LegalizeDAG.cpp revision d97b83c65f677d7ac5c28adb430a7a3d7462561c
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include <map>
42using namespace llvm;
43
44//===----------------------------------------------------------------------===//
45/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
46/// hacks on it until the target machine can handle it.  This involves
47/// eliminating value sizes the machine cannot handle (promoting small sizes to
48/// large sizes or splitting up large values into small values) as well as
49/// eliminating operations the machine cannot handle.
50///
51/// This code also does a small amount of optimization and recognition of idioms
52/// as part of its processing.  For example, if a target does not support a
53/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
54/// will attempt merge setcc and brc instructions into brcc's.
55///
56namespace {
57class VISIBILITY_HIDDEN SelectionDAGLegalize {
58  TargetLowering &TLI;
59  SelectionDAG &DAG;
60  CodeGenOpt::Level OptLevel;
61
62  // Libcall insertion helpers.
63
64  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65  /// legalized.  We use this to ensure that calls are properly serialized
66  /// against each other, including inserted libcalls.
67  SDValue LastCALLSEQ_END;
68
69  /// IsLegalizingCall - This member is used *only* for purposes of providing
70  /// helpful assertions that a libcall isn't created while another call is
71  /// being legalized (which could lead to non-serialized call sequences).
72  bool IsLegalizingCall;
73
74  enum LegalizeAction {
75    Legal,      // The target natively supports this operation.
76    Promote,    // This operation should be executed in a larger type.
77    Expand      // Try to expand this to other ops, otherwise use a libcall.
78  };
79
80  /// ValueTypeActions - This is a bitvector that contains two bits for each
81  /// value type, where the two bits correspond to the LegalizeAction enum.
82  /// This can be queried with "getTypeAction(VT)".
83  TargetLowering::ValueTypeActionImpl ValueTypeActions;
84
85  /// LegalizedNodes - For nodes that are of legal width, and that have more
86  /// than one use, this map indicates what regularized operand to use.  This
87  /// allows us to avoid legalizing the same thing more than once.
88  DenseMap<SDValue, SDValue> LegalizedNodes;
89
90  void AddLegalizedOperand(SDValue From, SDValue To) {
91    LegalizedNodes.insert(std::make_pair(From, To));
92    // If someone requests legalization of the new node, return itself.
93    if (From != To)
94      LegalizedNodes.insert(std::make_pair(To, To));
95  }
96
97public:
98  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
99
100  /// getTypeAction - Return how we should legalize values of this type, either
101  /// it is already legal or we need to expand it into multiple registers of
102  /// smaller integer type, or we need to promote it to a larger type.
103  LegalizeAction getTypeAction(EVT VT) const {
104    return
105        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
106  }
107
108  /// isTypeLegal - Return true if this type is legal on this target.
109  ///
110  bool isTypeLegal(EVT VT) const {
111    return getTypeAction(VT) == Legal;
112  }
113
114  void LegalizeDAG();
115
116private:
117  /// LegalizeOp - We know that the specified value has a legal type.
118  /// Recursively ensure that the operands have legal types, then return the
119  /// result.
120  SDValue LegalizeOp(SDValue O);
121
122  SDValue OptimizeFloatStore(StoreSDNode *ST);
123
124  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
125  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
126  /// is necessary to spill the vector being inserted into to memory, perform
127  /// the insert there, and then read the result back.
128  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
129                                         SDValue Idx, DebugLoc dl);
130  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
131                                  SDValue Idx, DebugLoc dl);
132
133  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
134  /// performs the same shuffe in terms of order or result bytes, but on a type
135  /// whose vector element type is narrower than the original shuffle type.
136  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
137  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
138                                     SDValue N1, SDValue N2,
139                                     SmallVectorImpl<int> &Mask) const;
140
141  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
142                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
143
144  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
145                             DebugLoc dl);
146
147  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
148  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
149                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
150                          RTLIB::Libcall Call_PPCF128);
151  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
152                           RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
153                           RTLIB::Libcall Call_I128);
154
155  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
156  SDValue ExpandBUILD_VECTOR(SDNode *Node);
157  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
158  SDValue ExpandDBG_STOPPOINT(SDNode *Node);
159  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
160                                SmallVectorImpl<SDValue> &Results);
161  SDValue ExpandFCOPYSIGN(SDNode *Node);
162  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
163                               DebugLoc dl);
164  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
165                                DebugLoc dl);
166  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168
169  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
170  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
171
172  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
173  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
174
175  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
176  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
177};
178}
179
180/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
181/// performs the same shuffe in terms of order or result bytes, but on a type
182/// whose vector element type is narrower than the original shuffle type.
183/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
184SDValue
185SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
186                                                 SDValue N1, SDValue N2,
187                                             SmallVectorImpl<int> &Mask) const {
188  EVT EltVT = NVT.getVectorElementType();
189  unsigned NumMaskElts = VT.getVectorNumElements();
190  unsigned NumDestElts = NVT.getVectorNumElements();
191  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
192
193  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
194
195  if (NumEltsGrowth == 1)
196    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
197
198  SmallVector<int, 8> NewMask;
199  for (unsigned i = 0; i != NumMaskElts; ++i) {
200    int Idx = Mask[i];
201    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
202      if (Idx < 0)
203        NewMask.push_back(-1);
204      else
205        NewMask.push_back(Idx * NumEltsGrowth + j);
206    }
207  }
208  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
209  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
210  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
211}
212
213SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
214                                           CodeGenOpt::Level ol)
215  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
216    ValueTypeActions(TLI.getValueTypeActions()) {
217  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
218         "Too many value types for ValueTypeActions to hold!");
219}
220
221void SelectionDAGLegalize::LegalizeDAG() {
222  LastCALLSEQ_END = DAG.getEntryNode();
223  IsLegalizingCall = false;
224
225  // The legalize process is inherently a bottom-up recursive process (users
226  // legalize their uses before themselves).  Given infinite stack space, we
227  // could just start legalizing on the root and traverse the whole graph.  In
228  // practice however, this causes us to run out of stack space on large basic
229  // blocks.  To avoid this problem, compute an ordering of the nodes where each
230  // node is only legalized after all of its operands are legalized.
231  DAG.AssignTopologicalOrder();
232  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
233       E = prior(DAG.allnodes_end()); I != next(E); ++I)
234    LegalizeOp(SDValue(I, 0));
235
236  // Finally, it's possible the root changed.  Get the new root.
237  SDValue OldRoot = DAG.getRoot();
238  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
239  DAG.setRoot(LegalizedNodes[OldRoot]);
240
241  LegalizedNodes.clear();
242
243  // Remove dead nodes now.
244  DAG.RemoveDeadNodes();
245}
246
247
248/// FindCallEndFromCallStart - Given a chained node that is part of a call
249/// sequence, find the CALLSEQ_END node that terminates the call sequence.
250static SDNode *FindCallEndFromCallStart(SDNode *Node) {
251  if (Node->getOpcode() == ISD::CALLSEQ_END)
252    return Node;
253  if (Node->use_empty())
254    return 0;   // No CallSeqEnd
255
256  // The chain is usually at the end.
257  SDValue TheChain(Node, Node->getNumValues()-1);
258  if (TheChain.getValueType() != MVT::Other) {
259    // Sometimes it's at the beginning.
260    TheChain = SDValue(Node, 0);
261    if (TheChain.getValueType() != MVT::Other) {
262      // Otherwise, hunt for it.
263      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
264        if (Node->getValueType(i) == MVT::Other) {
265          TheChain = SDValue(Node, i);
266          break;
267        }
268
269      // Otherwise, we walked into a node without a chain.
270      if (TheChain.getValueType() != MVT::Other)
271        return 0;
272    }
273  }
274
275  for (SDNode::use_iterator UI = Node->use_begin(),
276       E = Node->use_end(); UI != E; ++UI) {
277
278    // Make sure to only follow users of our token chain.
279    SDNode *User = *UI;
280    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
281      if (User->getOperand(i) == TheChain)
282        if (SDNode *Result = FindCallEndFromCallStart(User))
283          return Result;
284  }
285  return 0;
286}
287
288/// FindCallStartFromCallEnd - Given a chained node that is part of a call
289/// sequence, find the CALLSEQ_START node that initiates the call sequence.
290static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
291  assert(Node && "Didn't find callseq_start for a call??");
292  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
293
294  assert(Node->getOperand(0).getValueType() == MVT::Other &&
295         "Node doesn't have a token chain argument!");
296  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
297}
298
299/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
300/// see if any uses can reach Dest.  If no dest operands can get to dest,
301/// legalize them, legalize ourself, and return false, otherwise, return true.
302///
303/// Keep track of the nodes we fine that actually do lead to Dest in
304/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
305///
306bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
307                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
308  if (N == Dest) return true;  // N certainly leads to Dest :)
309
310  // If we've already processed this node and it does lead to Dest, there is no
311  // need to reprocess it.
312  if (NodesLeadingTo.count(N)) return true;
313
314  // If the first result of this node has been already legalized, then it cannot
315  // reach N.
316  if (LegalizedNodes.count(SDValue(N, 0))) return false;
317
318  // Okay, this node has not already been legalized.  Check and legalize all
319  // operands.  If none lead to Dest, then we can legalize this node.
320  bool OperandsLeadToDest = false;
321  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
322    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
323      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
324
325  if (OperandsLeadToDest) {
326    NodesLeadingTo.insert(N);
327    return true;
328  }
329
330  // Okay, this node looks safe, legalize it and return false.
331  LegalizeOp(SDValue(N, 0));
332  return false;
333}
334
335/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
336/// a load from the constant pool.
337static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
338                                SelectionDAG &DAG, const TargetLowering &TLI) {
339  bool Extend = false;
340  DebugLoc dl = CFP->getDebugLoc();
341
342  // If a FP immediate is precise when represented as a float and if the
343  // target can do an extending load from float to double, we put it into
344  // the constant pool as a float, even if it's is statically typed as a
345  // double.  This shrinks FP constants and canonicalizes them for targets where
346  // an FP extending load is the same cost as a normal load (such as on the x87
347  // fp stack or PPC FP unit).
