LegalizeDAG.cpp revision b8427d805310c8a2ebab03b9082622e74d9cdd33
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include <map>
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class VISIBILITY_HIDDEN SelectionDAGLegalize {
56  TargetLowering &TLI;
57  SelectionDAG &DAG;
58  CodeGenOpt::Level OptLevel;
59
60  // Libcall insertion helpers.
61
62  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
63  /// legalized.  We use this to ensure that calls are properly serialized
64  /// against each other, including inserted libcalls.
65  SDValue LastCALLSEQ_END;
66
67  /// IsLegalizingCall - This member is used *only* for purposes of providing
68  /// helpful assertions that a libcall isn't created while another call is
69  /// being legalized (which could lead to non-serialized call sequences).
70  bool IsLegalizingCall;
71
72  enum LegalizeAction {
73    Legal,      // The target natively supports this operation.
74    Promote,    // This operation should be executed in a larger type.
75    Expand      // Try to expand this to other ops, otherwise use a libcall.
76  };
77
78  /// ValueTypeActions - This is a bitvector that contains two bits for each
79  /// value type, where the two bits correspond to the LegalizeAction enum.
80  /// This can be queried with "getTypeAction(VT)".
81  TargetLowering::ValueTypeActionImpl ValueTypeActions;
82
83  /// LegalizedNodes - For nodes that are of legal width, and that have more
84  /// than one use, this map indicates what regularized operand to use.  This
85  /// allows us to avoid legalizing the same thing more than once.
86  DenseMap<SDValue, SDValue> LegalizedNodes;
87
88  void AddLegalizedOperand(SDValue From, SDValue To) {
89    LegalizedNodes.insert(std::make_pair(From, To));
90    // If someone requests legalization of the new node, return itself.
91    if (From != To)
92      LegalizedNodes.insert(std::make_pair(To, To));
93  }
94
95public:
96  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
97
98  /// getTypeAction - Return how we should legalize values of this type, either
99  /// it is already legal or we need to expand it into multiple registers of
100  /// smaller integer type, or we need to promote it to a larger type.
101  LegalizeAction getTypeAction(MVT VT) const {
102    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
103  }
104
105  /// isTypeLegal - Return true if this type is legal on this target.
106  ///
107  bool isTypeLegal(MVT VT) const {
108    return getTypeAction(VT) == Legal;
109  }
110
111  void LegalizeDAG();
112
113private:
114  /// LegalizeOp - We know that the specified value has a legal type.
115  /// Recursively ensure that the operands have legal types, then return the
116  /// result.
117  SDValue LegalizeOp(SDValue O);
118
119  SDValue OptimizeFloatStore(StoreSDNode *ST);
120
121  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
122  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
123  /// is necessary to spill the vector being inserted into to memory, perform
124  /// the insert there, and then read the result back.
125  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
126                                         SDValue Idx, DebugLoc dl);
127  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
128                                  SDValue Idx, DebugLoc dl);
129
130  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
131  /// performs the same shuffe in terms of order or result bytes, but on a type
132  /// whose vector element type is narrower than the original shuffle type.
133  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
134  SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
135                                     SDValue N1, SDValue N2,
136                                     SmallVectorImpl<int> &Mask) const;
137
138  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
139                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
140
141  void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
142                             DebugLoc dl);
143
144  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
145  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
146                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
147                          RTLIB::Libcall Call_PPCF128);
148  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
149                           RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
150                           RTLIB::Libcall Call_I128);
151
152  SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
153  SDValue ExpandBUILD_VECTOR(SDNode *Node);
154  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
155  SDValue ExpandDBG_STOPPOINT(SDNode *Node);
156  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
157                                SmallVectorImpl<SDValue> &Results);
158  SDValue ExpandFCOPYSIGN(SDNode *Node);
159  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
160                               DebugLoc dl);
161  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
162                                DebugLoc dl);
163  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
164                                DebugLoc dl);
165
166  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
167  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
168
169  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
170  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
171
172  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
173  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
174};
175}
176
177/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
178/// performs the same shuffe in terms of order or result bytes, but on a type
179/// whose vector element type is narrower than the original shuffle type.
180/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
181SDValue
182SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT,  DebugLoc dl,
183                                                 SDValue N1, SDValue N2,
184                                             SmallVectorImpl<int> &Mask) const {
185  MVT EltVT = NVT.getVectorElementType();
186  unsigned NumMaskElts = VT.getVectorNumElements();
187  unsigned NumDestElts = NVT.getVectorNumElements();
188  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
189
190  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
191
192  if (NumEltsGrowth == 1)
193    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
194
195  SmallVector<int, 8> NewMask;
196  for (unsigned i = 0; i != NumMaskElts; ++i) {
197    int Idx = Mask[i];
198    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
199      if (Idx < 0)
200        NewMask.push_back(-1);
201      else
202        NewMask.push_back(Idx * NumEltsGrowth + j);
203    }
204  }
205  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
206  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
207  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
208}
209
210SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
211                                           CodeGenOpt::Level ol)
212  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
213    ValueTypeActions(TLI.getValueTypeActions()) {
214  assert(MVT::LAST_VALUETYPE <= 32 &&
215         "Too many value types for ValueTypeActions to hold!");
216}
217
218void SelectionDAGLegalize::LegalizeDAG() {
219  LastCALLSEQ_END = DAG.getEntryNode();
220  IsLegalizingCall = false;
221
222  // The legalize process is inherently a bottom-up recursive process (users
223  // legalize their uses before themselves).  Given infinite stack space, we
224  // could just start legalizing on the root and traverse the whole graph.  In
225  // practice however, this causes us to run out of stack space on large basic
226  // blocks.  To avoid this problem, compute an ordering of the nodes where each
227  // node is only legalized after all of its operands are legalized.
228  DAG.AssignTopologicalOrder();
229  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
230       E = prior(DAG.allnodes_end()); I != next(E); ++I)
231    LegalizeOp(SDValue(I, 0));
232
233  // Finally, it's possible the root changed.  Get the new root.
234  SDValue OldRoot = DAG.getRoot();
235  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
236  DAG.setRoot(LegalizedNodes[OldRoot]);
237
238  LegalizedNodes.clear();
239
240  // Remove dead nodes now.
241  DAG.RemoveDeadNodes();
242}
243
244
245/// FindCallEndFromCallStart - Given a chained node that is part of a call
246/// sequence, find the CALLSEQ_END node that terminates the call sequence.
247static SDNode *FindCallEndFromCallStart(SDNode *Node) {
248  if (Node->getOpcode() == ISD::CALLSEQ_END)
249    return Node;
250  if (Node->use_empty())
251    return 0;   // No CallSeqEnd
252
253  // The chain is usually at the end.
254  SDValue TheChain(Node, Node->getNumValues()-1);
255  if (TheChain.getValueType() != MVT::Other) {
256    // Sometimes it's at the beginning.
257    TheChain = SDValue(Node, 0);
258    if (TheChain.getValueType() != MVT::Other) {
259      // Otherwise, hunt for it.
260      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
261        if (Node->getValueType(i) == MVT::Other) {
262          TheChain = SDValue(Node, i);
263          break;
264        }
265
266      // Otherwise, we walked into a node without a chain.
267      if (TheChain.getValueType() != MVT::Other)
268        return 0;
269    }
270  }
271
272  for (SDNode::use_iterator UI = Node->use_begin(),
273       E = Node->use_end(); UI != E; ++UI) {
274
275    // Make sure to only follow users of our token chain.
276    SDNode *User = *UI;
277    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
278      if (User->getOperand(i) == TheChain)
279        if (SDNode *Result = FindCallEndFromCallStart(User))
280          return Result;
281  }
282  return 0;
283}
284
285/// FindCallStartFromCallEnd - Given a chained node that is part of a call
286/// sequence, find the CALLSEQ_START node that initiates the call sequence.
287static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
288  assert(Node && "Didn't find callseq_start for a call??");
289  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
290
291  assert(Node->getOperand(0).getValueType() == MVT::Other &&
292         "Node doesn't have a token chain argument!");
293  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
294}
295
296/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
297/// see if any uses can reach Dest.  If no dest operands can get to dest,
298/// legalize them, legalize ourself, and return false, otherwise, return true.
299///
300/// Keep track of the nodes we fine that actually do lead to Dest in
301/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
302///
303bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
304                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
305  if (N == Dest) return true;  // N certainly leads to Dest :)
306
307  // If we've already processed this node and it does lead to Dest, there is no
308  // need to reprocess it.
309  if (NodesLeadingTo.count(N)) return true;
310
311  // If the first result of this node has been already legalized, then it cannot
312  // reach N.
313  if (LegalizedNodes.count(SDValue(N, 0))) return false;
314
315  // Okay, this node has not already been legalized.  Check and legalize all
316  // operands.  If none lead to Dest, then we can legalize this node.
317  bool OperandsLeadToDest = false;
318  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
319    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
320      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
321
322  if (OperandsLeadToDest) {
323    NodesLeadingTo.insert(N);
324    return true;
325  }
326
327  // Okay, this node looks safe, legalize it and return false.
328  LegalizeOp(SDValue(N, 0));
329  return false;
330}
331
332/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
333/// a load from the constant pool.
334static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
335                                SelectionDAG &DAG, const TargetLowering &TLI) {
336  bool Extend = false;
337  DebugLoc dl = CFP->getDebugLoc();
338
339  // If a FP immediate is precise when represented as a float and if the
340  // target can do an extending load from float to double, we put it into
341  // the constant pool as a float, even if it's is statically typed as a
342  // double.  This shrinks FP constants and canonicalizes them for targets where
343  // an FP extending load is the same cost as a normal load (such as on the x87
344  // fp stack or PPC FP unit).
345  MVT VT = CFP->getValueType(0);
346  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
347  if (!UseCP) {
348    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
349    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
350                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
351  }
352
353  MVT OrigVT = VT;
354  MVT SVT = VT;
355  while (SVT != MVT::f32) {
356    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
357    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
358        // Only do this if the target has a native EXTLOAD instruction from
359        // smaller type.
360        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
361        TLI.ShouldShrinkFPConstant(OrigVT)) {
362      const Type *SType = SVT.getTypeForMVT();
363      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
364      VT = SVT;
365      Extend = true;
366    }
367  }
368
369  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
370  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
371  if (Extend)
372    return DAG.getExtLoad(ISD::EXTLOAD, dl,
373                          OrigVT, DAG.getEntryNode(),
374                          CPIdx, PseudoSourceValue::getConstantPool(),
375                          0, VT, false, Alignment);
376  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
377                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
378}
379
380/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
381static
382SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
383                             const TargetLowering &TLI) {
384  SDValue Chain = ST->getChain();
385  SDValue Ptr = ST->getBasePtr();
386  SDValue Val = ST->getValue();
387  MVT VT = Val.getValueType();
388  int Alignment = ST->getAlignment();
389  int SVOffset = ST->getSrcValueOffset();
390  DebugLoc dl = ST->getDebugLoc();
391  if (ST->getMemoryVT().isFloatingPoint() ||
392      ST->getMemoryVT().isVector()) {
393    MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
394    if (TLI.isTypeLegal(intVT)) {
395      // Expand to a bitconvert of the value to the integer type of the
396      // same size, then a (misaligned) int store.
397      // FIXME: Does not handle truncating floating point stores!
398      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
399      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
400                          SVOffset, ST->isVolatile(), Alignment);
401    } else {
402      // Do a (aligned) store to a stack slot, then copy from the stack slot
403      // to the final destination using (unaligned) integer loads and stores.
404      MVT StoredVT = ST->getMemoryVT();
405      MVT RegVT =
406        TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
407      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
408      unsigned RegBytes = RegVT.getSizeInBits() / 8;
409      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
410
411      // Make sure the stack slot is also aligned for the register type.
412      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
413
414      // Perform the original store, only redirected to the stack slot.
415      SDValue Store = DAG.getTruncStore(Chain, dl,
416                                        Val, StackPtr, NULL, 0, StoredVT);
417      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
418      SmallVector<SDValue, 8> Stores;
419      unsigned Offset = 0;
420
421      // Do all but one copies using the full register width.
