LegalizeDAG.cpp revision ca037dfe5d198f134bc9c7866a8345a0056acb39
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include <map>
42using namespace llvm;
43
44//===----------------------------------------------------------------------===//
45/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
46/// hacks on it until the target machine can handle it.  This involves
47/// eliminating value sizes the machine cannot handle (promoting small sizes to
48/// large sizes or splitting up large values into small values) as well as
49/// eliminating operations the machine cannot handle.
50///
51/// This code also does a small amount of optimization and recognition of idioms
52/// as part of its processing.  For example, if a target does not support a
53/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
54/// will attempt merge setcc and brc instructions into brcc's.
55///
56namespace {
57class VISIBILITY_HIDDEN SelectionDAGLegalize {
58  TargetLowering &TLI;
59  SelectionDAG &DAG;
60  CodeGenOpt::Level OptLevel;
61
62  // Libcall insertion helpers.
63
64  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65  /// legalized.  We use this to ensure that calls are properly serialized
66  /// against each other, including inserted libcalls.
67  SDValue LastCALLSEQ_END;
68
69  /// IsLegalizingCall - This member is used *only* for purposes of providing
70  /// helpful assertions that a libcall isn't created while another call is
71  /// being legalized (which could lead to non-serialized call sequences).
72  bool IsLegalizingCall;
73
74  enum LegalizeAction {
75    Legal,      // The target natively supports this operation.
76    Promote,    // This operation should be executed in a larger type.
77    Expand      // Try to expand this to other ops, otherwise use a libcall.
78  };
79
80  /// ValueTypeActions - This is a bitvector that contains two bits for each
81  /// value type, where the two bits correspond to the LegalizeAction enum.
82  /// This can be queried with "getTypeAction(VT)".
83  TargetLowering::ValueTypeActionImpl ValueTypeActions;
84
85  /// LegalizedNodes - For nodes that are of legal width, and that have more
86  /// than one use, this map indicates what regularized operand to use.  This
87  /// allows us to avoid legalizing the same thing more than once.
88  DenseMap<SDValue, SDValue> LegalizedNodes;
89
90  void AddLegalizedOperand(SDValue From, SDValue To) {
91    LegalizedNodes.insert(std::make_pair(From, To));
92    // If someone requests legalization of the new node, return itself.
93    if (From != To)
94      LegalizedNodes.insert(std::make_pair(To, To));
95  }
96
97public:
98  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
99
100  /// getTypeAction - Return how we should legalize values of this type, either
101  /// it is already legal or we need to expand it into multiple registers of
102  /// smaller integer type, or we need to promote it to a larger type.
103  LegalizeAction getTypeAction(MVT VT) const {
104    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
105  }
106
107  /// isTypeLegal - Return true if this type is legal on this target.
108  ///
109  bool isTypeLegal(MVT VT) const {
110    return getTypeAction(VT) == Legal;
111  }
112
113  void LegalizeDAG();
114
115private:
116  /// LegalizeOp - We know that the specified value has a legal type.
117  /// Recursively ensure that the operands have legal types, then return the
118  /// result.
119  SDValue LegalizeOp(SDValue O);
120
121  SDValue OptimizeFloatStore(StoreSDNode *ST);
122
123  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
124  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
125  /// is necessary to spill the vector being inserted into to memory, perform
126  /// the insert there, and then read the result back.
127  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
128                                         SDValue Idx, DebugLoc dl);
129  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
130                                  SDValue Idx, DebugLoc dl);
131
132  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
133  /// performs the same shuffe in terms of order or result bytes, but on a type
134  /// whose vector element type is narrower than the original shuffle type.
135  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
136  SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
137                                     SDValue N1, SDValue N2,
138                                     SmallVectorImpl<int> &Mask) const;
139
140  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
141                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
142
143  void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
144                             DebugLoc dl);
145
146  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
147  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
148                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
149                          RTLIB::Libcall Call_PPCF128);
150  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
151                           RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
152                           RTLIB::Libcall Call_I128);
153
154  SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
155  SDValue ExpandBUILD_VECTOR(SDNode *Node);
156  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
157  SDValue ExpandDBG_STOPPOINT(SDNode *Node);
158  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
159                                SmallVectorImpl<SDValue> &Results);
160  SDValue ExpandFCOPYSIGN(SDNode *Node);
161  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
162                               DebugLoc dl);
163  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
164                                DebugLoc dl);
165  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
166                                DebugLoc dl);
167
168  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
169  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
170
171  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
172  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
173
174  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
175  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
176};
177}
178
179/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
180/// performs the same shuffe in terms of order or result bytes, but on a type
181/// whose vector element type is narrower than the original shuffle type.
182/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
183SDValue
184SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT,  DebugLoc dl,
185                                                 SDValue N1, SDValue N2,
186                                             SmallVectorImpl<int> &Mask) const {
187  MVT EltVT = NVT.getVectorElementType();
188  unsigned NumMaskElts = VT.getVectorNumElements();
189  unsigned NumDestElts = NVT.getVectorNumElements();
190  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
191
192  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
193
194  if (NumEltsGrowth == 1)
195    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
196
197  SmallVector<int, 8> NewMask;
198  for (unsigned i = 0; i != NumMaskElts; ++i) {
199    int Idx = Mask[i];
200    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
201      if (Idx < 0)
202        NewMask.push_back(-1);
203      else
204        NewMask.push_back(Idx * NumEltsGrowth + j);
205    }
206  }
207  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
208  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
209  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
210}
211
212SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
213                                           CodeGenOpt::Level ol)
214  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
215    ValueTypeActions(TLI.getValueTypeActions()) {
216  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
217         "Too many value types for ValueTypeActions to hold!");
218}
219
220void SelectionDAGLegalize::LegalizeDAG() {
221  LastCALLSEQ_END = DAG.getEntryNode();
222  IsLegalizingCall = false;
223
224  // The legalize process is inherently a bottom-up recursive process (users
225  // legalize their uses before themselves).  Given infinite stack space, we
226  // could just start legalizing on the root and traverse the whole graph.  In
227  // practice however, this causes us to run out of stack space on large basic
228  // blocks.  To avoid this problem, compute an ordering of the nodes where each
229  // node is only legalized after all of its operands are legalized.
230  DAG.AssignTopologicalOrder();
231  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
232       E = prior(DAG.allnodes_end()); I != next(E); ++I)
233    LegalizeOp(SDValue(I, 0));
234
235  // Finally, it's possible the root changed.  Get the new root.
236  SDValue OldRoot = DAG.getRoot();
237  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
238  DAG.setRoot(LegalizedNodes[OldRoot]);
239
240  LegalizedNodes.clear();
241
242  // Remove dead nodes now.
243  DAG.RemoveDeadNodes();
244}
245
246
247/// FindCallEndFromCallStart - Given a chained node that is part of a call
248/// sequence, find the CALLSEQ_END node that terminates the call sequence.
249static SDNode *FindCallEndFromCallStart(SDNode *Node) {
250  if (Node->getOpcode() == ISD::CALLSEQ_END)
251    return Node;
252  if (Node->use_empty())
253    return 0;   // No CallSeqEnd
254
255  // The chain is usually at the end.
256  SDValue TheChain(Node, Node->getNumValues()-1);
257  if (TheChain.getValueType() != MVT::Other) {
258    // Sometimes it's at the beginning.
259    TheChain = SDValue(Node, 0);
260    if (TheChain.getValueType() != MVT::Other) {
261      // Otherwise, hunt for it.
262      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
263        if (Node->getValueType(i) == MVT::Other) {
264          TheChain = SDValue(Node, i);
265          break;
266        }
267
268      // Otherwise, we walked into a node without a chain.
269      if (TheChain.getValueType() != MVT::Other)
270        return 0;
271    }
272  }
273
274  for (SDNode::use_iterator UI = Node->use_begin(),
275       E = Node->use_end(); UI != E; ++UI) {
276
277    // Make sure to only follow users of our token chain.
278    SDNode *User = *UI;
279    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
280      if (User->getOperand(i) == TheChain)
281        if (SDNode *Result = FindCallEndFromCallStart(User))
282          return Result;
283  }
284  return 0;
285}
286
287/// FindCallStartFromCallEnd - Given a chained node that is part of a call
288/// sequence, find the CALLSEQ_START node that initiates the call sequence.
289static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
290  assert(Node && "Didn't find callseq_start for a call??");
291  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
292
293  assert(Node->getOperand(0).getValueType() == MVT::Other &&
294         "Node doesn't have a token chain argument!");
295  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
296}
297
298/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
299/// see if any uses can reach Dest.  If no dest operands can get to dest,
300/// legalize them, legalize ourself, and return false, otherwise, return true.
301///
302/// Keep track of the nodes we fine that actually do lead to Dest in
303/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
304///
305bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
306                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
307  if (N == Dest) return true;  // N certainly leads to Dest :)
308
309  // If we've already processed this node and it does lead to Dest, there is no
310  // need to reprocess it.
311  if (NodesLeadingTo.count(N)) return true;
312
313  // If the first result of this node has been already legalized, then it cannot
314  // reach N.
315  if (LegalizedNodes.count(SDValue(N, 0))) return false;
316
317  // Okay, this node has not already been legalized.  Check and legalize all
318  // operands.  If none lead to Dest, then we can legalize this node.
319  bool OperandsLeadToDest = false;
320  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
321    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
322      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
323
324  if (OperandsLeadToDest) {
325    NodesLeadingTo.insert(N);
326    return true;
327  }
328
329  // Okay, this node looks safe, legalize it and return false.
330  LegalizeOp(SDValue(N, 0));
331  return false;
332}
333
334/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
335/// a load from the constant pool.
336static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
337                                SelectionDAG &DAG, const TargetLowering &TLI) {
338  bool Extend = false;
339  DebugLoc dl = CFP->getDebugLoc();
340  LLVMContext *Context = DAG.getContext();
341
342  // If a FP immediate is precise when represented as a float and if the
343  // target can do an extending load from float to double, we put it into
344  // the constant pool as a float, even if it's is statically typed as a
345  // double.  This shrinks FP constants and canonicalizes them for targets where
346  // an FP extending load is the same cost as a normal load (such as on the x87
347  // fp stack or PPC FP unit).
348  MVT VT = CFP->getValueType(0);
349  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
350  if (!UseCP) {
351    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
352    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
353                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
354  }
355
356  MVT OrigVT = VT;
357  MVT SVT = VT;
358  while (SVT != MVT::f32) {
359    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
360    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
361        // Only do this if the target has a native EXTLOAD instruction from
362        // smaller type.
363        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
364        TLI.ShouldShrinkFPConstant(OrigVT)) {
365      const Type *SType = SVT.getTypeForMVT(*DAG.getContext());
366      LLVMC = cast<ConstantFP>(Context->getConstantExprFPTrunc(LLVMC, SType));
367      VT = SVT;
368      Extend = true;
369    }
370  }
371
372  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
373  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
374  if (Extend)
375    return DAG.getExtLoad(ISD::EXTLOAD, dl,
376                          OrigVT, DAG.getEntryNode(),
377                          CPIdx, PseudoSourceValue::getConstantPool(),
378                          0, VT, false, Alignment);
379  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
380                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
381}
382
383/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
384static
385SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
386                             const TargetLowering &TLI) {
387  SDValue Chain = ST->getChain();
388  SDValue Ptr = ST->getBasePtr();
389  SDValue Val = ST->getValue();
390  MVT VT = Val.getValueType();
391  int Alignment = ST->getAlignment();
392  int SVOffset = ST->getSrcValueOffset();
393  DebugLoc dl = ST->getDebugLoc();
394  if (ST->getMemoryVT().isFloatingPoint() ||
395      ST->getMemoryVT().isVector()) {
396    MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
397    if (TLI.isTypeLegal(intVT)) {
398      // Expand to a bitconvert of the value to the integer type of the
399      // same size, then a (misaligned) int store.
400      // FIXME: Does not handle truncating floating point stores!
401      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
402      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
403                          SVOffset, ST->isVolatile(), Alignment);
404    } else {
405      // Do a (aligned) store to a stack slot, then copy from the stack slot
406      // to the final destination using (unaligned) integer loads and stores.