348  EVT VT = CFP->getValueType(0);
349  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
350  if (!UseCP) {
351    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
352    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
353                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
354  }
355
356  EVT OrigVT = VT;
357  EVT SVT = VT;
358  while (SVT != MVT::f32) {
359    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
360    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
361        // Only do this if the target has a native EXTLOAD instruction from
362        // smaller type.
363        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
364        TLI.ShouldShrinkFPConstant(OrigVT)) {
365      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
366      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
367      VT = SVT;
368      Extend = true;
369    }
370  }
371
372  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
373  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
374  if (Extend)
375    return DAG.getExtLoad(ISD::EXTLOAD, dl,
376                          OrigVT, DAG.getEntryNode(),
377                          CPIdx, PseudoSourceValue::getConstantPool(),
378                          0, VT, false, Alignment);
379  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
380                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
381}
382
383/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
384static
385SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
386                             const TargetLowering &TLI) {
387  SDValue Chain = ST->getChain();
388  SDValue Ptr = ST->getBasePtr();
389  SDValue Val = ST->getValue();
390  EVT VT = Val.getValueType();
391  int Alignment = ST->getAlignment();
392  int SVOffset = ST->getSrcValueOffset();
393  DebugLoc dl = ST->getDebugLoc();
394  if (ST->getMemoryVT().isFloatingPoint() ||
395      ST->getMemoryVT().isVector()) {
396    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
397    if (TLI.isTypeLegal(intVT)) {
398      // Expand to a bitconvert of the value to the integer type of the
399      // same size, then a (misaligned) int store.
400      // FIXME: Does not handle truncating floating point stores!
401      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
402      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
403                          SVOffset, ST->isVolatile(), Alignment);
404    } else {
405      // Do a (aligned) store to a stack slot, then copy from the stack slot
406      // to the final destination using (unaligned) integer loads and stores.
407      EVT StoredVT = ST->getMemoryVT();
408      EVT RegVT =
409        TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits()));
410      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
411      unsigned RegBytes = RegVT.getSizeInBits() / 8;
412      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
413
414      // Make sure the stack slot is also aligned for the register type.
415      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
416
417      // Perform the original store, only redirected to the stack slot.
418      SDValue Store = DAG.getTruncStore(Chain, dl,
419                                        Val, StackPtr, NULL, 0, StoredVT);
420      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
421      SmallVector<SDValue, 8> Stores;
422      unsigned Offset = 0;
423
424      // Do all but one copies using the full register width.
425      for (unsigned i = 1; i < NumRegs; i++) {
426        // Load one integer register's worth from the stack slot.
427        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
428        // Store it to the final location.  Remember the store.
429        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
430                                      ST->getSrcValue(), SVOffset + Offset,
431                                      ST->isVolatile(),
432                                      MinAlign(ST->getAlignment(), Offset)));
433        // Increment the pointers.
434        Offset += RegBytes;
435        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
436                               Increment);
437        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
438      }
439
440      // The last store may be partial.  Do a truncating store.  On big-endian
441      // machines this requires an extending load from the stack slot to ensure
442      // that the bits are in the right place.
443      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
444
445      // Load from the stack slot.
446      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
447                                    NULL, 0, MemVT);
448
449      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
450                                         ST->getSrcValue(), SVOffset + Offset,
451                                         MemVT, ST->isVolatile(),
452                                         MinAlign(ST->getAlignment(), Offset)));
453      // The order of the stores doesn't matter - say it with a TokenFactor.
454      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
455                         Stores.size());
456    }
457  }
458  assert(ST->getMemoryVT().isInteger() &&
459         !ST->getMemoryVT().isVector() &&
460         "Unaligned store of unknown type.");
461  // Get the half-size VT
462  EVT NewStoredVT =
463    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT().SimpleTy - 1);
464  int NumBits = NewStoredVT.getSizeInBits();
465  int IncrementSize = NumBits / 8;
466
467  // Divide the stored value in two parts.
468  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
469  SDValue Lo = Val;
470  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
471
472  // Store the two parts
473  SDValue Store1, Store2;
474  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
475                             ST->getSrcValue(), SVOffset, NewStoredVT,
476                             ST->isVolatile(), Alignment);
477  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
478                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
479  Alignment = MinAlign(Alignment, IncrementSize);
480  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
481                             ST->getSrcValue(), SVOffset + IncrementSize,
482                             NewStoredVT, ST->isVolatile(), Alignment);
483
484  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
485}
486
487/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
488static
489SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
490                            const TargetLowering &TLI) {
491  int SVOffset = LD->getSrcValueOffset();
492  SDValue Chain = LD->getChain();
493  SDValue Ptr = LD->getBasePtr();
494  EVT VT = LD->getValueType(0);
495  EVT LoadedVT = LD->getMemoryVT();
496  DebugLoc dl = LD->getDebugLoc();
497  if (VT.isFloatingPoint() || VT.isVector()) {
498    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
499    if (TLI.isTypeLegal(intVT)) {
500      // Expand to a (misaligned) integer load of the same size,
501      // then bitconvert to floating point or vector.
502      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
503                                    SVOffset, LD->isVolatile(),
504                                    LD->getAlignment());
505      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
506      if (VT.isFloatingPoint() && LoadedVT != VT)
507        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
508
509      SDValue Ops[] = { Result, Chain };
510      return DAG.getMergeValues(Ops, 2, dl);
511    } else {
512      // Copy the value to a (aligned) stack slot using (unaligned) integer
513      // loads and stores, then do a (aligned) load from the stack slot.
514      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
515      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
516      unsigned RegBytes = RegVT.getSizeInBits() / 8;
517      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
518
519      // Make sure the stack slot is also aligned for the register type.
520      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
521
522      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
523      SmallVector<SDValue, 8> Stores;
524      SDValue StackPtr = StackBase;
525      unsigned Offset = 0;
526
527      // Do all but one copies using the full register width.
528      for (unsigned i = 1; i < NumRegs; i++) {
529        // Load one integer register's worth from the original location.
530        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
531                                   SVOffset + Offset, LD->isVolatile(),
532                                   MinAlign(LD->getAlignment(), Offset));
533        // Follow the load with a store to the stack slot.  Remember the store.
534        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
535                                      NULL, 0));
536        // Increment the pointers.
537        Offset += RegBytes;
538        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
539        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
540                               Increment);
541      }
542
543      // The last copy may be partial.  Do an extending load.
544      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset));
545      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
546                                    LD->getSrcValue(), SVOffset + Offset,
547                                    MemVT, LD->isVolatile(),
548                                    MinAlign(LD->getAlignment(), Offset));
549      // Follow the load with a store to the stack slot.  Remember the store.
550      // On big-endian machines this requires a truncating store to ensure
551      // that the bits end up in the right place.
552      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
553                                         NULL, 0, MemVT));
554
555      // The order of the stores doesn't matter - say it with a TokenFactor.
556      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
557                               Stores.size());
558
559      // Finally, perform the original load only redirected to the stack slot.
560      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
561                            NULL, 0, LoadedVT);
562
563      // Callers expect a MERGE_VALUES node.
564      SDValue Ops[] = { Load, TF };
565      return DAG.getMergeValues(Ops, 2, dl);
566    }
567  }
568  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
569         "Unaligned load of unsupported type.");
570
571  // Compute the new VT that is half the size of the old one.  This is an
572  // integer MVT.
573  unsigned NumBits = LoadedVT.getSizeInBits();
574  EVT NewLoadedVT;
575  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
576  NumBits >>= 1;
577
578  unsigned Alignment = LD->getAlignment();
579  unsigned IncrementSize = NumBits / 8;
580  ISD::LoadExtType HiExtType = LD->getExtensionType();
581
582  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
583  if (HiExtType == ISD::NON_EXTLOAD)
584    HiExtType = ISD::ZEXTLOAD;
585
586  // Load the value in two parts
587  SDValue Lo, Hi;
588  if (TLI.isLittleEndian()) {
589    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
590                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
591    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
592                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
593    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
594                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
595                        MinAlign(Alignment, IncrementSize));
596  } else {
597    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
598                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
599    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
600                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
601    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
602                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
603                        MinAlign(Alignment, IncrementSize));
604  }
605
606  // aggregate the two parts
607  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
608  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
609  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
610
611  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
612                             Hi.getValue(1));
613
614  SDValue Ops[] = { Result, TF };
615  return DAG.getMergeValues(Ops, 2, dl);
616}
617
618/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
619/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
620/// is necessary to spill the vector being inserted into to memory, perform
621/// the insert there, and then read the result back.
622SDValue SelectionDAGLegalize::
623PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
624                               DebugLoc dl) {
625  SDValue Tmp1 = Vec;
626  SDValue Tmp2 = Val;
627  SDValue Tmp3 = Idx;
628
629  // If the target doesn't support this, we have to spill the input vector
630  // to a temporary stack slot, update the element, then reload it.  This is
631  // badness.  We could also load the value into a vector register (either
632  // with a "move to register" or "extload into register" instruction, then
633  // permute it into place, if the idx is a constant and if the idx is
634  // supported by the target.
635  EVT VT    = Tmp1.getValueType();
636  EVT EltVT = VT.getVectorElementType();
637  EVT IdxVT = Tmp3.getValueType();
638  EVT PtrVT = TLI.getPointerTy();
639  SDValue StackPtr = DAG.CreateStackTemporary(VT);
640
641  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
642
643  // Store the vector.
644  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
645                            PseudoSourceValue::getFixedStack(SPFI), 0);
646
647  // Truncate or zero extend offset to target pointer type.
648  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
649  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
650  // Add the offset to the index.
651  unsigned EltSize = EltVT.getSizeInBits()/8;
652  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
653  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
654  // Store the scalar value.
655  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
656                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
657  // Load the updated vector.
658  return DAG.getLoad(VT, dl, Ch, StackPtr,
659                     PseudoSourceValue::getFixedStack(SPFI), 0);
660}
661
662
663SDValue SelectionDAGLegalize::
664ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
665  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
666    // SCALAR_TO_VECTOR requires that the type of the value being inserted
667    // match the element type of the vector being created, except for
668    // integers in which case the inserted value can be over width.