422      for (unsigned i = 1; i < NumRegs; i++) {
423        // Load one integer register's worth from the stack slot.
424        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
425        // Store it to the final location.  Remember the store.
426        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
427                                      ST->getSrcValue(), SVOffset + Offset,
428                                      ST->isVolatile(),
429                                      MinAlign(ST->getAlignment(), Offset)));
430        // Increment the pointers.
431        Offset += RegBytes;
432        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
433                               Increment);
434        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
435      }
436
437      // The last store may be partial.  Do a truncating store.  On big-endian
438      // machines this requires an extending load from the stack slot to ensure
439      // that the bits are in the right place.
440      MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
441
442      // Load from the stack slot.
443      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
444                                    NULL, 0, MemVT);
445
446      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
447                                         ST->getSrcValue(), SVOffset + Offset,
448                                         MemVT, ST->isVolatile(),
449                                         MinAlign(ST->getAlignment(), Offset)));
450      // The order of the stores doesn't matter - say it with a TokenFactor.
451      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
452                         Stores.size());
453    }
454  }
455  assert(ST->getMemoryVT().isInteger() &&
456         !ST->getMemoryVT().isVector() &&
457         "Unaligned store of unknown type.");
458  // Get the half-size VT
459  MVT NewStoredVT =
460    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
461  int NumBits = NewStoredVT.getSizeInBits();
462  int IncrementSize = NumBits / 8;
463
464  // Divide the stored value in two parts.
465  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
466  SDValue Lo = Val;
467  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
468
469  // Store the two parts
470  SDValue Store1, Store2;
471  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
472                             ST->getSrcValue(), SVOffset, NewStoredVT,
473                             ST->isVolatile(), Alignment);
474  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
475                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
476  Alignment = MinAlign(Alignment, IncrementSize);
477  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
478                             ST->getSrcValue(), SVOffset + IncrementSize,
479                             NewStoredVT, ST->isVolatile(), Alignment);
480
481  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
482}
483
484/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
485static
486SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
487                            const TargetLowering &TLI) {
488  int SVOffset = LD->getSrcValueOffset();
489  SDValue Chain = LD->getChain();
490  SDValue Ptr = LD->getBasePtr();
491  MVT VT = LD->getValueType(0);
492  MVT LoadedVT = LD->getMemoryVT();
493  DebugLoc dl = LD->getDebugLoc();
494  if (VT.isFloatingPoint() || VT.isVector()) {
495    MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
496    if (TLI.isTypeLegal(intVT)) {
497      // Expand to a (misaligned) integer load of the same size,
498      // then bitconvert to floating point or vector.
499      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
500                                    SVOffset, LD->isVolatile(),
501                                    LD->getAlignment());
502      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
503      if (VT.isFloatingPoint() && LoadedVT != VT)
504        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
505
506      SDValue Ops[] = { Result, Chain };
507      return DAG.getMergeValues(Ops, 2, dl);
508    } else {
509      // Copy the value to a (aligned) stack slot using (unaligned) integer
510      // loads and stores, then do a (aligned) load from the stack slot.
511      MVT RegVT = TLI.getRegisterType(intVT);
512      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
513      unsigned RegBytes = RegVT.getSizeInBits() / 8;
514      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
515
516      // Make sure the stack slot is also aligned for the register type.
517      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
518
519      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
520      SmallVector<SDValue, 8> Stores;
521      SDValue StackPtr = StackBase;
522      unsigned Offset = 0;
523
524      // Do all but one copies using the full register width.
525      for (unsigned i = 1; i < NumRegs; i++) {
526        // Load one integer register's worth from the original location.
527        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
528                                   SVOffset + Offset, LD->isVolatile(),
529                                   MinAlign(LD->getAlignment(), Offset));
530        // Follow the load with a store to the stack slot.  Remember the store.
531        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
532                                      NULL, 0));
533        // Increment the pointers.
534        Offset += RegBytes;
535        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
536        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
537                               Increment);
538      }
539
540      // The last copy may be partial.  Do an extending load.
541      MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
542      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
543                                    LD->getSrcValue(), SVOffset + Offset,
544                                    MemVT, LD->isVolatile(),
545                                    MinAlign(LD->getAlignment(), Offset));
546      // Follow the load with a store to the stack slot.  Remember the store.
547      // On big-endian machines this requires a truncating store to ensure
548      // that the bits end up in the right place.
549      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
550                                         NULL, 0, MemVT));
551
552      // The order of the stores doesn't matter - say it with a TokenFactor.
553      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
554                               Stores.size());
555
556      // Finally, perform the original load only redirected to the stack slot.
557      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
558                            NULL, 0, LoadedVT);
559
560      // Callers expect a MERGE_VALUES node.
561      SDValue Ops[] = { Load, TF };
562      return DAG.getMergeValues(Ops, 2, dl);
563    }
564  }
565  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
566         "Unaligned load of unsupported type.");
567
568  // Compute the new VT that is half the size of the old one.  This is an
569  // integer MVT.
570  unsigned NumBits = LoadedVT.getSizeInBits();
571  MVT NewLoadedVT;
572  NewLoadedVT = MVT::getIntegerVT(NumBits/2);
573  NumBits >>= 1;
574
575  unsigned Alignment = LD->getAlignment();
576  unsigned IncrementSize = NumBits / 8;
577  ISD::LoadExtType HiExtType = LD->getExtensionType();
578
579  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
580  if (HiExtType == ISD::NON_EXTLOAD)
581    HiExtType = ISD::ZEXTLOAD;
582
583  // Load the value in two parts
584  SDValue Lo, Hi;
585  if (TLI.isLittleEndian()) {
586    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
587                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
588    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
589                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
590    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
591                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
592                        MinAlign(Alignment, IncrementSize));
593  } else {
594    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
595                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
596    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
597                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
598    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
599                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
600                        MinAlign(Alignment, IncrementSize));
601  }
602
603  // aggregate the two parts
604  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
605  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
606  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
607
608  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
609                             Hi.getValue(1));
610
611  SDValue Ops[] = { Result, TF };
612  return DAG.getMergeValues(Ops, 2, dl);
613}
614
615/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
616/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
617/// is necessary to spill the vector being inserted into to memory, perform
618/// the insert there, and then read the result back.
619SDValue SelectionDAGLegalize::
620PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
621                               DebugLoc dl) {
622  SDValue Tmp1 = Vec;
623  SDValue Tmp2 = Val;
624  SDValue Tmp3 = Idx;
625
626  // If the target doesn't support this, we have to spill the input vector
627  // to a temporary stack slot, update the element, then reload it.  This is
628  // badness.  We could also load the value into a vector register (either
629  // with a "move to register" or "extload into register" instruction, then
630  // permute it into place, if the idx is a constant and if the idx is
631  // supported by the target.
632  MVT VT    = Tmp1.getValueType();
633  MVT EltVT = VT.getVectorElementType();
634  MVT IdxVT = Tmp3.getValueType();
635  MVT PtrVT = TLI.getPointerTy();
636  SDValue StackPtr = DAG.CreateStackTemporary(VT);
637
638  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
639
640  // Store the vector.
641  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
642                            PseudoSourceValue::getFixedStack(SPFI), 0);
643
644  // Truncate or zero extend offset to target pointer type.
645  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
646  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
647  // Add the offset to the index.
648  unsigned EltSize = EltVT.getSizeInBits()/8;
649  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
650  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
651  // Store the scalar value.
652  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
653                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
654  // Load the updated vector.
655  return DAG.getLoad(VT, dl, Ch, StackPtr,
656                     PseudoSourceValue::getFixedStack(SPFI), 0);
657}
658
659
660SDValue SelectionDAGLegalize::
661ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
662  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
663    // SCALAR_TO_VECTOR requires that the type of the value being inserted
664    // match the element type of the vector being created, except for
665    // integers in which case the inserted value can be over width.
666    MVT EltVT = Vec.getValueType().getVectorElementType();
667    if (Val.getValueType() == EltVT ||
668        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
669      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
670                                  Vec.getValueType(), Val);
671
672      unsigned NumElts = Vec.getValueType().getVectorNumElements();
673      // We generate a shuffle of InVec and ScVec, so the shuffle mask
674      // should be 0,1,2,3,4,5... with the appropriate element replaced with
675      // elt 0 of the RHS.
676      SmallVector<int, 8> ShufOps;
677      for (unsigned i = 0; i != NumElts; ++i)
678        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
679
680      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
681                                  &ShufOps[0]);
682    }
683  }
684  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
685}
686
687SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
688  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
689  // FIXME: We shouldn't do this for TargetConstantFP's.
690  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
691  // to phase ordering between legalized code and the dag combiner.  This
692  // probably means that we need to integrate dag combiner and legalizer
693  // together.
694  // We generally can't do this one for long doubles.
695  SDValue Tmp1 = ST->getChain();
696  SDValue Tmp2 = ST->getBasePtr();
697  SDValue Tmp3;
698  int SVOffset = ST->getSrcValueOffset();
699  unsigned Alignment = ST->getAlignment();
700  bool isVolatile = ST->isVolatile();
701  DebugLoc dl = ST->getDebugLoc();
702  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
703    if (CFP->getValueType(0) == MVT::f32 &&
704        getTypeAction(MVT::i32) == Legal) {
705      Tmp3 = DAG.getConstant(CFP->getValueAPF().
706                                      bitcastToAPInt().zextOrTrunc(32),
707                              MVT::i32);
708      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
709                          SVOffset, isVolatile, Alignment);
710    } else if (CFP->getValueType(0) == MVT::f64) {
711      // If this target supports 64-bit registers, do a single 64-bit store.
712      if (getTypeAction(MVT::i64) == Legal) {
713        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
714                                  zextOrTrunc(64), MVT::i64);
715        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
716                            SVOffset, isVolatile, Alignment);
717      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
718        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
719        // stores.  If the target supports neither 32- nor 64-bits, this
720        // xform is certainly not worth it.
721        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
722        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
723        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
724        if (TLI.isBigEndian()) std::swap(Lo, Hi);
725
726        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
727                          SVOffset, isVolatile, Alignment);
728        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
729                            DAG.getIntPtrConstant(4));
730        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
731                          isVolatile, MinAlign(Alignment, 4U));
732
733        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
734      }
735    }
736  }
737  return SDValue();
738}
739
740/// LegalizeOp - We know that the specified value has a legal type, and
741/// that its operands are legal.  Now ensure that the operation itself
742/// is legal, recursively ensuring that the operands' operations remain
743/// legal.
744SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
745  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
746    return Op;
747
748  SDNode *Node = Op.getNode();
749  DebugLoc dl = Node->getDebugLoc();
750
751  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
752    assert(getTypeAction(Node->getValueType(i)) == Legal &&
753           "Unexpected illegal type!");
754
755  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
756    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
757            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
758           "Unexpected illegal type!");
759
760  // Note that LegalizeOp may be reentered even from single-use nodes, which
761  // means that we always must cache transformed nodes.
762  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
763  if (I != LegalizedNodes.end()) return I->second;
764
765  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
766  SDValue Result = Op;
767  bool isCustom = false;
768
769  // Figure out the correct action; the way to query this varies by opcode
770  TargetLowering::LegalizeAction Action;
771  bool SimpleFinishLegalizing = true;
772  switch (Node->getOpcode()) {
773  case ISD::INTRINSIC_W_CHAIN:
774  case ISD::INTRINSIC_WO_CHAIN:
775  case ISD::INTRINSIC_VOID:
776  case ISD::VAARG:
777  case ISD::STACKSAVE:
778    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
779    break;
780  case ISD::SINT_TO_FP:
781  case ISD::UINT_TO_FP:
782  case ISD::EXTRACT_VECTOR_ELT:
783    Action = TLI.getOperationAction(Node->getOpcode(),
784                                    Node->getOperand(0).getValueType());
785    break;
786  case ISD::FP_ROUND_INREG:
787  case ISD::SIGN_EXTEND_INREG: {
788    MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
789    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
790    break;
791  }
792  case ISD::SELECT_CC:
793  case ISD::SETCC:
794  case ISD::BR_CC: {
795    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
796                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
797    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
798    MVT OpVT = Node->getOperand(CompareOperand).getValueType();
799    ISD::CondCode CCCode =
800        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
801    Action = TLI.getCondCodeAction(CCCode, OpVT);
802    if (Action == TargetLowering::Legal) {
803      if (Node->getOpcode() == ISD::SELECT_CC)
804        Action = TLI.getOperationAction(Node->getOpcode(),
805                                        Node->getValueType(0));
806      else
807        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
808    }
809    break;
810  }
811  case ISD::LOAD:
812  case ISD::STORE:
813    // FIXME: Model these properly.  LOAD and STORE are complicated, and
814    // STORE expects the unlegalized operand in some cases.
