Node.
3274    Tmp1 = Node->getOperand(0);
3275    Tmp2 = Node->getOperand(1);
3276    if (Tmp2.getOpcode() == ISD::SETCC) {
3277      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3278                         Tmp1, Tmp2.getOperand(2),
3279                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3280                         Node->getOperand(2));
3281    } else {
3282      // We test only the i1 bit.  Skip the AND if UNDEF.
3283      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3284        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3285                    DAG.getConstant(1, Tmp2.getValueType()));
3286      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3287                         DAG.getCondCode(ISD::SETNE), Tmp3,
3288                         DAG.getConstant(0, Tmp3.getValueType()),
3289                         Node->getOperand(2));
3290    }
3291    Results.push_back(Tmp1);
3292    break;
3293  case ISD::SETCC: {
3294    Tmp1 = Node->getOperand(0);
3295    Tmp2 = Node->getOperand(1);
3296    Tmp3 = Node->getOperand(2);
3297    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3298
3299    // If we expanded the SETCC into an AND/OR, return the new node
3300    if (Tmp2.getNode() == 0) {
3301      Results.push_back(Tmp1);
3302      break;
3303    }
3304
3305    // Otherwise, SETCC for the given comparison type must be completely
3306    // illegal; expand it into a SELECT_CC.
3307    EVT VT = Node->getValueType(0);
3308    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3309                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3310    Results.push_back(Tmp1);
3311    break;
3312  }
3313  case ISD::SELECT_CC: {
3314    Tmp1 = Node->getOperand(0);   // LHS
3315    Tmp2 = Node->getOperand(1);   // RHS
3316    Tmp3 = Node->getOperand(2);   // True
3317    Tmp4 = Node->getOperand(3);   // False
3318    SDValue CC = Node->getOperand(4);
3319
3320    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3321                          Tmp1, Tmp2, CC, dl);
3322
3323    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3324    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3325    CC = DAG.getCondCode(ISD::SETNE);
3326    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3327                       Tmp3, Tmp4, CC);
3328    Results.push_back(Tmp1);
3329    break;
3330  }
3331  case ISD::BR_CC: {
3332    Tmp1 = Node->getOperand(0);              // Chain
3333    Tmp2 = Node->getOperand(2);              // LHS
3334    Tmp3 = Node->getOperand(3);              // RHS
3335    Tmp4 = Node->getOperand(1);              // CC
3336
3337    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3338                          Tmp2, Tmp3, Tmp4, dl);
3339
3340    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3341    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3342    Tmp4 = DAG.getCondCode(ISD::SETNE);
3343    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3344                       Tmp3, Node->getOperand(4));
3345    Results.push_back(Tmp1);
3346    break;
3347  }
3348  case ISD::BUILD_VECTOR:
3349    Results.push_back(ExpandBUILD_VECTOR(Node));
3350    break;
3351  case ISD::SRA:
3352  case ISD::SRL:
3353  case ISD::SHL: {
3354    // Scalarize vector SRA/SRL/SHL.
3355    EVT VT = Node->getValueType(0);
3356    assert(VT.isVector() && "Unable to legalize non-vector shift");
3357    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3358    unsigned NumElem = VT.getVectorNumElements();
3359
3360    SmallVector<SDValue, 8> Scalars;
3361    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3362      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3363                               VT.getScalarType(),
3364                               Node->getOperand(0), DAG.getIntPtrConstant(Idx));
3365      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3366                               VT.getScalarType(),
3367                               Node->getOperand(1), DAG.getIntPtrConstant(Idx));
3368      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3369                                    VT.getScalarType(), Ex, Sh));
3370    }
3371    SDValue Result =
3372      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3373                  &Scalars[0], Scalars.size());
3374    DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this);
3375    DAG.RemoveDeadNode(Node, this);
3376    break;
3377  }
3378  case ISD::GLOBAL_OFFSET_TABLE:
3379  case ISD::GlobalAddress:
3380  case ISD::GlobalTLSAddress:
3381  case ISD::ExternalSymbol:
3382  case ISD::ConstantPool:
3383  case ISD::JumpTable:
3384  case ISD::INTRINSIC_W_CHAIN:
3385  case ISD::INTRINSIC_WO_CHAIN:
3386  case ISD::INTRINSIC_VOID:
3387    // FIXME: Custom lowering for these operations shouldn't return null!
3388    break;
3389  }
3390
3391  // Replace the original node with the legalized result.