669    EVT EltVT = Vec.getValueType().getVectorElementType();
670    if (Val.getValueType() == EltVT ||
671        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
672      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
673                                  Vec.getValueType(), Val);
674
675      unsigned NumElts = Vec.getValueType().getVectorNumElements();
676      // We generate a shuffle of InVec and ScVec, so the shuffle mask
677      // should be 0,1,2,3,4,5... with the appropriate element replaced with
678      // elt 0 of the RHS.
679      SmallVector<int, 8> ShufOps;
680      for (unsigned i = 0; i != NumElts; ++i)
681        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
682
683      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
684                                  &ShufOps[0]);
685    }
686  }
687  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
688}
689
690SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
691  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
692  // FIXME: We shouldn't do this for TargetConstantFP's.
693  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
694  // to phase ordering between legalized code and the dag combiner.  This
695  // probably means that we need to integrate dag combiner and legalizer
696  // together.
697  // We generally can't do this one for long doubles.
698  SDValue Tmp1 = ST->getChain();
699  SDValue Tmp2 = ST->getBasePtr();
700  SDValue Tmp3;
701  int SVOffset = ST->getSrcValueOffset();
702  unsigned Alignment = ST->getAlignment();
703  bool isVolatile = ST->isVolatile();
704  DebugLoc dl = ST->getDebugLoc();
705  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
706    if (CFP->getValueType(0) == MVT::f32 &&
707        getTypeAction(MVT::i32) == Legal) {
708      Tmp3 = DAG.getConstant(CFP->getValueAPF().
709                                      bitcastToAPInt().zextOrTrunc(32),
710                              MVT::i32);
711      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
712                          SVOffset, isVolatile, Alignment);
713    } else if (CFP->getValueType(0) == MVT::f64) {
714      // If this target supports 64-bit registers, do a single 64-bit store.
715      if (getTypeAction(MVT::i64) == Legal) {
716        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
717                                  zextOrTrunc(64), MVT::i64);
718        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
719                            SVOffset, isVolatile, Alignment);
720      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
721        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
722        // stores.  If the target supports neither 32- nor 64-bits, this
723        // xform is certainly not worth it.
724        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
725        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
726        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
727        if (TLI.isBigEndian()) std::swap(Lo, Hi);
728
729        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
730                          SVOffset, isVolatile, Alignment);
731        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
732                            DAG.getIntPtrConstant(4));
733        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
734                          isVolatile, MinAlign(Alignment, 4U));
735
736        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
737      }
738    }
739  }
740  return SDValue();
741}
742
743/// LegalizeOp - We know that the specified value has a legal type, and
744/// that its operands are legal.  Now ensure that the operation itself
745/// is legal, recursively ensuring that the operands' operations remain
746/// legal.
747SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
748  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
749    return Op;
750
751  SDNode *Node = Op.getNode();
752  DebugLoc dl = Node->getDebugLoc();
753
754  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
755    assert(getTypeAction(Node->getValueType(i)) == Legal &&
756           "Unexpected illegal type!");
757
758  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
759    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
760            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
761           "Unexpected illegal type!");
762
763  // Note that LegalizeOp may be reentered even from single-use nodes, which
764  // means that we always must cache transformed nodes.
765  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
766  if (I != LegalizedNodes.end()) return I->second;
767
768  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
769  SDValue Result = Op;
770  bool isCustom = false;
771
772  // Figure out the correct action; the way to query this varies by opcode
773  TargetLowering::LegalizeAction Action;
774  bool SimpleFinishLegalizing = true;
775  switch (Node->getOpcode()) {
776  case ISD::INTRINSIC_W_CHAIN:
777  case ISD::INTRINSIC_WO_CHAIN:
778  case ISD::INTRINSIC_VOID:
779  case ISD::VAARG:
780  case ISD::STACKSAVE:
781    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
782    break;
783  case ISD::SINT_TO_FP:
784  case ISD::UINT_TO_FP:
785  case ISD::EXTRACT_VECTOR_ELT:
786    Action = TLI.getOperationAction(Node->getOpcode(),
787                                    Node->getOperand(0).getValueType());
788    break;
789  case ISD::FP_ROUND_INREG:
790  case ISD::SIGN_EXTEND_INREG: {
791    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
792    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
793    break;
794  }
795  case ISD::SELECT_CC:
796  case ISD::SETCC:
797  case ISD::BR_CC: {
798    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
799                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
800    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
801    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
802    ISD::CondCode CCCode =
803        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
804    Action = TLI.getCondCodeAction(CCCode, OpVT);
805    if (Action == TargetLowering::Legal) {
806      if (Node->getOpcode() == ISD::SELECT_CC)
807        Action = TLI.getOperationAction(Node->getOpcode(),
808                                        Node->getValueType(0));
809      else
810        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
811    }
812    break;
813  }
814  case ISD::LOAD:
815  case ISD::STORE:
816    // FIXME: Model these properly.  LOAD and STORE are complicated, and
817    // STORE expects the unlegalized operand in some cases.
818    SimpleFinishLegalizing = false;
819    break;
820  case ISD::CALLSEQ_START:
821  case ISD::CALLSEQ_END:
822    // FIXME: This shouldn't be necessary.  These nodes have special properties
823    // dealing with the recursive nature of legalization.  Removing this
824    // special case should be done as part of making LegalizeDAG non-recursive.
825    SimpleFinishLegalizing = false;
826    break;
827  case ISD::EXTRACT_ELEMENT:
828  case ISD::FLT_ROUNDS_:
829  case ISD::SADDO:
830  case ISD::SSUBO:
831  case ISD::UADDO:
832  case ISD::USUBO:
833  case ISD::SMULO:
834  case ISD::UMULO:
835  case ISD::FPOWI:
836  case ISD::MERGE_VALUES:
837  case ISD::EH_RETURN:
838  case ISD::FRAME_TO_ARGS_OFFSET:
839    // These operations lie about being legal: when they claim to be legal,
840    // they should actually be expanded.
841    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
842    if (Action == TargetLowering::Legal)
843      Action = TargetLowering::Expand;
844    break;
845  case ISD::TRAMPOLINE:
846  case ISD::FRAMEADDR:
847  case ISD::RETURNADDR:
848    // These operations lie about being legal: when they claim to be legal,
849    // they should actually be custom-lowered.
850    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
851    if (Action == TargetLowering::Legal)
852      Action = TargetLowering::Custom;
853    break;
854  case ISD::BUILD_VECTOR:
855    // A weird case: legalization for BUILD_VECTOR never legalizes the
856    // operands!
857    // FIXME: This really sucks... changing it isn't semantically incorrect,
858    // but it massively pessimizes the code for floating-point BUILD_VECTORs
859    // because ConstantFP operands get legalized into constant pool loads
860    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
861    // though, because BUILD_VECTORS usually get lowered into other nodes
862    // which get legalized properly.
863    SimpleFinishLegalizing = false;
864    break;
865  default:
866    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
867      Action = TargetLowering::Legal;
868    } else {
869      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
870    }
871    break;
872  }
873
874  if (SimpleFinishLegalizing) {
875    SmallVector<SDValue, 8> Ops, ResultVals;
876    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
877      Ops.push_back(LegalizeOp(Node->getOperand(i)));
878    switch (Node->getOpcode()) {
879    default: break;
880    case ISD::BR:
881    case ISD::BRIND:
882    case ISD::BR_JT:
883    case ISD::BR_CC:
884    case ISD::BRCOND:
885      // Branches tweak the chain to include LastCALLSEQ_END
886      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
887                            LastCALLSEQ_END);
888      Ops[0] = LegalizeOp(Ops[0]);
889      LastCALLSEQ_END = DAG.getEntryNode();
890      break;
891    case ISD::SHL:
892    case ISD::SRL:
893    case ISD::SRA:
894    case ISD::ROTL:
895    case ISD::ROTR:
896      // Legalizing shifts/rotates requires adjusting the shift amount
897      // to the appropriate width.
898      if (!Ops[1].getValueType().isVector())
899        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
900      break;
901    case ISD::SRL_PARTS:
902    case ISD::SRA_PARTS:
903    case ISD::SHL_PARTS:
904      // Legalizing shifts/rotates requires adjusting the shift amount
905      // to the appropriate width.
906      if (!Ops[2].getValueType().isVector())
907        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
908    }
909
910    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
911                                    Ops.size());
912    switch (Action) {
913    case TargetLowering::Legal:
914      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
915        ResultVals.push_back(Result.getValue(i));
916      break;
917    case TargetLowering::Custom:
918      // FIXME: The handling for custom lowering with multiple results is
919      // a complete mess.
920      Tmp1 = TLI.LowerOperation(Result, DAG);
921      if (Tmp1.getNode()) {
922        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
923          if (e == 1)
924            ResultVals.push_back(Tmp1);
925          else
926            ResultVals.push_back(Tmp1.getValue(i));
927        }
928        break;
929      }
930
931      // FALL THROUGH
932    case TargetLowering::Expand:
933      ExpandNode(Result.getNode(), ResultVals);
934      break;
935    case TargetLowering::Promote:
936      PromoteNode(Result.getNode(), ResultVals);
937      break;
938    }
939    if (!ResultVals.empty()) {
940      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
941        if (ResultVals[i] != SDValue(Node, i))
942          ResultVals[i] = LegalizeOp(ResultVals[i]);
943        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
944      }
945      return ResultVals[Op.getResNo()];
946    }
947  }
948
949  switch (Node->getOpcode()) {
950  default:
951#ifndef NDEBUG
952    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
953#endif
954    llvm_unreachable("Do not know how to legalize this operator!");
955
956  case ISD::BUILD_VECTOR:
957    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
958    default: llvm_unreachable("This action is not supported yet!");
959    case TargetLowering::Custom:
960      Tmp3 = TLI.LowerOperation(Result, DAG);
961      if (Tmp3.getNode()) {
962        Result = Tmp3;
963        break;
964      }
965      // FALLTHROUGH
966    case TargetLowering::Expand:
967      Result = ExpandBUILD_VECTOR(Result.getNode());
968      break;
969    }
970    break;
971  case ISD::CALLSEQ_START: {
972    SDNode *CallEnd = FindCallEndFromCallStart(Node);
973
974    // Recursively Legalize all of the inputs of the call end that do not lead
975    // to this call start.  This ensures that any libcalls that need be inserted
976    // are inserted *before* the CALLSEQ_START.