815    SimpleFinishLegalizing = false;
816    break;
817  case ISD::CALLSEQ_START:
818  case ISD::CALLSEQ_END:
819    // FIXME: This shouldn't be necessary.  These nodes have special properties
820    // dealing with the recursive nature of legalization.  Removing this
821    // special case should be done as part of making LegalizeDAG non-recursive.
822    SimpleFinishLegalizing = false;
823    break;
824  case ISD::CALL:
825    // FIXME: Legalization for calls requires custom-lowering the call before
826    // legalizing the operands!  (I haven't looked into precisely why.)
827    SimpleFinishLegalizing = false;
828    break;
829  case ISD::EXTRACT_ELEMENT:
830  case ISD::FLT_ROUNDS_:
831  case ISD::SADDO:
832  case ISD::SSUBO:
833  case ISD::UADDO:
834  case ISD::USUBO:
835  case ISD::SMULO:
836  case ISD::UMULO:
837  case ISD::FPOWI:
838  case ISD::MERGE_VALUES:
839  case ISD::EH_RETURN:
840  case ISD::FRAME_TO_ARGS_OFFSET:
841    // These operations lie about being legal: when they claim to be legal,
842    // they should actually be expanded.
843    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
844    if (Action == TargetLowering::Legal)
845      Action = TargetLowering::Expand;
846    break;
847  case ISD::TRAMPOLINE:
848  case ISD::FRAMEADDR:
849  case ISD::RETURNADDR:
850  case ISD::FORMAL_ARGUMENTS:
851    // These operations lie about being legal: when they claim to be legal,
852    // they should actually be custom-lowered.
853    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
854    if (Action == TargetLowering::Legal)
855      Action = TargetLowering::Custom;
856    break;
857  case ISD::BUILD_VECTOR:
858    // A weird case: legalization for BUILD_VECTOR never legalizes the
859    // operands!
860    // FIXME: This really sucks... changing it isn't semantically incorrect,
861    // but it massively pessimizes the code for floating-point BUILD_VECTORs
862    // because ConstantFP operands get legalized into constant pool loads
863    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
864    // though, because BUILD_VECTORS usually get lowered into other nodes
865    // which get legalized properly.
866    SimpleFinishLegalizing = false;
867    break;
868  default:
869    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
870      Action = TargetLowering::Legal;
871    } else {
872      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
873    }
874    break;
875  }
876
877  if (SimpleFinishLegalizing) {
878    SmallVector<SDValue, 8> Ops, ResultVals;
879    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
880      Ops.push_back(LegalizeOp(Node->getOperand(i)));
881    switch (Node->getOpcode()) {
882    default: break;
883    case ISD::BR:
884    case ISD::BRIND:
885    case ISD::BR_JT:
886    case ISD::BR_CC:
887    case ISD::BRCOND:
888    case ISD::RET:
889      // Branches tweak the chain to include LastCALLSEQ_END
890      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
891                            LastCALLSEQ_END);
892      Ops[0] = LegalizeOp(Ops[0]);
893      LastCALLSEQ_END = DAG.getEntryNode();
894      break;
895    case ISD::SHL:
896    case ISD::SRL:
897    case ISD::SRA:
898    case ISD::ROTL:
899    case ISD::ROTR:
900      // Legalizing shifts/rotates requires adjusting the shift amount
901      // to the appropriate width.
902      if (!Ops[1].getValueType().isVector())
903        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
904      break;
905    }
906
907    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
908                                    Ops.size());
909    switch (Action) {
910    case TargetLowering::Legal:
911      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
912        ResultVals.push_back(Result.getValue(i));
913      break;
914    case TargetLowering::Custom:
915      // FIXME: The handling for custom lowering with multiple results is
916      // a complete mess.
917      Tmp1 = TLI.LowerOperation(Result, DAG);
918      if (Tmp1.getNode()) {
919        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
920          if (e == 1)
921            ResultVals.push_back(Tmp1);
922          else
923            ResultVals.push_back(Tmp1.getValue(i));
924        }
925        break;
926      }
927
928      // FALL THROUGH
929    case TargetLowering::Expand:
930      ExpandNode(Result.getNode(), ResultVals);
931      break;
932    case TargetLowering::Promote:
933      PromoteNode(Result.getNode(), ResultVals);
934      break;
935    }
936    if (!ResultVals.empty()) {
937      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
938        if (ResultVals[i] != SDValue(Node, i))
939          ResultVals[i] = LegalizeOp(ResultVals[i]);
940        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
941      }
942      return ResultVals[Op.getResNo()];
943    }
944  }
945
946  switch (Node->getOpcode()) {
947  default:
948#ifndef NDEBUG
949    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
950#endif
951    assert(0 && "Do not know how to legalize this operator!");
952    abort();
953  case ISD::CALL:
954    // The only option for this is to custom lower it.
955    Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
956    assert(Tmp3.getNode() && "Target didn't custom lower this node!");
957    // A call within a calling sequence must be legalized to something
958    // other than the normal CALLSEQ_END.  Violating this gets Legalize
959    // into an infinite loop.
960    assert ((!IsLegalizingCall ||
961             Node->getOpcode() != ISD::CALL ||
962             Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
963            "Nested CALLSEQ_START..CALLSEQ_END not supported.");
964
965    // The number of incoming and outgoing values should match; unless the final
966    // outgoing value is a flag.
967    assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
968            (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
969             Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
970               MVT::Flag)) &&
971           "Lowering call/formal_arguments produced unexpected # results!");
972
973    // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
974    // remember that we legalized all of them, so it doesn't get relegalized.
975    for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
976      if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
977        continue;
978      Tmp1 = LegalizeOp(Tmp3.getValue(i));
979      if (Op.getResNo() == i)
980        Tmp2 = Tmp1;
981      AddLegalizedOperand(SDValue(Node, i), Tmp1);
982    }
983    return Tmp2;
984  case ISD::BUILD_VECTOR:
985    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
986    default: assert(0 && "This action is not supported yet!");
987    case TargetLowering::Custom:
988      Tmp3 = TLI.LowerOperation(Result, DAG);
989      if (Tmp3.getNode()) {
990        Result = Tmp3;
991        break;
992      }
993      // FALLTHROUGH
994    case TargetLowering::Expand:
995      Result = ExpandBUILD_VECTOR(Result.getNode());
996      break;
997    }
998    break;
999  case ISD::CALLSEQ_START: {
1000    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1001
1002    // Recursively Legalize all of the inputs of the call end that do not lead
1003    // to this call start.  This ensures that any libcalls that need be inserted
1004    // are inserted *before* the CALLSEQ_START.
1005    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1006    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1007      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1008                                   NodesLeadingTo);
1009    }
1010
1011    // Now that we legalized all of the inputs (which may have inserted
1012    // libcalls) create the new CALLSEQ_START node.
1013    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1014
1015    // Merge in the last call, to ensure that this call start after the last
1016    // call ended.
1017    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1018      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1019                         Tmp1, LastCALLSEQ_END);
1020      Tmp1 = LegalizeOp(Tmp1);
1021    }
1022
1023    // Do not try to legalize the target-specific arguments (#1+).
1024    if (Tmp1 != Node->getOperand(0)) {
1025      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1026      Ops[0] = Tmp1;
1027      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1028    }
1029
1030    // Remember that the CALLSEQ_START is legalized.
1031    AddLegalizedOperand(Op.getValue(0), Result);
1032    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1033      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1034
1035    // Now that the callseq_start and all of the non-call nodes above this call
1036    // sequence have been legalized, legalize the call itself.  During this
1037    // process, no libcalls can/will be inserted, guaranteeing that no calls
1038    // can overlap.
1039    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1040    // Note that we are selecting this call!
1041    LastCALLSEQ_END = SDValue(CallEnd, 0);
1042    IsLegalizingCall = true;
1043
1044    // Legalize the call, starting from the CALLSEQ_END.
1045    LegalizeOp(LastCALLSEQ_END);
1046    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1047    return Result;
1048  }
1049  case ISD::CALLSEQ_END:
1050    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1051    // will cause this node to be legalized as well as handling libcalls right.
1052    if (LastCALLSEQ_END.getNode() != Node) {
1053      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1054      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1055      assert(I != LegalizedNodes.end() &&
1056             "Legalizing the call start should have legalized this node!");
1057      return I->second;
1058    }
1059
1060    // Otherwise, the call start has been legalized and everything is going
1061    // according to plan.  Just legalize ourselves normally here.
1062    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1063    // Do not try to legalize the target-specific arguments (#1+), except for
1064    // an optional flag input.
1065    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1066      if (Tmp1 != Node->getOperand(0)) {
1067        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1068        Ops[0] = Tmp1;
1069        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1070      }
1071    } else {
1072      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1073      if (Tmp1 != Node->getOperand(0) ||
1074          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1075        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1076        Ops[0] = Tmp1;
1077        Ops.back() = Tmp2;
1078        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1079      }
1080    }
1081    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1082    // This finishes up call legalization.
1083    IsLegalizingCall = false;
1084
1085    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1086    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1087    if (Node->getNumValues() == 2)
1088      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1089    return Result.getValue(Op.getResNo());
1090  case ISD::LOAD: {
1091    LoadSDNode *LD = cast<LoadSDNode>(Node);
1092    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1093    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1094
1095    ISD::LoadExtType ExtType = LD->getExtensionType();
1096    if (ExtType == ISD::NON_EXTLOAD) {
1097      MVT VT = Node->getValueType(0);
1098      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1099      Tmp3 = Result.getValue(0);
1100      Tmp4 = Result.getValue(1);
1101
1102      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1103      default: assert(0 && "This action is not supported yet!");
1104      case TargetLowering::Legal:
1105        // If this is an unaligned load and the target doesn't support it,
1106        // expand it.
1107        if (!TLI.allowsUnalignedMemoryAccesses()) {
1108          unsigned ABIAlignment = TLI.getTargetData()->
1109            getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
1110          if (LD->getAlignment() < ABIAlignment){
1111            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1112                                         TLI);
1113            Tmp3 = Result.getOperand(0);
1114            Tmp4 = Result.getOperand(1);
1115            Tmp3 = LegalizeOp(Tmp3);
1116            Tmp4 = LegalizeOp(Tmp4);
1117          }
1118        }
1119        break;
1120      case TargetLowering::Custom:
1121        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1122        if (Tmp1.getNode()) {
1123          Tmp3 = LegalizeOp(Tmp1);
1124          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1125        }
1126        break;
1127      case TargetLowering::Promote: {
1128        // Only promote a load of vector type to another.
1129        assert(VT.isVector() && "Cannot promote this load!");
1130        // Change base type to a different vector type.
1131        MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1132
1133        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1134                           LD->getSrcValueOffset(),
1135                           LD->isVolatile(), LD->getAlignment());
1136        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1137        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1138        break;
1139      }
1140      }
1141      // Since loads produce two values, make sure to remember that we
1142      // legalized both of them.
1143      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1144      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1145      return Op.getResNo() ? Tmp4 : Tmp3;
1146    } else {
1147      MVT SrcVT = LD->getMemoryVT();
1148      unsigned SrcWidth = SrcVT.getSizeInBits();
1149      int SVOffset = LD->getSrcValueOffset();
1150      unsigned Alignment = LD->getAlignment();
1151      bool isVolatile = LD->isVolatile();
1152
1153      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1154          // Some targets pretend to have an i1 loading operation, and actually
1155          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1156          // bits are guaranteed to be zero; it helps the optimizers understand
1157          // that these bits are zero.  It is also useful for EXTLOAD, since it
1158          // tells the optimizers that those bits are undefined.  It would be
1159          // nice to have an effective generic way of getting these benefits...