407      MVT StoredVT = ST->getMemoryVT();
408      MVT RegVT =
409        TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
410      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
411      unsigned RegBytes = RegVT.getSizeInBits() / 8;
412      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
413
414      // Make sure the stack slot is also aligned for the register type.
415      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
416
417      // Perform the original store, only redirected to the stack slot.
418      SDValue Store = DAG.getTruncStore(Chain, dl,
419                                        Val, StackPtr, NULL, 0, StoredVT);
420      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
421      SmallVector<SDValue, 8> Stores;
422      unsigned Offset = 0;
423
424      // Do all but one copies using the full register width.
425      for (unsigned i = 1; i < NumRegs; i++) {
426        // Load one integer register's worth from the stack slot.
427        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
428        // Store it to the final location.  Remember the store.
429        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
430                                      ST->getSrcValue(), SVOffset + Offset,
431                                      ST->isVolatile(),
432                                      MinAlign(ST->getAlignment(), Offset)));
433        // Increment the pointers.
434        Offset += RegBytes;
435        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
436                               Increment);
437        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
438      }
439
440      // The last store may be partial.  Do a truncating store.  On big-endian
441      // machines this requires an extending load from the stack slot to ensure
442      // that the bits are in the right place.
443      MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
444
445      // Load from the stack slot.
446      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
447                                    NULL, 0, MemVT);
448
449      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
450                                         ST->getSrcValue(), SVOffset + Offset,
451                                         MemVT, ST->isVolatile(),
452                                         MinAlign(ST->getAlignment(), Offset)));
453      // The order of the stores doesn't matter - say it with a TokenFactor.
454      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
455                         Stores.size());
456    }
457  }
458  assert(ST->getMemoryVT().isInteger() &&
459         !ST->getMemoryVT().isVector() &&
460         "Unaligned store of unknown type.");
461  // Get the half-size VT
462  MVT NewStoredVT =
463    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
464  int NumBits = NewStoredVT.getSizeInBits();
465  int IncrementSize = NumBits / 8;
466
467  // Divide the stored value in two parts.
468  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
469  SDValue Lo = Val;
470  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
471
472  // Store the two parts
473  SDValue Store1, Store2;
474  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
475                             ST->getSrcValue(), SVOffset, NewStoredVT,
476                             ST->isVolatile(), Alignment);
477  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
478                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
479  Alignment = MinAlign(Alignment, IncrementSize);
480  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
481                             ST->getSrcValue(), SVOffset + IncrementSize,
482                             NewStoredVT, ST->isVolatile(), Alignment);
483
484  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
485}
486
487/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
488static
489SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
490                            const TargetLowering &TLI) {
491  int SVOffset = LD->getSrcValueOffset();
492  SDValue Chain = LD->getChain();
493  SDValue Ptr = LD->getBasePtr();
494  MVT VT = LD->getValueType(0);
495  MVT LoadedVT = LD->getMemoryVT();
496  DebugLoc dl = LD->getDebugLoc();
497  if (VT.isFloatingPoint() || VT.isVector()) {
498    MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
499    if (TLI.isTypeLegal(intVT)) {
500      // Expand to a (misaligned) integer load of the same size,
501      // then bitconvert to floating point or vector.
502      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
503                                    SVOffset, LD->isVolatile(),
504                                    LD->getAlignment());
505      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
506      if (VT.isFloatingPoint() && LoadedVT != VT)
507        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
508
509      SDValue Ops[] = { Result, Chain };
510      return DAG.getMergeValues(Ops, 2, dl);
511    } else {
512      // Copy the value to a (aligned) stack slot using (unaligned) integer
513      // loads and stores, then do a (aligned) load from the stack slot.
514      MVT RegVT = TLI.getRegisterType(intVT);
515      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
516      unsigned RegBytes = RegVT.getSizeInBits() / 8;
517      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
518
519      // Make sure the stack slot is also aligned for the register type.
520      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
521
522      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
523      SmallVector<SDValue, 8> Stores;
524      SDValue StackPtr = StackBase;
525      unsigned Offset = 0;
526
527      // Do all but one copies using the full register width.
528      for (unsigned i = 1; i < NumRegs; i++) {
529        // Load one integer register's worth from the original location.
530        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
531                                   SVOffset + Offset, LD->isVolatile(),
532                                   MinAlign(LD->getAlignment(), Offset));
533        // Follow the load with a store to the stack slot.  Remember the store.
534        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
535                                      NULL, 0));
536        // Increment the pointers.
537        Offset += RegBytes;
538        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
539        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
540                               Increment);
541      }
542
543      // The last copy may be partial.  Do an extending load.
544      MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
545      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
546                                    LD->getSrcValue(), SVOffset + Offset,
547                                    MemVT, LD->isVolatile(),
548                                    MinAlign(LD->getAlignment(), Offset));
549      // Follow the load with a store to the stack slot.  Remember the store.
550      // On big-endian machines this requires a truncating store to ensure
551      // that the bits end up in the right place.
552      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
553                                         NULL, 0, MemVT));
554
555      // The order of the stores doesn't matter - say it with a TokenFactor.
556      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
557                               Stores.size());
558
559      // Finally, perform the original load only redirected to the stack slot.
560      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
561                            NULL, 0, LoadedVT);
562
563      // Callers expect a MERGE_VALUES node.
564      SDValue Ops[] = { Load, TF };
565      return DAG.getMergeValues(Ops, 2, dl);
566    }
567  }
568  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
569         "Unaligned load of unsupported type.");
570
571  // Compute the new VT that is half the size of the old one.  This is an
572  // integer MVT.
573  unsigned NumBits = LoadedVT.getSizeInBits();
574  MVT NewLoadedVT;
575  NewLoadedVT = MVT::getIntegerVT(NumBits/2);
576  NumBits >>= 1;
577
578  unsigned Alignment = LD->getAlignment();
579  unsigned IncrementSize = NumBits / 8;
580  ISD::LoadExtType HiExtType = LD->getExtensionType();
581
582  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
583  if (HiExtType == ISD::NON_EXTLOAD)
584    HiExtType = ISD::ZEXTLOAD;
585
586  // Load the value in two parts
587  SDValue Lo, Hi;
588  if (TLI.isLittleEndian()) {
589    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
590                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
591    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
592                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
593    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
594                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
595                        MinAlign(Alignment, IncrementSize));
596  } else {
597    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
598                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
599    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
600                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
601    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
602                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
603                        MinAlign(Alignment, IncrementSize));
604  }
605
606  // aggregate the two parts
607  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
608  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
609  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
610
611  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
612                             Hi.getValue(1));
613
614  SDValue Ops[] = { Result, TF };
615  return DAG.getMergeValues(Ops, 2, dl);
616}
617
618/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
619/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
620/// is necessary to spill the vector being inserted into to memory, perform
621/// the insert there, and then read the result back.
622SDValue SelectionDAGLegalize::
623PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
624                               DebugLoc dl) {
625  SDValue Tmp1 = Vec;
626  SDValue Tmp2 = Val;
627  SDValue Tmp3 = Idx;
628
629  // If the target doesn't support this, we have to spill the input vector
630  // to a temporary stack slot, update the element, then reload it.  This is
631  // badness.  We could also load the value into a vector register (either
632  // with a "move to register" or "extload into register" instruction, then
633  // permute it into place, if the idx is a constant and if the idx is
634  // supported by the target.
635  MVT VT    = Tmp1.getValueType();
636  MVT EltVT = VT.getVectorElementType();
637  MVT IdxVT = Tmp3.getValueType();
638  MVT PtrVT = TLI.getPointerTy();
639  SDValue StackPtr = DAG.CreateStackTemporary(VT);
640
641  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
642
643  // Store the vector.
644  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
645                            PseudoSourceValue::getFixedStack(SPFI), 0);
646
647  // Truncate or zero extend offset to target pointer type.
648  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
649  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
650  // Add the offset to the index.
651  unsigned EltSize = EltVT.getSizeInBits()/8;
652  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
653  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
654  // Store the scalar value.
655  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
656                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
657  // Load the updated vector.
658  return DAG.getLoad(VT, dl, Ch, StackPtr,
659                     PseudoSourceValue::getFixedStack(SPFI), 0);
660}
661
662
663SDValue SelectionDAGLegalize::
664ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
665  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
666    // SCALAR_TO_VECTOR requires that the type of the value being inserted
667    // match the element type of the vector being created, except for
668    // integers in which case the inserted value can be over width.
669    MVT EltVT = Vec.getValueType().getVectorElementType();
670    if (Val.getValueType() == EltVT ||
671        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
672      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
673                                  Vec.getValueType(), Val);
674
675      unsigned NumElts = Vec.getValueType().getVectorNumElements();
676      // We generate a shuffle of InVec and ScVec, so the shuffle mask
677      // should be 0,1,2,3,4,5... with the appropriate element replaced with
678      // elt 0 of the RHS.
679      SmallVector<int, 8> ShufOps;
680      for (unsigned i = 0; i != NumElts; ++i)
681        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
682
683      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
684                                  &ShufOps[0]);
685    }
686  }
687  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
688}
689
690SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
691  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
692  // FIXME: We shouldn't do this for TargetConstantFP's.
693  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
694  // to phase ordering between legalized code and the dag combiner.  This
695  // probably means that we need to integrate dag combiner and legalizer
696  // together.
697  // We generally can't do this one for long doubles.
698  SDValue Tmp1 = ST->getChain();
699  SDValue Tmp2 = ST->getBasePtr();
700  SDValue Tmp3;
701  int SVOffset = ST->getSrcValueOffset();
702  unsigned Alignment = ST->getAlignment();
703  bool isVolatile = ST->isVolatile();
704  DebugLoc dl = ST->getDebugLoc();
705  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
706    if (CFP->getValueType(0) == MVT::f32 &&
707        getTypeAction(MVT::i32) == Legal) {
708      Tmp3 = DAG.getConstant(CFP->getValueAPF().
709                                      bitcastToAPInt().zextOrTrunc(32),
710                              MVT::i32);
711      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
712                          SVOffset, isVolatile, Alignment);
713    } else if (CFP->getValueType(0) == MVT::f64) {
714      // If this target supports 64-bit registers, do a single 64-bit store.
715      if (getTypeAction(MVT::i64) == Legal) {
716        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
717                                  zextOrTrunc(64), MVT::i64);
718        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
719                            SVOffset, isVolatile, Alignment);
720      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
721        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
722        // stores.  If the target supports neither 32- nor 64-bits, this
723        // xform is certainly not worth it.
724        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
725        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
726        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
727        if (TLI.isBigEndian()) std::swap(Lo, Hi);
728
729        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
730                          SVOffset, isVolatile, Alignment);
731        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
732                            DAG.getIntPtrConstant(4));
733        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
734                          isVolatile, MinAlign(Alignment, 4U));
735
736        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
737      }
738    }
739  }
740  return SDValue();
741}
742
743/// LegalizeOp - We know that the specified value has a legal type, and
744/// that its operands are legal.  Now ensure that the operation itself
745/// is legal, recursively ensuring that the operands' operations remain
746/// legal.
747SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
748  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
749    return Op;
750
751  SDNode *Node = Op.getNode();
752  DebugLoc dl = Node->getDebugLoc();
753
754  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
755    assert(getTypeAction(Node->getValueType(i)) == Legal &&
756           "Unexpected illegal type!");
757
758  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
759    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
760            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
761           "Unexpected illegal type!");
762
763  // Note that LegalizeOp may be reentered even from single-use nodes, which
764  // means that we always must cache transformed nodes.
