LegalizeDAG.cpp revision bd448e3ca993226084d7f53445388fcd8e46b996
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include <map>
41using namespace llvm;
42
43//===----------------------------------------------------------------------===//
44/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
45/// hacks on it until the target machine can handle it.  This involves
46/// eliminating value sizes the machine cannot handle (promoting small sizes to
47/// large sizes or splitting up large values into small values) as well as
48/// eliminating operations the machine cannot handle.
49///
50/// This code also does a small amount of optimization and recognition of idioms
51/// as part of its processing.  For example, if a target does not support a
52/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
53/// will attempt merge setcc and brc instructions into brcc's.
54///
55namespace {
56class VISIBILITY_HIDDEN SelectionDAGLegalize {
57  TargetLowering &TLI;
58  SelectionDAG &DAG;
59  CodeGenOpt::Level OptLevel;
60
61  // Libcall insertion helpers.
62
63  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64  /// legalized.  We use this to ensure that calls are properly serialized
65  /// against each other, including inserted libcalls.
66  SDValue LastCALLSEQ_END;
67
68  /// IsLegalizingCall - This member is used *only* for purposes of providing
69  /// helpful assertions that a libcall isn't created while another call is
70  /// being legalized (which could lead to non-serialized call sequences).
71  bool IsLegalizingCall;
72
73  enum LegalizeAction {
74    Legal,      // The target natively supports this operation.
75    Promote,    // This operation should be executed in a larger type.
76    Expand      // Try to expand this to other ops, otherwise use a libcall.
77  };
78
79  /// ValueTypeActions - This is a bitvector that contains two bits for each
80  /// value type, where the two bits correspond to the LegalizeAction enum.
81  /// This can be queried with "getTypeAction(VT)".
82  TargetLowering::ValueTypeActionImpl ValueTypeActions;
83
84  /// LegalizedNodes - For nodes that are of legal width, and that have more
85  /// than one use, this map indicates what regularized operand to use.  This
86  /// allows us to avoid legalizing the same thing more than once.
87  DenseMap<SDValue, SDValue> LegalizedNodes;
88
89  void AddLegalizedOperand(SDValue From, SDValue To) {
90    LegalizedNodes.insert(std::make_pair(From, To));
91    // If someone requests legalization of the new node, return itself.
92    if (From != To)
93      LegalizedNodes.insert(std::make_pair(To, To));
94  }
95
96public:
97  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
98
99  /// getTypeAction - Return how we should legalize values of this type, either
100  /// it is already legal or we need to expand it into multiple registers of
101  /// smaller integer type, or we need to promote it to a larger type.
102  LegalizeAction getTypeAction(MVT VT) const {
103    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
104  }
105
106  /// isTypeLegal - Return true if this type is legal on this target.
107  ///
108  bool isTypeLegal(MVT VT) const {
109    return getTypeAction(VT) == Legal;
110  }
111
112  void LegalizeDAG();
113
114private:
115  /// LegalizeOp - We know that the specified value has a legal type.
116  /// Recursively ensure that the operands have legal types, then return the
117  /// result.
118  SDValue LegalizeOp(SDValue O);
119
120  SDValue OptimizeFloatStore(StoreSDNode *ST);
121
122  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
123  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
124  /// is necessary to spill the vector being inserted into to memory, perform
125  /// the insert there, and then read the result back.
126  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
127                                         SDValue Idx, DebugLoc dl);
128  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
129                                  SDValue Idx, DebugLoc dl);
130
131  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
132  /// performs the same shuffe in terms of order or result bytes, but on a type
133  /// whose vector element type is narrower than the original shuffle type.
134  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
135  SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
136                                     SDValue N1, SDValue N2,
137                                     SmallVectorImpl<int> &Mask) const;
138
139  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
140                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
141
142  void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
143                             DebugLoc dl);
144
145  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
146  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
147                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
148                          RTLIB::Libcall Call_PPCF128);
149  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
150                           RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
151                           RTLIB::Libcall Call_I128);
152
153  SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
154  SDValue ExpandBUILD_VECTOR(SDNode *Node);
155  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
156  SDValue ExpandDBG_STOPPOINT(SDNode *Node);
157  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
158                                SmallVectorImpl<SDValue> &Results);
159  SDValue ExpandFCOPYSIGN(SDNode *Node);
160  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
161                               DebugLoc dl);
162  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
163                                DebugLoc dl);
164  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
165                                DebugLoc dl);
166
167  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
168  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
169
170  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
171  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
172
173  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
174  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
175};
176}
177
178/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
179/// performs the same shuffe in terms of order or result bytes, but on a type
180/// whose vector element type is narrower than the original shuffle type.
181/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
182SDValue
183SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT,  DebugLoc dl,
184                                                 SDValue N1, SDValue N2,
185                                             SmallVectorImpl<int> &Mask) const {
186  MVT EltVT = NVT.getVectorElementType();
187  unsigned NumMaskElts = VT.getVectorNumElements();
188  unsigned NumDestElts = NVT.getVectorNumElements();
189  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
190
191  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
192
193  if (NumEltsGrowth == 1)
194    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
195
196  SmallVector<int, 8> NewMask;
197  for (unsigned i = 0; i != NumMaskElts; ++i) {
198    int Idx = Mask[i];
199    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
200      if (Idx < 0)
201        NewMask.push_back(-1);
202      else
203        NewMask.push_back(Idx * NumEltsGrowth + j);
204    }
205  }
206  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
207  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
208  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
209}
210
211SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
212                                           CodeGenOpt::Level ol)
213  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
214    ValueTypeActions(TLI.getValueTypeActions()) {
215  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
216         "Too many value types for ValueTypeActions to hold!");
217}
218
219void SelectionDAGLegalize::LegalizeDAG() {
220  LastCALLSEQ_END = DAG.getEntryNode();
221  IsLegalizingCall = false;
222
223  // The legalize process is inherently a bottom-up recursive process (users
224  // legalize their uses before themselves).  Given infinite stack space, we
225  // could just start legalizing on the root and traverse the whole graph.  In
226  // practice however, this causes us to run out of stack space on large basic
227  // blocks.  To avoid this problem, compute an ordering of the nodes where each
228  // node is only legalized after all of its operands are legalized.
229  DAG.AssignTopologicalOrder();
230  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
231       E = prior(DAG.allnodes_end()); I != next(E); ++I)
232    LegalizeOp(SDValue(I, 0));
233
234  // Finally, it's possible the root changed.  Get the new root.
235  SDValue OldRoot = DAG.getRoot();
236  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
237  DAG.setRoot(LegalizedNodes[OldRoot]);
238
239  LegalizedNodes.clear();
240
241  // Remove dead nodes now.
242  DAG.RemoveDeadNodes();
243}
244
245
246/// FindCallEndFromCallStart - Given a chained node that is part of a call
247/// sequence, find the CALLSEQ_END node that terminates the call sequence.
248static SDNode *FindCallEndFromCallStart(SDNode *Node) {
249  if (Node->getOpcode() == ISD::CALLSEQ_END)
250    return Node;
251  if (Node->use_empty())
252    return 0;   // No CallSeqEnd
253
254  // The chain is usually at the end.
255  SDValue TheChain(Node, Node->getNumValues()-1);
256  if (TheChain.getValueType() != MVT::Other) {
257    // Sometimes it's at the beginning.
258    TheChain = SDValue(Node, 0);
259    if (TheChain.getValueType() != MVT::Other) {
260      // Otherwise, hunt for it.
261      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
262        if (Node->getValueType(i) == MVT::Other) {
263          TheChain = SDValue(Node, i);
264          break;
265        }
266
267      // Otherwise, we walked into a node without a chain.
268      if (TheChain.getValueType() != MVT::Other)
269        return 0;
270    }
271  }
272
273  for (SDNode::use_iterator UI = Node->use_begin(),
274       E = Node->use_end(); UI != E; ++UI) {
275
276    // Make sure to only follow users of our token chain.
277    SDNode *User = *UI;
278    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
279      if (User->getOperand(i) == TheChain)
280        if (SDNode *Result = FindCallEndFromCallStart(User))
281          return Result;
282  }
283  return 0;
284}
285
286/// FindCallStartFromCallEnd - Given a chained node that is part of a call
287/// sequence, find the CALLSEQ_START node that initiates the call sequence.
288static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
289  assert(Node && "Didn't find callseq_start for a call??");
290  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
291
292  assert(Node->getOperand(0).getValueType() == MVT::Other &&
293         "Node doesn't have a token chain argument!");
294  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
295}
296
297/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
298/// see if any uses can reach Dest.  If no dest operands can get to dest,
299/// legalize them, legalize ourself, and return false, otherwise, return true.
300///
301/// Keep track of the nodes we fine that actually do lead to Dest in
302/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
303///
304bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
305                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
306  if (N == Dest) return true;  // N certainly leads to Dest :)
307
308  // If we've already processed this node and it does lead to Dest, there is no
309  // need to reprocess it.
310  if (NodesLeadingTo.count(N)) return true;
311
312  // If the first result of this node has been already legalized, then it cannot
313  // reach N.
314  if (LegalizedNodes.count(SDValue(N, 0))) return false;
315
316  // Okay, this node has not already been legalized.  Check and legalize all
317  // operands.  If none lead to Dest, then we can legalize this node.
318  bool OperandsLeadToDest = false;
319  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
320    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
321      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
322
323  if (OperandsLeadToDest) {
324    NodesLeadingTo.insert(N);
325    return true;
326  }
327
328  // Okay, this node looks safe, legalize it and return false.
329  LegalizeOp(SDValue(N, 0));
330  return false;
331}
332
333/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
334/// a load from the constant pool.
335static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
336                                SelectionDAG &DAG, const TargetLowering &TLI) {
337  bool Extend = false;
338  DebugLoc dl = CFP->getDebugLoc();
339
340  // If a FP immediate is precise when represented as a float and if the
341  // target can do an extending load from float to double, we put it into
342  // the constant pool as a float, even if it's is statically typed as a
343  // double.  This shrinks FP constants and canonicalizes them for targets where
344  // an FP extending load is the same cost as a normal load (such as on the x87
345  // fp stack or PPC FP unit).
346  MVT VT = CFP->getValueType(0);
347  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
348  if (!UseCP) {
349    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
350    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
351                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
352  }
353
354  MVT OrigVT = VT;
355  MVT SVT = VT;
356  while (SVT != MVT::f32) {
357    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
358    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
359        // Only do this if the target has a native EXTLOAD instruction from
360        // smaller type.
361        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
362        TLI.ShouldShrinkFPConstant(OrigVT)) {
363      const Type *SType = SVT.getTypeForMVT(*DAG.getContext());
364      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
365      VT = SVT;
366      Extend = true;
367    }
368  }
369
370  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
371  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
372  if (Extend)
373    return DAG.getExtLoad(ISD::EXTLOAD, dl,
374                          OrigVT, DAG.getEntryNode(),
375                          CPIdx, PseudoSourceValue::getConstantPool(),
376                          0, VT, false, Alignment);
377  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
378                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
379}
380
381/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
382static
383SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
384                             const TargetLowering &TLI) {
385  SDValue Chain = ST->getChain();
386  SDValue Ptr = ST->getBasePtr();
387  SDValue Val = ST->getValue();
388  MVT VT = Val.getValueType();
389  int Alignment = ST->getAlignment();
390  int SVOffset = ST->getSrcValueOffset();
391  DebugLoc dl = ST->getDebugLoc();
392  if (ST->getMemoryVT().isFloatingPoint() ||
393      ST->getMemoryVT().isVector()) {
394    MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
395    if (TLI.isTypeLegal(intVT)) {
396      // Expand to a bitconvert of the value to the integer type of the
397      // same size, then a (misaligned) int store.
398      // FIXME: Does not handle truncating floating point stores!
399      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
400      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
401                          SVOffset, ST->isVolatile(), Alignment);
402    } else {
403      // Do a (aligned) store to a stack slot, then copy from the stack slot
404      // to the final destination using (unaligned) integer loads and stores.
405      MVT StoredVT = ST->getMemoryVT();
406      MVT RegVT =
407        TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
408      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
409      unsigned RegBytes = RegVT.getSizeInBits() / 8;
410      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
411
412      // Make sure the stack slot is also aligned for the register type.