1160          // Until such a way is found, don't insist on promoting i1 here.
1161          (SrcVT != MVT::i1 ||
1162           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1163        // Promote to a byte-sized load if not loading an integral number of
1164        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1165        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1166        MVT NVT = MVT::getIntegerVT(NewWidth);
1167        SDValue Ch;
1168
1169        // The extra bits are guaranteed to be zero, since we stored them that
1170        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1171
1172        ISD::LoadExtType NewExtType =
1173          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1174
1175        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1176                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1177                                NVT, isVolatile, Alignment);
1178
1179        Ch = Result.getValue(1); // The chain.
1180
1181        if (ExtType == ISD::SEXTLOAD)
1182          // Having the top bits zero doesn't help when sign extending.
1183          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1184                               Result.getValueType(),
1185                               Result, DAG.getValueType(SrcVT));
1186        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1187          // All the top bits are guaranteed to be zero - inform the optimizers.
1188          Result = DAG.getNode(ISD::AssertZext, dl,
1189                               Result.getValueType(), Result,
1190                               DAG.getValueType(SrcVT));
1191
1192        Tmp1 = LegalizeOp(Result);
1193        Tmp2 = LegalizeOp(Ch);
1194      } else if (SrcWidth & (SrcWidth - 1)) {
1195        // If not loading a power-of-2 number of bits, expand as two loads.
1196        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1197               "Unsupported extload!");
1198        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1199        assert(RoundWidth < SrcWidth);
1200        unsigned ExtraWidth = SrcWidth - RoundWidth;
1201        assert(ExtraWidth < RoundWidth);
1202        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1203               "Load size not an integral number of bytes!");
1204        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1205        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1206        SDValue Lo, Hi, Ch;
1207        unsigned IncrementSize;
1208
1209        if (TLI.isLittleEndian()) {
1210          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1211          // Load the bottom RoundWidth bits.
1212          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1213                              Node->getValueType(0), Tmp1, Tmp2,
1214                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1215                              Alignment);
1216
1217          // Load the remaining ExtraWidth bits.
1218          IncrementSize = RoundWidth / 8;
1219          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1220                             DAG.getIntPtrConstant(IncrementSize));
1221          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1222                              LD->getSrcValue(), SVOffset + IncrementSize,
1223                              ExtraVT, isVolatile,
1224                              MinAlign(Alignment, IncrementSize));
1225
1226          // Build a factor node to remember that this load is independent of the
1227          // other one.
1228          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1229                           Hi.getValue(1));
1230
1231          // Move the top bits to the right place.
1232          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1233                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1234
1235          // Join the hi and lo parts.
1236          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1237        } else {
1238          // Big endian - avoid unaligned loads.
1239          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1240          // Load the top RoundWidth bits.
1241          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1242                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1243                              Alignment);
1244
1245          // Load the remaining ExtraWidth bits.
1246          IncrementSize = RoundWidth / 8;
1247          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1248                             DAG.getIntPtrConstant(IncrementSize));
1249          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1250                              Node->getValueType(0), Tmp1, Tmp2,
1251                              LD->getSrcValue(), SVOffset + IncrementSize,
1252                              ExtraVT, isVolatile,
1253                              MinAlign(Alignment, IncrementSize));
1254
1255          // Build a factor node to remember that this load is independent of the
1256          // other one.
1257          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1258                           Hi.getValue(1));
1259
1260          // Move the top bits to the right place.
1261          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1262                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1263
1264          // Join the hi and lo parts.
1265          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1266        }
1267
1268        Tmp1 = LegalizeOp(Result);
1269        Tmp2 = LegalizeOp(Ch);
1270      } else {
1271        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1272        default: assert(0 && "This action is not supported yet!");
1273        case TargetLowering::Custom:
1274          isCustom = true;
1275          // FALLTHROUGH
1276        case TargetLowering::Legal:
1277          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1278          Tmp1 = Result.getValue(0);
1279          Tmp2 = Result.getValue(1);
1280
1281          if (isCustom) {
1282            Tmp3 = TLI.LowerOperation(Result, DAG);
1283            if (Tmp3.getNode()) {
1284              Tmp1 = LegalizeOp(Tmp3);
1285              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1286            }
1287          } else {
1288            // If this is an unaligned load and the target doesn't support it,
1289            // expand it.
1290            if (!TLI.allowsUnalignedMemoryAccesses()) {
1291              unsigned ABIAlignment = TLI.getTargetData()->
1292                getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
1293              if (LD->getAlignment() < ABIAlignment){
1294                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1295                                             TLI);
1296                Tmp1 = Result.getOperand(0);
1297                Tmp2 = Result.getOperand(1);
1298                Tmp1 = LegalizeOp(Tmp1);
1299                Tmp2 = LegalizeOp(Tmp2);
1300              }
1301            }
1302          }
1303          break;
1304        case TargetLowering::Expand:
1305          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1306          if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1307            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1308                                         LD->getSrcValueOffset(),
1309                                         LD->isVolatile(), LD->getAlignment());
1310            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1311                                 Node->getValueType(0), Load);
1312            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1313            Tmp2 = LegalizeOp(Load.getValue(1));
1314            break;
1315          }
1316          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1317          // Turn the unsupported load into an EXTLOAD followed by an explicit
1318          // zero/sign extend inreg.
1319          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1320                                  Tmp1, Tmp2, LD->getSrcValue(),
1321                                  LD->getSrcValueOffset(), SrcVT,
1322                                  LD->isVolatile(), LD->getAlignment());
1323          SDValue ValRes;
1324          if (ExtType == ISD::SEXTLOAD)
1325            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1326                                 Result.getValueType(),
1327                                 Result, DAG.getValueType(SrcVT));
1328          else
1329            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1330          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1331          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1332          break;
1333        }
1334      }
1335
1336      // Since loads produce two values, make sure to remember that we legalized
1337      // both of them.
1338      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1339      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1340      return Op.getResNo() ? Tmp2 : Tmp1;
1341    }
1342  }
1343  case ISD::STORE: {
1344    StoreSDNode *ST = cast<StoreSDNode>(Node);
1345    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1346    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1347    int SVOffset = ST->getSrcValueOffset();
1348    unsigned Alignment = ST->getAlignment();
1349    bool isVolatile = ST->isVolatile();
1350
1351    if (!ST->isTruncatingStore()) {
1352      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1353        Result = SDValue(OptStore, 0);
1354        break;
1355      }
1356
1357      {
1358        Tmp3 = LegalizeOp(ST->getValue());
1359        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1360                                        ST->getOffset());
1361
1362        MVT VT = Tmp3.getValueType();
1363        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1364        default: assert(0 && "This action is not supported yet!");
1365        case TargetLowering::Legal:
1366          // If this is an unaligned store and the target doesn't support it,
1367          // expand it.
1368          if (!TLI.allowsUnalignedMemoryAccesses()) {
1369            unsigned ABIAlignment = TLI.getTargetData()->
1370              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
1371            if (ST->getAlignment() < ABIAlignment)
1372              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1373                                            TLI);
1374          }
1375          break;
1376        case TargetLowering::Custom:
1377          Tmp1 = TLI.LowerOperation(Result, DAG);
1378          if (Tmp1.getNode()) Result = Tmp1;
1379          break;
1380        case TargetLowering::Promote:
1381          assert(VT.isVector() && "Unknown legal promote case!");
1382          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1383                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1384          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1385                                ST->getSrcValue(), SVOffset, isVolatile,
1386                                Alignment);
1387          break;
1388        }
1389        break;
1390      }
1391    } else {
1392      Tmp3 = LegalizeOp(ST->getValue());
1393
1394      MVT StVT = ST->getMemoryVT();
1395      unsigned StWidth = StVT.getSizeInBits();
1396
1397      if (StWidth != StVT.getStoreSizeInBits()) {
1398        // Promote to a byte-sized store with upper bits zero if not
1399        // storing an integral number of bytes.  For example, promote
1400        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1401        MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
1402        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1403        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1404                                   SVOffset, NVT, isVolatile, Alignment);
1405      } else if (StWidth & (StWidth - 1)) {
1406        // If not storing a power-of-2 number of bits, expand as two stores.
1407        assert(StVT.isExtended() && !StVT.isVector() &&
1408               "Unsupported truncstore!");
1409        unsigned RoundWidth = 1 << Log2_32(StWidth);
1410        assert(RoundWidth < StWidth);
1411        unsigned ExtraWidth = StWidth - RoundWidth;
1412        assert(ExtraWidth < RoundWidth);
1413        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1414               "Store size not an integral number of bytes!");
1415        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1416        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1417        SDValue Lo, Hi;
1418        unsigned IncrementSize;
1419
1420        if (TLI.isLittleEndian()) {
1421          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1422          // Store the bottom RoundWidth bits.
1423          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1424                                 SVOffset, RoundVT,
1425                                 isVolatile, Alignment);
1426
1427          // Store the remaining ExtraWidth bits.
1428          IncrementSize = RoundWidth / 8;
1429          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1430                             DAG.getIntPtrConstant(IncrementSize));
1431          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1432                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1433          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1434                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1435                                 MinAlign(Alignment, IncrementSize));
1436        } else {
1437          // Big endian - avoid unaligned stores.
1438          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1439          // Store the top RoundWidth bits.
1440          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1441                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1442          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1443                                 SVOffset, RoundVT, isVolatile, Alignment);
1444
1445          // Store the remaining ExtraWidth bits.
1446          IncrementSize = RoundWidth / 8;
1447          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1448                             DAG.getIntPtrConstant(IncrementSize));
1449          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1450                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1451                                 MinAlign(Alignment, IncrementSize));
1452        }
1453
1454        // The order of the stores doesn't matter.
1455        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1456      } else {
1457        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1458            Tmp2 != ST->getBasePtr())
1459          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1460                                          ST->getOffset());
1461
1462        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1463        default: assert(0 && "This action is not supported yet!");
1464        case TargetLowering::Legal:
1465          // If this is an unaligned store and the target doesn't support it,
1466          // expand it.
1467          if (!TLI.allowsUnalignedMemoryAccesses()) {
1468            unsigned ABIAlignment = TLI.getTargetData()->
1469              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
1470            if (ST->getAlignment() < ABIAlignment)
1471              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1472                                            TLI);
1473          }
1474          break;
1475        case TargetLowering::Custom:
1476          Result = TLI.LowerOperation(Result, DAG);
1477          break;
1478        case Expand:
1479          // TRUNCSTORE:i16 i32 -> STORE i16
1480          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1481          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1482          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1483                                SVOffset, isVolatile, Alignment);
1484          break;
1485        }
1486      }
1487    }
1488    break;
1489  }
1490  }
1491  assert(Result.getValueType() == Op.getValueType() &&
1492         "Bad legalization!");
1493
1494  // Make sure that the generated code is itself legal.
1495  if (Result != Op)
1496    Result = LegalizeOp(Result);
1497
1498  // Note that LegalizeOp may be reentered even from single-use nodes, which
1499  // means that we always must cache transformed nodes.
1500  AddLegalizedOperand(Op, Result);
1501  return Result;
1502}
1503
1504SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1505  SDValue Vec = Op.getOperand(0);
1506  SDValue Idx = Op.getOperand(1);
1507  DebugLoc dl = Op.getDebugLoc();
1508  // Store the value to a temporary stack slot, then LOAD the returned part.
1509  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1510  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1511
1512  // Add the offset to the index.
1513  unsigned EltSize =
1514      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1515  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1516                    DAG.getConstant(EltSize, Idx.getValueType()));
1517
1518  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1519    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1520  else
1521    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1522
1523  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1524
1525  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1526}
1527
1528SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1529  // We can't handle this case efficiently.  Allocate a sufficiently
1530  // aligned object on the stack, store each element into it, then load
1531  // the result as a vector.
1532  // Create the stack frame object.
1533  MVT VT = Node->getValueType(0);
1534  MVT OpVT = Node->getOperand(0).getValueType();
1535  DebugLoc dl = Node->getDebugLoc();
1536  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1537  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1538  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1539
1540  // Emit a store of each element to the stack slot.