765  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
766  if (I != LegalizedNodes.end()) return I->second;
767
768  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
769  SDValue Result = Op;
770  bool isCustom = false;
771
772  // Figure out the correct action; the way to query this varies by opcode
773  TargetLowering::LegalizeAction Action;
774  bool SimpleFinishLegalizing = true;
775  switch (Node->getOpcode()) {
776  case ISD::INTRINSIC_W_CHAIN:
777  case ISD::INTRINSIC_WO_CHAIN:
778  case ISD::INTRINSIC_VOID:
779  case ISD::VAARG:
780  case ISD::STACKSAVE:
781    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
782    break;
783  case ISD::SINT_TO_FP:
784  case ISD::UINT_TO_FP:
785  case ISD::EXTRACT_VECTOR_ELT:
786    Action = TLI.getOperationAction(Node->getOpcode(),
787                                    Node->getOperand(0).getValueType());
788    break;
789  case ISD::FP_ROUND_INREG:
790  case ISD::SIGN_EXTEND_INREG: {
791    MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
792    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
793    break;
794  }
795  case ISD::SELECT_CC:
796  case ISD::SETCC:
797  case ISD::BR_CC: {
798    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
799                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
800    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
801    MVT OpVT = Node->getOperand(CompareOperand).getValueType();
802    ISD::CondCode CCCode =
803        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
804    Action = TLI.getCondCodeAction(CCCode, OpVT);
805    if (Action == TargetLowering::Legal) {
806      if (Node->getOpcode() == ISD::SELECT_CC)
807        Action = TLI.getOperationAction(Node->getOpcode(),
808                                        Node->getValueType(0));
809      else
810        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
811    }
812    break;
813  }
814  case ISD::LOAD:
815  case ISD::STORE:
816    // FIXME: Model these properly.  LOAD and STORE are complicated, and
817    // STORE expects the unlegalized operand in some cases.
818    SimpleFinishLegalizing = false;
819    break;
820  case ISD::CALLSEQ_START:
821  case ISD::CALLSEQ_END:
822    // FIXME: This shouldn't be necessary.  These nodes have special properties
823    // dealing with the recursive nature of legalization.  Removing this
824    // special case should be done as part of making LegalizeDAG non-recursive.
825    SimpleFinishLegalizing = false;
826    break;
827  case ISD::CALL:
828    // FIXME: Legalization for calls requires custom-lowering the call before
829    // legalizing the operands!  (I haven't looked into precisely why.)
830    SimpleFinishLegalizing = false;
831    break;
832  case ISD::EXTRACT_ELEMENT:
833  case ISD::FLT_ROUNDS_:
834  case ISD::SADDO:
835  case ISD::SSUBO:
836  case ISD::UADDO:
837  case ISD::USUBO:
838  case ISD::SMULO:
839  case ISD::UMULO:
840  case ISD::FPOWI:
841  case ISD::MERGE_VALUES:
842  case ISD::EH_RETURN:
843  case ISD::FRAME_TO_ARGS_OFFSET:
844    // These operations lie about being legal: when they claim to be legal,
845    // they should actually be expanded.
846    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
847    if (Action == TargetLowering::Legal)
848      Action = TargetLowering::Expand;
849    break;
850  case ISD::TRAMPOLINE:
851  case ISD::FRAMEADDR:
852  case ISD::RETURNADDR:
853  case ISD::FORMAL_ARGUMENTS:
854    // These operations lie about being legal: when they claim to be legal,
855    // they should actually be custom-lowered.
856    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
857    if (Action == TargetLowering::Legal)
858      Action = TargetLowering::Custom;
859    break;
860  case ISD::BUILD_VECTOR:
861    // A weird case: legalization for BUILD_VECTOR never legalizes the
862    // operands!
863    // FIXME: This really sucks... changing it isn't semantically incorrect,
864    // but it massively pessimizes the code for floating-point BUILD_VECTORs
865    // because ConstantFP operands get legalized into constant pool loads
866    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
867    // though, because BUILD_VECTORS usually get lowered into other nodes
868    // which get legalized properly.
869    SimpleFinishLegalizing = false;
870    break;
871  default:
872    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
873      Action = TargetLowering::Legal;
874    } else {
875      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
876    }
877    break;
878  }
879
880  if (SimpleFinishLegalizing) {
881    SmallVector<SDValue, 8> Ops, ResultVals;
882    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
883      Ops.push_back(LegalizeOp(Node->getOperand(i)));
884    switch (Node->getOpcode()) {
885    default: break;
886    case ISD::BR:
887    case ISD::BRIND:
888    case ISD::BR_JT:
889    case ISD::BR_CC:
890    case ISD::BRCOND:
891    case ISD::RET:
892      // Branches tweak the chain to include LastCALLSEQ_END
893      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
894                            LastCALLSEQ_END);
895      Ops[0] = LegalizeOp(Ops[0]);
896      LastCALLSEQ_END = DAG.getEntryNode();
897      break;
898    case ISD::SHL:
899    case ISD::SRL:
900    case ISD::SRA:
901    case ISD::ROTL:
902    case ISD::ROTR:
903      // Legalizing shifts/rotates requires adjusting the shift amount
904      // to the appropriate width.
905      if (!Ops[1].getValueType().isVector())
906        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
907      break;
908    }
909
910    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
911                                    Ops.size());
912    switch (Action) {
913    case TargetLowering::Legal:
914      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
915        ResultVals.push_back(Result.getValue(i));
916      break;
917    case TargetLowering::Custom:
918      // FIXME: The handling for custom lowering with multiple results is
919      // a complete mess.
920      Tmp1 = TLI.LowerOperation(Result, DAG);
921      if (Tmp1.getNode()) {
922        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
923          if (e == 1)
924            ResultVals.push_back(Tmp1);
925          else
926            ResultVals.push_back(Tmp1.getValue(i));
927        }
928        break;
929      }
930
931      // FALL THROUGH
932    case TargetLowering::Expand:
933      ExpandNode(Result.getNode(), ResultVals);
934      break;
935    case TargetLowering::Promote:
936      PromoteNode(Result.getNode(), ResultVals);
937      break;
938    }
939    if (!ResultVals.empty()) {
940      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
941        if (ResultVals[i] != SDValue(Node, i))
942          ResultVals[i] = LegalizeOp(ResultVals[i]);
943        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
944      }
945      return ResultVals[Op.getResNo()];
946    }
947  }
948
949  switch (Node->getOpcode()) {
950  default:
951#ifndef NDEBUG
952    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
953#endif
954    llvm_unreachable("Do not know how to legalize this operator!");
955  case ISD::CALL:
956    // The only option for this is to custom lower it.
957    Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
958    assert(Tmp3.getNode() && "Target didn't custom lower this node!");
959    // A call within a calling sequence must be legalized to something
960    // other than the normal CALLSEQ_END.  Violating this gets Legalize
961    // into an infinite loop.
962    assert ((!IsLegalizingCall ||
963             Node->getOpcode() != ISD::CALL ||
964             Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
965            "Nested CALLSEQ_START..CALLSEQ_END not supported.");
966
967    // The number of incoming and outgoing values should match; unless the final
968    // outgoing value is a flag.
969    assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
970            (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
971             Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
972               MVT::Flag)) &&
973           "Lowering call/formal_arguments produced unexpected # results!");
974
975    // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
976    // remember that we legalized all of them, so it doesn't get relegalized.
977    for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
978      if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
979        continue;
980      Tmp1 = LegalizeOp(Tmp3.getValue(i));
981      if (Op.getResNo() == i)
982        Tmp2 = Tmp1;
983      AddLegalizedOperand(SDValue(Node, i), Tmp1);
984    }
985    return Tmp2;
986  case ISD::BUILD_VECTOR:
987    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
988    default: llvm_unreachable("This action is not supported yet!");
989    case TargetLowering::Custom:
990      Tmp3 = TLI.LowerOperation(Result, DAG);
991      if (Tmp3.getNode()) {
992        Result = Tmp3;
993        break;
994      }
995      // FALLTHROUGH
996    case TargetLowering::Expand:
997      Result = ExpandBUILD_VECTOR(Result.getNode());
998      break;
999    }
1000    break;
1001  case ISD::CALLSEQ_START: {
1002    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1003
1004    // Recursively Legalize all of the inputs of the call end that do not lead
1005    // to this call start.  This ensures that any libcalls that need be inserted
1006    // are inserted *before* the CALLSEQ_START.
1007    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1008    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1009      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1010                                   NodesLeadingTo);
1011    }
1012
1013    // Now that we legalized all of the inputs (which may have inserted
1014    // libcalls) create the new CALLSEQ_START node.
1015    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1016
1017    // Merge in the last call, to ensure that this call start after the last
1018    // call ended.
1019    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1020      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1021                         Tmp1, LastCALLSEQ_END);
1022      Tmp1 = LegalizeOp(Tmp1);
1023    }
1024
1025    // Do not try to legalize the target-specific arguments (#1+).
1026    if (Tmp1 != Node->getOperand(0)) {
1027      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1028      Ops[0] = Tmp1;
1029      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1030    }
1031
1032    // Remember that the CALLSEQ_START is legalized.
1033    AddLegalizedOperand(Op.getValue(0), Result);
1034    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1035      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1036
1037    // Now that the callseq_start and all of the non-call nodes above this call
1038    // sequence have been legalized, legalize the call itself.  During this
1039    // process, no libcalls can/will be inserted, guaranteeing that no calls
1040    // can overlap.
1041    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1042    // Note that we are selecting this call!
1043    LastCALLSEQ_END = SDValue(CallEnd, 0);
1044    IsLegalizingCall = true;
1045
1046    // Legalize the call, starting from the CALLSEQ_END.
1047    LegalizeOp(LastCALLSEQ_END);
1048    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1049    return Result;
1050  }
1051  case ISD::CALLSEQ_END:
1052    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1053    // will cause this node to be legalized as well as handling libcalls right.
1054    if (LastCALLSEQ_END.getNode() != Node) {
1055      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1056      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1057      assert(I != LegalizedNodes.end() &&
1058             "Legalizing the call start should have legalized this node!");
1059      return I->second;
1060    }
1061
1062    // Otherwise, the call start has been legalized and everything is going
1063    // according to plan.  Just legalize ourselves normally here.
1064    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1065    // Do not try to legalize the target-specific arguments (#1+), except for
1066    // an optional flag input.
1067    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1068      if (Tmp1 != Node->getOperand(0)) {
1069        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1070        Ops[0] = Tmp1;
1071        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1072      }
1073    } else {
1074      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1075      if (Tmp1 != Node->getOperand(0) ||
1076          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1077        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1078        Ops[0] = Tmp1;
1079        Ops.back() = Tmp2;
1080        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1081      }
1082    }
1083    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1084    // This finishes up call legalization.
1085    IsLegalizingCall = false;
1086
1087    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1088    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1089    if (Node->getNumValues() == 2)
1090      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1091    return Result.getValue(Op.getResNo());
1092  case ISD::LOAD: {
1093    LoadSDNode *LD = cast<LoadSDNode>(Node);
1094    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1095    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1096
1097    ISD::LoadExtType ExtType = LD->getExtensionType();
1098    if (ExtType == ISD::NON_EXTLOAD) {
1099      MVT VT = Node->getValueType(0);
1100      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1101      Tmp3 = Result.getValue(0);
1102      Tmp4 = Result.getValue(1);
1103
1104      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1105      default: llvm_unreachable("This action is not supported yet!");
1106      case TargetLowering::Legal:
1107        // If this is an unaligned load and the target doesn't support it,
1108        // expand it.
1109        if (!TLI.allowsUnalignedMemoryAccesses()) {
1110          unsigned ABIAlignment = TLI.getTargetData()->
1111            getABITypeAlignment(LD->getMemoryVT().getTypeForMVT(
1112                                                            *DAG.getContext()));
1113          if (LD->getAlignment() < ABIAlignment){
1114            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1115                                         TLI);
1116            Tmp3 = Result.getOperand(0);
1117            Tmp4 = Result.getOperand(1);
1118            Tmp3 = LegalizeOp(Tmp3);
1119            Tmp4 = LegalizeOp(Tmp4);
1120          }
1121        }
1122        break;
1123      case TargetLowering::Custom:
1124        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1125        if (Tmp1.getNode()) {
1126          Tmp3 = LegalizeOp(Tmp1);
1127          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1128        }
1129        break;
1130      case TargetLowering::Promote: {
1131        // Only promote a load of vector type to another.
1132        assert(VT.isVector() && "Cannot promote this load!");
1133        // Change base type to a different vector type.
1134        MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1135
1136        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1137                           LD->getSrcValueOffset(),
1138                           LD->isVolatile(), LD->getAlignment());
1139        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1140        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1141        break;
1142      }
1143      }
1144      // Since loads produce two values, make sure to remember that we
1145      // legalized both of them.