413      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
414
415      // Perform the original store, only redirected to the stack slot.
416      SDValue Store = DAG.getTruncStore(Chain, dl,
417                                        Val, StackPtr, NULL, 0, StoredVT);
418      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
419      SmallVector<SDValue, 8> Stores;
420      unsigned Offset = 0;
421
422      // Do all but one copies using the full register width.
423      for (unsigned i = 1; i < NumRegs; i++) {
424        // Load one integer register's worth from the stack slot.
425        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
426        // Store it to the final location.  Remember the store.
427        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
428                                      ST->getSrcValue(), SVOffset + Offset,
429                                      ST->isVolatile(),
430                                      MinAlign(ST->getAlignment(), Offset)));
431        // Increment the pointers.
432        Offset += RegBytes;
433        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
434                               Increment);
435        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
436      }
437
438      // The last store may be partial.  Do a truncating store.  On big-endian
439      // machines this requires an extending load from the stack slot to ensure
440      // that the bits are in the right place.
441      MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
442
443      // Load from the stack slot.
444      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
445                                    NULL, 0, MemVT);
446
447      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
448                                         ST->getSrcValue(), SVOffset + Offset,
449                                         MemVT, ST->isVolatile(),
450                                         MinAlign(ST->getAlignment(), Offset)));
451      // The order of the stores doesn't matter - say it with a TokenFactor.
452      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
453                         Stores.size());
454    }
455  }
456  assert(ST->getMemoryVT().isInteger() &&
457         !ST->getMemoryVT().isVector() &&
458         "Unaligned store of unknown type.");
459  // Get the half-size VT
460  MVT NewStoredVT =
461    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
462  int NumBits = NewStoredVT.getSizeInBits();
463  int IncrementSize = NumBits / 8;
464
465  // Divide the stored value in two parts.
466  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
467  SDValue Lo = Val;
468  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
469
470  // Store the two parts
471  SDValue Store1, Store2;
472  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
473                             ST->getSrcValue(), SVOffset, NewStoredVT,
474                             ST->isVolatile(), Alignment);
475  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
476                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
477  Alignment = MinAlign(Alignment, IncrementSize);
478  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
479                             ST->getSrcValue(), SVOffset + IncrementSize,
480                             NewStoredVT, ST->isVolatile(), Alignment);
481
482  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
483}
484
485/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
486static
487SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
488                            const TargetLowering &TLI) {
489  int SVOffset = LD->getSrcValueOffset();
490  SDValue Chain = LD->getChain();
491  SDValue Ptr = LD->getBasePtr();
492  MVT VT = LD->getValueType(0);
493  MVT LoadedVT = LD->getMemoryVT();
494  DebugLoc dl = LD->getDebugLoc();
495  if (VT.isFloatingPoint() || VT.isVector()) {
496    MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
497    if (TLI.isTypeLegal(intVT)) {
498      // Expand to a (misaligned) integer load of the same size,
499      // then bitconvert to floating point or vector.
500      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
501                                    SVOffset, LD->isVolatile(),
502                                    LD->getAlignment());
503      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
504      if (VT.isFloatingPoint() && LoadedVT != VT)
505        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
506
507      SDValue Ops[] = { Result, Chain };
508      return DAG.getMergeValues(Ops, 2, dl);
509    } else {
510      // Copy the value to a (aligned) stack slot using (unaligned) integer
511      // loads and stores, then do a (aligned) load from the stack slot.
512      MVT RegVT = TLI.getRegisterType(intVT);
513      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
514      unsigned RegBytes = RegVT.getSizeInBits() / 8;
515      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
516
517      // Make sure the stack slot is also aligned for the register type.
518      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
519
520      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
521      SmallVector<SDValue, 8> Stores;
522      SDValue StackPtr = StackBase;
523      unsigned Offset = 0;
524
525      // Do all but one copies using the full register width.
526      for (unsigned i = 1; i < NumRegs; i++) {
527        // Load one integer register's worth from the original location.
528        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
529                                   SVOffset + Offset, LD->isVolatile(),
530                                   MinAlign(LD->getAlignment(), Offset));
531        // Follow the load with a store to the stack slot.  Remember the store.
532        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
533                                      NULL, 0));
534        // Increment the pointers.
535        Offset += RegBytes;
536        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
537        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
538                               Increment);
539      }
540
541      // The last copy may be partial.  Do an extending load.
542      MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
543      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
544                                    LD->getSrcValue(), SVOffset + Offset,
545                                    MemVT, LD->isVolatile(),
546                                    MinAlign(LD->getAlignment(), Offset));
547      // Follow the load with a store to the stack slot.  Remember the store.
548      // On big-endian machines this requires a truncating store to ensure
549      // that the bits end up in the right place.
550      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
551                                         NULL, 0, MemVT));
552
553      // The order of the stores doesn't matter - say it with a TokenFactor.
554      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
555                               Stores.size());
556
557      // Finally, perform the original load only redirected to the stack slot.
558      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
559                            NULL, 0, LoadedVT);
560
561      // Callers expect a MERGE_VALUES node.
562      SDValue Ops[] = { Load, TF };
563      return DAG.getMergeValues(Ops, 2, dl);
564    }
565  }
566  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
567         "Unaligned load of unsupported type.");
568
569  // Compute the new VT that is half the size of the old one.  This is an
570  // integer MVT.
571  unsigned NumBits = LoadedVT.getSizeInBits();
572  MVT NewLoadedVT;
573  NewLoadedVT = MVT::getIntegerVT(NumBits/2);
574  NumBits >>= 1;
575
576  unsigned Alignment = LD->getAlignment();
577  unsigned IncrementSize = NumBits / 8;
578  ISD::LoadExtType HiExtType = LD->getExtensionType();
579
580  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
581  if (HiExtType == ISD::NON_EXTLOAD)
582    HiExtType = ISD::ZEXTLOAD;
583
584  // Load the value in two parts
585  SDValue Lo, Hi;
586  if (TLI.isLittleEndian()) {
587    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
588                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
589    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
590                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
591    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
592                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
593                        MinAlign(Alignment, IncrementSize));
594  } else {
595    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
596                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
597    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
598                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
599    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
600                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
601                        MinAlign(Alignment, IncrementSize));
602  }
603
604  // aggregate the two parts
605  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
606  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
607  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
608
609  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
610                             Hi.getValue(1));
611
612  SDValue Ops[] = { Result, TF };
613  return DAG.getMergeValues(Ops, 2, dl);
614}
615
616/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
617/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
618/// is necessary to spill the vector being inserted into to memory, perform
619/// the insert there, and then read the result back.
620SDValue SelectionDAGLegalize::
621PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
622                               DebugLoc dl) {
623  SDValue Tmp1 = Vec;
624  SDValue Tmp2 = Val;
625  SDValue Tmp3 = Idx;
626
627  // If the target doesn't support this, we have to spill the input vector
628  // to a temporary stack slot, update the element, then reload it.  This is
629  // badness.  We could also load the value into a vector register (either
630  // with a "move to register" or "extload into register" instruction, then
631  // permute it into place, if the idx is a constant and if the idx is
632  // supported by the target.
633  MVT VT    = Tmp1.getValueType();
634  MVT EltVT = VT.getVectorElementType();
635  MVT IdxVT = Tmp3.getValueType();
636  MVT PtrVT = TLI.getPointerTy();
637  SDValue StackPtr = DAG.CreateStackTemporary(VT);
638
639  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
640
641  // Store the vector.
642  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
643                            PseudoSourceValue::getFixedStack(SPFI), 0);
644
645  // Truncate or zero extend offset to target pointer type.
646  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
647  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
648  // Add the offset to the index.
649  unsigned EltSize = EltVT.getSizeInBits()/8;
650  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
651  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
652  // Store the scalar value.
653  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
654                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
655  // Load the updated vector.
656  return DAG.getLoad(VT, dl, Ch, StackPtr,
657                     PseudoSourceValue::getFixedStack(SPFI), 0);
658}
659
660
661SDValue SelectionDAGLegalize::
662ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
663  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
664    // SCALAR_TO_VECTOR requires that the type of the value being inserted
665    // match the element type of the vector being created, except for
666    // integers in which case the inserted value can be over width.
667    MVT EltVT = Vec.getValueType().getVectorElementType();
668    if (Val.getValueType() == EltVT ||
669        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
670      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
671                                  Vec.getValueType(), Val);
672
673      unsigned NumElts = Vec.getValueType().getVectorNumElements();
674      // We generate a shuffle of InVec and ScVec, so the shuffle mask
675      // should be 0,1,2,3,4,5... with the appropriate element replaced with
676      // elt 0 of the RHS.
677      SmallVector<int, 8> ShufOps;
678      for (unsigned i = 0; i != NumElts; ++i)
679        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
680
681      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
682                                  &ShufOps[0]);
683    }
684  }
685  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
686}
687
688SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
689  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
690  // FIXME: We shouldn't do this for TargetConstantFP's.
691  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
692  // to phase ordering between legalized code and the dag combiner.  This
693  // probably means that we need to integrate dag combiner and legalizer
694  // together.
695  // We generally can't do this one for long doubles.
696  SDValue Tmp1 = ST->getChain();
697  SDValue Tmp2 = ST->getBasePtr();
698  SDValue Tmp3;
699  int SVOffset = ST->getSrcValueOffset();
700  unsigned Alignment = ST->getAlignment();
701  bool isVolatile = ST->isVolatile();
702  DebugLoc dl = ST->getDebugLoc();
703  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
704    if (CFP->getValueType(0) == MVT::f32 &&
705        getTypeAction(MVT::i32) == Legal) {
706      Tmp3 = DAG.getConstant(CFP->getValueAPF().
707                                      bitcastToAPInt().zextOrTrunc(32),
708                              MVT::i32);
709      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
710                          SVOffset, isVolatile, Alignment);
711    } else if (CFP->getValueType(0) == MVT::f64) {
712      // If this target supports 64-bit registers, do a single 64-bit store.
713      if (getTypeAction(MVT::i64) == Legal) {
714        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
715                                  zextOrTrunc(64), MVT::i64);
716        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
717                            SVOffset, isVolatile, Alignment);
718      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
719        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
720        // stores.  If the target supports neither 32- nor 64-bits, this
721        // xform is certainly not worth it.
722        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
723        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
724        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
725        if (TLI.isBigEndian()) std::swap(Lo, Hi);
726
727        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
728                          SVOffset, isVolatile, Alignment);
729        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
730                            DAG.getIntPtrConstant(4));
731        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
732                          isVolatile, MinAlign(Alignment, 4U));
733
734        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
735      }
736    }
737  }
738  return SDValue();
739}
740
741/// LegalizeOp - We know that the specified value has a legal type, and
742/// that its operands are legal.  Now ensure that the operation itself
743/// is legal, recursively ensuring that the operands' operations remain
744/// legal.
745SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
746  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
747    return Op;
748
749  SDNode *Node = Op.getNode();
750  DebugLoc dl = Node->getDebugLoc();
751
752  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
753    assert(getTypeAction(Node->getValueType(i)) == Legal &&
754           "Unexpected illegal type!");
755
756  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
757    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
758            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
759           "Unexpected illegal type!");
760
761  // Note that LegalizeOp may be reentered even from single-use nodes, which
762  // means that we always must cache transformed nodes.
763  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
764  if (I != LegalizedNodes.end()) return I->second;
765
766  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
767  SDValue Result = Op;
768  bool isCustom = false;
769
770  // Figure out the correct action; the way to query this varies by opcode
771  TargetLowering::LegalizeAction Action;
772  bool SimpleFinishLegalizing = true;
773  switch (Node->getOpcode()) {
774  case ISD::INTRINSIC_W_CHAIN:
775  case ISD::INTRINSIC_WO_CHAIN:
776  case ISD::INTRINSIC_VOID:
777  case ISD::VAARG:
778  case ISD::STACKSAVE:
779    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
780    break;
781  case ISD::SINT_TO_FP:
782  case ISD::UINT_TO_FP:
783  case ISD::EXTRACT_VECTOR_ELT:
784    Action = TLI.getOperationAction(Node->getOpcode(),
785                                    Node->getOperand(0).getValueType());
786    break;
787  case ISD::FP_ROUND_INREG:
788  case ISD::SIGN_EXTEND_INREG: {
789    MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
790    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
791    break;
792  }
793  case ISD::SELECT_CC:
794  case ISD::SETCC:
795  case ISD::BR_CC: {
796    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
797                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
798    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
799    MVT OpVT = Node->getOperand(CompareOperand).getValueType();
800    ISD::CondCode CCCode =
801        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
802    Action = TLI.getCondCodeAction(CCCode, OpVT);
803    if (Action == TargetLowering::Legal) {
804      if (Node->getOpcode() == ISD::SELECT_CC)
805        Action = TLI.getOperationAction(Node->getOpcode(),
806                                        Node->getValueType(0));
807      else
808        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
809    }
810    break;
811  }
812  case ISD::LOAD:
813  case ISD::STORE:
814    // FIXME: Model these properly.  LOAD and STORE are complicated, and
815    // STORE expects the unlegalized operand in some cases.