1541  SmallVector<SDValue, 8> Stores;
1542  unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1543  // Store (in the right endianness) the elements to memory.
1544  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1545    // Ignore undef elements.
1546    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1547
1548    unsigned Offset = TypeByteSize*i;
1549
1550    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1551    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1552
1553    Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1554                                  Idx, SV, Offset));
1555  }
1556
1557  SDValue StoreChain;
1558  if (!Stores.empty())    // Not all undef elements?
1559    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1560                             &Stores[0], Stores.size());
1561  else
1562    StoreChain = DAG.getEntryNode();
1563
1564  // Result is a load from the stack slot.
1565  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1566}
1567
1568SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1569  DebugLoc dl = Node->getDebugLoc();
1570  SDValue Tmp1 = Node->getOperand(0);
1571  SDValue Tmp2 = Node->getOperand(1);
1572  assert((Tmp2.getValueType() == MVT::f32 ||
1573          Tmp2.getValueType() == MVT::f64) &&
1574          "Ugly special-cased code!");
1575  // Get the sign bit of the RHS.
1576  SDValue SignBit;
1577  MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1578  if (isTypeLegal(IVT)) {
1579    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1580  } else {
1581    assert(isTypeLegal(TLI.getPointerTy()) &&
1582            (TLI.getPointerTy() == MVT::i32 ||
1583            TLI.getPointerTy() == MVT::i64) &&
1584            "Legal type for load?!");
1585    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1586    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1587    SDValue Ch =
1588        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1589    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1590      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1591                            LoadPtr, DAG.getIntPtrConstant(4));
1592    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1593                              Ch, LoadPtr, NULL, 0, MVT::i32);
1594  }
1595  SignBit =
1596      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1597                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1598                    ISD::SETLT);
1599  // Get the absolute value of the result.
1600  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1601  // Select between the nabs and abs value based on the sign bit of
1602  // the input.
1603  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1604                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1605                     AbsVal);
1606}
1607
1608SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1609  DebugLoc dl = Node->getDebugLoc();
1610  DwarfWriter *DW = DAG.getDwarfWriter();
1611  bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1612                                                    MVT::Other);
1613  bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1614
1615  const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1616  GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1617  if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1618    DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1619
1620    unsigned Line = DSP->getLine();
1621    unsigned Col = DSP->getColumn();
1622
1623    if (OptLevel == CodeGenOpt::None) {
1624      // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1625      // won't hurt anything.
1626      if (useDEBUG_LOC) {
1627        return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1628                           DAG.getConstant(Line, MVT::i32),
1629                           DAG.getConstant(Col, MVT::i32),
1630                           DAG.getSrcValue(CU.getGV()));
1631      } else {
1632        unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1633        return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1634      }
1635    }
1636  }
1637  return Node->getOperand(0);
1638}
1639
1640void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1641                                           SmallVectorImpl<SDValue> &Results) {
1642  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1643  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1644          " not tell us which reg is the stack pointer!");
1645  DebugLoc dl = Node->getDebugLoc();
1646  MVT VT = Node->getValueType(0);
1647  SDValue Tmp1 = SDValue(Node, 0);
1648  SDValue Tmp2 = SDValue(Node, 1);
1649  SDValue Tmp3 = Node->getOperand(2);
1650  SDValue Chain = Tmp1.getOperand(0);
1651
1652  // Chain the dynamic stack allocation so that it doesn't modify the stack
1653  // pointer when other instructions are using the stack.
1654  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1655
1656  SDValue Size  = Tmp2.getOperand(1);
1657  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1658  Chain = SP.getValue(1);
1659  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1660  unsigned StackAlign =
1661    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1662  if (Align > StackAlign)
1663    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1664                      DAG.getConstant(-(uint64_t)Align, VT));
1665  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1666  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1667
1668  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1669                            DAG.getIntPtrConstant(0, true), SDValue());
1670
1671  Results.push_back(Tmp1);
1672  Results.push_back(Tmp2);
1673}
1674
1675/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1676/// condition code CC on the current target. This routine assumes LHS and rHS
1677/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1678/// illegal condition code into AND / OR of multiple SETCC values.
1679void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
1680                                                 SDValue &LHS, SDValue &RHS,
1681                                                 SDValue &CC,
1682                                                 DebugLoc dl) {
1683  MVT OpVT = LHS.getValueType();
1684  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1685  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1686  default: assert(0 && "Unknown condition code action!");
1687  case TargetLowering::Legal:
1688    // Nothing to do.
1689    break;
1690  case TargetLowering::Expand: {
1691    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1692    unsigned Opc = 0;
1693    switch (CCCode) {
1694    default: assert(0 && "Don't know how to expand this condition!"); abort();
1695    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1696    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1697    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1698    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1699    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1700    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1701    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1702    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1703    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1704    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1705    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1706    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1707    // FIXME: Implement more expansions.
1708    }
1709
1710    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1711    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1712    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1713    RHS = SDValue();
1714    CC  = SDValue();
1715    break;
1716  }
1717  }
1718}
1719
1720/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1721/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1722/// a load from the stack slot to DestVT, extending it if needed.
1723/// The resultant code need not be legal.
1724SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1725                                               MVT SlotVT,
1726                                               MVT DestVT,
1727                                               DebugLoc dl) {
1728  // Create the stack frame object.
1729  unsigned SrcAlign =
1730    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1731                                              getTypeForMVT());
1732  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1733
1734  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1735  int SPFI = StackPtrFI->getIndex();
1736  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1737
1738  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1739  unsigned SlotSize = SlotVT.getSizeInBits();
1740  unsigned DestSize = DestVT.getSizeInBits();
1741  unsigned DestAlign =
1742    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT());
1743
1744  // Emit a store to the stack slot.  Use a truncstore if the input value is
1745  // later than DestVT.
1746  SDValue Store;
1747
1748  if (SrcSize > SlotSize)
1749    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1750                              SV, 0, SlotVT, false, SrcAlign);
1751  else {
1752    assert(SrcSize == SlotSize && "Invalid store");
1753    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1754                         SV, 0, false, SrcAlign);
1755  }
1756
1757  // Result is a load from the stack slot.
1758  if (SlotSize == DestSize)
1759    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1760
1761  assert(SlotSize < DestSize && "Unknown extension!");
1762  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1763                        false, DestAlign);
1764}
1765
1766SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1767  DebugLoc dl = Node->getDebugLoc();
1768  // Create a vector sized/aligned stack slot, store the value to element #0,
1769  // then load the whole vector back out.
1770  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1771
1772  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1773  int SPFI = StackPtrFI->getIndex();
1774
1775  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1776                                 StackPtr,
1777                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1778                                 Node->getValueType(0).getVectorElementType());
1779  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1780                     PseudoSourceValue::getFixedStack(SPFI), 0);
1781}
1782
1783
1784/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1785/// support the operation, but do support the resultant vector type.
1786SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1787  unsigned NumElems = Node->getNumOperands();
1788  SDValue SplatValue = Node->getOperand(0);
1789  DebugLoc dl = Node->getDebugLoc();
1790  MVT VT = Node->getValueType(0);
1791  MVT OpVT = SplatValue.getValueType();
1792  MVT EltVT = VT.getVectorElementType();
1793
1794  // If the only non-undef value is the low element, turn this into a
1795  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1796  bool isOnlyLowElement = true;
1797
1798  // FIXME: it would be far nicer to change this into map<SDValue,uint64_t>
1799  // and use a bitmask instead of a list of elements.
1800  // FIXME: this doesn't treat <0, u, 0, u> for example, as a splat.
1801  std::map<SDValue, std::vector<unsigned> > Values;
1802  Values[SplatValue].push_back(0);
1803  bool isConstant = true;
1804  if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) &&
1805      SplatValue.getOpcode() != ISD::UNDEF)
1806    isConstant = false;
1807
1808  for (unsigned i = 1; i < NumElems; ++i) {
1809    SDValue V = Node->getOperand(i);
1810    Values[V].push_back(i);
1811    if (V.getOpcode() != ISD::UNDEF)
1812      isOnlyLowElement = false;
1813    if (SplatValue != V)
1814      SplatValue = SDValue(0, 0);
1815
1816    // If this isn't a constant element or an undef, we can't use a constant
1817    // pool load.
1818    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) &&
1819        V.getOpcode() != ISD::UNDEF)
1820      isConstant = false;
1821  }
1822
1823  if (isOnlyLowElement) {
1824    // If the low element is an undef too, then this whole things is an undef.
1825    if (Node->getOperand(0).getOpcode() == ISD::UNDEF)
1826      return DAG.getUNDEF(VT);
1827    // Otherwise, turn this into a scalar_to_vector node.
1828    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1829  }
1830
1831  // If all elements are constants, create a load from the constant pool.
1832  if (isConstant) {
1833    std::vector<Constant*> CV;
1834    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1835      if (ConstantFPSDNode *V =
1836          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1837        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1838      } else if (ConstantSDNode *V =
1839                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1840        CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1841      } else {
1842        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1843        const Type *OpNTy = OpVT.getTypeForMVT();
1844        CV.push_back(UndefValue::get(OpNTy));
1845      }
1846    }
1847    Constant *CP = ConstantVector::get(CV);
1848    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1849    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1850    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1851                       PseudoSourceValue::getConstantPool(), 0,
1852                       false, Alignment);
1853  }
1854
1855  if (SplatValue.getNode()) {   // Splat of one value?
1856    // Build the shuffle constant vector: <0, 0, 0, 0>
1857    SmallVector<int, 8> ZeroVec(NumElems, 0);
1858
1859    // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
1860    if (TLI.isShuffleMaskLegal(ZeroVec, Node->getValueType(0))) {
1861      // Get the splatted value into the low element of a vector register.
1862      SDValue LowValVec =
1863        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, SplatValue);
1864
1865      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1866      return DAG.getVectorShuffle(VT, dl, LowValVec, DAG.getUNDEF(VT),
1867                                  &ZeroVec[0]);
1868    }
1869  }
1870
1871  // If there are only two unique elements, we may be able to turn this into a
1872  // vector shuffle.
1873  if (Values.size() == 2) {
1874    // Get the two values in deterministic order.
1875    SDValue Val1 = Node->getOperand(1);
1876    SDValue Val2;
1877    std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin();
1878    if (MI->first != Val1)
1879      Val2 = MI->first;
1880    else
1881      Val2 = (++MI)->first;
1882
1883    // If Val1 is an undef, make sure it ends up as Val2, to ensure that our
1884    // vector shuffle has the undef vector on the RHS.
1885    if (Val1.getOpcode() == ISD::UNDEF)
1886      std::swap(Val1, Val2);
1887
1888    // Build the shuffle constant vector: e.g. <0, 4, 0, 4>
1889    SmallVector<int, 8> ShuffleMask(NumElems, -1);
1890
1891    // Set elements of the shuffle mask for Val1.
1892    std::vector<unsigned> &Val1Elts = Values[Val1];
1893    for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i)
1894      ShuffleMask[Val1Elts[i]] = 0;
1895
1896    // Set elements of the shuffle mask for Val2.
1897    std::vector<unsigned> &Val2Elts = Values[Val2];
1898    for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i)
1899      if (Val2.getOpcode() != ISD::UNDEF)
1900        ShuffleMask[Val2Elts[i]] = NumElems;
1901
1902    // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it.
1903    if (TLI.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR, VT) &&
1904        TLI.isShuffleMaskLegal(ShuffleMask, VT)) {
1905      Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val1);
1906      Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val2);
1907      return DAG.getVectorShuffle(VT, dl, Val1, Val2, &ShuffleMask[0]);
1908    }
1909  }
1910
1911  // Otherwise, we can't handle this case efficiently.
1912  return ExpandVectorBuildThroughStack(Node);
1913}
1914
1915// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1916// does not fit into a register, return the lo part and set the hi part to the
1917// by-reg argument.  If it does fit into a single register, return the result
1918// and leave the Hi part unset.
1919SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1920                                            bool isSigned) {
1921  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1922  // The input chain to this libcall is the entry node of the function.
1923  // Legalizing the call will automatically add the previous call to the
1924  // dependence.