977    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
978    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
979      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
980                                   NodesLeadingTo);
981    }
982
983    // Now that we legalized all of the inputs (which may have inserted
984    // libcalls) create the new CALLSEQ_START node.
985    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
986
987    // Merge in the last call, to ensure that this call start after the last
988    // call ended.
989    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
990      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
991                         Tmp1, LastCALLSEQ_END);
992      Tmp1 = LegalizeOp(Tmp1);
993    }
994
995    // Do not try to legalize the target-specific arguments (#1+).
996    if (Tmp1 != Node->getOperand(0)) {
997      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
998      Ops[0] = Tmp1;
999      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1000    }
1001
1002    // Remember that the CALLSEQ_START is legalized.
1003    AddLegalizedOperand(Op.getValue(0), Result);
1004    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1005      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1006
1007    // Now that the callseq_start and all of the non-call nodes above this call
1008    // sequence have been legalized, legalize the call itself.  During this
1009    // process, no libcalls can/will be inserted, guaranteeing that no calls
1010    // can overlap.
1011    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1012    // Note that we are selecting this call!
1013    LastCALLSEQ_END = SDValue(CallEnd, 0);
1014    IsLegalizingCall = true;
1015
1016    // Legalize the call, starting from the CALLSEQ_END.
1017    LegalizeOp(LastCALLSEQ_END);
1018    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1019    return Result;
1020  }
1021  case ISD::CALLSEQ_END:
1022    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1023    // will cause this node to be legalized as well as handling libcalls right.
1024    if (LastCALLSEQ_END.getNode() != Node) {
1025      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1026      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1027      assert(I != LegalizedNodes.end() &&
1028             "Legalizing the call start should have legalized this node!");
1029      return I->second;
1030    }
1031
1032    // Otherwise, the call start has been legalized and everything is going
1033    // according to plan.  Just legalize ourselves normally here.
1034    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1035    // Do not try to legalize the target-specific arguments (#1+), except for
1036    // an optional flag input.
1037    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1038      if (Tmp1 != Node->getOperand(0)) {
1039        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1040        Ops[0] = Tmp1;
1041        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1042      }
1043    } else {
1044      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1045      if (Tmp1 != Node->getOperand(0) ||
1046          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1047        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1048        Ops[0] = Tmp1;
1049        Ops.back() = Tmp2;
1050        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1051      }
1052    }
1053    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1054    // This finishes up call legalization.
1055    IsLegalizingCall = false;
1056
1057    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1058    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1059    if (Node->getNumValues() == 2)
1060      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1061    return Result.getValue(Op.getResNo());
1062  case ISD::LOAD: {
1063    LoadSDNode *LD = cast<LoadSDNode>(Node);
1064    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1065    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1066
1067    ISD::LoadExtType ExtType = LD->getExtensionType();
1068    if (ExtType == ISD::NON_EXTLOAD) {
1069      EVT VT = Node->getValueType(0);
1070      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1071      Tmp3 = Result.getValue(0);
1072      Tmp4 = Result.getValue(1);
1073
1074      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1075      default: llvm_unreachable("This action is not supported yet!");
1076      case TargetLowering::Legal:
1077        // If this is an unaligned load and the target doesn't support it,
1078        // expand it.
1079        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1080          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1081          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1082          if (LD->getAlignment() < ABIAlignment){
1083            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1084                                         DAG, TLI);
1085            Tmp3 = Result.getOperand(0);
1086            Tmp4 = Result.getOperand(1);
1087            Tmp3 = LegalizeOp(Tmp3);
1088            Tmp4 = LegalizeOp(Tmp4);
1089          }
1090        }
1091        break;
1092      case TargetLowering::Custom:
1093        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1094        if (Tmp1.getNode()) {
1095          Tmp3 = LegalizeOp(Tmp1);
1096          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1097        }
1098        break;
1099      case TargetLowering::Promote: {
1100        // Only promote a load of vector type to another.
1101        assert(VT.isVector() && "Cannot promote this load!");
1102        // Change base type to a different vector type.
1103        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1104
1105        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1106                           LD->getSrcValueOffset(),
1107                           LD->isVolatile(), LD->getAlignment());
1108        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1109        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1110        break;
1111      }
1112      }
1113      // Since loads produce two values, make sure to remember that we
1114      // legalized both of them.
1115      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1116      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1117      return Op.getResNo() ? Tmp4 : Tmp3;
1118    } else {
1119      EVT SrcVT = LD->getMemoryVT();
1120      unsigned SrcWidth = SrcVT.getSizeInBits();
1121      int SVOffset = LD->getSrcValueOffset();
1122      unsigned Alignment = LD->getAlignment();
1123      bool isVolatile = LD->isVolatile();
1124
1125      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1126          // Some targets pretend to have an i1 loading operation, and actually
1127          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1128          // bits are guaranteed to be zero; it helps the optimizers understand
1129          // that these bits are zero.  It is also useful for EXTLOAD, since it
1130          // tells the optimizers that those bits are undefined.  It would be
1131          // nice to have an effective generic way of getting these benefits...
1132          // Until such a way is found, don't insist on promoting i1 here.
1133          (SrcVT != MVT::i1 ||
1134           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1135        // Promote to a byte-sized load if not loading an integral number of
1136        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1137        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1138        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1139        SDValue Ch;
1140
1141        // The extra bits are guaranteed to be zero, since we stored them that
1142        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1143
1144        ISD::LoadExtType NewExtType =
1145          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1146
1147        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1148                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1149                                NVT, isVolatile, Alignment);
1150
1151        Ch = Result.getValue(1); // The chain.
1152
1153        if (ExtType == ISD::SEXTLOAD)
1154          // Having the top bits zero doesn't help when sign extending.
1155          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1156                               Result.getValueType(),
1157                               Result, DAG.getValueType(SrcVT));
1158        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1159          // All the top bits are guaranteed to be zero - inform the optimizers.
1160          Result = DAG.getNode(ISD::AssertZext, dl,
1161                               Result.getValueType(), Result,
1162                               DAG.getValueType(SrcVT));
1163
1164        Tmp1 = LegalizeOp(Result);
1165        Tmp2 = LegalizeOp(Ch);
1166      } else if (SrcWidth & (SrcWidth - 1)) {
1167        // If not loading a power-of-2 number of bits, expand as two loads.
1168        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1169               "Unsupported extload!");
1170        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1171        assert(RoundWidth < SrcWidth);
1172        unsigned ExtraWidth = SrcWidth - RoundWidth;
1173        assert(ExtraWidth < RoundWidth);
1174        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1175               "Load size not an integral number of bytes!");
1176        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1177        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1178        SDValue Lo, Hi, Ch;
1179        unsigned IncrementSize;
1180
1181        if (TLI.isLittleEndian()) {
1182          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1183          // Load the bottom RoundWidth bits.
1184          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1185                              Node->getValueType(0), Tmp1, Tmp2,
1186                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1187                              Alignment);
1188
1189          // Load the remaining ExtraWidth bits.
1190          IncrementSize = RoundWidth / 8;
1191          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1192                             DAG.getIntPtrConstant(IncrementSize));
1193          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1194                              LD->getSrcValue(), SVOffset + IncrementSize,
1195                              ExtraVT, isVolatile,
1196                              MinAlign(Alignment, IncrementSize));
1197
1198          // Build a factor node to remember that this load is independent of the
1199          // other one.
1200          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1201                           Hi.getValue(1));
1202
1203          // Move the top bits to the right place.
1204          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1205                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1206
1207          // Join the hi and lo parts.
1208          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1209        } else {
1210          // Big endian - avoid unaligned loads.
1211          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1212          // Load the top RoundWidth bits.
1213          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1214                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1215                              Alignment);
1216
1217          // Load the remaining ExtraWidth bits.
1218          IncrementSize = RoundWidth / 8;
1219          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1220                             DAG.getIntPtrConstant(IncrementSize));
1221          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1222                              Node->getValueType(0), Tmp1, Tmp2,
1223                              LD->getSrcValue(), SVOffset + IncrementSize,
1224                              ExtraVT, isVolatile,
1225                              MinAlign(Alignment, IncrementSize));
1226
1227          // Build a factor node to remember that this load is independent of the
1228          // other one.
1229          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1230                           Hi.getValue(1));
1231
1232          // Move the top bits to the right place.
1233          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1234                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1235
1236          // Join the hi and lo parts.
1237          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1238        }
1239
1240        Tmp1 = LegalizeOp(Result);
1241        Tmp2 = LegalizeOp(Ch);
1242      } else {
1243        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1244        default: llvm_unreachable("This action is not supported yet!");
1245        case TargetLowering::Custom:
1246          isCustom = true;
1247          // FALLTHROUGH
1248        case TargetLowering::Legal:
1249          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1250          Tmp1 = Result.getValue(0);
1251          Tmp2 = Result.getValue(1);
1252
1253          if (isCustom) {
1254            Tmp3 = TLI.LowerOperation(Result, DAG);
1255            if (Tmp3.getNode()) {
1256              Tmp1 = LegalizeOp(Tmp3);
1257              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1258            }
1259          } else {
1260            // If this is an unaligned load and the target doesn't support it,
1261            // expand it.