1146      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1147      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1148      return Op.getResNo() ? Tmp4 : Tmp3;
1149    } else {
1150      MVT SrcVT = LD->getMemoryVT();
1151      unsigned SrcWidth = SrcVT.getSizeInBits();
1152      int SVOffset = LD->getSrcValueOffset();
1153      unsigned Alignment = LD->getAlignment();
1154      bool isVolatile = LD->isVolatile();
1155
1156      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1157          // Some targets pretend to have an i1 loading operation, and actually
1158          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1159          // bits are guaranteed to be zero; it helps the optimizers understand
1160          // that these bits are zero.  It is also useful for EXTLOAD, since it
1161          // tells the optimizers that those bits are undefined.  It would be
1162          // nice to have an effective generic way of getting these benefits...
1163          // Until such a way is found, don't insist on promoting i1 here.
1164          (SrcVT != MVT::i1 ||
1165           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1166        // Promote to a byte-sized load if not loading an integral number of
1167        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1168        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1169        MVT NVT = MVT::getIntegerVT(NewWidth);
1170        SDValue Ch;
1171
1172        // The extra bits are guaranteed to be zero, since we stored them that
1173        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1174
1175        ISD::LoadExtType NewExtType =
1176          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1177
1178        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1179                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1180                                NVT, isVolatile, Alignment);
1181
1182        Ch = Result.getValue(1); // The chain.
1183
1184        if (ExtType == ISD::SEXTLOAD)
1185          // Having the top bits zero doesn't help when sign extending.
1186          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1187                               Result.getValueType(),
1188                               Result, DAG.getValueType(SrcVT));
1189        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1190          // All the top bits are guaranteed to be zero - inform the optimizers.
1191          Result = DAG.getNode(ISD::AssertZext, dl,
1192                               Result.getValueType(), Result,
1193                               DAG.getValueType(SrcVT));
1194
1195        Tmp1 = LegalizeOp(Result);
1196        Tmp2 = LegalizeOp(Ch);
1197      } else if (SrcWidth & (SrcWidth - 1)) {
1198        // If not loading a power-of-2 number of bits, expand as two loads.
1199        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1200               "Unsupported extload!");
1201        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1202        assert(RoundWidth < SrcWidth);
1203        unsigned ExtraWidth = SrcWidth - RoundWidth;
1204        assert(ExtraWidth < RoundWidth);
1205        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1206               "Load size not an integral number of bytes!");
1207        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1208        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1209        SDValue Lo, Hi, Ch;
1210        unsigned IncrementSize;
1211
1212        if (TLI.isLittleEndian()) {
1213          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1214          // Load the bottom RoundWidth bits.
1215          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1216                              Node->getValueType(0), Tmp1, Tmp2,
1217                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1218                              Alignment);
1219
1220          // Load the remaining ExtraWidth bits.
1221          IncrementSize = RoundWidth / 8;
1222          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1223                             DAG.getIntPtrConstant(IncrementSize));
1224          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1225                              LD->getSrcValue(), SVOffset + IncrementSize,
1226                              ExtraVT, isVolatile,
1227                              MinAlign(Alignment, IncrementSize));
1228
1229          // Build a factor node to remember that this load is independent of the
1230          // other one.
1231          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1232                           Hi.getValue(1));
1233
1234          // Move the top bits to the right place.
1235          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1236                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1237
1238          // Join the hi and lo parts.
1239          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1240        } else {
1241          // Big endian - avoid unaligned loads.
1242          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1243          // Load the top RoundWidth bits.
1244          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1245                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1246                              Alignment);
1247
1248          // Load the remaining ExtraWidth bits.
1249          IncrementSize = RoundWidth / 8;
1250          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1251                             DAG.getIntPtrConstant(IncrementSize));
1252          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1253                              Node->getValueType(0), Tmp1, Tmp2,
1254                              LD->getSrcValue(), SVOffset + IncrementSize,
1255                              ExtraVT, isVolatile,
1256                              MinAlign(Alignment, IncrementSize));
1257
1258          // Build a factor node to remember that this load is independent of the
1259          // other one.
1260          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1261                           Hi.getValue(1));
1262
1263          // Move the top bits to the right place.
1264          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1265                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1266
1267          // Join the hi and lo parts.
1268          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1269        }
1270
1271        Tmp1 = LegalizeOp(Result);
1272        Tmp2 = LegalizeOp(Ch);
1273      } else {
1274        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1275        default: llvm_unreachable("This action is not supported yet!");
1276        case TargetLowering::Custom:
1277          isCustom = true;
1278          // FALLTHROUGH
1279        case TargetLowering::Legal:
1280          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1281          Tmp1 = Result.getValue(0);
1282          Tmp2 = Result.getValue(1);
1283
1284          if (isCustom) {
1285            Tmp3 = TLI.LowerOperation(Result, DAG);
1286            if (Tmp3.getNode()) {
1287              Tmp1 = LegalizeOp(Tmp3);
1288              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1289            }
1290          } else {
1291            // If this is an unaligned load and the target doesn't support it,
1292            // expand it.
1293            if (!TLI.allowsUnalignedMemoryAccesses()) {
1294              unsigned ABIAlignment = TLI.getTargetData()->
1295                getABITypeAlignment(LD->getMemoryVT().getTypeForMVT(
1296                                                            *DAG.getContext()));
1297              if (LD->getAlignment() < ABIAlignment){
1298                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1299                                             TLI);
1300                Tmp1 = Result.getOperand(0);
1301                Tmp2 = Result.getOperand(1);
1302                Tmp1 = LegalizeOp(Tmp1);
1303                Tmp2 = LegalizeOp(Tmp2);
1304              }
1305            }
1306          }
1307          break;
1308        case TargetLowering::Expand:
1309          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1310          if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1311            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1312                                         LD->getSrcValueOffset(),
1313                                         LD->isVolatile(), LD->getAlignment());
1314            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1315                                 Node->getValueType(0), Load);
1316            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1317            Tmp2 = LegalizeOp(Load.getValue(1));
1318            break;
1319          }
1320          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1321          // Turn the unsupported load into an EXTLOAD followed by an explicit
1322          // zero/sign extend inreg.
1323          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1324                                  Tmp1, Tmp2, LD->getSrcValue(),
1325                                  LD->getSrcValueOffset(), SrcVT,
1326                                  LD->isVolatile(), LD->getAlignment());
1327          SDValue ValRes;
1328          if (ExtType == ISD::SEXTLOAD)
1329            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1330                                 Result.getValueType(),
1331                                 Result, DAG.getValueType(SrcVT));
1332          else
1333            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1334          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1335          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1336          break;
1337        }
1338      }
1339
1340      // Since loads produce two values, make sure to remember that we legalized
1341      // both of them.
1342      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1343      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1344      return Op.getResNo() ? Tmp2 : Tmp1;
1345    }
1346  }
1347  case ISD::STORE: {
1348    StoreSDNode *ST = cast<StoreSDNode>(Node);
1349    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1350    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1351    int SVOffset = ST->getSrcValueOffset();
1352    unsigned Alignment = ST->getAlignment();
1353    bool isVolatile = ST->isVolatile();
1354
1355    if (!ST->isTruncatingStore()) {
1356      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1357        Result = SDValue(OptStore, 0);
1358        break;
1359      }
1360
1361      {
1362        Tmp3 = LegalizeOp(ST->getValue());
1363        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1364                                        ST->getOffset());
1365
1366        MVT VT = Tmp3.getValueType();
1367        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1368        default: llvm_unreachable("This action is not supported yet!");
1369        case TargetLowering::Legal:
1370          // If this is an unaligned store and the target doesn't support it,
1371          // expand it.
1372          if (!TLI.allowsUnalignedMemoryAccesses()) {
1373            unsigned ABIAlignment = TLI.getTargetData()->
1374              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT(
1375                                                            *DAG.getContext()));
1376            if (ST->getAlignment() < ABIAlignment)
1377              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1378                                            TLI);
1379          }
1380          break;
1381        case TargetLowering::Custom:
1382          Tmp1 = TLI.LowerOperation(Result, DAG);
1383          if (Tmp1.getNode()) Result = Tmp1;
1384          break;
1385        case TargetLowering::Promote:
1386          assert(VT.isVector() && "Unknown legal promote case!");
1387          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1388                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1389          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1390                                ST->getSrcValue(), SVOffset, isVolatile,
1391                                Alignment);
1392          break;
1393        }
1394        break;
1395      }
1396    } else {
1397      Tmp3 = LegalizeOp(ST->getValue());
1398
1399      MVT StVT = ST->getMemoryVT();
1400      unsigned StWidth = StVT.getSizeInBits();
1401
1402      if (StWidth != StVT.getStoreSizeInBits()) {
1403        // Promote to a byte-sized store with upper bits zero if not
1404        // storing an integral number of bytes.  For example, promote
1405        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1406        MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
1407        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1408        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1409                                   SVOffset, NVT, isVolatile, Alignment);
1410      } else if (StWidth & (StWidth - 1)) {
1411        // If not storing a power-of-2 number of bits, expand as two stores.
1412        assert(StVT.isExtended() && !StVT.isVector() &&
1413               "Unsupported truncstore!");
1414        unsigned RoundWidth = 1 << Log2_32(StWidth);
1415        assert(RoundWidth < StWidth);
1416        unsigned ExtraWidth = StWidth - RoundWidth;
1417        assert(ExtraWidth < RoundWidth);
1418        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1419               "Store size not an integral number of bytes!");
1420        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1421        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1422        SDValue Lo, Hi;
1423        unsigned IncrementSize;
1424
1425        if (TLI.isLittleEndian()) {
1426          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1427          // Store the bottom RoundWidth bits.
1428          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1429                                 SVOffset, RoundVT,
1430                                 isVolatile, Alignment);
1431
1432          // Store the remaining ExtraWidth bits.
1433          IncrementSize = RoundWidth / 8;
1434          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1435                             DAG.getIntPtrConstant(IncrementSize));
1436          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1437                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1438          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1439                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1440                                 MinAlign(Alignment, IncrementSize));
1441        } else {
1442          // Big endian - avoid unaligned stores.
1443          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1444          // Store the top RoundWidth bits.
1445          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1446                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1447          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1448                                 SVOffset, RoundVT, isVolatile, Alignment);
1449
1450          // Store the remaining ExtraWidth bits.
1451          IncrementSize = RoundWidth / 8;
1452          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1453                             DAG.getIntPtrConstant(IncrementSize));
1454          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1455                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1456                                 MinAlign(Alignment, IncrementSize));
1457        }
1458
1459        // The order of the stores doesn't matter.
1460        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1461      } else {
1462        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1463            Tmp2 != ST->getBasePtr())
1464          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1465                                          ST->getOffset());
1466
1467        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1468        default: llvm_unreachable("This action is not supported yet!");
1469        case TargetLowering::Legal:
1470          // If this is an unaligned store and the target doesn't support it,
1471          // expand it.
1472          if (!TLI.allowsUnalignedMemoryAccesses()) {
1473            unsigned ABIAlignment = TLI.getTargetData()->
1474              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT(
1475                                                            *DAG.getContext()));
1476            if (ST->getAlignment() < ABIAlignment)
1477              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1478                                            TLI);
1479          }
1480          break;
1481        case TargetLowering::Custom:
1482          Result = TLI.LowerOperation(Result, DAG);
1483          break;
1484        case Expand:
1485          // TRUNCSTORE:i16 i32 -> STORE i16
1486          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1487          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1488          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1489                                SVOffset, isVolatile, Alignment);
1490          break;
1491        }
1492      }
1493    }
1494    break;
1495  }
1496  }
1497  assert(Result.getValueType() == Op.getValueType() &&
1498         "Bad legalization!");
1499
1500  // Make sure that the generated code is itself legal.
1501  if (Result != Op)
1502    Result = LegalizeOp(Result);
1503
1504  // Note that LegalizeOp may be reentered even from single-use nodes, which
1505  // means that we always must cache transformed nodes.
1506  AddLegalizedOperand(Op, Result);
1507  return Result;
1508}
1509
1510SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1511  SDValue Vec = Op.getOperand(0);
1512  SDValue Idx = Op.getOperand(1);
1513  DebugLoc dl = Op.getDebugLoc();
1514  // Store the value to a temporary stack slot, then LOAD the returned part.