816    SimpleFinishLegalizing = false;
817    break;
818  case ISD::CALLSEQ_START:
819  case ISD::CALLSEQ_END:
820    // FIXME: This shouldn't be necessary.  These nodes have special properties
821    // dealing with the recursive nature of legalization.  Removing this
822    // special case should be done as part of making LegalizeDAG non-recursive.
823    SimpleFinishLegalizing = false;
824    break;
825  case ISD::CALL:
826    // FIXME: Legalization for calls requires custom-lowering the call before
827    // legalizing the operands!  (I haven't looked into precisely why.)
828    SimpleFinishLegalizing = false;
829    break;
830  case ISD::EXTRACT_ELEMENT:
831  case ISD::FLT_ROUNDS_:
832  case ISD::SADDO:
833  case ISD::SSUBO:
834  case ISD::UADDO:
835  case ISD::USUBO:
836  case ISD::SMULO:
837  case ISD::UMULO:
838  case ISD::FPOWI:
839  case ISD::MERGE_VALUES:
840  case ISD::EH_RETURN:
841  case ISD::FRAME_TO_ARGS_OFFSET:
842    // These operations lie about being legal: when they claim to be legal,
843    // they should actually be expanded.
844    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
845    if (Action == TargetLowering::Legal)
846      Action = TargetLowering::Expand;
847    break;
848  case ISD::TRAMPOLINE:
849  case ISD::FRAMEADDR:
850  case ISD::RETURNADDR:
851  case ISD::FORMAL_ARGUMENTS:
852    // These operations lie about being legal: when they claim to be legal,
853    // they should actually be custom-lowered.
854    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
855    if (Action == TargetLowering::Legal)
856      Action = TargetLowering::Custom;
857    break;
858  case ISD::BUILD_VECTOR:
859    // A weird case: legalization for BUILD_VECTOR never legalizes the
860    // operands!
861    // FIXME: This really sucks... changing it isn't semantically incorrect,
862    // but it massively pessimizes the code for floating-point BUILD_VECTORs
863    // because ConstantFP operands get legalized into constant pool loads
864    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
865    // though, because BUILD_VECTORS usually get lowered into other nodes
866    // which get legalized properly.
867    SimpleFinishLegalizing = false;
868    break;
869  default:
870    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
871      Action = TargetLowering::Legal;
872    } else {
873      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
874    }
875    break;
876  }
877
878  if (SimpleFinishLegalizing) {
879    SmallVector<SDValue, 8> Ops, ResultVals;
880    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
881      Ops.push_back(LegalizeOp(Node->getOperand(i)));
882    switch (Node->getOpcode()) {
883    default: break;
884    case ISD::BR:
885    case ISD::BRIND:
886    case ISD::BR_JT:
887    case ISD::BR_CC:
888    case ISD::BRCOND:
889    case ISD::RET:
890      // Branches tweak the chain to include LastCALLSEQ_END
891      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
892                            LastCALLSEQ_END);
893      Ops[0] = LegalizeOp(Ops[0]);
894      LastCALLSEQ_END = DAG.getEntryNode();
895      break;
896    case ISD::SHL:
897    case ISD::SRL:
898    case ISD::SRA:
899    case ISD::ROTL:
900    case ISD::ROTR:
901      // Legalizing shifts/rotates requires adjusting the shift amount
902      // to the appropriate width.
903      if (!Ops[1].getValueType().isVector())
904        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
905      break;
906    }
907
908    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
909                                    Ops.size());
910    switch (Action) {
911    case TargetLowering::Legal:
912      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
913        ResultVals.push_back(Result.getValue(i));
914      break;
915    case TargetLowering::Custom:
916      // FIXME: The handling for custom lowering with multiple results is
917      // a complete mess.
918      Tmp1 = TLI.LowerOperation(Result, DAG);
919      if (Tmp1.getNode()) {
920        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
921          if (e == 1)
922            ResultVals.push_back(Tmp1);
923          else
924            ResultVals.push_back(Tmp1.getValue(i));
925        }
926        break;
927      }
928
929      // FALL THROUGH
930    case TargetLowering::Expand:
931      ExpandNode(Result.getNode(), ResultVals);
932      break;
933    case TargetLowering::Promote:
934      PromoteNode(Result.getNode(), ResultVals);
935      break;
936    }
937    if (!ResultVals.empty()) {
938      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
939        if (ResultVals[i] != SDValue(Node, i))
940          ResultVals[i] = LegalizeOp(ResultVals[i]);
941        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
942      }
943      return ResultVals[Op.getResNo()];
944    }
945  }
946
947  switch (Node->getOpcode()) {
948  default:
949#ifndef NDEBUG
950    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
951#endif
952    llvm_unreachable("Do not know how to legalize this operator!");
953  case ISD::CALL:
954    // The only option for this is to custom lower it.
955    Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
956    assert(Tmp3.getNode() && "Target didn't custom lower this node!");
957    // A call within a calling sequence must be legalized to something
958    // other than the normal CALLSEQ_END.  Violating this gets Legalize
959    // into an infinite loop.
960    assert ((!IsLegalizingCall ||
961             Node->getOpcode() != ISD::CALL ||
962             Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
963            "Nested CALLSEQ_START..CALLSEQ_END not supported.");
964
965    // The number of incoming and outgoing values should match; unless the final
966    // outgoing value is a flag.
967    assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
968            (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
969             Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
970               MVT::Flag)) &&
971           "Lowering call/formal_arguments produced unexpected # results!");
972
973    // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
974    // remember that we legalized all of them, so it doesn't get relegalized.
975    for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
976      if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
977        continue;
978      Tmp1 = LegalizeOp(Tmp3.getValue(i));
979      if (Op.getResNo() == i)
980        Tmp2 = Tmp1;
981      AddLegalizedOperand(SDValue(Node, i), Tmp1);
982    }
983    return Tmp2;
984  case ISD::BUILD_VECTOR:
985    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
986    default: llvm_unreachable("This action is not supported yet!");
987    case TargetLowering::Custom:
988      Tmp3 = TLI.LowerOperation(Result, DAG);
989      if (Tmp3.getNode()) {
990        Result = Tmp3;
991        break;
992      }
993      // FALLTHROUGH
994    case TargetLowering::Expand:
995      Result = ExpandBUILD_VECTOR(Result.getNode());
996      break;
997    }
998    break;
999  case ISD::CALLSEQ_START: {
1000    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1001
1002    // Recursively Legalize all of the inputs of the call end that do not lead
1003    // to this call start.  This ensures that any libcalls that need be inserted
1004    // are inserted *before* the CALLSEQ_START.
1005    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1006    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1007      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1008                                   NodesLeadingTo);
1009    }
1010
1011    // Now that we legalized all of the inputs (which may have inserted
1012    // libcalls) create the new CALLSEQ_START node.
1013    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1014
1015    // Merge in the last call, to ensure that this call start after the last
1016    // call ended.
1017    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1018      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1019                         Tmp1, LastCALLSEQ_END);
1020      Tmp1 = LegalizeOp(Tmp1);
1021    }
1022
1023    // Do not try to legalize the target-specific arguments (#1+).
1024    if (Tmp1 != Node->getOperand(0)) {
1025      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1026      Ops[0] = Tmp1;
1027      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1028    }
1029
1030    // Remember that the CALLSEQ_START is legalized.
1031    AddLegalizedOperand(Op.getValue(0), Result);
1032    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1033      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1034
1035    // Now that the callseq_start and all of the non-call nodes above this call
1036    // sequence have been legalized, legalize the call itself.  During this
1037    // process, no libcalls can/will be inserted, guaranteeing that no calls
1038    // can overlap.
1039    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1040    // Note that we are selecting this call!
1041    LastCALLSEQ_END = SDValue(CallEnd, 0);
1042    IsLegalizingCall = true;
1043
1044    // Legalize the call, starting from the CALLSEQ_END.
1045    LegalizeOp(LastCALLSEQ_END);
1046    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1047    return Result;
1048  }
1049  case ISD::CALLSEQ_END:
1050    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1051    // will cause this node to be legalized as well as handling libcalls right.
1052    if (LastCALLSEQ_END.getNode() != Node) {
1053      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1054      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1055      assert(I != LegalizedNodes.end() &&
1056             "Legalizing the call start should have legalized this node!");
1057      return I->second;
1058    }
1059
1060    // Otherwise, the call start has been legalized and everything is going
1061    // according to plan.  Just legalize ourselves normally here.
1062    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1063    // Do not try to legalize the target-specific arguments (#1+), except for
1064    // an optional flag input.
1065    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1066      if (Tmp1 != Node->getOperand(0)) {
1067        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1068        Ops[0] = Tmp1;
1069        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1070      }
1071    } else {
1072      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1073      if (Tmp1 != Node->getOperand(0) ||
1074          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1075        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1076        Ops[0] = Tmp1;
1077        Ops.back() = Tmp2;
1078        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1079      }
1080    }
1081    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1082    // This finishes up call legalization.
1083    IsLegalizingCall = false;
1084
1085    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1086    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1087    if (Node->getNumValues() == 2)
1088      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1089    return Result.getValue(Op.getResNo());
1090  case ISD::LOAD: {
1091    LoadSDNode *LD = cast<LoadSDNode>(Node);
1092    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1093    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1094
1095    ISD::LoadExtType ExtType = LD->getExtensionType();
1096    if (ExtType == ISD::NON_EXTLOAD) {
1097      MVT VT = Node->getValueType(0);
1098      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1099      Tmp3 = Result.getValue(0);
1100      Tmp4 = Result.getValue(1);
1101
1102      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1103      default: llvm_unreachable("This action is not supported yet!");
1104      case TargetLowering::Legal:
1105        // If this is an unaligned load and the target doesn't support it,
1106        // expand it.
1107        if (!TLI.allowsUnalignedMemoryAccesses()) {
1108          unsigned ABIAlignment = TLI.getTargetData()->
1109            getABITypeAlignment(LD->getMemoryVT().getTypeForMVT(
1110                                                            *DAG.getContext()));
1111          if (LD->getAlignment() < ABIAlignment){
1112            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1113                                         TLI);
1114            Tmp3 = Result.getOperand(0);
1115            Tmp4 = Result.getOperand(1);
1116            Tmp3 = LegalizeOp(Tmp3);
1117            Tmp4 = LegalizeOp(Tmp4);
1118          }
1119        }
1120        break;
1121      case TargetLowering::Custom:
1122        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1123        if (Tmp1.getNode()) {
1124          Tmp3 = LegalizeOp(Tmp1);
1125          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1126        }
1127        break;
1128      case TargetLowering::Promote: {
1129        // Only promote a load of vector type to another.
1130        assert(VT.isVector() && "Cannot promote this load!");
1131        // Change base type to a different vector type.
1132        MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1133
1134        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1135                           LD->getSrcValueOffset(),
1136                           LD->isVolatile(), LD->getAlignment());
1137        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1138        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1139        break;
1140      }
1141      }
1142      // Since loads produce two values, make sure to remember that we
1143      // legalized both of them.
1144      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1145      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1146      return Op.getResNo() ? Tmp4 : Tmp3;
1147    } else {
1148      MVT SrcVT = LD->getMemoryVT();
1149      unsigned SrcWidth = SrcVT.getSizeInBits();
1150      int SVOffset = LD->getSrcValueOffset();
1151      unsigned Alignment = LD->getAlignment();
1152      bool isVolatile = LD->isVolatile();
1153
1154      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1155          // Some targets pretend to have an i1 loading operation, and actually
1156          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1157          // bits are guaranteed to be zero; it helps the optimizers understand
1158          // that these bits are zero.  It is also useful for EXTLOAD, since it
1159          // tells the optimizers that those bits are undefined.  It would be
1160          // nice to have an effective generic way of getting these benefits...