1262            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1263              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1264              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1265              if (LD->getAlignment() < ABIAlignment){
1266                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1267                                             DAG, TLI);
1268                Tmp1 = Result.getOperand(0);
1269                Tmp2 = Result.getOperand(1);
1270                Tmp1 = LegalizeOp(Tmp1);
1271                Tmp2 = LegalizeOp(Tmp2);
1272              }
1273            }
1274          }
1275          break;
1276        case TargetLowering::Expand:
1277          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1278          if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1279            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1280                                         LD->getSrcValueOffset(),
1281                                         LD->isVolatile(), LD->getAlignment());
1282            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1283                                 Node->getValueType(0), Load);
1284            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1285            Tmp2 = LegalizeOp(Load.getValue(1));
1286            break;
1287          }
1288          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1289          // Turn the unsupported load into an EXTLOAD followed by an explicit
1290          // zero/sign extend inreg.
1291          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1292                                  Tmp1, Tmp2, LD->getSrcValue(),
1293                                  LD->getSrcValueOffset(), SrcVT,
1294                                  LD->isVolatile(), LD->getAlignment());
1295          SDValue ValRes;
1296          if (ExtType == ISD::SEXTLOAD)
1297            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1298                                 Result.getValueType(),
1299                                 Result, DAG.getValueType(SrcVT));
1300          else
1301            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1302          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1303          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1304          break;
1305        }
1306      }
1307
1308      // Since loads produce two values, make sure to remember that we legalized
1309      // both of them.
1310      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1311      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1312      return Op.getResNo() ? Tmp2 : Tmp1;
1313    }
1314  }
1315  case ISD::STORE: {
1316    StoreSDNode *ST = cast<StoreSDNode>(Node);
1317    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1318    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1319    int SVOffset = ST->getSrcValueOffset();
1320    unsigned Alignment = ST->getAlignment();
1321    bool isVolatile = ST->isVolatile();
1322
1323    if (!ST->isTruncatingStore()) {
1324      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1325        Result = SDValue(OptStore, 0);
1326        break;
1327      }
1328
1329      {
1330        Tmp3 = LegalizeOp(ST->getValue());
1331        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1332                                        ST->getOffset());
1333
1334        EVT VT = Tmp3.getValueType();
1335        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1336        default: llvm_unreachable("This action is not supported yet!");
1337        case TargetLowering::Legal:
1338          // If this is an unaligned store and the target doesn't support it,
1339          // expand it.
1340          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1341            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1342            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1343            if (ST->getAlignment() < ABIAlignment)
1344              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1345                                            DAG, TLI);
1346          }
1347          break;
1348        case TargetLowering::Custom:
1349          Tmp1 = TLI.LowerOperation(Result, DAG);
1350          if (Tmp1.getNode()) Result = Tmp1;
1351          break;
1352        case TargetLowering::Promote:
1353          assert(VT.isVector() && "Unknown legal promote case!");
1354          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1355                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1356          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1357                                ST->getSrcValue(), SVOffset, isVolatile,
1358                                Alignment);
1359          break;
1360        }
1361        break;
1362      }
1363    } else {
1364      Tmp3 = LegalizeOp(ST->getValue());
1365
1366      EVT StVT = ST->getMemoryVT();
1367      unsigned StWidth = StVT.getSizeInBits();
1368
1369      if (StWidth != StVT.getStoreSizeInBits()) {
1370        // Promote to a byte-sized store with upper bits zero if not
1371        // storing an integral number of bytes.  For example, promote
1372        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1373        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits());
1374        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1375        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1376                                   SVOffset, NVT, isVolatile, Alignment);
1377      } else if (StWidth & (StWidth - 1)) {
1378        // If not storing a power-of-2 number of bits, expand as two stores.
1379        assert(StVT.isExtended() && !StVT.isVector() &&
1380               "Unsupported truncstore!");
1381        unsigned RoundWidth = 1 << Log2_32(StWidth);
1382        assert(RoundWidth < StWidth);
1383        unsigned ExtraWidth = StWidth - RoundWidth;
1384        assert(ExtraWidth < RoundWidth);
1385        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1386               "Store size not an integral number of bytes!");
1387        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1388        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1389        SDValue Lo, Hi;
1390        unsigned IncrementSize;
1391
1392        if (TLI.isLittleEndian()) {
1393          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1394          // Store the bottom RoundWidth bits.
1395          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1396                                 SVOffset, RoundVT,
1397                                 isVolatile, Alignment);
1398
1399          // Store the remaining ExtraWidth bits.
1400          IncrementSize = RoundWidth / 8;
1401          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1402                             DAG.getIntPtrConstant(IncrementSize));
1403          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1404                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1405          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1406                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1407                                 MinAlign(Alignment, IncrementSize));
1408        } else {
1409          // Big endian - avoid unaligned stores.
1410          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1411          // Store the top RoundWidth bits.
1412          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1413                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1414          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1415                                 SVOffset, RoundVT, isVolatile, Alignment);
1416
1417          // Store the remaining ExtraWidth bits.
1418          IncrementSize = RoundWidth / 8;
1419          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1420                             DAG.getIntPtrConstant(IncrementSize));
1421          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1422                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1423                                 MinAlign(Alignment, IncrementSize));
1424        }
1425
1426        // The order of the stores doesn't matter.
1427        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1428      } else {
1429        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1430            Tmp2 != ST->getBasePtr())
1431          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1432                                          ST->getOffset());
1433
1434        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1435        default: llvm_unreachable("This action is not supported yet!");
1436        case TargetLowering::Legal:
1437          // If this is an unaligned store and the target doesn't support it,
1438          // expand it.
1439          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1440            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1441            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1442            if (ST->getAlignment() < ABIAlignment)
1443              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1444                                            DAG, TLI);
1445          }
1446          break;
1447        case TargetLowering::Custom:
1448          Result = TLI.LowerOperation(Result, DAG);
1449          break;
1450        case Expand:
1451          // TRUNCSTORE:i16 i32 -> STORE i16
1452          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1453          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1454          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1455                                SVOffset, isVolatile, Alignment);
1456          break;
1457        }
1458      }
1459    }
1460    break;
1461  }
1462  }
1463  assert(Result.getValueType() == Op.getValueType() &&
1464         "Bad legalization!");
1465
1466  // Make sure that the generated code is itself legal.
1467  if (Result != Op)
1468    Result = LegalizeOp(Result);
1469
1470  // Note that LegalizeOp may be reentered even from single-use nodes, which
1471  // means that we always must cache transformed nodes.
1472  AddLegalizedOperand(Op, Result);
1473  return Result;
1474}
1475
1476SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1477  SDValue Vec = Op.getOperand(0);
1478  SDValue Idx = Op.getOperand(1);
1479  DebugLoc dl = Op.getDebugLoc();
1480  // Store the value to a temporary stack slot, then LOAD the returned part.
1481  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1482  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1483
1484  // Add the offset to the index.
1485  unsigned EltSize =
1486      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1487  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1488                    DAG.getConstant(EltSize, Idx.getValueType()));
1489
1490  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1491    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1492  else
1493    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1494
1495  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1496
1497  if (Op.getValueType().isVector())
1498    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1499  else
1500    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1501                          NULL, 0, Vec.getValueType().getVectorElementType());
1502}
1503
1504SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1505  // We can't handle this case efficiently.  Allocate a sufficiently
1506  // aligned object on the stack, store each element into it, then load
1507  // the result as a vector.
1508  // Create the stack frame object.
1509  EVT VT = Node->getValueType(0);
1510  EVT OpVT = Node->getOperand(0).getValueType();
1511  DebugLoc dl = Node->getDebugLoc();
1512  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1513  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1514  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1515
1516  // Emit a store of each element to the stack slot.
1517  SmallVector<SDValue, 8> Stores;
1518  unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1519  // Store (in the right endianness) the elements to memory.
1520  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1521    // Ignore undef elements.
1522    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1523
1524    unsigned Offset = TypeByteSize*i;
1525
1526    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1527    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1528
1529    Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1530                                  Idx, SV, Offset));
1531  }
1532
1533  SDValue StoreChain;
1534  if (!Stores.empty())    // Not all undef elements?
1535    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1536                             &Stores[0], Stores.size());
1537  else
1538    StoreChain = DAG.getEntryNode();
1539
1540  // Result is a load from the stack slot.
1541  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1542}
1543
1544SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1545  DebugLoc dl = Node->getDebugLoc();
1546  SDValue Tmp1 = Node->getOperand(0);
1547  SDValue Tmp2 = Node->getOperand(1);
1548  assert((Tmp2.getValueType() == MVT::f32 ||
1549          Tmp2.getValueType() == MVT::f64) &&
1550          "Ugly special-cased code!");
1551  // Get the sign bit of the RHS.
1552  SDValue SignBit;
1553  EVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1554  if (isTypeLegal(IVT)) {
1555    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1556  } else {
1557    assert(isTypeLegal(TLI.getPointerTy()) &&
1558            (TLI.getPointerTy() == MVT::i32 ||
1559            TLI.getPointerTy() == MVT::i64) &&
1560            "Legal type for load?!");
1561    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1562    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1563    SDValue Ch =
1564        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1565    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1566      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1567                            LoadPtr, DAG.getIntPtrConstant(4));
1568    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1569                              Ch, LoadPtr, NULL, 0, MVT::i32);
1570  }
1571  SignBit =
1572      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1573                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1574                    ISD::SETLT);
1575  // Get the absolute value of the result.
1576  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1577  // Select between the nabs and abs value based on the sign bit of
1578  // the input.
1579  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1580                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1581                     AbsVal);
1582}
1583
1584SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1585  DebugLoc dl = Node->getDebugLoc();
1586  DwarfWriter *DW = DAG.getDwarfWriter();
1587  bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1588                                                    MVT::Other);
1589  bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1590
1591  const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1592  GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1593  if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1594    DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1595
1596    unsigned Line = DSP->getLine();
1597    unsigned Col = DSP->getColumn();
1598
1599    if (OptLevel == CodeGenOpt::None) {
1600      // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1601      // won't hurt anything.