1925  SDValue InChain = DAG.getEntryNode();
1926
1927  TargetLowering::ArgListTy Args;
1928  TargetLowering::ArgListEntry Entry;
1929  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1930    MVT ArgVT = Node->getOperand(i).getValueType();
1931    const Type *ArgTy = ArgVT.getTypeForMVT();
1932    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1933    Entry.isSExt = isSigned;
1934    Entry.isZExt = !isSigned;
1935    Args.push_back(Entry);
1936  }
1937  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1938                                         TLI.getPointerTy());
1939
1940  // Splice the libcall in wherever FindInputOutputChains tells us to.
1941  const Type *RetTy = Node->getValueType(0).getTypeForMVT();
1942  std::pair<SDValue, SDValue> CallInfo =
1943    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1944                    CallingConv::C, false, Callee, Args, DAG,
1945                    Node->getDebugLoc());
1946
1947  // Legalize the call sequence, starting with the chain.  This will advance
1948  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1949  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1950  LegalizeOp(CallInfo.second);
1951  return CallInfo.first;
1952}
1953
1954SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1955                                              RTLIB::Libcall Call_F32,
1956                                              RTLIB::Libcall Call_F64,
1957                                              RTLIB::Libcall Call_F80,
1958                                              RTLIB::Libcall Call_PPCF128) {
1959  RTLIB::Libcall LC;
1960  switch (Node->getValueType(0).getSimpleVT()) {
1961  default: assert(0 && "Unexpected request for libcall!");
1962  case MVT::f32: LC = Call_F32; break;
1963  case MVT::f64: LC = Call_F64; break;
1964  case MVT::f80: LC = Call_F80; break;
1965  case MVT::ppcf128: LC = Call_PPCF128; break;
1966  }
1967  return ExpandLibCall(LC, Node, false);
1968}
1969
1970SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1971                                               RTLIB::Libcall Call_I16,
1972                                               RTLIB::Libcall Call_I32,
1973                                               RTLIB::Libcall Call_I64,
1974                                               RTLIB::Libcall Call_I128) {
1975  RTLIB::Libcall LC;
1976  switch (Node->getValueType(0).getSimpleVT()) {
1977  default: assert(0 && "Unexpected request for libcall!");
1978  case MVT::i16: LC = Call_I16; break;
1979  case MVT::i32: LC = Call_I32; break;
1980  case MVT::i64: LC = Call_I64; break;
1981  case MVT::i128: LC = Call_I128; break;
1982  }
1983  return ExpandLibCall(LC, Node, isSigned);
1984}
1985
1986/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1987/// INT_TO_FP operation of the specified operand when the target requests that
1988/// we expand it.  At this point, we know that the result and operand types are
1989/// legal for the target.
1990SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1991                                                   SDValue Op0,
1992                                                   MVT DestVT,
1993                                                   DebugLoc dl) {
1994  if (Op0.getValueType() == MVT::i32) {
1995    // simple 32-bit [signed|unsigned] integer to float/double expansion
1996
1997    // Get the stack frame index of a 8 byte buffer.
1998    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1999
2000    // word offset constant for Hi/Lo address computation
2001    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2002    // set up Hi and Lo (into buffer) address based on endian
2003    SDValue Hi = StackSlot;
2004    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2005                             TLI.getPointerTy(), StackSlot, WordOff);
2006    if (TLI.isLittleEndian())
2007      std::swap(Hi, Lo);
2008
2009    // if signed map to unsigned space
2010    SDValue Op0Mapped;
2011    if (isSigned) {
2012      // constant used to invert sign bit (signed to unsigned mapping)
2013      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2014      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2015    } else {
2016      Op0Mapped = Op0;
2017    }
2018    // store the lo of the constructed double - based on integer input
2019    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2020                                  Op0Mapped, Lo, NULL, 0);
2021    // initial hi portion of constructed double
2022    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2023    // store the hi of the constructed double - biased exponent
2024    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
2025    // load the constructed double
2026    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
2027    // FP constant to bias correct the final result
2028    SDValue Bias = DAG.getConstantFP(isSigned ?
2029                                     BitsToDouble(0x4330000080000000ULL) :
2030                                     BitsToDouble(0x4330000000000000ULL),
2031                                     MVT::f64);
2032    // subtract the bias
2033    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2034    // final result
2035    SDValue Result;
2036    // handle final rounding
2037    if (DestVT == MVT::f64) {
2038      // do nothing
2039      Result = Sub;
2040    } else if (DestVT.bitsLT(MVT::f64)) {
2041      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2042                           DAG.getIntPtrConstant(0));
2043    } else if (DestVT.bitsGT(MVT::f64)) {
2044      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2045    }
2046    return Result;
2047  }
2048  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2049  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2050
2051  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2052                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2053                                 ISD::SETLT);
2054  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2055  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2056                                    SignSet, Four, Zero);
2057
2058  // If the sign bit of the integer is set, the large number will be treated
2059  // as a negative number.  To counteract this, the dynamic code adds an
2060  // offset depending on the data type.
2061  uint64_t FF;
2062  switch (Op0.getValueType().getSimpleVT()) {
2063  default: assert(0 && "Unsupported integer type!");
2064  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2065  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2066  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2067  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2068  }
2069  if (TLI.isLittleEndian()) FF <<= 32;
2070  Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
2071
2072  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2073  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2074  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2075  Alignment = std::min(Alignment, 4u);
2076  SDValue FudgeInReg;
2077  if (DestVT == MVT::f32)
2078    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2079                             PseudoSourceValue::getConstantPool(), 0,
2080                             false, Alignment);
2081  else {
2082    FudgeInReg =
2083      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2084                                DAG.getEntryNode(), CPIdx,
2085                                PseudoSourceValue::getConstantPool(), 0,
2086                                MVT::f32, false, Alignment));
2087  }
2088
2089  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2090}
2091
2092/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2093/// *INT_TO_FP operation of the specified operand when the target requests that
2094/// we promote it.  At this point, we know that the result and operand types are
2095/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2096/// operation that takes a larger input.
2097SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2098                                                    MVT DestVT,
2099                                                    bool isSigned,
2100                                                    DebugLoc dl) {
2101  // First step, figure out the appropriate *INT_TO_FP operation to use.
2102  MVT NewInTy = LegalOp.getValueType();
2103
2104  unsigned OpToUse = 0;
2105
2106  // Scan for the appropriate larger type to use.
2107  while (1) {
2108    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
2109    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2110
2111    // If the target supports SINT_TO_FP of this type, use it.
2112    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2113      OpToUse = ISD::SINT_TO_FP;
2114      break;
2115    }
2116    if (isSigned) continue;
2117
2118    // If the target supports UINT_TO_FP of this type, use it.
2119    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2120      OpToUse = ISD::UINT_TO_FP;
2121      break;
2122    }
2123
2124    // Otherwise, try a larger type.
2125  }
2126
2127  // Okay, we found the operation and type to use.  Zero extend our input to the
2128  // desired type then run the operation on it.
2129  return DAG.getNode(OpToUse, dl, DestVT,
2130                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2131                                 dl, NewInTy, LegalOp));
2132}
2133
2134/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2135/// FP_TO_*INT operation of the specified operand when the target requests that
2136/// we promote it.  At this point, we know that the result and operand types are
2137/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2138/// operation that returns a larger result.
2139SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2140                                                    MVT DestVT,
2141                                                    bool isSigned,
2142                                                    DebugLoc dl) {
2143  // First step, figure out the appropriate FP_TO*INT operation to use.
2144  MVT NewOutTy = DestVT;
2145
2146  unsigned OpToUse = 0;
2147
2148  // Scan for the appropriate larger type to use.
2149  while (1) {
2150    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
2151    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2152
2153    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2154      OpToUse = ISD::FP_TO_SINT;
2155      break;
2156    }
2157
2158    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2159      OpToUse = ISD::FP_TO_UINT;
2160      break;
2161    }
2162
2163    // Otherwise, try a larger type.
2164  }
2165
2166
2167  // Okay, we found the operation and type to use.
2168  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2169
2170  // Truncate the result of the extended FP_TO_*INT operation to the desired
2171  // size.
2172  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2173}
2174
2175/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2176///
2177SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2178  MVT VT = Op.getValueType();
2179  MVT SHVT = TLI.getShiftAmountTy();
2180  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2181  switch (VT.getSimpleVT()) {
2182  default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
2183  case MVT::i16:
2184    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2185    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2186    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2187  case MVT::i32:
2188    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2189    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2190    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2191    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2192    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2193    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2194    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2195    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2196    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2197  case MVT::i64:
2198    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2199    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2200    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2201    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2202    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2203    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2204    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2205    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2206    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2207    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2208    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2209    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2210    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2211    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2212    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2213    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2214    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2215    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2216    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2217    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2218    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2219  }
2220}
2221
2222/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2223///
2224SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2225                                             DebugLoc dl) {
2226  switch (Opc) {
2227  default: assert(0 && "Cannot expand this yet!");
2228  case ISD::CTPOP: {
2229    static const uint64_t mask[6] = {
2230      0x5555555555555555ULL, 0x3333333333333333ULL,
2231      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2232      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2233    };
2234    MVT VT = Op.getValueType();
2235    MVT ShVT = TLI.getShiftAmountTy();
2236    unsigned len = VT.getSizeInBits();
2237    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2238      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2239      unsigned EltSize = VT.isVector() ?
2240        VT.getVectorElementType().getSizeInBits() : len;
2241      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2242      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2243      Op = DAG.getNode(ISD::ADD, dl, VT,
2244                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2245                       DAG.getNode(ISD::AND, dl, VT,
2246                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2247                                   Tmp2));
2248    }
2249    return Op;
2250  }
2251  case ISD::CTLZ: {
2252    // for now, we do this:
2253    // x = x | (x >> 1);
2254    // x = x | (x >> 2);
2255    // ...
2256    // x = x | (x >>16);
2257    // x = x | (x >>32); // for 64-bit input
2258    // return popcount(~x);
2259    //
2260    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2261    MVT VT = Op.getValueType();
2262    MVT ShVT = TLI.getShiftAmountTy();
2263    unsigned len = VT.getSizeInBits();
2264    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2265      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2266      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2267                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2268    }
2269    Op = DAG.getNOT(dl, Op, VT);
2270    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2271  }
2272  case ISD::CTTZ: {
2273    // for now, we use: { return popcount(~x & (x - 1)); }
2274    // unless the target has ctlz but not ctpop, in which case we use:
2275    // { return 32 - nlz(~x & (x-1)); }
2276    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2277    MVT VT = Op.getValueType();
2278    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2279                               DAG.getNOT(dl, Op, VT),
2280                               DAG.getNode(ISD::SUB, dl, VT, Op,
2281                                           DAG.getConstant(1, VT)));
2282    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2283    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2284        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2285      return DAG.getNode(ISD::SUB, dl, VT,
2286                         DAG.getConstant(VT.getSizeInBits(), VT),
2287                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2288    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2289  }
2290  }
2291}
2292
2293void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2294                                      SmallVectorImpl<SDValue> &Results) {
2295  DebugLoc dl = Node->getDebugLoc();
2296  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2297  switch (Node->getOpcode()) {
2298  case ISD::CTPOP:
2299  case ISD::CTLZ:
2300  case ISD::CTTZ:
2301    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2302    Results.push_back(Tmp1);
2303    break;
2304  case ISD::BSWAP:
2305    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2306    break;
2307  case ISD::FRAMEADDR:
2308  case ISD::RETURNADDR:
2309  case ISD::FRAME_TO_ARGS_OFFSET:
2310    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2311    break;
2312  case ISD::FLT_ROUNDS_:
2313    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2314    break;
2315  case ISD::EH_RETURN:
2316  case ISD::DECLARE:
2317  case ISD::DBG_LABEL:
2318  case ISD::EH_LABEL:
2319  case ISD::PREFETCH:
2320  case ISD::MEMBARRIER:
2321  case ISD::VAEND:
2322    Results.push_back(Node->getOperand(0));
2323    break;
2324  case ISD::DBG_STOPPOINT:
2325    Results.push_back(ExpandDBG_STOPPOINT(Node));
2326    break;
2327  case ISD::DYNAMIC_STACKALLOC:
2328    ExpandDYNAMIC_STACKALLOC(Node, Results);
2329    break;
2330  case ISD::MERGE_VALUES:
2331    for (unsigned i = 0; i < Node->getNumValues(); i++)
2332      Results.push_back(Node->getOperand(i));
2333    break;
2334  case ISD::UNDEF: {
2335    MVT VT = Node->getValueType(0);
2336    if (VT.isInteger())
2337      Results.push_back(DAG.getConstant(0, VT));
2338    else if (VT.isFloatingPoint())
2339      Results.push_back(DAG.getConstantFP(0, VT));
2340    else
2341      assert(0 && "Unknown value type!");
2342    break;
2343  }
2344  case ISD::TRAP: {
2345    // If this operation is not supported, lower it to 'abort()' call
2346    TargetLowering::ArgListTy Args;
2347    std::pair<SDValue, SDValue> CallResult =
2348      TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
2349                      false, false, false, false, CallingConv::C, false,
2350                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2351                      Args, DAG, dl);
2352    Results.push_back(CallResult.second);
2353    break;
2354  }
2355  case ISD::FP_ROUND:
2356  case ISD::BIT_CONVERT:
2357    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2358                            Node->getValueType(0), dl);
2359    Results.push_back(Tmp1);
2360    break;
2361  case ISD::FP_EXTEND:
2362    Tmp1 = EmitStackConvert(Node->getOperand(0),
2363                            Node->getOperand(0).getValueType(),
2364                            Node->getValueType(0), dl);
2365    Results.push_back(Tmp1);
2366    break;
2367  case ISD::SIGN_EXTEND_INREG: {
2368    // NOTE: we could fall back on load/store here too for targets without
2369    // SAR.  However, it is doubtful that any exist.