1161          // Until such a way is found, don't insist on promoting i1 here.
1162          (SrcVT != MVT::i1 ||
1163           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1164        // Promote to a byte-sized load if not loading an integral number of
1165        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1166        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1167        MVT NVT = MVT::getIntegerVT(NewWidth);
1168        SDValue Ch;
1169
1170        // The extra bits are guaranteed to be zero, since we stored them that
1171        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1172
1173        ISD::LoadExtType NewExtType =
1174          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1175
1176        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1177                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1178                                NVT, isVolatile, Alignment);
1179
1180        Ch = Result.getValue(1); // The chain.
1181
1182        if (ExtType == ISD::SEXTLOAD)
1183          // Having the top bits zero doesn't help when sign extending.
1184          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1185                               Result.getValueType(),
1186                               Result, DAG.getValueType(SrcVT));
1187        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1188          // All the top bits are guaranteed to be zero - inform the optimizers.
1189          Result = DAG.getNode(ISD::AssertZext, dl,
1190                               Result.getValueType(), Result,
1191                               DAG.getValueType(SrcVT));
1192
1193        Tmp1 = LegalizeOp(Result);
1194        Tmp2 = LegalizeOp(Ch);
1195      } else if (SrcWidth & (SrcWidth - 1)) {
1196        // If not loading a power-of-2 number of bits, expand as two loads.
1197        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1198               "Unsupported extload!");
1199        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1200        assert(RoundWidth < SrcWidth);
1201        unsigned ExtraWidth = SrcWidth - RoundWidth;
1202        assert(ExtraWidth < RoundWidth);
1203        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1204               "Load size not an integral number of bytes!");
1205        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1206        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1207        SDValue Lo, Hi, Ch;
1208        unsigned IncrementSize;
1209
1210        if (TLI.isLittleEndian()) {
1211          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1212          // Load the bottom RoundWidth bits.
1213          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1214                              Node->getValueType(0), Tmp1, Tmp2,
1215                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1216                              Alignment);
1217
1218          // Load the remaining ExtraWidth bits.
1219          IncrementSize = RoundWidth / 8;
1220          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1221                             DAG.getIntPtrConstant(IncrementSize));
1222          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1223                              LD->getSrcValue(), SVOffset + IncrementSize,
1224                              ExtraVT, isVolatile,
1225                              MinAlign(Alignment, IncrementSize));
1226
1227          // Build a factor node to remember that this load is independent of the
1228          // other one.
1229          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1230                           Hi.getValue(1));
1231
1232          // Move the top bits to the right place.
1233          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1234                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1235
1236          // Join the hi and lo parts.
1237          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1238        } else {
1239          // Big endian - avoid unaligned loads.
1240          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1241          // Load the top RoundWidth bits.
1242          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1243                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1244                              Alignment);
1245
1246          // Load the remaining ExtraWidth bits.
1247          IncrementSize = RoundWidth / 8;
1248          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1249                             DAG.getIntPtrConstant(IncrementSize));
1250          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1251                              Node->getValueType(0), Tmp1, Tmp2,
1252                              LD->getSrcValue(), SVOffset + IncrementSize,
1253                              ExtraVT, isVolatile,
1254                              MinAlign(Alignment, IncrementSize));
1255
1256          // Build a factor node to remember that this load is independent of the
1257          // other one.
1258          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1259                           Hi.getValue(1));
1260
1261          // Move the top bits to the right place.
1262          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1263                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1264
1265          // Join the hi and lo parts.
1266          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1267        }
1268
1269        Tmp1 = LegalizeOp(Result);
1270        Tmp2 = LegalizeOp(Ch);
1271      } else {
1272        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1273        default: llvm_unreachable("This action is not supported yet!");
1274        case TargetLowering::Custom:
1275          isCustom = true;
1276          // FALLTHROUGH
1277        case TargetLowering::Legal:
1278          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1279          Tmp1 = Result.getValue(0);
1280          Tmp2 = Result.getValue(1);
1281
1282          if (isCustom) {
1283            Tmp3 = TLI.LowerOperation(Result, DAG);
1284            if (Tmp3.getNode()) {
1285              Tmp1 = LegalizeOp(Tmp3);
1286              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1287            }
1288          } else {
1289            // If this is an unaligned load and the target doesn't support it,
1290            // expand it.
1291            if (!TLI.allowsUnalignedMemoryAccesses()) {
1292              unsigned ABIAlignment = TLI.getTargetData()->
1293                getABITypeAlignment(LD->getMemoryVT().getTypeForMVT(
1294                                                            *DAG.getContext()));
1295              if (LD->getAlignment() < ABIAlignment){
1296                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1297                                             TLI);
1298                Tmp1 = Result.getOperand(0);
1299                Tmp2 = Result.getOperand(1);
1300                Tmp1 = LegalizeOp(Tmp1);
1301                Tmp2 = LegalizeOp(Tmp2);
1302              }
1303            }
1304          }
1305          break;
1306        case TargetLowering::Expand:
1307          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1308          if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1309            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1310                                         LD->getSrcValueOffset(),
1311                                         LD->isVolatile(), LD->getAlignment());
1312            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1313                                 Node->getValueType(0), Load);
1314            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1315            Tmp2 = LegalizeOp(Load.getValue(1));
1316            break;
1317          }
1318          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1319          // Turn the unsupported load into an EXTLOAD followed by an explicit
1320          // zero/sign extend inreg.
1321          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1322                                  Tmp1, Tmp2, LD->getSrcValue(),
1323                                  LD->getSrcValueOffset(), SrcVT,
1324                                  LD->isVolatile(), LD->getAlignment());
1325          SDValue ValRes;
1326          if (ExtType == ISD::SEXTLOAD)
1327            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1328                                 Result.getValueType(),
1329                                 Result, DAG.getValueType(SrcVT));
1330          else
1331            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1332          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1333          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1334          break;
1335        }
1336      }
1337
1338      // Since loads produce two values, make sure to remember that we legalized
1339      // both of them.
1340      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1341      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1342      return Op.getResNo() ? Tmp2 : Tmp1;
1343    }
1344  }
1345  case ISD::STORE: {
1346    StoreSDNode *ST = cast<StoreSDNode>(Node);
1347    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1348    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1349    int SVOffset = ST->getSrcValueOffset();
1350    unsigned Alignment = ST->getAlignment();
1351    bool isVolatile = ST->isVolatile();
1352
1353    if (!ST->isTruncatingStore()) {
1354      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1355        Result = SDValue(OptStore, 0);
1356        break;
1357      }
1358
1359      {
1360        Tmp3 = LegalizeOp(ST->getValue());
1361        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1362                                        ST->getOffset());
1363
1364        MVT VT = Tmp3.getValueType();
1365        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1366        default: llvm_unreachable("This action is not supported yet!");
1367        case TargetLowering::Legal:
1368          // If this is an unaligned store and the target doesn't support it,
1369          // expand it.
1370          if (!TLI.allowsUnalignedMemoryAccesses()) {
1371            unsigned ABIAlignment = TLI.getTargetData()->
1372              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT(
1373                                                            *DAG.getContext()));
1374            if (ST->getAlignment() < ABIAlignment)
1375              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1376                                            TLI);
1377          }
1378          break;
1379        case TargetLowering::Custom:
1380          Tmp1 = TLI.LowerOperation(Result, DAG);
1381          if (Tmp1.getNode()) Result = Tmp1;
1382          break;
1383        case TargetLowering::Promote:
1384          assert(VT.isVector() && "Unknown legal promote case!");
1385          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1386                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1387          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1388                                ST->getSrcValue(), SVOffset, isVolatile,
1389                                Alignment);
1390          break;
1391        }
1392        break;
1393      }
1394    } else {
1395      Tmp3 = LegalizeOp(ST->getValue());
1396
1397      MVT StVT = ST->getMemoryVT();
1398      unsigned StWidth = StVT.getSizeInBits();
1399
1400      if (StWidth != StVT.getStoreSizeInBits()) {
1401        // Promote to a byte-sized store with upper bits zero if not
1402        // storing an integral number of bytes.  For example, promote
1403        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1404        MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
1405        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1406        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1407                                   SVOffset, NVT, isVolatile, Alignment);
1408      } else if (StWidth & (StWidth - 1)) {
1409        // If not storing a power-of-2 number of bits, expand as two stores.
1410        assert(StVT.isExtended() && !StVT.isVector() &&
1411               "Unsupported truncstore!");
1412        unsigned RoundWidth = 1 << Log2_32(StWidth);
1413        assert(RoundWidth < StWidth);
1414        unsigned ExtraWidth = StWidth - RoundWidth;
1415        assert(ExtraWidth < RoundWidth);
1416        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1417               "Store size not an integral number of bytes!");
1418        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1419        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1420        SDValue Lo, Hi;
1421        unsigned IncrementSize;
1422
1423        if (TLI.isLittleEndian()) {
1424          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1425          // Store the bottom RoundWidth bits.
1426          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1427                                 SVOffset, RoundVT,
1428                                 isVolatile, Alignment);
1429
1430          // Store the remaining ExtraWidth bits.
1431          IncrementSize = RoundWidth / 8;
1432          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1433                             DAG.getIntPtrConstant(IncrementSize));
1434          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1435                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1436          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1437                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1438                                 MinAlign(Alignment, IncrementSize));
1439        } else {
1440          // Big endian - avoid unaligned stores.
1441          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1442          // Store the top RoundWidth bits.
1443          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1444                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1445          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1446                                 SVOffset, RoundVT, isVolatile, Alignment);
1447
1448          // Store the remaining ExtraWidth bits.
1449          IncrementSize = RoundWidth / 8;
1450          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1451                             DAG.getIntPtrConstant(IncrementSize));
1452          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1453                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1454                                 MinAlign(Alignment, IncrementSize));
1455        }
1456
1457        // The order of the stores doesn't matter.
1458        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1459      } else {
1460        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1461            Tmp2 != ST->getBasePtr())
1462          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1463                                          ST->getOffset());
1464
1465        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1466        default: llvm_unreachable("This action is not supported yet!");
1467        case TargetLowering::Legal:
1468          // If this is an unaligned store and the target doesn't support it,
1469          // expand it.
1470          if (!TLI.allowsUnalignedMemoryAccesses()) {
1471            unsigned ABIAlignment = TLI.getTargetData()->
1472              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT(
1473                                                            *DAG.getContext()));
1474            if (ST->getAlignment() < ABIAlignment)
1475              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1476                                            TLI);
1477          }
1478          break;
1479        case TargetLowering::Custom:
1480          Result = TLI.LowerOperation(Result, DAG);
1481          break;
1482        case Expand:
1483          // TRUNCSTORE:i16 i32 -> STORE i16
1484          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1485          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1486          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1487                                SVOffset, isVolatile, Alignment);
1488          break;
1489        }
1490      }
1491    }
1492    break;
1493  }
1494  }
1495  assert(Result.getValueType() == Op.getValueType() &&
1496         "Bad legalization!");
1497
1498  // Make sure that the generated code is itself legal.
1499  if (Result != Op)
1500    Result = LegalizeOp(Result);
1501
1502  // Note that LegalizeOp may be reentered even from single-use nodes, which
1503  // means that we always must cache transformed nodes.
1504  AddLegalizedOperand(Op, Result);
1505  return Result;
1506}
1507
1508SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1509  SDValue Vec = Op.getOperand(0);
1510  SDValue Idx = Op.getOperand(1);
1511  DebugLoc dl = Op.getDebugLoc();
1512  // Store the value to a temporary stack slot, then LOAD the returned part.
1513  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1514  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1515
1516  // Add the offset to the index.
1517  unsigned EltSize =
1518      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1519  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1520                    DAG.getConstant(EltSize, Idx.getValueType()));
1521
1522  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1523    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1524  else
1525    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1526
1527  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1528
1529  if (Op.getValueType().isVector())
1530    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1531  else
1532    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1533                          NULL, 0, Vec.getValueType().getVectorElementType());
1534}
1535
1536SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1537  // We can't handle this case efficiently.  Allocate a sufficiently
1538  // aligned object on the stack, store each element into it, then load
1539  // the result as a vector.