1515  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1516  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1517
1518  // Add the offset to the index.
1519  unsigned EltSize =
1520      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1521  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1522                    DAG.getConstant(EltSize, Idx.getValueType()));
1523
1524  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1525    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1526  else
1527    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1528
1529  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1530
1531  if (Op.getValueType().isVector())
1532    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1533  else
1534    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1535                          NULL, 0, Vec.getValueType().getVectorElementType());
1536}
1537
1538SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1539  // We can't handle this case efficiently.  Allocate a sufficiently
1540  // aligned object on the stack, store each element into it, then load
1541  // the result as a vector.
1542  // Create the stack frame object.
1543  MVT VT = Node->getValueType(0);
1544  MVT OpVT = Node->getOperand(0).getValueType();
1545  DebugLoc dl = Node->getDebugLoc();
1546  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1547  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1548  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1549
1550  // Emit a store of each element to the stack slot.
1551  SmallVector<SDValue, 8> Stores;
1552  unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1553  // Store (in the right endianness) the elements to memory.
1554  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1555    // Ignore undef elements.
1556    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1557
1558    unsigned Offset = TypeByteSize*i;
1559
1560    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1561    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1562
1563    Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1564                                  Idx, SV, Offset));
1565  }
1566
1567  SDValue StoreChain;
1568  if (!Stores.empty())    // Not all undef elements?
1569    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1570                             &Stores[0], Stores.size());
1571  else
1572    StoreChain = DAG.getEntryNode();
1573
1574  // Result is a load from the stack slot.
1575  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1576}
1577
1578SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1579  DebugLoc dl = Node->getDebugLoc();
1580  SDValue Tmp1 = Node->getOperand(0);
1581  SDValue Tmp2 = Node->getOperand(1);
1582  assert((Tmp2.getValueType() == MVT::f32 ||
1583          Tmp2.getValueType() == MVT::f64) &&
1584          "Ugly special-cased code!");
1585  // Get the sign bit of the RHS.
1586  SDValue SignBit;
1587  MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1588  if (isTypeLegal(IVT)) {
1589    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1590  } else {
1591    assert(isTypeLegal(TLI.getPointerTy()) &&
1592            (TLI.getPointerTy() == MVT::i32 ||
1593            TLI.getPointerTy() == MVT::i64) &&
1594            "Legal type for load?!");
1595    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1596    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1597    SDValue Ch =
1598        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1599    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1600      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1601                            LoadPtr, DAG.getIntPtrConstant(4));
1602    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1603                              Ch, LoadPtr, NULL, 0, MVT::i32);
1604  }
1605  SignBit =
1606      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1607                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1608                    ISD::SETLT);
1609  // Get the absolute value of the result.
1610  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1611  // Select between the nabs and abs value based on the sign bit of
1612  // the input.
1613  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1614                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1615                     AbsVal);
1616}
1617
1618SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1619  DebugLoc dl = Node->getDebugLoc();
1620  DwarfWriter *DW = DAG.getDwarfWriter();
1621  bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1622                                                    MVT::Other);
1623  bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1624
1625  const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1626  GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1627  if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1628    DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1629
1630    unsigned Line = DSP->getLine();
1631    unsigned Col = DSP->getColumn();
1632
1633    if (OptLevel == CodeGenOpt::None) {
1634      // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1635      // won't hurt anything.
1636      if (useDEBUG_LOC) {
1637        return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1638                           DAG.getConstant(Line, MVT::i32),
1639                           DAG.getConstant(Col, MVT::i32),
1640                           DAG.getSrcValue(CU.getGV()));
1641      } else {
1642        unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1643        return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1644      }
1645    }
1646  }
1647  return Node->getOperand(0);
1648}
1649
1650void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1651                                           SmallVectorImpl<SDValue> &Results) {
1652  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1653  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1654          " not tell us which reg is the stack pointer!");
1655  DebugLoc dl = Node->getDebugLoc();
1656  MVT VT = Node->getValueType(0);
1657  SDValue Tmp1 = SDValue(Node, 0);
1658  SDValue Tmp2 = SDValue(Node, 1);
1659  SDValue Tmp3 = Node->getOperand(2);
1660  SDValue Chain = Tmp1.getOperand(0);
1661
1662  // Chain the dynamic stack allocation so that it doesn't modify the stack
1663  // pointer when other instructions are using the stack.
1664  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1665
1666  SDValue Size  = Tmp2.getOperand(1);
1667  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1668  Chain = SP.getValue(1);
1669  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1670  unsigned StackAlign =
1671    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1672  if (Align > StackAlign)
1673    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1674                      DAG.getConstant(-(uint64_t)Align, VT));
1675  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1676  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1677
1678  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1679                            DAG.getIntPtrConstant(0, true), SDValue());
1680
1681  Results.push_back(Tmp1);
1682  Results.push_back(Tmp2);
1683}
1684
1685/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1686/// condition code CC on the current target. This routine assumes LHS and rHS
1687/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1688/// illegal condition code into AND / OR of multiple SETCC values.
1689void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
1690                                                 SDValue &LHS, SDValue &RHS,
1691                                                 SDValue &CC,
1692                                                 DebugLoc dl) {
1693  MVT OpVT = LHS.getValueType();
1694  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1695  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1696  default: llvm_unreachable("Unknown condition code action!");
1697  case TargetLowering::Legal:
1698    // Nothing to do.
1699    break;
1700  case TargetLowering::Expand: {
1701    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1702    unsigned Opc = 0;
1703    switch (CCCode) {
1704    default: llvm_unreachable("Don't know how to expand this condition!");
1705    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1706    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1707    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1708    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1709    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1710    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1711    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1712    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1713    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1714    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1715    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1716    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1717    // FIXME: Implement more expansions.
1718    }
1719
1720    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1721    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1722    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1723    RHS = SDValue();
1724    CC  = SDValue();
1725    break;
1726  }
1727  }
1728}
1729
1730/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1731/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1732/// a load from the stack slot to DestVT, extending it if needed.
1733/// The resultant code need not be legal.
1734SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1735                                               MVT SlotVT,
1736                                               MVT DestVT,
1737                                               DebugLoc dl) {
1738  // Create the stack frame object.
1739  unsigned SrcAlign =
1740    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1741                                              getTypeForMVT(*DAG.getContext()));
1742  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1743
1744  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1745  int SPFI = StackPtrFI->getIndex();
1746  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1747
1748  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1749  unsigned SlotSize = SlotVT.getSizeInBits();
1750  unsigned DestSize = DestVT.getSizeInBits();
1751  unsigned DestAlign =
1752    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT(
1753                                                            *DAG.getContext()));
1754
1755  // Emit a store to the stack slot.  Use a truncstore if the input value is
1756  // later than DestVT.
1757  SDValue Store;
1758
1759  if (SrcSize > SlotSize)
1760    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1761                              SV, 0, SlotVT, false, SrcAlign);
1762  else {
1763    assert(SrcSize == SlotSize && "Invalid store");
1764    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1765                         SV, 0, false, SrcAlign);
1766  }
1767
1768  // Result is a load from the stack slot.
1769  if (SlotSize == DestSize)
1770    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1771
1772  assert(SlotSize < DestSize && "Unknown extension!");
1773  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1774                        false, DestAlign);
1775}
1776
1777SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1778  DebugLoc dl = Node->getDebugLoc();
1779  // Create a vector sized/aligned stack slot, store the value to element #0,
1780  // then load the whole vector back out.
1781  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1782
1783  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1784  int SPFI = StackPtrFI->getIndex();
1785
1786  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1787                                 StackPtr,
1788                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1789                                 Node->getValueType(0).getVectorElementType());
1790  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1791                     PseudoSourceValue::getFixedStack(SPFI), 0);
1792}
1793
1794
1795/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1796/// support the operation, but do support the resultant vector type.
1797SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1798  LLVMContext *Context = DAG.getContext();
1799  unsigned NumElems = Node->getNumOperands();
1800  SDValue Value1, Value2;
1801  DebugLoc dl = Node->getDebugLoc();
1802  MVT VT = Node->getValueType(0);
1803  MVT OpVT = Node->getOperand(0).getValueType();
1804  MVT EltVT = VT.getVectorElementType();
1805
1806  // If the only non-undef value is the low element, turn this into a
1807  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1808  bool isOnlyLowElement = true;
1809  bool MoreThanTwoValues = false;
1810  bool isConstant = true;
1811  for (unsigned i = 0; i < NumElems; ++i) {
1812    SDValue V = Node->getOperand(i);
1813    if (V.getOpcode() == ISD::UNDEF)
1814      continue;
1815    if (i > 0)
1816      isOnlyLowElement = false;
1817    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1818      isConstant = false;
1819
1820    if (!Value1.getNode()) {
1821      Value1 = V;
1822    } else if (!Value2.getNode()) {
1823      if (V != Value1)
1824        Value2 = V;
1825    } else if (V != Value1 && V != Value2) {
1826      MoreThanTwoValues = true;
1827    }
1828  }
1829
1830  if (!Value1.getNode())
1831    return DAG.getUNDEF(VT);
1832
1833  if (isOnlyLowElement)
1834    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1835
1836  // If all elements are constants, create a load from the constant pool.
1837  if (isConstant) {
1838    std::vector<Constant*> CV;
1839    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1840      if (ConstantFPSDNode *V =
1841          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1842        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1843      } else if (ConstantSDNode *V =
1844                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1845        CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1846      } else {
1847        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1848        const Type *OpNTy = OpVT.getTypeForMVT(*DAG.getContext());
1849        CV.push_back(Context->getUndef(OpNTy));
1850      }
1851    }
1852    Constant *CP = Context->getConstantVector(CV);
1853    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1854    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1855    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1856                       PseudoSourceValue::getConstantPool(), 0,
1857                       false, Alignment);
1858  }
1859
1860  if (!MoreThanTwoValues) {
1861    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1862    for (unsigned i = 0; i < NumElems; ++i) {
1863      SDValue V = Node->getOperand(i);
1864      if (V.getOpcode() == ISD::UNDEF)
1865        continue;
1866      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1867    }
1868    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1869      // Get the splatted value into the low element of a vector register.
1870      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1871      SDValue Vec2;
1872      if (Value2.getNode())
1873        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1874      else
1875        Vec2 = DAG.getUNDEF(VT);
1876
1877      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1878      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1879    }
1880  }
1881
1882  // Otherwise, we can't handle this case efficiently.
1883  return ExpandVectorBuildThroughStack(Node);
1884}
1885
1886// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1887// does not fit into a register, return the lo part and set the hi part to the
1888// by-reg argument.  If it does fit into a single register, return the result
1889// and leave the Hi part unset.
1890SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1891                                            bool isSigned) {
1892  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1893  // The input chain to this libcall is the entry node of the function.
1894  // Legalizing the call will automatically add the previous call to the
1895  // dependence.
1896  SDValue InChain = DAG.getEntryNode();
1897
1898  TargetLowering::ArgListTy Args;
1899  TargetLowering::ArgListEntry Entry;
1900  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1901    MVT ArgVT = Node->getOperand(i).getValueType();
1902    const Type *ArgTy = ArgVT.getTypeForMVT(*DAG.getContext());
1903    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1904    Entry.isSExt = isSigned;
1905    Entry.isZExt = !isSigned;
1906    Args.push_back(Entry);
1907  }
1908  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1909                                         TLI.getPointerTy());
1910
1911  // Splice the libcall in wherever FindInputOutputChains tells us to.