2370    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2371    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2372                        ExtraVT.getSizeInBits();
2373    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2374    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2375                       Node->getOperand(0), ShiftCst);
2376    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2377    Results.push_back(Tmp1);
2378    break;
2379  }
2380  case ISD::FP_ROUND_INREG: {
2381    // The only way we can lower this is to turn it into a TRUNCSTORE,
2382    // EXTLOAD pair, targetting a temporary location (a stack slot).
2383
2384    // NOTE: there is a choice here between constantly creating new stack
2385    // slots and always reusing the same one.  We currently always create
2386    // new ones, as reuse may inhibit scheduling.
2387    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2388    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2389                            Node->getValueType(0), dl);
2390    Results.push_back(Tmp1);
2391    break;
2392  }
2393  case ISD::SINT_TO_FP:
2394  case ISD::UINT_TO_FP:
2395    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2396                                Node->getOperand(0), Node->getValueType(0), dl);
2397    Results.push_back(Tmp1);
2398    break;
2399  case ISD::FP_TO_UINT: {
2400    SDValue True, False;
2401    MVT VT =  Node->getOperand(0).getValueType();
2402    MVT NVT = Node->getValueType(0);
2403    const uint64_t zero[] = {0, 0};
2404    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2405    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2406    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2407    Tmp1 = DAG.getConstantFP(apf, VT);
2408    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2409                        Node->getOperand(0),
2410                        Tmp1, ISD::SETLT);
2411    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2412    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2413                        DAG.getNode(ISD::FSUB, dl, VT,
2414                                    Node->getOperand(0), Tmp1));
2415    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2416                        DAG.getConstant(x, NVT));
2417    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2418    Results.push_back(Tmp1);
2419    break;
2420  }
2421  case ISD::VAARG: {
2422    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2423    MVT VT = Node->getValueType(0);
2424    Tmp1 = Node->getOperand(0);
2425    Tmp2 = Node->getOperand(1);
2426    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2427    // Increment the pointer, VAList, to the next vaarg
2428    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2429                       DAG.getConstant(TLI.getTargetData()->
2430                                       getTypeAllocSize(VT.getTypeForMVT()),
2431                                       TLI.getPointerTy()));
2432    // Store the incremented VAList to the legalized pointer
2433    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2434    // Load the actual argument out of the pointer VAList
2435    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2436    Results.push_back(Results[0].getValue(1));
2437    break;
2438  }
2439  case ISD::VACOPY: {
2440    // This defaults to loading a pointer from the input and storing it to the
2441    // output, returning the chain.
2442    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2443    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2444    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2445                       Node->getOperand(2), VS, 0);
2446    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2447    Results.push_back(Tmp1);
2448    break;
2449  }
2450  case ISD::EXTRACT_VECTOR_ELT:
2451    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2452      // This must be an access of the only element.  Return it.
2453      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2454                         Node->getOperand(0));
2455    else
2456      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2457    Results.push_back(Tmp1);
2458    break;
2459  case ISD::EXTRACT_SUBVECTOR:
2460    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2461    break;
2462  case ISD::CONCAT_VECTORS: {
2463    Results.push_back(ExpandVectorBuildThroughStack(Node));
2464    break;
2465  }
2466  case ISD::SCALAR_TO_VECTOR:
2467    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2468    break;
2469  case ISD::INSERT_VECTOR_ELT:
2470    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2471                                              Node->getOperand(1),
2472                                              Node->getOperand(2), dl));
2473    break;
2474  case ISD::VECTOR_SHUFFLE: {
2475    SmallVector<int, 8> Mask;
2476    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2477
2478    MVT VT = Node->getValueType(0);
2479    MVT EltVT = VT.getVectorElementType();
2480    unsigned NumElems = VT.getVectorNumElements();
2481    SmallVector<SDValue, 8> Ops;
2482    for (unsigned i = 0; i != NumElems; ++i) {
2483      if (Mask[i] < 0) {
2484        Ops.push_back(DAG.getUNDEF(EltVT));
2485        continue;
2486      }
2487      unsigned Idx = Mask[i];
2488      if (Idx < NumElems)
2489        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2490                                  Node->getOperand(0),
2491                                  DAG.getIntPtrConstant(Idx)));
2492      else
2493        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2494                                  Node->getOperand(1),
2495                                  DAG.getIntPtrConstant(Idx - NumElems)));
2496    }
2497    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2498    Results.push_back(Tmp1);
2499    break;
2500  }
2501  case ISD::EXTRACT_ELEMENT: {
2502    MVT OpTy = Node->getOperand(0).getValueType();
2503    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2504      // 1 -> Hi
2505      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2506                         DAG.getConstant(OpTy.getSizeInBits()/2,
2507                                         TLI.getShiftAmountTy()));
2508      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2509    } else {
2510      // 0 -> Lo
2511      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2512                         Node->getOperand(0));
2513    }
2514    Results.push_back(Tmp1);
2515    break;
2516  }
2517  case ISD::STACKSAVE:
2518    // Expand to CopyFromReg if the target set
2519    // StackPointerRegisterToSaveRestore.
2520    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2521      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2522                                           Node->getValueType(0)));
2523      Results.push_back(Results[0].getValue(1));
2524    } else {
2525      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2526      Results.push_back(Node->getOperand(0));
2527    }
2528    break;
2529  case ISD::STACKRESTORE:
2530    // Expand to CopyToReg if the target set
2531    // StackPointerRegisterToSaveRestore.
2532    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2533      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2534                                         Node->getOperand(1)));
2535    } else {
2536      Results.push_back(Node->getOperand(0));
2537    }
2538    break;
2539  case ISD::FCOPYSIGN:
2540    Results.push_back(ExpandFCOPYSIGN(Node));
2541    break;
2542  case ISD::FNEG:
2543    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2544    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2545    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2546                       Node->getOperand(0));
2547    Results.push_back(Tmp1);
2548    break;
2549  case ISD::FABS: {
2550    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2551    MVT VT = Node->getValueType(0);
2552    Tmp1 = Node->getOperand(0);
2553    Tmp2 = DAG.getConstantFP(0.0, VT);
2554    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2555                        Tmp1, Tmp2, ISD::SETUGT);
2556    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2557    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2558    Results.push_back(Tmp1);
2559    break;
2560  }
2561  case ISD::FSQRT:
2562    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2563                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2564    break;
2565  case ISD::FSIN:
2566    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2567                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2568    break;
2569  case ISD::FCOS:
2570    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2571                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2572    break;
2573  case ISD::FLOG:
2574    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2575                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2576    break;
2577  case ISD::FLOG2:
2578    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2579                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2580    break;
2581  case ISD::FLOG10:
2582    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2583                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2584    break;
2585  case ISD::FEXP:
2586    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2587                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2588    break;
2589  case ISD::FEXP2:
2590    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2591                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2592    break;
2593  case ISD::FTRUNC:
2594    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2595                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2596    break;
2597  case ISD::FFLOOR:
2598    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2599                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2600    break;
2601  case ISD::FCEIL:
2602    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2603                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2604    break;
2605  case ISD::FRINT:
2606    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2607                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2608    break;
2609  case ISD::FNEARBYINT:
2610    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2611                                      RTLIB::NEARBYINT_F64,
2612                                      RTLIB::NEARBYINT_F80,
2613                                      RTLIB::NEARBYINT_PPCF128));
2614    break;
2615  case ISD::FPOWI:
2616    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2617                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2618    break;
2619  case ISD::FPOW:
2620    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2621                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2622    break;
2623  case ISD::FDIV:
2624    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2625                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2626    break;
2627  case ISD::FREM:
2628    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2629                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2630    break;
2631  case ISD::ConstantFP: {
2632    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2633    // Check to see if this FP immediate is already legal.
2634    bool isLegal = false;
2635    for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2636            E = TLI.legal_fpimm_end(); I != E; ++I) {
2637      if (CFP->isExactlyValue(*I)) {
2638        isLegal = true;
2639        break;
2640      }
2641    }
2642    // If this is a legal constant, turn it into a TargetConstantFP node.
2643    if (isLegal)
2644      Results.push_back(SDValue(Node, 0));
2645    else
2646      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2647    break;
2648  }
2649  case ISD::EHSELECTION: {
2650    unsigned Reg = TLI.getExceptionSelectorRegister();
2651    assert(Reg && "Can't expand to unknown register!");
2652    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2653                                         Node->getValueType(0)));
2654    Results.push_back(Results[0].getValue(1));
2655    break;
2656  }
2657  case ISD::EXCEPTIONADDR: {
2658    unsigned Reg = TLI.getExceptionAddressRegister();
2659    assert(Reg && "Can't expand to unknown register!");
2660    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2661                                         Node->getValueType(0)));
2662    Results.push_back(Results[0].getValue(1));
2663    break;
2664  }
2665  case ISD::SUB: {
2666    MVT VT = Node->getValueType(0);
2667    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2668           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2669           "Don't know how to expand this subtraction!");
2670    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2671               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2672    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2673    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2674    break;
2675  }
2676  case ISD::UREM:
2677  case ISD::SREM: {
2678    MVT VT = Node->getValueType(0);
2679    SDVTList VTs = DAG.getVTList(VT, VT);
2680    bool isSigned = Node->getOpcode() == ISD::SREM;
2681    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2682    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2683    Tmp2 = Node->getOperand(0);
2684    Tmp3 = Node->getOperand(1);
2685    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2686      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2687    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2688      // X % Y -> X-X/Y*Y
2689      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2690      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2691      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2692    } else if (isSigned) {
2693      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2694                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2695    } else {
2696      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2697                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2698    }
2699    Results.push_back(Tmp1);
2700    break;
2701  }
2702  case ISD::UDIV:
2703  case ISD::SDIV: {
2704    bool isSigned = Node->getOpcode() == ISD::SDIV;
2705    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2706    MVT VT = Node->getValueType(0);
2707    SDVTList VTs = DAG.getVTList(VT, VT);
2708    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2709      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2710                         Node->getOperand(1));
2711    else if (isSigned)
2712      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2713                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2714    else
2715      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2716                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2717    Results.push_back(Tmp1);
2718    break;
2719  }
2720  case ISD::MULHU:
2721  case ISD::MULHS: {
2722    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2723                                                              ISD::SMUL_LOHI;
2724    MVT VT = Node->getValueType(0);
2725    SDVTList VTs = DAG.getVTList(VT, VT);
2726    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2727           "If this wasn't legal, it shouldn't have been created!");
2728    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2729                       Node->getOperand(1));
2730    Results.push_back(Tmp1.getValue(1));
2731    break;
2732  }
2733  case ISD::MUL: {
2734    MVT VT = Node->getValueType(0);
2735    SDVTList VTs = DAG.getVTList(VT, VT);
2736    // See if multiply or divide can be lowered using two-result operations.