1540  // Create the stack frame object.
1541  MVT VT = Node->getValueType(0);
1542  MVT OpVT = Node->getOperand(0).getValueType();
1543  DebugLoc dl = Node->getDebugLoc();
1544  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1545  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1546  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1547
1548  // Emit a store of each element to the stack slot.
1549  SmallVector<SDValue, 8> Stores;
1550  unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1551  // Store (in the right endianness) the elements to memory.
1552  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1553    // Ignore undef elements.
1554    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1555
1556    unsigned Offset = TypeByteSize*i;
1557
1558    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1559    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1560
1561    Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1562                                  Idx, SV, Offset));
1563  }
1564
1565  SDValue StoreChain;
1566  if (!Stores.empty())    // Not all undef elements?
1567    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1568                             &Stores[0], Stores.size());
1569  else
1570    StoreChain = DAG.getEntryNode();
1571
1572  // Result is a load from the stack slot.
1573  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1574}
1575
1576SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1577  DebugLoc dl = Node->getDebugLoc();
1578  SDValue Tmp1 = Node->getOperand(0);
1579  SDValue Tmp2 = Node->getOperand(1);
1580  assert((Tmp2.getValueType() == MVT::f32 ||
1581          Tmp2.getValueType() == MVT::f64) &&
1582          "Ugly special-cased code!");
1583  // Get the sign bit of the RHS.
1584  SDValue SignBit;
1585  MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1586  if (isTypeLegal(IVT)) {
1587    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1588  } else {
1589    assert(isTypeLegal(TLI.getPointerTy()) &&
1590            (TLI.getPointerTy() == MVT::i32 ||
1591            TLI.getPointerTy() == MVT::i64) &&
1592            "Legal type for load?!");
1593    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1594    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1595    SDValue Ch =
1596        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1597    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1598      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1599                            LoadPtr, DAG.getIntPtrConstant(4));
1600    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1601                              Ch, LoadPtr, NULL, 0, MVT::i32);
1602  }
1603  SignBit =
1604      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1605                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1606                    ISD::SETLT);
1607  // Get the absolute value of the result.
1608  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1609  // Select between the nabs and abs value based on the sign bit of
1610  // the input.
1611  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1612                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1613                     AbsVal);
1614}
1615
1616SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1617  DebugLoc dl = Node->getDebugLoc();
1618  DwarfWriter *DW = DAG.getDwarfWriter();
1619  bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1620                                                    MVT::Other);
1621  bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1622
1623  const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1624  GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1625  if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1626    DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1627
1628    unsigned Line = DSP->getLine();
1629    unsigned Col = DSP->getColumn();
1630
1631    if (OptLevel == CodeGenOpt::None) {
1632      // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1633      // won't hurt anything.
1634      if (useDEBUG_LOC) {
1635        return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1636                           DAG.getConstant(Line, MVT::i32),
1637                           DAG.getConstant(Col, MVT::i32),
1638                           DAG.getSrcValue(CU.getGV()));
1639      } else {
1640        unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1641        return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1642      }
1643    }
1644  }
1645  return Node->getOperand(0);
1646}
1647
1648void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1649                                           SmallVectorImpl<SDValue> &Results) {
1650  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1651  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1652          " not tell us which reg is the stack pointer!");
1653  DebugLoc dl = Node->getDebugLoc();
1654  MVT VT = Node->getValueType(0);
1655  SDValue Tmp1 = SDValue(Node, 0);
1656  SDValue Tmp2 = SDValue(Node, 1);
1657  SDValue Tmp3 = Node->getOperand(2);
1658  SDValue Chain = Tmp1.getOperand(0);
1659
1660  // Chain the dynamic stack allocation so that it doesn't modify the stack
1661  // pointer when other instructions are using the stack.
1662  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1663
1664  SDValue Size  = Tmp2.getOperand(1);
1665  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1666  Chain = SP.getValue(1);
1667  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1668  unsigned StackAlign =
1669    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1670  if (Align > StackAlign)
1671    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1672                      DAG.getConstant(-(uint64_t)Align, VT));
1673  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1674  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1675
1676  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1677                            DAG.getIntPtrConstant(0, true), SDValue());
1678
1679  Results.push_back(Tmp1);
1680  Results.push_back(Tmp2);
1681}
1682
1683/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1684/// condition code CC on the current target. This routine assumes LHS and rHS
1685/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1686/// illegal condition code into AND / OR of multiple SETCC values.
1687void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
1688                                                 SDValue &LHS, SDValue &RHS,
1689                                                 SDValue &CC,
1690                                                 DebugLoc dl) {
1691  MVT OpVT = LHS.getValueType();
1692  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1693  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1694  default: llvm_unreachable("Unknown condition code action!");
1695  case TargetLowering::Legal:
1696    // Nothing to do.
1697    break;
1698  case TargetLowering::Expand: {
1699    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1700    unsigned Opc = 0;
1701    switch (CCCode) {
1702    default: llvm_unreachable("Don't know how to expand this condition!");
1703    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1704    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1705    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1706    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1707    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1708    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1709    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1710    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1711    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1712    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1713    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1714    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1715    // FIXME: Implement more expansions.
1716    }
1717
1718    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1719    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1720    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1721    RHS = SDValue();
1722    CC  = SDValue();
1723    break;
1724  }
1725  }
1726}
1727
1728/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1729/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1730/// a load from the stack slot to DestVT, extending it if needed.
1731/// The resultant code need not be legal.
1732SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1733                                               MVT SlotVT,
1734                                               MVT DestVT,
1735                                               DebugLoc dl) {
1736  // Create the stack frame object.
1737  unsigned SrcAlign =
1738    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1739                                              getTypeForMVT(*DAG.getContext()));
1740  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1741
1742  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1743  int SPFI = StackPtrFI->getIndex();
1744  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1745
1746  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1747  unsigned SlotSize = SlotVT.getSizeInBits();
1748  unsigned DestSize = DestVT.getSizeInBits();
1749  unsigned DestAlign =
1750    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT(
1751                                                            *DAG.getContext()));
1752
1753  // Emit a store to the stack slot.  Use a truncstore if the input value is
1754  // later than DestVT.
1755  SDValue Store;
1756
1757  if (SrcSize > SlotSize)
1758    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1759                              SV, 0, SlotVT, false, SrcAlign);
1760  else {
1761    assert(SrcSize == SlotSize && "Invalid store");
1762    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1763                         SV, 0, false, SrcAlign);
1764  }
1765
1766  // Result is a load from the stack slot.
1767  if (SlotSize == DestSize)
1768    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1769
1770  assert(SlotSize < DestSize && "Unknown extension!");
1771  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1772                        false, DestAlign);
1773}
1774
1775SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1776  DebugLoc dl = Node->getDebugLoc();
1777  // Create a vector sized/aligned stack slot, store the value to element #0,
1778  // then load the whole vector back out.
1779  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1780
1781  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1782  int SPFI = StackPtrFI->getIndex();
1783
1784  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1785                                 StackPtr,
1786                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1787                                 Node->getValueType(0).getVectorElementType());
1788  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1789                     PseudoSourceValue::getFixedStack(SPFI), 0);
1790}
1791
1792
1793/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1794/// support the operation, but do support the resultant vector type.
1795SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1796  unsigned NumElems = Node->getNumOperands();
1797  SDValue Value1, Value2;
1798  DebugLoc dl = Node->getDebugLoc();
1799  MVT VT = Node->getValueType(0);
1800  MVT OpVT = Node->getOperand(0).getValueType();
1801  MVT EltVT = VT.getVectorElementType();
1802
1803  // If the only non-undef value is the low element, turn this into a
1804  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1805  bool isOnlyLowElement = true;
1806  bool MoreThanTwoValues = false;
1807  bool isConstant = true;
1808  for (unsigned i = 0; i < NumElems; ++i) {
1809    SDValue V = Node->getOperand(i);
1810    if (V.getOpcode() == ISD::UNDEF)
1811      continue;
1812    if (i > 0)
1813      isOnlyLowElement = false;
1814    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1815      isConstant = false;
1816
1817    if (!Value1.getNode()) {
1818      Value1 = V;
1819    } else if (!Value2.getNode()) {
1820      if (V != Value1)
1821        Value2 = V;
1822    } else if (V != Value1 && V != Value2) {
1823      MoreThanTwoValues = true;
1824    }
1825  }
1826
1827  if (!Value1.getNode())
1828    return DAG.getUNDEF(VT);
1829
1830  if (isOnlyLowElement)
1831    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1832
1833  // If all elements are constants, create a load from the constant pool.
1834  if (isConstant) {
1835    std::vector<Constant*> CV;
1836    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1837      if (ConstantFPSDNode *V =
1838          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1839        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1840      } else if (ConstantSDNode *V =
1841                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1842        CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1843      } else {
1844        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1845        const Type *OpNTy = OpVT.getTypeForMVT(*DAG.getContext());
1846        CV.push_back(UndefValue::get(OpNTy));
1847      }
1848    }
1849    Constant *CP = ConstantVector::get(CV);
1850    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1851    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1852    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1853                       PseudoSourceValue::getConstantPool(), 0,
1854                       false, Alignment);
1855  }
1856
1857  if (!MoreThanTwoValues) {
1858    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1859    for (unsigned i = 0; i < NumElems; ++i) {
1860      SDValue V = Node->getOperand(i);
1861      if (V.getOpcode() == ISD::UNDEF)
1862        continue;
1863      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1864    }
1865    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1866      // Get the splatted value into the low element of a vector register.
1867      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1868      SDValue Vec2;
1869      if (Value2.getNode())
1870        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1871      else
1872        Vec2 = DAG.getUNDEF(VT);
1873
1874      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1875      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1876    }
1877  }
1878
1879  // Otherwise, we can't handle this case efficiently.
1880  return ExpandVectorBuildThroughStack(Node);
1881}
1882
1883// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1884// does not fit into a register, return the lo part and set the hi part to the
1885// by-reg argument.  If it does fit into a single register, return the result
1886// and leave the Hi part unset.
1887SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1888                                            bool isSigned) {
1889  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1890  // The input chain to this libcall is the entry node of the function.
1891  // Legalizing the call will automatically add the previous call to the
1892  // dependence.
1893  SDValue InChain = DAG.getEntryNode();
1894
1895  TargetLowering::ArgListTy Args;
1896  TargetLowering::ArgListEntry Entry;
1897  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1898    MVT ArgVT = Node->getOperand(i).getValueType();
1899    const Type *ArgTy = ArgVT.getTypeForMVT(*DAG.getContext());
1900    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1901    Entry.isSExt = isSigned;
1902    Entry.isZExt = !isSigned;
1903    Args.push_back(Entry);
1904  }
1905  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1906                                         TLI.getPointerTy());
1907
1908  // Splice the libcall in wherever FindInputOutputChains tells us to.
1909  const Type *RetTy = Node->getValueType(0).getTypeForMVT(*DAG.getContext());
1910  std::pair<SDValue, SDValue> CallInfo =
1911    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1912                    0, CallingConv::C, false, Callee, Args, DAG,
1913                    Node->getDebugLoc());
1914
1915  // Legalize the call sequence, starting with the chain.  This will advance
1916  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1917  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1918  LegalizeOp(CallInfo.second);
1919  return CallInfo.first;
1920}
1921
1922SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1923                                              RTLIB::Libcall Call_F32,
1924                                              RTLIB::Libcall Call_F64,
1925                                              RTLIB::Libcall Call_F80,
1926                                              RTLIB::Libcall Call_PPCF128) {
1927  RTLIB::Libcall LC;
1928  switch (Node->getValueType(0).getSimpleVT()) {
1929  default: llvm_unreachable("Unexpected request for libcall!");
1930  case MVT::f32: LC = Call_F32; break;
1931  case MVT::f64: LC = Call_F64; break;
1932  case MVT::f80: LC = Call_F80; break;
1933  case MVT::ppcf128: LC = Call_PPCF128; break;
1934  }
1935  return ExpandLibCall(LC, Node, false);
1936}
1937
1938SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1939                                               RTLIB::Libcall Call_I16,
1940                                               RTLIB::Libcall Call_I32,
1941                                               RTLIB::Libcall Call_I64,
1942                                               RTLIB::Libcall Call_I128) {
1943  RTLIB::Libcall LC;
1944  switch (Node->getValueType(0).getSimpleVT()) {
1945  default: llvm_unreachable("Unexpected request for libcall!");
1946  case MVT::i16: LC = Call_I16; break;
1947  case MVT::i32: LC = Call_I32; break;
1948  case MVT::i64: LC = Call_I64; break;
1949  case MVT::i128: LC = Call_I128; break;
1950  }
1951  return ExpandLibCall(LC, Node, isSigned);
1952}
1953
1954/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1955/// INT_TO_FP operation of the specified operand when the target requests that
1956/// we expand it.  At this point, we know that the result and operand types are
1957/// legal for the target.