1912  const Type *RetTy = Node->getValueType(0).getTypeForMVT(*DAG.getContext());
1913  std::pair<SDValue, SDValue> CallInfo =
1914    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1915                    0, CallingConv::C, false, Callee, Args, DAG,
1916                    Node->getDebugLoc());
1917
1918  // Legalize the call sequence, starting with the chain.  This will advance
1919  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1920  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1921  LegalizeOp(CallInfo.second);
1922  return CallInfo.first;
1923}
1924
1925SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1926                                              RTLIB::Libcall Call_F32,
1927                                              RTLIB::Libcall Call_F64,
1928                                              RTLIB::Libcall Call_F80,
1929                                              RTLIB::Libcall Call_PPCF128) {
1930  RTLIB::Libcall LC;
1931  switch (Node->getValueType(0).getSimpleVT()) {
1932  default: llvm_unreachable("Unexpected request for libcall!");
1933  case MVT::f32: LC = Call_F32; break;
1934  case MVT::f64: LC = Call_F64; break;
1935  case MVT::f80: LC = Call_F80; break;
1936  case MVT::ppcf128: LC = Call_PPCF128; break;
1937  }
1938  return ExpandLibCall(LC, Node, false);
1939}
1940
1941SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1942                                               RTLIB::Libcall Call_I16,
1943                                               RTLIB::Libcall Call_I32,
1944                                               RTLIB::Libcall Call_I64,
1945                                               RTLIB::Libcall Call_I128) {
1946  RTLIB::Libcall LC;
1947  switch (Node->getValueType(0).getSimpleVT()) {
1948  default: llvm_unreachable("Unexpected request for libcall!");
1949  case MVT::i16: LC = Call_I16; break;
1950  case MVT::i32: LC = Call_I32; break;
1951  case MVT::i64: LC = Call_I64; break;
1952  case MVT::i128: LC = Call_I128; break;
1953  }
1954  return ExpandLibCall(LC, Node, isSigned);
1955}
1956
1957/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1958/// INT_TO_FP operation of the specified operand when the target requests that
1959/// we expand it.  At this point, we know that the result and operand types are
1960/// legal for the target.
1961SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1962                                                   SDValue Op0,
1963                                                   MVT DestVT,
1964                                                   DebugLoc dl) {
1965  if (Op0.getValueType() == MVT::i32) {
1966    // simple 32-bit [signed|unsigned] integer to float/double expansion
1967
1968    // Get the stack frame index of a 8 byte buffer.
1969    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1970
1971    // word offset constant for Hi/Lo address computation
1972    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1973    // set up Hi and Lo (into buffer) address based on endian
1974    SDValue Hi = StackSlot;
1975    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1976                             TLI.getPointerTy(), StackSlot, WordOff);
1977    if (TLI.isLittleEndian())
1978      std::swap(Hi, Lo);
1979
1980    // if signed map to unsigned space
1981    SDValue Op0Mapped;
1982    if (isSigned) {
1983      // constant used to invert sign bit (signed to unsigned mapping)
1984      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1985      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1986    } else {
1987      Op0Mapped = Op0;
1988    }
1989    // store the lo of the constructed double - based on integer input
1990    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1991                                  Op0Mapped, Lo, NULL, 0);
1992    // initial hi portion of constructed double
1993    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1994    // store the hi of the constructed double - biased exponent
1995    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1996    // load the constructed double
1997    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1998    // FP constant to bias correct the final result
1999    SDValue Bias = DAG.getConstantFP(isSigned ?
2000                                     BitsToDouble(0x4330000080000000ULL) :
2001                                     BitsToDouble(0x4330000000000000ULL),
2002                                     MVT::f64);
2003    // subtract the bias
2004    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2005    // final result
2006    SDValue Result;
2007    // handle final rounding
2008    if (DestVT == MVT::f64) {
2009      // do nothing
2010      Result = Sub;
2011    } else if (DestVT.bitsLT(MVT::f64)) {
2012      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2013                           DAG.getIntPtrConstant(0));
2014    } else if (DestVT.bitsGT(MVT::f64)) {
2015      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2016    }
2017    return Result;
2018  }
2019  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2020  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2021
2022  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2023                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2024                                 ISD::SETLT);
2025  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2026  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2027                                    SignSet, Four, Zero);
2028
2029  // If the sign bit of the integer is set, the large number will be treated
2030  // as a negative number.  To counteract this, the dynamic code adds an
2031  // offset depending on the data type.
2032  uint64_t FF;
2033  switch (Op0.getValueType().getSimpleVT()) {
2034  default: llvm_unreachable("Unsupported integer type!");
2035  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2036  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2037  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2038  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2039  }
2040  if (TLI.isLittleEndian()) FF <<= 32;
2041  Constant *FudgeFactor = DAG.getContext()->getConstantInt(Type::Int64Ty, FF);
2042
2043  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2044  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2045  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2046  Alignment = std::min(Alignment, 4u);
2047  SDValue FudgeInReg;
2048  if (DestVT == MVT::f32)
2049    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2050                             PseudoSourceValue::getConstantPool(), 0,
2051                             false, Alignment);
2052  else {
2053    FudgeInReg =
2054      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2055                                DAG.getEntryNode(), CPIdx,
2056                                PseudoSourceValue::getConstantPool(), 0,
2057                                MVT::f32, false, Alignment));
2058  }
2059
2060  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2061}
2062
2063/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2064/// *INT_TO_FP operation of the specified operand when the target requests that
2065/// we promote it.  At this point, we know that the result and operand types are
2066/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2067/// operation that takes a larger input.
2068SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2069                                                    MVT DestVT,
2070                                                    bool isSigned,
2071                                                    DebugLoc dl) {
2072  // First step, figure out the appropriate *INT_TO_FP operation to use.
2073  MVT NewInTy = LegalOp.getValueType();
2074
2075  unsigned OpToUse = 0;
2076
2077  // Scan for the appropriate larger type to use.
2078  while (1) {
2079    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
2080    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2081
2082    // If the target supports SINT_TO_FP of this type, use it.
2083    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2084      OpToUse = ISD::SINT_TO_FP;
2085      break;
2086    }
2087    if (isSigned) continue;
2088
2089    // If the target supports UINT_TO_FP of this type, use it.
2090    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2091      OpToUse = ISD::UINT_TO_FP;
2092      break;
2093    }
2094
2095    // Otherwise, try a larger type.
2096  }
2097
2098  // Okay, we found the operation and type to use.  Zero extend our input to the
2099  // desired type then run the operation on it.
2100  return DAG.getNode(OpToUse, dl, DestVT,
2101                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2102                                 dl, NewInTy, LegalOp));
2103}
2104
2105/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2106/// FP_TO_*INT operation of the specified operand when the target requests that
2107/// we promote it.  At this point, we know that the result and operand types are
2108/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2109/// operation that returns a larger result.
2110SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2111                                                    MVT DestVT,
2112                                                    bool isSigned,
2113                                                    DebugLoc dl) {
2114  // First step, figure out the appropriate FP_TO*INT operation to use.
2115  MVT NewOutTy = DestVT;
2116
2117  unsigned OpToUse = 0;
2118
2119  // Scan for the appropriate larger type to use.
2120  while (1) {
2121    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
2122    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2123
2124    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2125      OpToUse = ISD::FP_TO_SINT;
2126      break;
2127    }
2128
2129    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2130      OpToUse = ISD::FP_TO_UINT;
2131      break;
2132    }
2133
2134    // Otherwise, try a larger type.
2135  }
2136
2137
2138  // Okay, we found the operation and type to use.
2139  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2140
2141  // Truncate the result of the extended FP_TO_*INT operation to the desired
2142  // size.
2143  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2144}
2145
2146/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2147///
2148SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2149  MVT VT = Op.getValueType();
2150  MVT SHVT = TLI.getShiftAmountTy();
2151  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2152  switch (VT.getSimpleVT()) {
2153  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2154  case MVT::i16:
2155    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2156    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2157    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2158  case MVT::i32:
2159    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2160    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2161    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2162    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2163    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2164    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2165    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2166    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2167    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2168  case MVT::i64:
2169    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2170    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2171    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2172    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2173    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2174    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2175    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2176    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2177    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2178    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2179    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2180    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2181    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2182    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2183    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2184    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2185    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2186    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2187    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2188    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2189    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2190  }
2191}
2192
2193/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2194///
2195SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2196                                             DebugLoc dl) {
2197  switch (Opc) {
2198  default: llvm_unreachable("Cannot expand this yet!");
2199  case ISD::CTPOP: {
2200    static const uint64_t mask[6] = {
2201      0x5555555555555555ULL, 0x3333333333333333ULL,
2202      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2203      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2204    };
2205    MVT VT = Op.getValueType();
2206    MVT ShVT = TLI.getShiftAmountTy();
2207    unsigned len = VT.getSizeInBits();
2208    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2209      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2210      unsigned EltSize = VT.isVector() ?
2211        VT.getVectorElementType().getSizeInBits() : len;
2212      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2213      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2214      Op = DAG.getNode(ISD::ADD, dl, VT,
2215                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2216                       DAG.getNode(ISD::AND, dl, VT,
2217                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2218                                   Tmp2));
2219    }
2220    return Op;
2221  }
2222  case ISD::CTLZ: {
2223    // for now, we do this:
2224    // x = x | (x >> 1);
2225    // x = x | (x >> 2);
2226    // ...
2227    // x = x | (x >>16);
2228    // x = x | (x >>32); // for 64-bit input
2229    // return popcount(~x);
2230    //
2231    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2232    MVT VT = Op.getValueType();
2233    MVT ShVT = TLI.getShiftAmountTy();
2234    unsigned len = VT.getSizeInBits();
2235    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2236      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2237      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2238                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2239    }
2240    Op = DAG.getNOT(dl, Op, VT);
2241    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2242  }
2243  case ISD::CTTZ: {
2244    // for now, we use: { return popcount(~x & (x - 1)); }
2245    // unless the target has ctlz but not ctpop, in which case we use:
2246    // { return 32 - nlz(~x & (x-1)); }
2247    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2248    MVT VT = Op.getValueType();
2249    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2250                               DAG.getNOT(dl, Op, VT),
2251                               DAG.getNode(ISD::SUB, dl, VT, Op,
2252                                           DAG.getConstant(1, VT)));
2253    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2254    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2255        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2256      return DAG.getNode(ISD::SUB, dl, VT,
2257                         DAG.getConstant(VT.getSizeInBits(), VT),
2258                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2259    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2260  }
2261  }
2262}
2263
2264void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2265                                      SmallVectorImpl<SDValue> &Results) {
2266  DebugLoc dl = Node->getDebugLoc();
2267  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2268  switch (Node->getOpcode()) {
2269  case ISD::CTPOP:
2270  case ISD::CTLZ:
2271  case ISD::CTTZ:
2272    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2273    Results.push_back(Tmp1);
2274    break;
2275  case ISD::BSWAP:
2276    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2277    break;
2278  case ISD::FRAMEADDR:
2279  case ISD::RETURNADDR:
2280  case ISD::FRAME_TO_ARGS_OFFSET:
2281    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2282    break;
2283  case ISD::FLT_ROUNDS_:
2284    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2285    break;
2286  case ISD::EH_RETURN:
2287  case ISD::DECLARE:
2288  case ISD::DBG_LABEL:
2289  case ISD::EH_LABEL:
2290  case ISD::PREFETCH:
2291  case ISD::MEMBARRIER:
2292  case ISD::VAEND:
2293    Results.push_back(Node->getOperand(0));
2294    break;
2295  case ISD::DBG_STOPPOINT:
2296    Results.push_back(ExpandDBG_STOPPOINT(Node));
2297    break;
2298  case ISD::DYNAMIC_STACKALLOC:
2299    ExpandDYNAMIC_STACKALLOC(Node, Results);
2300    break;
2301  case ISD::MERGE_VALUES:
2302    for (unsigned i = 0; i < Node->getNumValues(); i++)
2303      Results.push_back(Node->getOperand(i));
2304    break;
2305  case ISD::UNDEF: {
2306    MVT VT = Node->getValueType(0);
2307    if (VT.isInteger())
2308      Results.push_back(DAG.getConstant(0, VT));
2309    else if (VT.isFloatingPoint())
2310      Results.push_back(DAG.getConstantFP(0, VT));
2311    else
2312      llvm_unreachable("Unknown value type!");
2313    break;
2314  }
2315  case ISD::TRAP: {
2316    // If this operation is not supported, lower it to 'abort()' call
2317    TargetLowering::ArgListTy Args;
2318    std::pair<SDValue, SDValue> CallResult =
2319      TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
2320                      false, false, false, false, 0, CallingConv::C, false,
2321                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2322                      Args, DAG, dl);
2323    Results.push_back(CallResult.second);
2324    break;
2325  }
2326  case ISD::FP_ROUND:
2327  case ISD::BIT_CONVERT:
2328    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2329                            Node->getValueType(0), dl);
2330    Results.push_back(Tmp1);
2331    break;
2332  case ISD::FP_EXTEND:
2333    Tmp1 = EmitStackConvert(Node->getOperand(0),
2334                            Node->getOperand(0).getValueType(),
2335                            Node->getValueType(0), dl);
2336    Results.push_back(Tmp1);
2337    break;
2338  case ISD::SIGN_EXTEND_INREG: {
2339    // NOTE: we could fall back on load/store here too for targets without
2340    // SAR.  However, it is doubtful that any exist.