1602      if (useDEBUG_LOC) {
1603        return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1604                           DAG.getConstant(Line, MVT::i32),
1605                           DAG.getConstant(Col, MVT::i32),
1606                           DAG.getSrcValue(CU.getGV()));
1607      } else {
1608        unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1609        return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1610      }
1611    }
1612  }
1613  return Node->getOperand(0);
1614}
1615
1616void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1617                                           SmallVectorImpl<SDValue> &Results) {
1618  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1619  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1620          " not tell us which reg is the stack pointer!");
1621  DebugLoc dl = Node->getDebugLoc();
1622  EVT VT = Node->getValueType(0);
1623  SDValue Tmp1 = SDValue(Node, 0);
1624  SDValue Tmp2 = SDValue(Node, 1);
1625  SDValue Tmp3 = Node->getOperand(2);
1626  SDValue Chain = Tmp1.getOperand(0);
1627
1628  // Chain the dynamic stack allocation so that it doesn't modify the stack
1629  // pointer when other instructions are using the stack.
1630  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1631
1632  SDValue Size  = Tmp2.getOperand(1);
1633  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1634  Chain = SP.getValue(1);
1635  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1636  unsigned StackAlign =
1637    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1638  if (Align > StackAlign)
1639    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1640                      DAG.getConstant(-(uint64_t)Align, VT));
1641  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1642  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1643
1644  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1645                            DAG.getIntPtrConstant(0, true), SDValue());
1646
1647  Results.push_back(Tmp1);
1648  Results.push_back(Tmp2);
1649}
1650
1651/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1652/// condition code CC on the current target. This routine assumes LHS and rHS
1653/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1654/// illegal condition code into AND / OR of multiple SETCC values.
1655void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1656                                                 SDValue &LHS, SDValue &RHS,
1657                                                 SDValue &CC,
1658                                                 DebugLoc dl) {
1659  EVT OpVT = LHS.getValueType();
1660  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1661  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1662  default: llvm_unreachable("Unknown condition code action!");
1663  case TargetLowering::Legal:
1664    // Nothing to do.
1665    break;
1666  case TargetLowering::Expand: {
1667    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1668    unsigned Opc = 0;
1669    switch (CCCode) {
1670    default: llvm_unreachable("Don't know how to expand this condition!");
1671    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1672    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1673    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1674    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1675    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1676    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1677    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1678    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1679    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1680    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1681    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1682    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1683    // FIXME: Implement more expansions.
1684    }
1685
1686    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1687    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1688    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1689    RHS = SDValue();
1690    CC  = SDValue();
1691    break;
1692  }
1693  }
1694}
1695
1696/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1697/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1698/// a load from the stack slot to DestVT, extending it if needed.
1699/// The resultant code need not be legal.
1700SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1701                                               EVT SlotVT,
1702                                               EVT DestVT,
1703                                               DebugLoc dl) {
1704  // Create the stack frame object.
1705  unsigned SrcAlign =
1706    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1707                                              getTypeForEVT(*DAG.getContext()));
1708  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1709
1710  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1711  int SPFI = StackPtrFI->getIndex();
1712  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1713
1714  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1715  unsigned SlotSize = SlotVT.getSizeInBits();
1716  unsigned DestSize = DestVT.getSizeInBits();
1717  unsigned DestAlign =
1718    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext()));
1719
1720  // Emit a store to the stack slot.  Use a truncstore if the input value is
1721  // later than DestVT.
1722  SDValue Store;
1723
1724  if (SrcSize > SlotSize)
1725    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1726                              SV, 0, SlotVT, false, SrcAlign);
1727  else {
1728    assert(SrcSize == SlotSize && "Invalid store");
1729    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1730                         SV, 0, false, SrcAlign);
1731  }
1732
1733  // Result is a load from the stack slot.
1734  if (SlotSize == DestSize)
1735    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1736
1737  assert(SlotSize < DestSize && "Unknown extension!");
1738  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1739                        false, DestAlign);
1740}
1741
1742SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1743  DebugLoc dl = Node->getDebugLoc();
1744  // Create a vector sized/aligned stack slot, store the value to element #0,
1745  // then load the whole vector back out.
1746  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1747
1748  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1749  int SPFI = StackPtrFI->getIndex();
1750
1751  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1752                                 StackPtr,
1753                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1754                                 Node->getValueType(0).getVectorElementType());
1755  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1756                     PseudoSourceValue::getFixedStack(SPFI), 0);
1757}
1758
1759
1760/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1761/// support the operation, but do support the resultant vector type.
1762SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1763  unsigned NumElems = Node->getNumOperands();
1764  SDValue Value1, Value2;
1765  DebugLoc dl = Node->getDebugLoc();
1766  EVT VT = Node->getValueType(0);
1767  EVT OpVT = Node->getOperand(0).getValueType();
1768  EVT EltVT = VT.getVectorElementType();
1769
1770  // If the only non-undef value is the low element, turn this into a
1771  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1772  bool isOnlyLowElement = true;
1773  bool MoreThanTwoValues = false;
1774  bool isConstant = true;
1775  for (unsigned i = 0; i < NumElems; ++i) {
1776    SDValue V = Node->getOperand(i);
1777    if (V.getOpcode() == ISD::UNDEF)
1778      continue;
1779    if (i > 0)
1780      isOnlyLowElement = false;
1781    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1782      isConstant = false;
1783
1784    if (!Value1.getNode()) {
1785      Value1 = V;
1786    } else if (!Value2.getNode()) {
1787      if (V != Value1)
1788        Value2 = V;
1789    } else if (V != Value1 && V != Value2) {
1790      MoreThanTwoValues = true;
1791    }
1792  }
1793
1794  if (!Value1.getNode())
1795    return DAG.getUNDEF(VT);
1796
1797  if (isOnlyLowElement)
1798    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1799
1800  // If all elements are constants, create a load from the constant pool.
1801  if (isConstant) {
1802    std::vector<Constant*> CV;
1803    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1804      if (ConstantFPSDNode *V =
1805          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1806        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1807      } else if (ConstantSDNode *V =
1808                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1809        CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1810      } else {
1811        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1812        const Type *OpNTy = OpVT.getTypeForEVT(*DAG.getContext());
1813        CV.push_back(UndefValue::get(OpNTy));
1814      }
1815    }
1816    Constant *CP = ConstantVector::get(CV);
1817    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1818    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1819    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1820                       PseudoSourceValue::getConstantPool(), 0,
1821                       false, Alignment);
1822  }
1823
1824  if (!MoreThanTwoValues) {
1825    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1826    for (unsigned i = 0; i < NumElems; ++i) {
1827      SDValue V = Node->getOperand(i);
1828      if (V.getOpcode() == ISD::UNDEF)
1829        continue;
1830      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1831    }
1832    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1833      // Get the splatted value into the low element of a vector register.
1834      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1835      SDValue Vec2;
1836      if (Value2.getNode())
1837        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1838      else
1839        Vec2 = DAG.getUNDEF(VT);
1840
1841      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1842      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1843    }
1844  }
1845
1846  // Otherwise, we can't handle this case efficiently.
1847  return ExpandVectorBuildThroughStack(Node);
1848}
1849
1850// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1851// does not fit into a register, return the lo part and set the hi part to the
1852// by-reg argument.  If it does fit into a single register, return the result
1853// and leave the Hi part unset.
1854SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1855                                            bool isSigned) {
1856  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1857  // The input chain to this libcall is the entry node of the function.
1858  // Legalizing the call will automatically add the previous call to the
1859  // dependence.
1860  SDValue InChain = DAG.getEntryNode();
1861
1862  TargetLowering::ArgListTy Args;
1863  TargetLowering::ArgListEntry Entry;
1864  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1865    EVT ArgVT = Node->getOperand(i).getValueType();
1866    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1867    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1868    Entry.isSExt = isSigned;
1869    Entry.isZExt = !isSigned;
1870    Args.push_back(Entry);
1871  }
1872  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1873                                         TLI.getPointerTy());
1874
1875  // Splice the libcall in wherever FindInputOutputChains tells us to.
1876  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1877  std::pair<SDValue, SDValue> CallInfo =
1878    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1879                    0, TLI.getLibcallCallingConv(LC), false,
1880                    /*isReturnValueUsed=*/true,
1881                    Callee, Args, DAG,
1882                    Node->getDebugLoc());
1883
1884  // Legalize the call sequence, starting with the chain.  This will advance
1885  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1886  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1887  LegalizeOp(CallInfo.second);
1888  return CallInfo.first;
1889}
1890
1891SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1892                                              RTLIB::Libcall Call_F32,
1893                                              RTLIB::Libcall Call_F64,
1894                                              RTLIB::Libcall Call_F80,
1895                                              RTLIB::Libcall Call_PPCF128) {
1896  RTLIB::Libcall LC;
1897  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1898  default: llvm_unreachable("Unexpected request for libcall!");
1899  case MVT::f32: LC = Call_F32; break;
1900  case MVT::f64: LC = Call_F64; break;
1901  case MVT::f80: LC = Call_F80; break;
1902  case MVT::ppcf128: LC = Call_PPCF128; break;
1903  }
1904  return ExpandLibCall(LC, Node, false);
1905}
1906
1907SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1908                                               RTLIB::Libcall Call_I16,
1909                                               RTLIB::Libcall Call_I32,
1910                                               RTLIB::Libcall Call_I64,
1911                                               RTLIB::Libcall Call_I128) {
1912  RTLIB::Libcall LC;
1913  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1914  default: llvm_unreachable("Unexpected request for libcall!");
1915  case MVT::i16: LC = Call_I16; break;
1916  case MVT::i32: LC = Call_I32; break;
1917  case MVT::i64: LC = Call_I64; break;
1918  case MVT::i128: LC = Call_I128; break;
1919  }
1920  return ExpandLibCall(LC, Node, isSigned);
1921}
1922
1923/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1924/// INT_TO_FP operation of the specified operand when the target requests that
1925/// we expand it.  At this point, we know that the result and operand types are
1926/// legal for the target.
1927SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1928                                                   SDValue Op0,
1929                                                   EVT DestVT,
1930                                                   DebugLoc dl) {
1931  if (Op0.getValueType() == MVT::i32) {
1932    // simple 32-bit [signed|unsigned] integer to float/double expansion
1933
1934    // Get the stack frame index of a 8 byte buffer.