1958SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1959                                                   SDValue Op0,
1960                                                   MVT DestVT,
1961                                                   DebugLoc dl) {
1962  if (Op0.getValueType() == MVT::i32) {
1963    // simple 32-bit [signed|unsigned] integer to float/double expansion
1964
1965    // Get the stack frame index of a 8 byte buffer.
1966    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1967
1968    // word offset constant for Hi/Lo address computation
1969    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1970    // set up Hi and Lo (into buffer) address based on endian
1971    SDValue Hi = StackSlot;
1972    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1973                             TLI.getPointerTy(), StackSlot, WordOff);
1974    if (TLI.isLittleEndian())
1975      std::swap(Hi, Lo);
1976
1977    // if signed map to unsigned space
1978    SDValue Op0Mapped;
1979    if (isSigned) {
1980      // constant used to invert sign bit (signed to unsigned mapping)
1981      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1982      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1983    } else {
1984      Op0Mapped = Op0;
1985    }
1986    // store the lo of the constructed double - based on integer input
1987    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1988                                  Op0Mapped, Lo, NULL, 0);
1989    // initial hi portion of constructed double
1990    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1991    // store the hi of the constructed double - biased exponent
1992    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1993    // load the constructed double
1994    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1995    // FP constant to bias correct the final result
1996    SDValue Bias = DAG.getConstantFP(isSigned ?
1997                                     BitsToDouble(0x4330000080000000ULL) :
1998                                     BitsToDouble(0x4330000000000000ULL),
1999                                     MVT::f64);
2000    // subtract the bias
2001    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2002    // final result
2003    SDValue Result;
2004    // handle final rounding
2005    if (DestVT == MVT::f64) {
2006      // do nothing
2007      Result = Sub;
2008    } else if (DestVT.bitsLT(MVT::f64)) {
2009      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2010                           DAG.getIntPtrConstant(0));
2011    } else if (DestVT.bitsGT(MVT::f64)) {
2012      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2013    }
2014    return Result;
2015  }
2016  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2017  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2018
2019  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2020                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2021                                 ISD::SETLT);
2022  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2023  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2024                                    SignSet, Four, Zero);
2025
2026  // If the sign bit of the integer is set, the large number will be treated
2027  // as a negative number.  To counteract this, the dynamic code adds an
2028  // offset depending on the data type.
2029  uint64_t FF;
2030  switch (Op0.getValueType().getSimpleVT()) {
2031  default: llvm_unreachable("Unsupported integer type!");
2032  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2033  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2034  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2035  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2036  }
2037  if (TLI.isLittleEndian()) FF <<= 32;
2038  Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
2039
2040  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2041  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2042  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2043  Alignment = std::min(Alignment, 4u);
2044  SDValue FudgeInReg;
2045  if (DestVT == MVT::f32)
2046    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2047                             PseudoSourceValue::getConstantPool(), 0,
2048                             false, Alignment);
2049  else {
2050    FudgeInReg =
2051      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2052                                DAG.getEntryNode(), CPIdx,
2053                                PseudoSourceValue::getConstantPool(), 0,
2054                                MVT::f32, false, Alignment));
2055  }
2056
2057  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2058}
2059
2060/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2061/// *INT_TO_FP operation of the specified operand when the target requests that
2062/// we promote it.  At this point, we know that the result and operand types are
2063/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2064/// operation that takes a larger input.
2065SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2066                                                    MVT DestVT,
2067                                                    bool isSigned,
2068                                                    DebugLoc dl) {
2069  // First step, figure out the appropriate *INT_TO_FP operation to use.
2070  MVT NewInTy = LegalOp.getValueType();
2071
2072  unsigned OpToUse = 0;
2073
2074  // Scan for the appropriate larger type to use.
2075  while (1) {
2076    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
2077    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2078
2079    // If the target supports SINT_TO_FP of this type, use it.
2080    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2081      OpToUse = ISD::SINT_TO_FP;
2082      break;
2083    }
2084    if (isSigned) continue;
2085
2086    // If the target supports UINT_TO_FP of this type, use it.
2087    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2088      OpToUse = ISD::UINT_TO_FP;
2089      break;
2090    }
2091
2092    // Otherwise, try a larger type.
2093  }
2094
2095  // Okay, we found the operation and type to use.  Zero extend our input to the
2096  // desired type then run the operation on it.
2097  return DAG.getNode(OpToUse, dl, DestVT,
2098                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2099                                 dl, NewInTy, LegalOp));
2100}
2101
2102/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2103/// FP_TO_*INT operation of the specified operand when the target requests that
2104/// we promote it.  At this point, we know that the result and operand types are
2105/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2106/// operation that returns a larger result.
2107SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2108                                                    MVT DestVT,
2109                                                    bool isSigned,
2110                                                    DebugLoc dl) {
2111  // First step, figure out the appropriate FP_TO*INT operation to use.
2112  MVT NewOutTy = DestVT;
2113
2114  unsigned OpToUse = 0;
2115
2116  // Scan for the appropriate larger type to use.
2117  while (1) {
2118    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
2119    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2120
2121    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2122      OpToUse = ISD::FP_TO_SINT;
2123      break;
2124    }
2125
2126    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2127      OpToUse = ISD::FP_TO_UINT;
2128      break;
2129    }
2130
2131    // Otherwise, try a larger type.
2132  }
2133
2134
2135  // Okay, we found the operation and type to use.
2136  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2137
2138  // Truncate the result of the extended FP_TO_*INT operation to the desired
2139  // size.
2140  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2141}
2142
2143/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2144///
2145SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2146  MVT VT = Op.getValueType();
2147  MVT SHVT = TLI.getShiftAmountTy();
2148  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2149  switch (VT.getSimpleVT()) {
2150  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2151  case MVT::i16:
2152    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2153    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2154    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2155  case MVT::i32:
2156    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2157    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2158    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2159    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2160    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2161    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2162    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2163    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2164    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2165  case MVT::i64:
2166    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2167    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2168    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2169    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2170    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2171    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2172    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2173    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2174    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2175    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2176    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2177    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2178    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2179    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2180    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2181    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2182    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2183    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2184    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2185    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2186    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2187  }
2188}
2189
2190/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2191///
2192SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2193                                             DebugLoc dl) {
2194  switch (Opc) {
2195  default: llvm_unreachable("Cannot expand this yet!");
2196  case ISD::CTPOP: {
2197    static const uint64_t mask[6] = {
2198      0x5555555555555555ULL, 0x3333333333333333ULL,
2199      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2200      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2201    };
2202    MVT VT = Op.getValueType();
2203    MVT ShVT = TLI.getShiftAmountTy();
2204    unsigned len = VT.getSizeInBits();
2205    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2206      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2207      unsigned EltSize = VT.isVector() ?
2208        VT.getVectorElementType().getSizeInBits() : len;
2209      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2210      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2211      Op = DAG.getNode(ISD::ADD, dl, VT,
2212                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2213                       DAG.getNode(ISD::AND, dl, VT,
2214                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2215                                   Tmp2));
2216    }
2217    return Op;
2218  }
2219  case ISD::CTLZ: {
2220    // for now, we do this:
2221    // x = x | (x >> 1);
2222    // x = x | (x >> 2);
2223    // ...
2224    // x = x | (x >>16);
2225    // x = x | (x >>32); // for 64-bit input
2226    // return popcount(~x);
2227    //
2228    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2229    MVT VT = Op.getValueType();
2230    MVT ShVT = TLI.getShiftAmountTy();
2231    unsigned len = VT.getSizeInBits();
2232    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2233      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2234      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2235                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2236    }
2237    Op = DAG.getNOT(dl, Op, VT);
2238    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2239  }
2240  case ISD::CTTZ: {
2241    // for now, we use: { return popcount(~x & (x - 1)); }
2242    // unless the target has ctlz but not ctpop, in which case we use:
2243    // { return 32 - nlz(~x & (x-1)); }
2244    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2245    MVT VT = Op.getValueType();
2246    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2247                               DAG.getNOT(dl, Op, VT),
2248                               DAG.getNode(ISD::SUB, dl, VT, Op,
2249                                           DAG.getConstant(1, VT)));
2250    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2251    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2252        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2253      return DAG.getNode(ISD::SUB, dl, VT,
2254                         DAG.getConstant(VT.getSizeInBits(), VT),
2255                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2256    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2257  }
2258  }
2259}
2260
2261void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2262                                      SmallVectorImpl<SDValue> &Results) {
2263  DebugLoc dl = Node->getDebugLoc();
2264  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2265  switch (Node->getOpcode()) {
2266  case ISD::CTPOP:
2267  case ISD::CTLZ:
2268  case ISD::CTTZ:
2269    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2270    Results.push_back(Tmp1);
2271    break;
2272  case ISD::BSWAP:
2273    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2274    break;
2275  case ISD::FRAMEADDR:
2276  case ISD::RETURNADDR:
2277  case ISD::FRAME_TO_ARGS_OFFSET:
2278    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2279    break;
2280  case ISD::FLT_ROUNDS_:
2281    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2282    break;
2283  case ISD::EH_RETURN:
2284  case ISD::DECLARE:
2285  case ISD::DBG_LABEL:
2286  case ISD::EH_LABEL:
2287  case ISD::PREFETCH:
2288  case ISD::MEMBARRIER:
2289  case ISD::VAEND:
2290    Results.push_back(Node->getOperand(0));
2291    break;
2292  case ISD::DBG_STOPPOINT:
2293    Results.push_back(ExpandDBG_STOPPOINT(Node));
2294    break;
2295  case ISD::DYNAMIC_STACKALLOC:
2296    ExpandDYNAMIC_STACKALLOC(Node, Results);
2297    break;
2298  case ISD::MERGE_VALUES:
2299    for (unsigned i = 0; i < Node->getNumValues(); i++)
2300      Results.push_back(Node->getOperand(i));
2301    break;
2302  case ISD::UNDEF: {
2303    MVT VT = Node->getValueType(0);
2304    if (VT.isInteger())
2305      Results.push_back(DAG.getConstant(0, VT));
2306    else if (VT.isFloatingPoint())
2307      Results.push_back(DAG.getConstantFP(0, VT));
2308    else
2309      llvm_unreachable("Unknown value type!");
2310    break;
2311  }
2312  case ISD::TRAP: {
2313    // If this operation is not supported, lower it to 'abort()' call
2314    TargetLowering::ArgListTy Args;
2315    std::pair<SDValue, SDValue> CallResult =
2316      TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
2317                      false, false, false, false, 0, CallingConv::C, false,
2318                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2319                      Args, DAG, dl);
2320    Results.push_back(CallResult.second);
2321    break;
2322  }
2323  case ISD::FP_ROUND:
2324  case ISD::BIT_CONVERT:
2325    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2326                            Node->getValueType(0), dl);
2327    Results.push_back(Tmp1);
2328    break;
2329  case ISD::FP_EXTEND:
2330    Tmp1 = EmitStackConvert(Node->getOperand(0),
2331                            Node->getOperand(0).getValueType(),
2332                            Node->getValueType(0), dl);
2333    Results.push_back(Tmp1);
2334    break;
2335  case ISD::SIGN_EXTEND_INREG: {
2336    // NOTE: we could fall back on load/store here too for targets without
2337    // SAR.  However, it is doubtful that any exist.