2341    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2342    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2343                        ExtraVT.getSizeInBits();
2344    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2345    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2346                       Node->getOperand(0), ShiftCst);
2347    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2348    Results.push_back(Tmp1);
2349    break;
2350  }
2351  case ISD::FP_ROUND_INREG: {
2352    // The only way we can lower this is to turn it into a TRUNCSTORE,
2353    // EXTLOAD pair, targetting a temporary location (a stack slot).
2354
2355    // NOTE: there is a choice here between constantly creating new stack
2356    // slots and always reusing the same one.  We currently always create
2357    // new ones, as reuse may inhibit scheduling.
2358    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2359    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2360                            Node->getValueType(0), dl);
2361    Results.push_back(Tmp1);
2362    break;
2363  }
2364  case ISD::SINT_TO_FP:
2365  case ISD::UINT_TO_FP:
2366    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2367                                Node->getOperand(0), Node->getValueType(0), dl);
2368    Results.push_back(Tmp1);
2369    break;
2370  case ISD::FP_TO_UINT: {
2371    SDValue True, False;
2372    MVT VT =  Node->getOperand(0).getValueType();
2373    MVT NVT = Node->getValueType(0);
2374    const uint64_t zero[] = {0, 0};
2375    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2376    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2377    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2378    Tmp1 = DAG.getConstantFP(apf, VT);
2379    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2380                        Node->getOperand(0),
2381                        Tmp1, ISD::SETLT);
2382    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2383    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2384                        DAG.getNode(ISD::FSUB, dl, VT,
2385                                    Node->getOperand(0), Tmp1));
2386    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2387                        DAG.getConstant(x, NVT));
2388    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2389    Results.push_back(Tmp1);
2390    break;
2391  }
2392  case ISD::VAARG: {
2393    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2394    MVT VT = Node->getValueType(0);
2395    Tmp1 = Node->getOperand(0);
2396    Tmp2 = Node->getOperand(1);
2397    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2398    // Increment the pointer, VAList, to the next vaarg
2399    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2400                       DAG.getConstant(TLI.getTargetData()->
2401                                       getTypeAllocSize(VT.getTypeForMVT(
2402                                                            *DAG.getContext())),
2403                                       TLI.getPointerTy()));
2404    // Store the incremented VAList to the legalized pointer
2405    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2406    // Load the actual argument out of the pointer VAList
2407    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2408    Results.push_back(Results[0].getValue(1));
2409    break;
2410  }
2411  case ISD::VACOPY: {
2412    // This defaults to loading a pointer from the input and storing it to the
2413    // output, returning the chain.
2414    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2415    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2416    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2417                       Node->getOperand(2), VS, 0);
2418    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2419    Results.push_back(Tmp1);
2420    break;
2421  }
2422  case ISD::EXTRACT_VECTOR_ELT:
2423    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2424      // This must be an access of the only element.  Return it.
2425      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2426                         Node->getOperand(0));
2427    else
2428      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2429    Results.push_back(Tmp1);
2430    break;
2431  case ISD::EXTRACT_SUBVECTOR:
2432    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2433    break;
2434  case ISD::CONCAT_VECTORS: {
2435    Results.push_back(ExpandVectorBuildThroughStack(Node));
2436    break;
2437  }
2438  case ISD::SCALAR_TO_VECTOR:
2439    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2440    break;
2441  case ISD::INSERT_VECTOR_ELT:
2442    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2443                                              Node->getOperand(1),
2444                                              Node->getOperand(2), dl));
2445    break;
2446  case ISD::VECTOR_SHUFFLE: {
2447    SmallVector<int, 8> Mask;
2448    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2449
2450    MVT VT = Node->getValueType(0);
2451    MVT EltVT = VT.getVectorElementType();
2452    unsigned NumElems = VT.getVectorNumElements();
2453    SmallVector<SDValue, 8> Ops;
2454    for (unsigned i = 0; i != NumElems; ++i) {
2455      if (Mask[i] < 0) {
2456        Ops.push_back(DAG.getUNDEF(EltVT));
2457        continue;
2458      }
2459      unsigned Idx = Mask[i];
2460      if (Idx < NumElems)
2461        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2462                                  Node->getOperand(0),
2463                                  DAG.getIntPtrConstant(Idx)));
2464      else
2465        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2466                                  Node->getOperand(1),
2467                                  DAG.getIntPtrConstant(Idx - NumElems)));
2468    }
2469    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2470    Results.push_back(Tmp1);
2471    break;
2472  }
2473  case ISD::EXTRACT_ELEMENT: {
2474    MVT OpTy = Node->getOperand(0).getValueType();
2475    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2476      // 1 -> Hi
2477      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2478                         DAG.getConstant(OpTy.getSizeInBits()/2,
2479                                         TLI.getShiftAmountTy()));
2480      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2481    } else {
2482      // 0 -> Lo
2483      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2484                         Node->getOperand(0));
2485    }
2486    Results.push_back(Tmp1);
2487    break;
2488  }
2489  case ISD::STACKSAVE:
2490    // Expand to CopyFromReg if the target set
2491    // StackPointerRegisterToSaveRestore.
2492    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2493      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2494                                           Node->getValueType(0)));
2495      Results.push_back(Results[0].getValue(1));
2496    } else {
2497      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2498      Results.push_back(Node->getOperand(0));
2499    }
2500    break;
2501  case ISD::STACKRESTORE:
2502    // Expand to CopyToReg if the target set
2503    // StackPointerRegisterToSaveRestore.
2504    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2505      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2506                                         Node->getOperand(1)));
2507    } else {
2508      Results.push_back(Node->getOperand(0));
2509    }
2510    break;
2511  case ISD::FCOPYSIGN:
2512    Results.push_back(ExpandFCOPYSIGN(Node));
2513    break;
2514  case ISD::FNEG:
2515    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2516    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2517    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2518                       Node->getOperand(0));
2519    Results.push_back(Tmp1);
2520    break;
2521  case ISD::FABS: {
2522    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2523    MVT VT = Node->getValueType(0);
2524    Tmp1 = Node->getOperand(0);
2525    Tmp2 = DAG.getConstantFP(0.0, VT);
2526    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2527                        Tmp1, Tmp2, ISD::SETUGT);
2528    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2529    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2530    Results.push_back(Tmp1);
2531    break;
2532  }
2533  case ISD::FSQRT:
2534    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2535                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2536    break;
2537  case ISD::FSIN:
2538    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2539                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2540    break;
2541  case ISD::FCOS:
2542    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2543                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2544    break;
2545  case ISD::FLOG:
2546    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2547                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2548    break;
2549  case ISD::FLOG2:
2550    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2551                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2552    break;
2553  case ISD::FLOG10:
2554    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2555                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2556    break;
2557  case ISD::FEXP:
2558    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2559                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2560    break;
2561  case ISD::FEXP2:
2562    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2563                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2564    break;
2565  case ISD::FTRUNC:
2566    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2567                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2568    break;
2569  case ISD::FFLOOR:
2570    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2571                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2572    break;
2573  case ISD::FCEIL:
2574    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2575                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2576    break;
2577  case ISD::FRINT:
2578    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2579                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2580    break;
2581  case ISD::FNEARBYINT:
2582    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2583                                      RTLIB::NEARBYINT_F64,
2584                                      RTLIB::NEARBYINT_F80,
2585                                      RTLIB::NEARBYINT_PPCF128));
2586    break;
2587  case ISD::FPOWI:
2588    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2589                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2590    break;
2591  case ISD::FPOW:
2592    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2593                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2594    break;
2595  case ISD::FDIV:
2596    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2597                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2598    break;
2599  case ISD::FREM:
2600    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2601                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2602    break;
2603  case ISD::ConstantFP: {
2604    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2605    // Check to see if this FP immediate is already legal.
2606    bool isLegal = false;
2607    for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2608            E = TLI.legal_fpimm_end(); I != E; ++I) {
2609      if (CFP->isExactlyValue(*I)) {
2610        isLegal = true;
2611        break;
2612      }
2613    }
2614    // If this is a legal constant, turn it into a TargetConstantFP node.
2615    if (isLegal)
2616      Results.push_back(SDValue(Node, 0));
2617    else
2618      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2619    break;
2620  }
2621  case ISD::EHSELECTION: {
2622    unsigned Reg = TLI.getExceptionSelectorRegister();
2623    assert(Reg && "Can't expand to unknown register!");
2624    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2625                                         Node->getValueType(0)));
2626    Results.push_back(Results[0].getValue(1));
2627    break;
2628  }
2629  case ISD::EXCEPTIONADDR: {
2630    unsigned Reg = TLI.getExceptionAddressRegister();
2631    assert(Reg && "Can't expand to unknown register!");
2632    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2633                                         Node->getValueType(0)));
2634    Results.push_back(Results[0].getValue(1));
2635    break;
2636  }
2637  case ISD::SUB: {
2638    MVT VT = Node->getValueType(0);
2639    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2640           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2641           "Don't know how to expand this subtraction!");
2642    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2643               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2644    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2645    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2646    break;
2647  }
2648  case ISD::UREM:
2649  case ISD::SREM: {
2650    MVT VT = Node->getValueType(0);
2651    SDVTList VTs = DAG.getVTList(VT, VT);
2652    bool isSigned = Node->getOpcode() == ISD::SREM;
2653    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2654    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2655    Tmp2 = Node->getOperand(0);
2656    Tmp3 = Node->getOperand(1);
2657    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2658      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2659    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2660      // X % Y -> X-X/Y*Y
2661      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2662      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2663      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2664    } else if (isSigned) {
2665      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2666                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2667    } else {
2668      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2669                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2670    }
2671    Results.push_back(Tmp1);
2672    break;
2673  }
2674  case ISD::UDIV:
2675  case ISD::SDIV: {
2676    bool isSigned = Node->getOpcode() == ISD::SDIV;
2677    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2678    MVT VT = Node->getValueType(0);
2679    SDVTList VTs = DAG.getVTList(VT, VT);
2680    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2681      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2682                         Node->getOperand(1));
2683    else if (isSigned)
2684      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2685                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2686    else
2687      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2688                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2689    Results.push_back(Tmp1);
2690    break;
2691  }
2692  case ISD::MULHU:
2693  case ISD::MULHS: {
2694    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2695                                                              ISD::SMUL_LOHI;
2696    MVT VT = Node->getValueType(0);
2697    SDVTList VTs = DAG.getVTList(VT, VT);
2698    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2699           "If this wasn't legal, it shouldn't have been created!");
2700    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2701                       Node->getOperand(1));
2702    Results.push_back(Tmp1.getValue(1));
2703    break;
2704  }
2705  case ISD::MUL: {
2706    MVT VT = Node->getValueType(0);
2707    SDVTList VTs = DAG.getVTList(VT, VT);
2708    // See if multiply or divide can be lowered using two-result operations.
2709    // We just need the low half of the multiply; try both the signed
2710    // and unsigned forms. If the target supports both SMUL_LOHI and
2711    // UMUL_LOHI, form a preference by checking which forms of plain
2712    // MULH it supports.
2713    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2714    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2715    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2716    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2717    unsigned OpToUse = 0;
2718    if (HasSMUL_LOHI && !HasMULHS) {
2719      OpToUse = ISD::SMUL_LOHI;
2720    } else if (HasUMUL_LOHI && !HasMULHU) {
2721      OpToUse = ISD::UMUL_LOHI;
2722    } else if (HasSMUL_LOHI) {
2723      OpToUse = ISD::SMUL_LOHI;
2724    } else if (HasUMUL_LOHI) {
2725      OpToUse = ISD::UMUL_LOHI;
2726    }
2727    if (OpToUse) {
2728      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2729                                    Node->getOperand(1)));
2730      break;
2731    }
2732    Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2733                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2734    Results.push_back(Tmp1);
2735    break;
2736  }
2737  case ISD::SADDO:
2738  case ISD::SSUBO: {
2739    SDValue LHS = Node->getOperand(0);
2740    SDValue RHS = Node->getOperand(1);
2741    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2742                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2743                              LHS, RHS);
2744    Results.push_back(Sum);
2745    MVT OType = Node->getValueType(1);
2746
2747    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2748
2749    //   LHSSign -> LHS >= 0
2750    //   RHSSign -> RHS >= 0
2751    //   SumSign -> Sum >= 0
2752    //
2753    //   Add:
2754    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2755    //   Sub:
2756    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2757    //
2758    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2759    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2760    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2761                                      Node->getOpcode() == ISD::SADDO ?