1935    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1936
1937    // word offset constant for Hi/Lo address computation
1938    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1939    // set up Hi and Lo (into buffer) address based on endian
1940    SDValue Hi = StackSlot;
1941    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1942                             TLI.getPointerTy(), StackSlot, WordOff);
1943    if (TLI.isLittleEndian())
1944      std::swap(Hi, Lo);
1945
1946    // if signed map to unsigned space
1947    SDValue Op0Mapped;
1948    if (isSigned) {
1949      // constant used to invert sign bit (signed to unsigned mapping)
1950      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1951      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1952    } else {
1953      Op0Mapped = Op0;
1954    }
1955    // store the lo of the constructed double - based on integer input
1956    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1957                                  Op0Mapped, Lo, NULL, 0);
1958    // initial hi portion of constructed double
1959    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1960    // store the hi of the constructed double - biased exponent
1961    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1962    // load the constructed double
1963    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1964    // FP constant to bias correct the final result
1965    SDValue Bias = DAG.getConstantFP(isSigned ?
1966                                     BitsToDouble(0x4330000080000000ULL) :
1967                                     BitsToDouble(0x4330000000000000ULL),
1968                                     MVT::f64);
1969    // subtract the bias
1970    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
1971    // final result
1972    SDValue Result;
1973    // handle final rounding
1974    if (DestVT == MVT::f64) {
1975      // do nothing
1976      Result = Sub;
1977    } else if (DestVT.bitsLT(MVT::f64)) {
1978      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
1979                           DAG.getIntPtrConstant(0));
1980    } else if (DestVT.bitsGT(MVT::f64)) {
1981      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
1982    }
1983    return Result;
1984  }
1985  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
1986  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
1987
1988  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
1989                                 Op0, DAG.getConstant(0, Op0.getValueType()),
1990                                 ISD::SETLT);
1991  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
1992  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
1993                                    SignSet, Four, Zero);
1994
1995  // If the sign bit of the integer is set, the large number will be treated
1996  // as a negative number.  To counteract this, the dynamic code adds an
1997  // offset depending on the data type.
1998  uint64_t FF;
1999  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2000  default: llvm_unreachable("Unsupported integer type!");
2001  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2002  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2003  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2004  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2005  }
2006  if (TLI.isLittleEndian()) FF <<= 32;
2007  Constant *FudgeFactor = ConstantInt::get(
2008                                       Type::getInt64Ty(*DAG.getContext()), FF);
2009
2010  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2011  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2012  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2013  Alignment = std::min(Alignment, 4u);
2014  SDValue FudgeInReg;
2015  if (DestVT == MVT::f32)
2016    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2017                             PseudoSourceValue::getConstantPool(), 0,
2018                             false, Alignment);
2019  else {
2020    FudgeInReg =
2021      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2022                                DAG.getEntryNode(), CPIdx,
2023                                PseudoSourceValue::getConstantPool(), 0,
2024                                MVT::f32, false, Alignment));
2025  }
2026
2027  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2028}
2029
2030/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2031/// *INT_TO_FP operation of the specified operand when the target requests that
2032/// we promote it.  At this point, we know that the result and operand types are
2033/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2034/// operation that takes a larger input.
2035SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2036                                                    EVT DestVT,
2037                                                    bool isSigned,
2038                                                    DebugLoc dl) {
2039  // First step, figure out the appropriate *INT_TO_FP operation to use.
2040  EVT NewInTy = LegalOp.getValueType();
2041
2042  unsigned OpToUse = 0;
2043
2044  // Scan for the appropriate larger type to use.
2045  while (1) {
2046    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2047    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2048
2049    // If the target supports SINT_TO_FP of this type, use it.
2050    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2051      OpToUse = ISD::SINT_TO_FP;
2052      break;
2053    }
2054    if (isSigned) continue;
2055
2056    // If the target supports UINT_TO_FP of this type, use it.
2057    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2058      OpToUse = ISD::UINT_TO_FP;
2059      break;
2060    }
2061
2062    // Otherwise, try a larger type.
2063  }
2064
2065  // Okay, we found the operation and type to use.  Zero extend our input to the
2066  // desired type then run the operation on it.
2067  return DAG.getNode(OpToUse, dl, DestVT,
2068                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2069                                 dl, NewInTy, LegalOp));
2070}
2071
2072/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2073/// FP_TO_*INT operation of the specified operand when the target requests that
2074/// we promote it.  At this point, we know that the result and operand types are
2075/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2076/// operation that returns a larger result.
2077SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2078                                                    EVT DestVT,
2079                                                    bool isSigned,
2080                                                    DebugLoc dl) {
2081  // First step, figure out the appropriate FP_TO*INT operation to use.
2082  EVT NewOutTy = DestVT;
2083
2084  unsigned OpToUse = 0;
2085
2086  // Scan for the appropriate larger type to use.
2087  while (1) {
2088    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2089    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2090
2091    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2092      OpToUse = ISD::FP_TO_SINT;
2093      break;
2094    }
2095
2096    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2097      OpToUse = ISD::FP_TO_UINT;
2098      break;
2099    }
2100
2101    // Otherwise, try a larger type.
2102  }
2103
2104
2105  // Okay, we found the operation and type to use.
2106  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2107
2108  // Truncate the result of the extended FP_TO_*INT operation to the desired
2109  // size.
2110  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2111}
2112
2113/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2114///
2115SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2116  EVT VT = Op.getValueType();
2117  EVT SHVT = TLI.getShiftAmountTy();
2118  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2119  switch (VT.getSimpleVT().SimpleTy) {
2120  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2121  case MVT::i16:
2122    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2123    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2124    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2125  case MVT::i32:
2126    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2127    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2128    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2129    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2130    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2131    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2132    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2133    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2134    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2135  case MVT::i64:
2136    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2137    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2138    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2139    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2140    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2141    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2142    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2143    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2144    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2145    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2146    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2147    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2148    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2149    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2150    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2151    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2152    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2153    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2154    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2155    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2156    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2157  }
2158}
2159
2160/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2161///
2162SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2163                                             DebugLoc dl) {
2164  switch (Opc) {
2165  default: llvm_unreachable("Cannot expand this yet!");
2166  case ISD::CTPOP: {
2167    static const uint64_t mask[6] = {
2168      0x5555555555555555ULL, 0x3333333333333333ULL,
2169      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2170      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2171    };
2172    EVT VT = Op.getValueType();
2173    EVT ShVT = TLI.getShiftAmountTy();
2174    unsigned len = VT.getSizeInBits();
2175    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2176      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2177      unsigned EltSize = VT.isVector() ?
2178        VT.getVectorElementType().getSizeInBits() : len;
2179      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2180      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2181      Op = DAG.getNode(ISD::ADD, dl, VT,
2182                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2183                       DAG.getNode(ISD::AND, dl, VT,
2184                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2185                                   Tmp2));
2186    }
2187    return Op;
2188  }
2189  case ISD::CTLZ: {
2190    // for now, we do this:
2191    // x = x | (x >> 1);
2192    // x = x | (x >> 2);
2193    // ...
2194    // x = x | (x >>16);
2195    // x = x | (x >>32); // for 64-bit input
2196    // return popcount(~x);
2197    //
2198    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2199    EVT VT = Op.getValueType();
2200    EVT ShVT = TLI.getShiftAmountTy();
2201    unsigned len = VT.getSizeInBits();
2202    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2203      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2204      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2205                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2206    }
2207    Op = DAG.getNOT(dl, Op, VT);
2208    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2209  }
2210  case ISD::CTTZ: {
2211    // for now, we use: { return popcount(~x & (x - 1)); }
2212    // unless the target has ctlz but not ctpop, in which case we use:
2213    // { return 32 - nlz(~x & (x-1)); }
2214    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2215    EVT VT = Op.getValueType();
2216    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2217                               DAG.getNOT(dl, Op, VT),
2218                               DAG.getNode(ISD::SUB, dl, VT, Op,
2219                                           DAG.getConstant(1, VT)));
2220    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2221    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2222        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2223      return DAG.getNode(ISD::SUB, dl, VT,
2224                         DAG.getConstant(VT.getSizeInBits(), VT),
2225                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2226    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2227  }
2228  }
2229}
2230
2231void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2232                                      SmallVectorImpl<SDValue> &Results) {
2233  DebugLoc dl = Node->getDebugLoc();
2234  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2235  switch (Node->getOpcode()) {
2236  case ISD::CTPOP:
2237  case ISD::CTLZ:
2238  case ISD::CTTZ:
2239    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2240    Results.push_back(Tmp1);
2241    break;
2242  case ISD::BSWAP:
2243    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2244    break;
2245  case ISD::FRAMEADDR:
2246  case ISD::RETURNADDR:
2247  case ISD::FRAME_TO_ARGS_OFFSET:
2248    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2249    break;
2250  case ISD::FLT_ROUNDS_:
2251    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2252    break;
2253  case ISD::EH_RETURN:
2254  case ISD::DECLARE:
2255  case ISD::DBG_LABEL:
2256  case ISD::EH_LABEL:
2257  case ISD::PREFETCH:
2258  case ISD::MEMBARRIER:
2259  case ISD::VAEND:
2260    Results.push_back(Node->getOperand(0));
2261    break;
2262  case ISD::DBG_STOPPOINT:
2263    Results.push_back(ExpandDBG_STOPPOINT(Node));
2264    break;
2265  case ISD::DYNAMIC_STACKALLOC:
2266    ExpandDYNAMIC_STACKALLOC(Node, Results);
2267    break;
2268  case ISD::MERGE_VALUES:
2269    for (unsigned i = 0; i < Node->getNumValues(); i++)
2270      Results.push_back(Node->getOperand(i));
2271    break;
2272  case ISD::UNDEF: {
2273    EVT VT = Node->getValueType(0);
2274    if (VT.isInteger())
2275      Results.push_back(DAG.getConstant(0, VT));
2276    else if (VT.isFloatingPoint())
2277      Results.push_back(DAG.getConstantFP(0, VT));
2278    else
2279      llvm_unreachable("Unknown value type!");
2280    break;
2281  }
2282  case ISD::TRAP: {
2283    // If this operation is not supported, lower it to 'abort()' call
2284    TargetLowering::ArgListTy Args;
2285    std::pair<SDValue, SDValue> CallResult =
2286      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2287                      false, false, false, false, 0, CallingConv::C, false,
2288                      /*isReturnValueUsed=*/true,
2289                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2290                      Args, DAG, dl);
2291    Results.push_back(CallResult.second);
2292    break;
2293  }
2294  case ISD::FP_ROUND:
2295  case ISD::BIT_CONVERT:
2296    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2297                            Node->getValueType(0), dl);
2298    Results.push_back(Tmp1);
2299    break;
2300  case ISD::FP_EXTEND:
2301    Tmp1 = EmitStackConvert(Node->getOperand(0),
2302                            Node->getOperand(0).getValueType(),
2303                            Node->getValueType(0), dl);
2304    Results.push_back(Tmp1);
2305    break;
2306  case ISD::SIGN_EXTEND_INREG: {
2307    // NOTE: we could fall back on load/store here too for targets without
2308    // SAR.  However, it is doubtful that any exist.