2338    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2339    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2340                        ExtraVT.getSizeInBits();
2341    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2342    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2343                       Node->getOperand(0), ShiftCst);
2344    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2345    Results.push_back(Tmp1);
2346    break;
2347  }
2348  case ISD::FP_ROUND_INREG: {
2349    // The only way we can lower this is to turn it into a TRUNCSTORE,
2350    // EXTLOAD pair, targetting a temporary location (a stack slot).
2351
2352    // NOTE: there is a choice here between constantly creating new stack
2353    // slots and always reusing the same one.  We currently always create
2354    // new ones, as reuse may inhibit scheduling.
2355    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2356    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2357                            Node->getValueType(0), dl);
2358    Results.push_back(Tmp1);
2359    break;
2360  }
2361  case ISD::SINT_TO_FP:
2362  case ISD::UINT_TO_FP:
2363    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2364                                Node->getOperand(0), Node->getValueType(0), dl);
2365    Results.push_back(Tmp1);
2366    break;
2367  case ISD::FP_TO_UINT: {
2368    SDValue True, False;
2369    MVT VT =  Node->getOperand(0).getValueType();
2370    MVT NVT = Node->getValueType(0);
2371    const uint64_t zero[] = {0, 0};
2372    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2373    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2374    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2375    Tmp1 = DAG.getConstantFP(apf, VT);
2376    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2377                        Node->getOperand(0),
2378                        Tmp1, ISD::SETLT);
2379    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2380    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2381                        DAG.getNode(ISD::FSUB, dl, VT,
2382                                    Node->getOperand(0), Tmp1));
2383    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2384                        DAG.getConstant(x, NVT));
2385    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2386    Results.push_back(Tmp1);
2387    break;
2388  }
2389  case ISD::VAARG: {
2390    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2391    MVT VT = Node->getValueType(0);
2392    Tmp1 = Node->getOperand(0);
2393    Tmp2 = Node->getOperand(1);
2394    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2395    // Increment the pointer, VAList, to the next vaarg
2396    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2397                       DAG.getConstant(TLI.getTargetData()->
2398                                       getTypeAllocSize(VT.getTypeForMVT(
2399                                                            *DAG.getContext())),
2400                                       TLI.getPointerTy()));
2401    // Store the incremented VAList to the legalized pointer
2402    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2403    // Load the actual argument out of the pointer VAList
2404    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2405    Results.push_back(Results[0].getValue(1));
2406    break;
2407  }
2408  case ISD::VACOPY: {
2409    // This defaults to loading a pointer from the input and storing it to the
2410    // output, returning the chain.
2411    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2412    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2413    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2414                       Node->getOperand(2), VS, 0);
2415    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2416    Results.push_back(Tmp1);
2417    break;
2418  }
2419  case ISD::EXTRACT_VECTOR_ELT:
2420    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2421      // This must be an access of the only element.  Return it.
2422      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2423                         Node->getOperand(0));
2424    else
2425      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2426    Results.push_back(Tmp1);
2427    break;
2428  case ISD::EXTRACT_SUBVECTOR:
2429    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2430    break;
2431  case ISD::CONCAT_VECTORS: {
2432    Results.push_back(ExpandVectorBuildThroughStack(Node));
2433    break;
2434  }
2435  case ISD::SCALAR_TO_VECTOR:
2436    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2437    break;
2438  case ISD::INSERT_VECTOR_ELT:
2439    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2440                                              Node->getOperand(1),
2441                                              Node->getOperand(2), dl));
2442    break;
2443  case ISD::VECTOR_SHUFFLE: {
2444    SmallVector<int, 8> Mask;
2445    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2446
2447    MVT VT = Node->getValueType(0);
2448    MVT EltVT = VT.getVectorElementType();
2449    unsigned NumElems = VT.getVectorNumElements();
2450    SmallVector<SDValue, 8> Ops;
2451    for (unsigned i = 0; i != NumElems; ++i) {
2452      if (Mask[i] < 0) {
2453        Ops.push_back(DAG.getUNDEF(EltVT));
2454        continue;
2455      }
2456      unsigned Idx = Mask[i];
2457      if (Idx < NumElems)
2458        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2459                                  Node->getOperand(0),
2460                                  DAG.getIntPtrConstant(Idx)));
2461      else
2462        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2463                                  Node->getOperand(1),
2464                                  DAG.getIntPtrConstant(Idx - NumElems)));
2465    }
2466    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2467    Results.push_back(Tmp1);
2468    break;
2469  }
2470  case ISD::EXTRACT_ELEMENT: {
2471    MVT OpTy = Node->getOperand(0).getValueType();
2472    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2473      // 1 -> Hi
2474      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2475                         DAG.getConstant(OpTy.getSizeInBits()/2,
2476                                         TLI.getShiftAmountTy()));
2477      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2478    } else {
2479      // 0 -> Lo
2480      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2481                         Node->getOperand(0));
2482    }
2483    Results.push_back(Tmp1);
2484    break;
2485  }
2486  case ISD::STACKSAVE:
2487    // Expand to CopyFromReg if the target set
2488    // StackPointerRegisterToSaveRestore.
2489    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2490      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2491                                           Node->getValueType(0)));
2492      Results.push_back(Results[0].getValue(1));
2493    } else {
2494      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2495      Results.push_back(Node->getOperand(0));
2496    }
2497    break;
2498  case ISD::STACKRESTORE:
2499    // Expand to CopyToReg if the target set
2500    // StackPointerRegisterToSaveRestore.
2501    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2502      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2503                                         Node->getOperand(1)));
2504    } else {
2505      Results.push_back(Node->getOperand(0));
2506    }
2507    break;
2508  case ISD::FCOPYSIGN:
2509    Results.push_back(ExpandFCOPYSIGN(Node));
2510    break;
2511  case ISD::FNEG:
2512    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2513    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2514    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2515                       Node->getOperand(0));
2516    Results.push_back(Tmp1);
2517    break;
2518  case ISD::FABS: {
2519    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2520    MVT VT = Node->getValueType(0);
2521    Tmp1 = Node->getOperand(0);
2522    Tmp2 = DAG.getConstantFP(0.0, VT);
2523    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2524                        Tmp1, Tmp2, ISD::SETUGT);
2525    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2526    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2527    Results.push_back(Tmp1);
2528    break;
2529  }
2530  case ISD::FSQRT:
2531    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2532                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2533    break;
2534  case ISD::FSIN:
2535    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2536                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2537    break;
2538  case ISD::FCOS:
2539    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2540                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2541    break;
2542  case ISD::FLOG:
2543    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2544                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2545    break;
2546  case ISD::FLOG2:
2547    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2548                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2549    break;
2550  case ISD::FLOG10:
2551    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2552                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2553    break;
2554  case ISD::FEXP:
2555    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2556                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2557    break;
2558  case ISD::FEXP2:
2559    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2560                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2561    break;
2562  case ISD::FTRUNC:
2563    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2564                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2565    break;
2566  case ISD::FFLOOR:
2567    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2568                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2569    break;
2570  case ISD::FCEIL:
2571    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2572                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2573    break;
2574  case ISD::FRINT:
2575    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2576                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2577    break;
2578  case ISD::FNEARBYINT:
2579    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2580                                      RTLIB::NEARBYINT_F64,
2581                                      RTLIB::NEARBYINT_F80,
2582                                      RTLIB::NEARBYINT_PPCF128));
2583    break;
2584  case ISD::FPOWI:
2585    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2586                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2587    break;
2588  case ISD::FPOW:
2589    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2590                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2591    break;
2592  case ISD::FDIV:
2593    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2594                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2595    break;
2596  case ISD::FREM:
2597    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2598                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2599    break;
2600  case ISD::ConstantFP: {
2601    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2602    // Check to see if this FP immediate is already legal.
2603    bool isLegal = false;
2604    for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2605            E = TLI.legal_fpimm_end(); I != E; ++I) {
2606      if (CFP->isExactlyValue(*I)) {
2607        isLegal = true;
2608        break;
2609      }
2610    }
2611    // If this is a legal constant, turn it into a TargetConstantFP node.
2612    if (isLegal)
2613      Results.push_back(SDValue(Node, 0));
2614    else
2615      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2616    break;
2617  }
2618  case ISD::EHSELECTION: {
2619    unsigned Reg = TLI.getExceptionSelectorRegister();
2620    assert(Reg && "Can't expand to unknown register!");
2621    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2622                                         Node->getValueType(0)));
2623    Results.push_back(Results[0].getValue(1));
2624    break;
2625  }
2626  case ISD::EXCEPTIONADDR: {
2627    unsigned Reg = TLI.getExceptionAddressRegister();
2628    assert(Reg && "Can't expand to unknown register!");
2629    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2630                                         Node->getValueType(0)));
2631    Results.push_back(Results[0].getValue(1));
2632    break;
2633  }
2634  case ISD::SUB: {
2635    MVT VT = Node->getValueType(0);
2636    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2637           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2638           "Don't know how to expand this subtraction!");
2639    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2640               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2641    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2642    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2643    break;
2644  }
2645  case ISD::UREM:
2646  case ISD::SREM: {
2647    MVT VT = Node->getValueType(0);
2648    SDVTList VTs = DAG.getVTList(VT, VT);
2649    bool isSigned = Node->getOpcode() == ISD::SREM;
2650    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2651    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2652    Tmp2 = Node->getOperand(0);
2653    Tmp3 = Node->getOperand(1);
2654    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2655      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2656    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2657      // X % Y -> X-X/Y*Y
2658      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2659      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2660      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2661    } else if (isSigned) {
2662      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2663                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2664    } else {
2665      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2666                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2667    }
2668    Results.push_back(Tmp1);
2669    break;
2670  }
2671  case ISD::UDIV:
2672  case ISD::SDIV: {
2673    bool isSigned = Node->getOpcode() == ISD::SDIV;
2674    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2675    MVT VT = Node->getValueType(0);
2676    SDVTList VTs = DAG.getVTList(VT, VT);
2677    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2678      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2679                         Node->getOperand(1));
2680    else if (isSigned)
2681      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2682                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2683    else
2684      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2685                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2686    Results.push_back(Tmp1);
2687    break;
2688  }
2689  case ISD::MULHU:
2690  case ISD::MULHS: {
2691    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2692                                                              ISD::SMUL_LOHI;
2693    MVT VT = Node->getValueType(0);
2694    SDVTList VTs = DAG.getVTList(VT, VT);
2695    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2696           "If this wasn't legal, it shouldn't have been created!");
2697    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2698                       Node->getOperand(1));
2699    Results.push_back(Tmp1.getValue(1));
2700    break;
2701  }
2702  case ISD::MUL: {
2703    MVT VT = Node->getValueType(0);
2704    SDVTList VTs = DAG.getVTList(VT, VT);
2705    // See if multiply or divide can be lowered using two-result operations.
2706    // We just need the low half of the multiply; try both the signed
2707    // and unsigned forms. If the target supports both SMUL_LOHI and
2708    // UMUL_LOHI, form a preference by checking which forms of plain
2709    // MULH it supports.
2710    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2711    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2712    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2713    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2714    unsigned OpToUse = 0;
2715    if (HasSMUL_LOHI && !HasMULHS) {
2716      OpToUse = ISD::SMUL_LOHI;
2717    } else if (HasUMUL_LOHI && !HasMULHU) {
2718      OpToUse = ISD::UMUL_LOHI;
2719    } else if (HasSMUL_LOHI) {
2720      OpToUse = ISD::SMUL_LOHI;
2721    } else if (HasUMUL_LOHI) {
2722      OpToUse = ISD::UMUL_LOHI;
2723    }
2724    if (OpToUse) {
2725      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2726                                    Node->getOperand(1)));
2727      break;
2728    }
2729    Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2730                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2731    Results.push_back(Tmp1);
2732    break;
2733  }
2734  case ISD::SADDO:
2735  case ISD::SSUBO: {
2736    SDValue LHS = Node->getOperand(0);
2737    SDValue RHS = Node->getOperand(1);
2738    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2739                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2740                              LHS, RHS);
2741    Results.push_back(Sum);
2742    MVT OType = Node->getValueType(1);
2743
2744    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2745
2746    //   LHSSign -> LHS >= 0
2747    //   RHSSign -> RHS >= 0
2748    //   SumSign -> Sum >= 0
2749    //
2750    //   Add:
2751    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2752    //   Sub:
2753    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2754    //
2755    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2756    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2757    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2758                                      Node->getOpcode() == ISD::SADDO ?