2762                                      ISD::SETEQ : ISD::SETNE);
2763
2764    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2765    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2766
2767    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2768    Results.push_back(Cmp);
2769    break;
2770  }
2771  case ISD::UADDO:
2772  case ISD::USUBO: {
2773    SDValue LHS = Node->getOperand(0);
2774    SDValue RHS = Node->getOperand(1);
2775    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2776                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2777                              LHS, RHS);
2778    Results.push_back(Sum);
2779    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2780                                   Node->getOpcode () == ISD::UADDO ?
2781                                   ISD::SETULT : ISD::SETUGT));
2782    break;
2783  }
2784  case ISD::UMULO:
2785  case ISD::SMULO: {
2786    MVT VT = Node->getValueType(0);
2787    SDValue LHS = Node->getOperand(0);
2788    SDValue RHS = Node->getOperand(1);
2789    SDValue BottomHalf;
2790    SDValue TopHalf;
2791    static unsigned Ops[2][3] =
2792        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2793          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2794    bool isSigned = Node->getOpcode() == ISD::SMULO;
2795    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2796      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2797      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2798    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2799      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2800                               RHS);
2801      TopHalf = BottomHalf.getValue(1);
2802    } else if (TLI.isTypeLegal(MVT::getIntegerVT(VT.getSizeInBits() * 2))) {
2803      MVT WideVT = MVT::getIntegerVT(VT.getSizeInBits() * 2);
2804      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2805      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2806      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2807      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2808                               DAG.getIntPtrConstant(0));
2809      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2810                            DAG.getIntPtrConstant(1));
2811    } else {
2812      // FIXME: We should be able to fall back to a libcall with an illegal
2813      // type in some cases cases.
2814      // Also, we can fall back to a division in some cases, but that's a big
2815      // performance hit in the general case.
2816      llvm_unreachable("Don't know how to expand this operation yet!");
2817    }
2818    if (isSigned) {
2819      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2820      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2821      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2822                             ISD::SETNE);
2823    } else {
2824      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2825                             DAG.getConstant(0, VT), ISD::SETNE);
2826    }
2827    Results.push_back(BottomHalf);
2828    Results.push_back(TopHalf);
2829    break;
2830  }
2831  case ISD::BUILD_PAIR: {
2832    MVT PairTy = Node->getValueType(0);
2833    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2834    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2835    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2836                       DAG.getConstant(PairTy.getSizeInBits()/2,
2837                                       TLI.getShiftAmountTy()));
2838    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2839    break;
2840  }
2841  case ISD::SELECT:
2842    Tmp1 = Node->getOperand(0);
2843    Tmp2 = Node->getOperand(1);
2844    Tmp3 = Node->getOperand(2);
2845    if (Tmp1.getOpcode() == ISD::SETCC) {
2846      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2847                             Tmp2, Tmp3,
2848                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2849    } else {
2850      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2851                             DAG.getConstant(0, Tmp1.getValueType()),
2852                             Tmp2, Tmp3, ISD::SETNE);
2853    }
2854    Results.push_back(Tmp1);
2855    break;
2856  case ISD::BR_JT: {
2857    SDValue Chain = Node->getOperand(0);
2858    SDValue Table = Node->getOperand(1);
2859    SDValue Index = Node->getOperand(2);
2860
2861    MVT PTy = TLI.getPointerTy();
2862    MachineFunction &MF = DAG.getMachineFunction();
2863    unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2864    Index= DAG.getNode(ISD::MUL, dl, PTy,
2865                        Index, DAG.getConstant(EntrySize, PTy));
2866    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2867
2868    MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
2869    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2870                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2871    Addr = LD;
2872    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2873      // For PIC, the sequence is:
2874      // BRIND(load(Jumptable + index) + RelocBase)
2875      // RelocBase can be JumpTable, GOT or some sort of global base.
2876      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2877                          TLI.getPICJumpTableRelocBase(Table, DAG));
2878    }
2879    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2880    Results.push_back(Tmp1);
2881    break;
2882  }
2883  case ISD::BRCOND:
2884    // Expand brcond's setcc into its constituent parts and create a BR_CC
2885    // Node.
2886    Tmp1 = Node->getOperand(0);
2887    Tmp2 = Node->getOperand(1);
2888    if (Tmp2.getOpcode() == ISD::SETCC) {
2889      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2890                         Tmp1, Tmp2.getOperand(2),
2891                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2892                         Node->getOperand(2));
2893    } else {
2894      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2895                         DAG.getCondCode(ISD::SETNE), Tmp2,
2896                         DAG.getConstant(0, Tmp2.getValueType()),
2897                         Node->getOperand(2));
2898    }
2899    Results.push_back(Tmp1);
2900    break;
2901  case ISD::SETCC: {
2902    Tmp1 = Node->getOperand(0);
2903    Tmp2 = Node->getOperand(1);
2904    Tmp3 = Node->getOperand(2);
2905    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2906
2907    // If we expanded the SETCC into an AND/OR, return the new node
2908    if (Tmp2.getNode() == 0) {
2909      Results.push_back(Tmp1);
2910      break;
2911    }
2912
2913    // Otherwise, SETCC for the given comparison type must be completely
2914    // illegal; expand it into a SELECT_CC.
2915    MVT VT = Node->getValueType(0);
2916    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2917                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2918    Results.push_back(Tmp1);
2919    break;
2920  }
2921  case ISD::SELECT_CC: {
2922    Tmp1 = Node->getOperand(0);   // LHS
2923    Tmp2 = Node->getOperand(1);   // RHS
2924    Tmp3 = Node->getOperand(2);   // True
2925    Tmp4 = Node->getOperand(3);   // False
2926    SDValue CC = Node->getOperand(4);
2927
2928    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2929                          Tmp1, Tmp2, CC, dl);
2930
2931    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2932    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2933    CC = DAG.getCondCode(ISD::SETNE);
2934    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2935                       Tmp3, Tmp4, CC);
2936    Results.push_back(Tmp1);
2937    break;
2938  }
2939  case ISD::BR_CC: {
2940    Tmp1 = Node->getOperand(0);              // Chain
2941    Tmp2 = Node->getOperand(2);              // LHS
2942    Tmp3 = Node->getOperand(3);              // RHS
2943    Tmp4 = Node->getOperand(1);              // CC
2944
2945    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2946                          Tmp2, Tmp3, Tmp4, dl);
2947    LastCALLSEQ_END = DAG.getEntryNode();
2948
2949    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2950    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2951    Tmp4 = DAG.getCondCode(ISD::SETNE);
2952    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2953                       Tmp3, Node->getOperand(4));
2954    Results.push_back(Tmp1);
2955    break;
2956  }
2957  case ISD::GLOBAL_OFFSET_TABLE:
2958  case ISD::GlobalAddress:
2959  case ISD::GlobalTLSAddress:
2960  case ISD::ExternalSymbol:
2961  case ISD::ConstantPool:
2962  case ISD::JumpTable:
2963  case ISD::INTRINSIC_W_CHAIN:
2964  case ISD::INTRINSIC_WO_CHAIN:
2965  case ISD::INTRINSIC_VOID:
2966    // FIXME: Custom lowering for these operations shouldn't return null!
2967    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2968      Results.push_back(SDValue(Node, i));
2969    break;
2970  }
2971}
2972void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2973                                       SmallVectorImpl<SDValue> &Results) {
2974  MVT OVT = Node->getValueType(0);
2975  if (Node->getOpcode() == ISD::UINT_TO_FP ||
2976      Node->getOpcode() == ISD::SINT_TO_FP ||
2977      Node->getOpcode() == ISD::SETCC) {
2978    OVT = Node->getOperand(0).getValueType();
2979  }
2980  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2981  DebugLoc dl = Node->getDebugLoc();
2982  SDValue Tmp1, Tmp2, Tmp3;
2983  switch (Node->getOpcode()) {
2984  case ISD::CTTZ:
2985  case ISD::CTLZ:
2986  case ISD::CTPOP:
2987    // Zero extend the argument.
2988    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2989    // Perform the larger operation.
2990    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
2991    if (Node->getOpcode() == ISD::CTTZ) {
2992      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2993      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
2994                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2995                          ISD::SETEQ);
2996      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2997                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2998    } else if (Node->getOpcode() == ISD::CTLZ) {
2999      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3000      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3001                          DAG.getConstant(NVT.getSizeInBits() -
3002                                          OVT.getSizeInBits(), NVT));
3003    }
3004    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3005    break;
3006  case ISD::BSWAP: {
3007    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3008    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
3009    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3010    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3011                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3012    Results.push_back(Tmp1);
3013    break;
3014  }
3015  case ISD::FP_TO_UINT:
3016  case ISD::FP_TO_SINT:
3017    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3018                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3019    Results.push_back(Tmp1);
3020    break;
3021  case ISD::UINT_TO_FP:
3022  case ISD::SINT_TO_FP:
3023    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3024                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3025    Results.push_back(Tmp1);
3026    break;
3027  case ISD::AND:
3028  case ISD::OR:
3029  case ISD::XOR: {
3030    unsigned ExtOp, TruncOp;
3031    if (OVT.isVector()) {
3032      ExtOp   = ISD::BIT_CONVERT;
3033      TruncOp = ISD::BIT_CONVERT;
3034    } else if (OVT.isInteger()) {
3035      ExtOp   = ISD::ANY_EXTEND;
3036      TruncOp = ISD::TRUNCATE;
3037    } else {
3038      llvm_report_error("Cannot promote logic operation");
3039    }
3040    // Promote each of the values to the new type.
3041    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3042    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3043    // Perform the larger operation, then convert back
3044    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3045    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3046    break;
3047  }
3048  case ISD::SELECT: {
3049    unsigned ExtOp, TruncOp;
3050    if (Node->getValueType(0).isVector()) {
3051      ExtOp   = ISD::BIT_CONVERT;
3052      TruncOp = ISD::BIT_CONVERT;
3053    } else if (Node->getValueType(0).isInteger()) {
3054      ExtOp   = ISD::ANY_EXTEND;
3055      TruncOp = ISD::TRUNCATE;
3056    } else {
3057      ExtOp   = ISD::FP_EXTEND;
3058      TruncOp = ISD::FP_ROUND;
3059    }
3060    Tmp1 = Node->getOperand(0);
3061    // Promote each of the values to the new type.
3062    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3063    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3064    // Perform the larger operation, then round down.
3065    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3066    if (TruncOp != ISD::FP_ROUND)
3067      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3068    else
3069      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3070                         DAG.getIntPtrConstant(0));
3071    Results.push_back(Tmp1);
3072    break;
3073  }
3074  case ISD::VECTOR_SHUFFLE: {
3075    SmallVector<int, 8> Mask;
3076    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3077
3078    // Cast the two input vectors.
3079    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3080    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3081
3082    // Convert the shuffle mask to the right # elements.
3083    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3084    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3085    Results.push_back(Tmp1);
3086    break;
3087  }
3088  case ISD::SETCC: {
3089    unsigned ExtOp = ISD::FP_EXTEND;
3090    if (NVT.isInteger()) {
3091      ISD::CondCode CCCode =
3092        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3093      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3094    }
3095    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3096    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3097    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3098                                  Tmp1, Tmp2, Node->getOperand(2)));
3099    break;
3100  }
3101  }
3102}
3103
3104// SelectionDAG::Legalize - This is the entry point for the file.
3105//
3106void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3107                            CodeGenOpt::Level OptLevel) {
3108  /// run - This is the main entry point to this class.
3109  ///
3110  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3111}
3112
3113