2737    // We just need the low half of the multiply; try both the signed
2738    // and unsigned forms. If the target supports both SMUL_LOHI and
2739    // UMUL_LOHI, form a preference by checking which forms of plain
2740    // MULH it supports.
2741    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2742    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2743    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2744    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2745    unsigned OpToUse = 0;
2746    if (HasSMUL_LOHI && !HasMULHS) {
2747      OpToUse = ISD::SMUL_LOHI;
2748    } else if (HasUMUL_LOHI && !HasMULHU) {
2749      OpToUse = ISD::UMUL_LOHI;
2750    } else if (HasSMUL_LOHI) {
2751      OpToUse = ISD::SMUL_LOHI;
2752    } else if (HasUMUL_LOHI) {
2753      OpToUse = ISD::UMUL_LOHI;
2754    }
2755    if (OpToUse) {
2756      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2757                                    Node->getOperand(1)));
2758      break;
2759    }
2760    Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2761                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2762    Results.push_back(Tmp1);
2763    break;
2764  }
2765  case ISD::SADDO:
2766  case ISD::SSUBO: {
2767    SDValue LHS = Node->getOperand(0);
2768    SDValue RHS = Node->getOperand(1);
2769    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2770                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2771                              LHS, RHS);
2772    Results.push_back(Sum);
2773    MVT OType = Node->getValueType(1);
2774
2775    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2776
2777    //   LHSSign -> LHS >= 0
2778    //   RHSSign -> RHS >= 0
2779    //   SumSign -> Sum >= 0
2780    //
2781    //   Add:
2782    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2783    //   Sub:
2784    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2785    //
2786    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2787    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2788    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2789                                      Node->getOpcode() == ISD::SADDO ?
2790                                      ISD::SETEQ : ISD::SETNE);
2791
2792    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2793    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2794
2795    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2796    Results.push_back(Cmp);
2797    break;
2798  }
2799  case ISD::UADDO:
2800  case ISD::USUBO: {
2801    SDValue LHS = Node->getOperand(0);
2802    SDValue RHS = Node->getOperand(1);
2803    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2804                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2805                              LHS, RHS);
2806    Results.push_back(Sum);
2807    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2808                                   Node->getOpcode () == ISD::UADDO ?
2809                                   ISD::SETULT : ISD::SETUGT));
2810    break;
2811  }
2812  case ISD::BUILD_PAIR: {
2813    MVT PairTy = Node->getValueType(0);
2814    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2815    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2816    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2817                       DAG.getConstant(PairTy.getSizeInBits()/2,
2818                                       TLI.getShiftAmountTy()));
2819    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2820    break;
2821  }
2822  case ISD::SELECT:
2823    Tmp1 = Node->getOperand(0);
2824    Tmp2 = Node->getOperand(1);
2825    Tmp3 = Node->getOperand(2);
2826    if (Tmp1.getOpcode() == ISD::SETCC) {
2827      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2828                             Tmp2, Tmp3,
2829                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2830    } else {
2831      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2832                             DAG.getConstant(0, Tmp1.getValueType()),
2833                             Tmp2, Tmp3, ISD::SETNE);
2834    }
2835    Results.push_back(Tmp1);
2836    break;
2837  case ISD::BR_JT: {
2838    SDValue Chain = Node->getOperand(0);
2839    SDValue Table = Node->getOperand(1);
2840    SDValue Index = Node->getOperand(2);
2841
2842    MVT PTy = TLI.getPointerTy();
2843    MachineFunction &MF = DAG.getMachineFunction();
2844    unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2845    Index= DAG.getNode(ISD::MUL, dl, PTy,
2846                        Index, DAG.getConstant(EntrySize, PTy));
2847    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2848
2849    MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
2850    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2851                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2852    Addr = LD;
2853    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2854      // For PIC, the sequence is:
2855      // BRIND(load(Jumptable + index) + RelocBase)
2856      // RelocBase can be JumpTable, GOT or some sort of global base.
2857      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2858                          TLI.getPICJumpTableRelocBase(Table, DAG));
2859    }
2860    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2861    Results.push_back(Tmp1);
2862    break;
2863  }
2864  case ISD::BRCOND:
2865    // Expand brcond's setcc into its constituent parts and create a BR_CC
2866    // Node.
2867    Tmp1 = Node->getOperand(0);
2868    Tmp2 = Node->getOperand(1);
2869    if (Tmp2.getOpcode() == ISD::SETCC) {
2870      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2871                         Tmp1, Tmp2.getOperand(2),
2872                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2873                         Node->getOperand(2));
2874    } else {
2875      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2876                         DAG.getCondCode(ISD::SETNE), Tmp2,
2877                         DAG.getConstant(0, Tmp2.getValueType()),
2878                         Node->getOperand(2));
2879    }
2880    Results.push_back(Tmp1);
2881    break;
2882  case ISD::SETCC: {
2883    Tmp1 = Node->getOperand(0);
2884    Tmp2 = Node->getOperand(1);
2885    Tmp3 = Node->getOperand(2);
2886    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2887
2888    // If we expanded the SETCC into an AND/OR, return the new node
2889    if (Tmp2.getNode() == 0) {
2890      Results.push_back(Tmp1);
2891      break;
2892    }
2893
2894    // Otherwise, SETCC for the given comparison type must be completely
2895    // illegal; expand it into a SELECT_CC.
2896    MVT VT = Node->getValueType(0);
2897    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2898                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2899    Results.push_back(Tmp1);
2900    break;
2901  }
2902  case ISD::SELECT_CC: {
2903    Tmp1 = Node->getOperand(0);   // LHS
2904    Tmp2 = Node->getOperand(1);   // RHS
2905    Tmp3 = Node->getOperand(2);   // True
2906    Tmp4 = Node->getOperand(3);   // False
2907    SDValue CC = Node->getOperand(4);
2908
2909    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2910                          Tmp1, Tmp2, CC, dl);
2911
2912    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2913    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2914    CC = DAG.getCondCode(ISD::SETNE);
2915    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2916                       Tmp3, Tmp4, CC);
2917    Results.push_back(Tmp1);
2918    break;
2919  }
2920  case ISD::BR_CC: {
2921    Tmp1 = Node->getOperand(0);              // Chain
2922    Tmp2 = Node->getOperand(2);              // LHS
2923    Tmp3 = Node->getOperand(3);              // RHS
2924    Tmp4 = Node->getOperand(1);              // CC
2925
2926    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2927                          Tmp2, Tmp3, Tmp4, dl);
2928    LastCALLSEQ_END = DAG.getEntryNode();
2929
2930    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2931    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2932    Tmp4 = DAG.getCondCode(ISD::SETNE);
2933    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2934                       Tmp3, Node->getOperand(4));
2935    Results.push_back(Tmp1);
2936    break;
2937  }
2938  case ISD::GLOBAL_OFFSET_TABLE:
2939  case ISD::GlobalAddress:
2940  case ISD::GlobalTLSAddress:
2941  case ISD::ExternalSymbol:
2942  case ISD::ConstantPool:
2943  case ISD::JumpTable:
2944  case ISD::INTRINSIC_W_CHAIN:
2945  case ISD::INTRINSIC_WO_CHAIN:
2946  case ISD::INTRINSIC_VOID:
2947    // FIXME: Custom lowering for these operations shouldn't return null!
2948    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2949      Results.push_back(SDValue(Node, i));
2950    break;
2951  }
2952}
2953void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2954                                       SmallVectorImpl<SDValue> &Results) {
2955  MVT OVT = Node->getValueType(0);
2956  if (Node->getOpcode() == ISD::UINT_TO_FP ||
2957      Node->getOpcode() == ISD::SINT_TO_FP) {
2958    OVT = Node->getOperand(0).getValueType();
2959  }
2960  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2961  DebugLoc dl = Node->getDebugLoc();
2962  SDValue Tmp1, Tmp2, Tmp3;
2963  switch (Node->getOpcode()) {
2964  case ISD::CTTZ:
2965  case ISD::CTLZ:
2966  case ISD::CTPOP:
2967    // Zero extend the argument.
2968    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2969    // Perform the larger operation.
2970    Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1);
2971    if (Node->getOpcode() == ISD::CTTZ) {
2972      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2973      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2974                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2975                          ISD::SETEQ);
2976      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2977                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2978    } else if (Node->getOpcode() == ISD::CTLZ) {
2979      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2980      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
2981                          DAG.getConstant(NVT.getSizeInBits() -
2982                                          OVT.getSizeInBits(), NVT));
2983    }
2984    Results.push_back(Tmp1);
2985    break;
2986  case ISD::BSWAP: {
2987    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
2988    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
2989    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
2990    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
2991                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
2992    Results.push_back(Tmp1);
2993    break;
2994  }
2995  case ISD::FP_TO_UINT:
2996  case ISD::FP_TO_SINT:
2997    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
2998                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
2999    Results.push_back(Tmp1);
3000    break;
3001  case ISD::UINT_TO_FP:
3002  case ISD::SINT_TO_FP:
3003    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3004                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3005    Results.push_back(Tmp1);
3006    break;
3007  case ISD::AND:
3008  case ISD::OR:
3009  case ISD::XOR:
3010    assert(OVT.isVector() && "Don't know how to promote scalar logic ops");
3011    // Bit convert each of the values to the new type.
3012    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3013    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3014    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3015    // Bit convert the result back the original type.
3016    Results.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1));
3017    break;
3018  case ISD::SELECT:
3019    unsigned ExtOp, TruncOp;
3020    if (Node->getValueType(0).isVector()) {
3021      ExtOp   = ISD::BIT_CONVERT;
3022      TruncOp = ISD::BIT_CONVERT;
3023    } else if (Node->getValueType(0).isInteger()) {
3024      ExtOp   = ISD::ANY_EXTEND;
3025      TruncOp = ISD::TRUNCATE;
3026    } else {
3027      ExtOp   = ISD::FP_EXTEND;
3028      TruncOp = ISD::FP_ROUND;
3029    }
3030    Tmp1 = Node->getOperand(0);
3031    // Promote each of the values to the new type.
3032    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3033    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3034    // Perform the larger operation, then round down.
3035    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3036    if (TruncOp != ISD::FP_ROUND)
3037      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3038    else
3039      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3040                         DAG.getIntPtrConstant(0));
3041    Results.push_back(Tmp1);
3042    break;
3043  case ISD::VECTOR_SHUFFLE: {
3044    SmallVector<int, 8> Mask;
3045    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3046
3047    // Cast the two input vectors.
3048    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3049    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3050
3051    // Convert the shuffle mask to the right # elements.
3052    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3053    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3054    Results.push_back(Tmp1);
3055    break;
3056  }
3057  case ISD::SETCC: {
3058    // First step, figure out the appropriate operation to use.
3059    // Allow SETCC to not be supported for all legal data types
3060    // Mostly this targets FP
3061    MVT NewInTy = Node->getOperand(0).getValueType();
3062    MVT OldVT = NewInTy; OldVT = OldVT;
3063
3064    // Scan for the appropriate larger type to use.
3065    while (1) {
3066      NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
3067
3068      assert(NewInTy.isInteger() == OldVT.isInteger() &&
3069              "Fell off of the edge of the integer world");
3070      assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() &&
3071              "Fell off of the edge of the floating point world");
3072
3073      // If the target supports SETCC of this type, use it.
3074      if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy))
3075        break;
3076    }
3077    if (NewInTy.isInteger())
3078      assert(0 && "Cannot promote Legal Integer SETCC yet");
3079    else {
3080      Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1);
3081      Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2);
3082    }
3083    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3084                                  Tmp1, Tmp2, Node->getOperand(2)));
3085    break;
3086  }
3087  }
3088}
3089
3090// SelectionDAG::Legalize - This is the entry point for the file.
3091//
3092void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3093                            CodeGenOpt::Level OptLevel) {
3094  /// run - This is the main entry point to this class.
3095  ///
3096  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3097}
3098
3099