2759                                      ISD::SETEQ : ISD::SETNE);
2760
2761    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2762    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2763
2764    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2765    Results.push_back(Cmp);
2766    break;
2767  }
2768  case ISD::UADDO:
2769  case ISD::USUBO: {
2770    SDValue LHS = Node->getOperand(0);
2771    SDValue RHS = Node->getOperand(1);
2772    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2773                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2774                              LHS, RHS);
2775    Results.push_back(Sum);
2776    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2777                                   Node->getOpcode () == ISD::UADDO ?
2778                                   ISD::SETULT : ISD::SETUGT));
2779    break;
2780  }
2781  case ISD::UMULO:
2782  case ISD::SMULO: {
2783    MVT VT = Node->getValueType(0);
2784    SDValue LHS = Node->getOperand(0);
2785    SDValue RHS = Node->getOperand(1);
2786    SDValue BottomHalf;
2787    SDValue TopHalf;
2788    static unsigned Ops[2][3] =
2789        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2790          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2791    bool isSigned = Node->getOpcode() == ISD::SMULO;
2792    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2793      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2794      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2795    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2796      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2797                               RHS);
2798      TopHalf = BottomHalf.getValue(1);
2799    } else if (TLI.isTypeLegal(MVT::getIntegerVT(VT.getSizeInBits() * 2))) {
2800      MVT WideVT = MVT::getIntegerVT(VT.getSizeInBits() * 2);
2801      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2802      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2803      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2804      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2805                               DAG.getIntPtrConstant(0));
2806      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2807                            DAG.getIntPtrConstant(1));
2808    } else {
2809      // FIXME: We should be able to fall back to a libcall with an illegal
2810      // type in some cases cases.
2811      // Also, we can fall back to a division in some cases, but that's a big
2812      // performance hit in the general case.
2813      llvm_unreachable("Don't know how to expand this operation yet!");
2814    }
2815    if (isSigned) {
2816      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2817      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2818      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2819                             ISD::SETNE);
2820    } else {
2821      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2822                             DAG.getConstant(0, VT), ISD::SETNE);
2823    }
2824    Results.push_back(BottomHalf);
2825    Results.push_back(TopHalf);
2826    break;
2827  }
2828  case ISD::BUILD_PAIR: {
2829    MVT PairTy = Node->getValueType(0);
2830    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2831    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2832    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2833                       DAG.getConstant(PairTy.getSizeInBits()/2,
2834                                       TLI.getShiftAmountTy()));
2835    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2836    break;
2837  }
2838  case ISD::SELECT:
2839    Tmp1 = Node->getOperand(0);
2840    Tmp2 = Node->getOperand(1);
2841    Tmp3 = Node->getOperand(2);
2842    if (Tmp1.getOpcode() == ISD::SETCC) {
2843      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2844                             Tmp2, Tmp3,
2845                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2846    } else {
2847      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2848                             DAG.getConstant(0, Tmp1.getValueType()),
2849                             Tmp2, Tmp3, ISD::SETNE);
2850    }
2851    Results.push_back(Tmp1);
2852    break;
2853  case ISD::BR_JT: {
2854    SDValue Chain = Node->getOperand(0);
2855    SDValue Table = Node->getOperand(1);
2856    SDValue Index = Node->getOperand(2);
2857
2858    MVT PTy = TLI.getPointerTy();
2859    MachineFunction &MF = DAG.getMachineFunction();
2860    unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2861    Index= DAG.getNode(ISD::MUL, dl, PTy,
2862                        Index, DAG.getConstant(EntrySize, PTy));
2863    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2864
2865    MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
2866    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2867                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2868    Addr = LD;
2869    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2870      // For PIC, the sequence is:
2871      // BRIND(load(Jumptable + index) + RelocBase)
2872      // RelocBase can be JumpTable, GOT or some sort of global base.
2873      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2874                          TLI.getPICJumpTableRelocBase(Table, DAG));
2875    }
2876    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2877    Results.push_back(Tmp1);
2878    break;
2879  }
2880  case ISD::BRCOND:
2881    // Expand brcond's setcc into its constituent parts and create a BR_CC
2882    // Node.
2883    Tmp1 = Node->getOperand(0);
2884    Tmp2 = Node->getOperand(1);
2885    if (Tmp2.getOpcode() == ISD::SETCC) {
2886      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2887                         Tmp1, Tmp2.getOperand(2),
2888                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2889                         Node->getOperand(2));
2890    } else {
2891      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2892                         DAG.getCondCode(ISD::SETNE), Tmp2,
2893                         DAG.getConstant(0, Tmp2.getValueType()),
2894                         Node->getOperand(2));
2895    }
2896    Results.push_back(Tmp1);
2897    break;
2898  case ISD::SETCC: {
2899    Tmp1 = Node->getOperand(0);
2900    Tmp2 = Node->getOperand(1);
2901    Tmp3 = Node->getOperand(2);
2902    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2903
2904    // If we expanded the SETCC into an AND/OR, return the new node
2905    if (Tmp2.getNode() == 0) {
2906      Results.push_back(Tmp1);
2907      break;
2908    }
2909
2910    // Otherwise, SETCC for the given comparison type must be completely
2911    // illegal; expand it into a SELECT_CC.
2912    MVT VT = Node->getValueType(0);
2913    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2914                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2915    Results.push_back(Tmp1);
2916    break;
2917  }
2918  case ISD::SELECT_CC: {
2919    Tmp1 = Node->getOperand(0);   // LHS
2920    Tmp2 = Node->getOperand(1);   // RHS
2921    Tmp3 = Node->getOperand(2);   // True
2922    Tmp4 = Node->getOperand(3);   // False
2923    SDValue CC = Node->getOperand(4);
2924
2925    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2926                          Tmp1, Tmp2, CC, dl);
2927
2928    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2929    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2930    CC = DAG.getCondCode(ISD::SETNE);
2931    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2932                       Tmp3, Tmp4, CC);
2933    Results.push_back(Tmp1);
2934    break;
2935  }
2936  case ISD::BR_CC: {
2937    Tmp1 = Node->getOperand(0);              // Chain
2938    Tmp2 = Node->getOperand(2);              // LHS
2939    Tmp3 = Node->getOperand(3);              // RHS
2940    Tmp4 = Node->getOperand(1);              // CC
2941
2942    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2943                          Tmp2, Tmp3, Tmp4, dl);
2944    LastCALLSEQ_END = DAG.getEntryNode();
2945
2946    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2947    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2948    Tmp4 = DAG.getCondCode(ISD::SETNE);
2949    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2950                       Tmp3, Node->getOperand(4));
2951    Results.push_back(Tmp1);
2952    break;
2953  }
2954  case ISD::GLOBAL_OFFSET_TABLE:
2955  case ISD::GlobalAddress:
2956  case ISD::GlobalTLSAddress:
2957  case ISD::ExternalSymbol:
2958  case ISD::ConstantPool:
2959  case ISD::JumpTable:
2960  case ISD::INTRINSIC_W_CHAIN:
2961  case ISD::INTRINSIC_WO_CHAIN:
2962  case ISD::INTRINSIC_VOID:
2963    // FIXME: Custom lowering for these operations shouldn't return null!
2964    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2965      Results.push_back(SDValue(Node, i));
2966    break;
2967  }
2968}
2969void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2970                                       SmallVectorImpl<SDValue> &Results) {
2971  MVT OVT = Node->getValueType(0);
2972  if (Node->getOpcode() == ISD::UINT_TO_FP ||
2973      Node->getOpcode() == ISD::SINT_TO_FP) {
2974    OVT = Node->getOperand(0).getValueType();
2975  }
2976  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2977  DebugLoc dl = Node->getDebugLoc();
2978  SDValue Tmp1, Tmp2, Tmp3;
2979  switch (Node->getOpcode()) {
2980  case ISD::CTTZ:
2981  case ISD::CTLZ:
2982  case ISD::CTPOP:
2983    // Zero extend the argument.
2984    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2985    // Perform the larger operation.
2986    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
2987    if (Node->getOpcode() == ISD::CTTZ) {
2988      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2989      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
2990                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2991                          ISD::SETEQ);
2992      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2993                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2994    } else if (Node->getOpcode() == ISD::CTLZ) {
2995      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2996      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
2997                          DAG.getConstant(NVT.getSizeInBits() -
2998                                          OVT.getSizeInBits(), NVT));
2999    }
3000    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3001    break;
3002  case ISD::BSWAP: {
3003    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3004    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
3005    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3006    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3007                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3008    Results.push_back(Tmp1);
3009    break;
3010  }
3011  case ISD::FP_TO_UINT:
3012  case ISD::FP_TO_SINT:
3013    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3014                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3015    Results.push_back(Tmp1);
3016    break;
3017  case ISD::UINT_TO_FP:
3018  case ISD::SINT_TO_FP:
3019    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3020                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3021    Results.push_back(Tmp1);
3022    break;
3023  case ISD::AND:
3024  case ISD::OR:
3025  case ISD::XOR: {
3026    unsigned ExtOp, TruncOp;
3027    if (OVT.isVector()) {
3028      ExtOp   = ISD::BIT_CONVERT;
3029      TruncOp = ISD::BIT_CONVERT;
3030    } else if (OVT.isInteger()) {
3031      ExtOp   = ISD::ANY_EXTEND;
3032      TruncOp = ISD::TRUNCATE;
3033    } else {
3034      llvm_report_error("Cannot promote logic operation");
3035    }
3036    // Promote each of the values to the new type.
3037    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3038    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3039    // Perform the larger operation, then convert back
3040    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3041    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3042    break;
3043  }
3044  case ISD::SELECT: {
3045    unsigned ExtOp, TruncOp;
3046    if (Node->getValueType(0).isVector()) {
3047      ExtOp   = ISD::BIT_CONVERT;
3048      TruncOp = ISD::BIT_CONVERT;
3049    } else if (Node->getValueType(0).isInteger()) {
3050      ExtOp   = ISD::ANY_EXTEND;
3051      TruncOp = ISD::TRUNCATE;
3052    } else {
3053      ExtOp   = ISD::FP_EXTEND;
3054      TruncOp = ISD::FP_ROUND;
3055    }
3056    Tmp1 = Node->getOperand(0);
3057    // Promote each of the values to the new type.
3058    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3059    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3060    // Perform the larger operation, then round down.
3061    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3062    if (TruncOp != ISD::FP_ROUND)
3063      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3064    else
3065      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3066                         DAG.getIntPtrConstant(0));
3067    Results.push_back(Tmp1);
3068    break;
3069  }
3070  case ISD::VECTOR_SHUFFLE: {
3071    SmallVector<int, 8> Mask;
3072    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3073
3074    // Cast the two input vectors.
3075    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3076    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3077
3078    // Convert the shuffle mask to the right # elements.
3079    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3080    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3081    Results.push_back(Tmp1);
3082    break;
3083  }
3084  case ISD::SETCC: {
3085    // First step, figure out the appropriate operation to use.
3086    // Allow SETCC to not be supported for all legal data types
3087    // Mostly this targets FP
3088    MVT NewInTy = Node->getOperand(0).getValueType();
3089    MVT OldVT = NewInTy; OldVT = OldVT;
3090
3091    // Scan for the appropriate larger type to use.
3092    while (1) {
3093      NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
3094
3095      assert(NewInTy.isInteger() == OldVT.isInteger() &&
3096              "Fell off of the edge of the integer world");
3097      assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() &&
3098              "Fell off of the edge of the floating point world");
3099
3100      // If the target supports SETCC of this type, use it.
3101      if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy))
3102        break;
3103    }
3104    if (NewInTy.isInteger())
3105      llvm_unreachable("Cannot promote Legal Integer SETCC yet");
3106    else {
3107      Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1);
3108      Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2);
3109    }
3110    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3111                                  Tmp1, Tmp2, Node->getOperand(2)));
3112    break;
3113  }
3114  }
3115}
3116
3117// SelectionDAG::Legalize - This is the entry point for the file.
3118//
3119void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3120                            CodeGenOpt::Level OptLevel) {
3121  /// run - This is the main entry point to this class.
3122  ///
3123  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3124}
3125
3126