3392  if (!Results.empty()) {
3393    DAG.ReplaceAllUsesWith(Node, Results.data(), this);
3394    DAG.RemoveDeadNode(Node, this);
3395  }
3396}
3397
3398void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3399  SmallVector<SDValue, 8> Results;
3400  EVT OVT = Node->getValueType(0);
3401  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3402      Node->getOpcode() == ISD::SINT_TO_FP ||
3403      Node->getOpcode() == ISD::SETCC) {
3404    OVT = Node->getOperand(0).getValueType();
3405  }
3406  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3407  DebugLoc dl = Node->getDebugLoc();
3408  SDValue Tmp1, Tmp2, Tmp3;
3409  switch (Node->getOpcode()) {
3410  case ISD::CTTZ:
3411  case ISD::CTLZ:
3412  case ISD::CTPOP:
3413    // Zero extend the argument.
3414    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3415    // Perform the larger operation.
3416    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3417    if (Node->getOpcode() == ISD::CTTZ) {
3418      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3419      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3420                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3421                          ISD::SETEQ);
3422      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3423                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3424    } else if (Node->getOpcode() == ISD::CTLZ) {
3425      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3426      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3427                          DAG.getConstant(NVT.getSizeInBits() -
3428                                          OVT.getSizeInBits(), NVT));
3429    }
3430    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3431    break;
3432  case ISD::BSWAP: {
3433    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3434    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3435    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3436    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3437                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3438    Results.push_back(Tmp1);
3439    break;
3440  }
3441  case ISD::FP_TO_UINT:
3442  case ISD::FP_TO_SINT:
3443    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3444                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3445    Results.push_back(Tmp1);
3446    break;
3447  case ISD::UINT_TO_FP:
3448  case ISD::SINT_TO_FP:
3449    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3450                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3451    Results.push_back(Tmp1);
3452    break;
3453  case ISD::AND:
3454  case ISD::OR:
3455  case ISD::XOR: {
3456    unsigned ExtOp, TruncOp;
3457    if (OVT.isVector()) {
3458      ExtOp   = ISD::BITCAST;
3459      TruncOp = ISD::BITCAST;
3460    } else {
3461      assert(OVT.isInteger() && "Cannot promote logic operation");
3462      ExtOp   = ISD::ANY_EXTEND;
3463      TruncOp = ISD::TRUNCATE;
3464    }
3465    // Promote each of the values to the new type.
3466    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3467    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3468    // Perform the larger operation, then convert back
3469    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3470    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3471    break;
3472  }
3473  case ISD::SELECT: {
3474    unsigned ExtOp, TruncOp;
3475    if (Node->getValueType(0).isVector()) {
3476      ExtOp   = ISD::BITCAST;
3477      TruncOp = ISD::BITCAST;
3478    } else if (Node->getValueType(0).isInteger()) {
3479      ExtOp   = ISD::ANY_EXTEND;
3480      TruncOp = ISD::TRUNCATE;
3481    } else {
3482      ExtOp   = ISD::FP_EXTEND;
3483      TruncOp = ISD::FP_ROUND;
3484    }
3485    Tmp1 = Node->getOperand(0);
3486    // Promote each of the values to the new type.
3487    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3488    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3489    // Perform the larger operation, then round down.
3490    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3491    if (TruncOp != ISD::FP_ROUND)
3492      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3493    else
3494      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3495                         DAG.getIntPtrConstant(0));
3496    Results.push_back(Tmp1);
3497    break;
3498  }
3499  case ISD::VECTOR_SHUFFLE: {
3500    SmallVector<int, 8> Mask;
3501    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3502
3503    // Cast the two input vectors.
3504    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3505    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3506
3507    // Convert the shuffle mask to the right # elements.
3508    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3509    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3510    Results.push_back(Tmp1);
3511    break;
3512  }
3513  case ISD::SETCC: {
3514    unsigned ExtOp = ISD::FP_EXTEND;
3515    if (NVT.isInteger()) {
3516      ISD::CondCode CCCode =
3517        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3518      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3519    }
3520    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3521    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3522    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3523                                  Tmp1, Tmp2, Node->getOperand(2)));
3524    break;
3525  }
3526  }
3527
3528  // Replace the original node with the legalized result.
3529  if (!Results.empty()) {
3530    DAG.ReplaceAllUsesWith(Node, Results.data(), this);
3531    DAG.RemoveDeadNode(Node, this);
3532  }
3533}
3534
3535// SelectionDAG::Legalize - This is the entry point for the file.
3536//
3537void SelectionDAG::Legalize() {
3538  /// run - This is the main entry point to this class.
3539  ///
3540  SelectionDAGLegalize(*this).LegalizeDAG();
3541}
3542