2309    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2310    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2311                        ExtraVT.getSizeInBits();
2312    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2313    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2314                       Node->getOperand(0), ShiftCst);
2315    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2316    Results.push_back(Tmp1);
2317    break;
2318  }
2319  case ISD::FP_ROUND_INREG: {
2320    // The only way we can lower this is to turn it into a TRUNCSTORE,
2321    // EXTLOAD pair, targetting a temporary location (a stack slot).
2322
2323    // NOTE: there is a choice here between constantly creating new stack
2324    // slots and always reusing the same one.  We currently always create
2325    // new ones, as reuse may inhibit scheduling.
2326    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2327    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2328                            Node->getValueType(0), dl);
2329    Results.push_back(Tmp1);
2330    break;
2331  }
2332  case ISD::SINT_TO_FP:
2333  case ISD::UINT_TO_FP:
2334    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2335                                Node->getOperand(0), Node->getValueType(0), dl);
2336    Results.push_back(Tmp1);
2337    break;
2338  case ISD::FP_TO_UINT: {
2339    SDValue True, False;
2340    EVT VT =  Node->getOperand(0).getValueType();
2341    EVT NVT = Node->getValueType(0);
2342    const uint64_t zero[] = {0, 0};
2343    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2344    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2345    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2346    Tmp1 = DAG.getConstantFP(apf, VT);
2347    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2348                        Node->getOperand(0),
2349                        Tmp1, ISD::SETLT);
2350    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2351    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2352                        DAG.getNode(ISD::FSUB, dl, VT,
2353                                    Node->getOperand(0), Tmp1));
2354    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2355                        DAG.getConstant(x, NVT));
2356    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2357    Results.push_back(Tmp1);
2358    break;
2359  }
2360  case ISD::VAARG: {
2361    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2362    EVT VT = Node->getValueType(0);
2363    Tmp1 = Node->getOperand(0);
2364    Tmp2 = Node->getOperand(1);
2365    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2366    // Increment the pointer, VAList, to the next vaarg
2367    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2368                       DAG.getConstant(TLI.getTargetData()->
2369                                       getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2370                                       TLI.getPointerTy()));
2371    // Store the incremented VAList to the legalized pointer
2372    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2373    // Load the actual argument out of the pointer VAList
2374    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2375    Results.push_back(Results[0].getValue(1));
2376    break;
2377  }
2378  case ISD::VACOPY: {
2379    // This defaults to loading a pointer from the input and storing it to the
2380    // output, returning the chain.
2381    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2382    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2383    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2384                       Node->getOperand(2), VS, 0);
2385    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2386    Results.push_back(Tmp1);
2387    break;
2388  }
2389  case ISD::EXTRACT_VECTOR_ELT:
2390    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2391      // This must be an access of the only element.  Return it.
2392      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2393                         Node->getOperand(0));
2394    else
2395      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2396    Results.push_back(Tmp1);
2397    break;
2398  case ISD::EXTRACT_SUBVECTOR:
2399    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2400    break;
2401  case ISD::CONCAT_VECTORS: {
2402    Results.push_back(ExpandVectorBuildThroughStack(Node));
2403    break;
2404  }
2405  case ISD::SCALAR_TO_VECTOR:
2406    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2407    break;
2408  case ISD::INSERT_VECTOR_ELT:
2409    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2410                                              Node->getOperand(1),
2411                                              Node->getOperand(2), dl));
2412    break;
2413  case ISD::VECTOR_SHUFFLE: {
2414    SmallVector<int, 8> Mask;
2415    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2416
2417    EVT VT = Node->getValueType(0);
2418    EVT EltVT = VT.getVectorElementType();
2419    unsigned NumElems = VT.getVectorNumElements();
2420    SmallVector<SDValue, 8> Ops;
2421    for (unsigned i = 0; i != NumElems; ++i) {
2422      if (Mask[i] < 0) {
2423        Ops.push_back(DAG.getUNDEF(EltVT));
2424        continue;
2425      }
2426      unsigned Idx = Mask[i];
2427      if (Idx < NumElems)
2428        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2429                                  Node->getOperand(0),
2430                                  DAG.getIntPtrConstant(Idx)));
2431      else
2432        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2433                                  Node->getOperand(1),
2434                                  DAG.getIntPtrConstant(Idx - NumElems)));
2435    }
2436    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2437    Results.push_back(Tmp1);
2438    break;
2439  }
2440  case ISD::EXTRACT_ELEMENT: {
2441    EVT OpTy = Node->getOperand(0).getValueType();
2442    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2443      // 1 -> Hi
2444      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2445                         DAG.getConstant(OpTy.getSizeInBits()/2,
2446                                         TLI.getShiftAmountTy()));
2447      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2448    } else {
2449      // 0 -> Lo
2450      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2451                         Node->getOperand(0));
2452    }
2453    Results.push_back(Tmp1);
2454    break;
2455  }
2456  case ISD::STACKSAVE:
2457    // Expand to CopyFromReg if the target set
2458    // StackPointerRegisterToSaveRestore.
2459    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2460      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2461                                           Node->getValueType(0)));
2462      Results.push_back(Results[0].getValue(1));
2463    } else {
2464      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2465      Results.push_back(Node->getOperand(0));
2466    }
2467    break;
2468  case ISD::STACKRESTORE:
2469    // Expand to CopyToReg if the target set
2470    // StackPointerRegisterToSaveRestore.
2471    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2472      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2473                                         Node->getOperand(1)));
2474    } else {
2475      Results.push_back(Node->getOperand(0));
2476    }
2477    break;
2478  case ISD::FCOPYSIGN:
2479    Results.push_back(ExpandFCOPYSIGN(Node));
2480    break;
2481  case ISD::FNEG:
2482    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2483    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2484    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2485                       Node->getOperand(0));
2486    Results.push_back(Tmp1);
2487    break;
2488  case ISD::FABS: {
2489    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2490    EVT VT = Node->getValueType(0);
2491    Tmp1 = Node->getOperand(0);
2492    Tmp2 = DAG.getConstantFP(0.0, VT);
2493    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2494                        Tmp1, Tmp2, ISD::SETUGT);
2495    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2496    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2497    Results.push_back(Tmp1);
2498    break;
2499  }
2500  case ISD::FSQRT:
2501    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2502                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2503    break;
2504  case ISD::FSIN:
2505    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2506                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2507    break;
2508  case ISD::FCOS:
2509    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2510                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2511    break;
2512  case ISD::FLOG:
2513    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2514                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2515    break;
2516  case ISD::FLOG2:
2517    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2518                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2519    break;
2520  case ISD::FLOG10:
2521    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2522                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2523    break;
2524  case ISD::FEXP:
2525    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2526                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2527    break;
2528  case ISD::FEXP2:
2529    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2530                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2531    break;
2532  case ISD::FTRUNC:
2533    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2534                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2535    break;
2536  case ISD::FFLOOR:
2537    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2538                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2539    break;
2540  case ISD::FCEIL:
2541    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2542                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2543    break;
2544  case ISD::FRINT:
2545    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2546                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2547    break;
2548  case ISD::FNEARBYINT:
2549    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2550                                      RTLIB::NEARBYINT_F64,
2551                                      RTLIB::NEARBYINT_F80,
2552                                      RTLIB::NEARBYINT_PPCF128));
2553    break;
2554  case ISD::FPOWI:
2555    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2556                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2557    break;
2558  case ISD::FPOW:
2559    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2560                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2561    break;
2562  case ISD::FDIV:
2563    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2564                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2565    break;
2566  case ISD::FREM:
2567    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2568                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2569    break;
2570  case ISD::ConstantFP: {
2571    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2572    // Check to see if this FP immediate is already legal.
2573    bool isLegal = false;
2574    for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2575            E = TLI.legal_fpimm_end(); I != E; ++I) {
2576      if (CFP->isExactlyValue(*I)) {
2577        isLegal = true;
2578        break;
2579      }
2580    }
2581    // If this is a legal constant, turn it into a TargetConstantFP node.
2582    if (isLegal)
2583      Results.push_back(SDValue(Node, 0));
2584    else
2585      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2586    break;
2587  }
2588  case ISD::EHSELECTION: {
2589    unsigned Reg = TLI.getExceptionSelectorRegister();
2590    assert(Reg && "Can't expand to unknown register!");
2591    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2592                                         Node->getValueType(0)));
2593    Results.push_back(Results[0].getValue(1));
2594    break;
2595  }
2596  case ISD::EXCEPTIONADDR: {
2597    unsigned Reg = TLI.getExceptionAddressRegister();
2598    assert(Reg && "Can't expand to unknown register!");
2599    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2600                                         Node->getValueType(0)));
2601    Results.push_back(Results[0].getValue(1));
2602    break;
2603  }
2604  case ISD::SUB: {
2605    EVT VT = Node->getValueType(0);
2606    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2607           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2608           "Don't know how to expand this subtraction!");
2609    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2610               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2611    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2612    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2613    break;
2614  }
2615  case ISD::UREM:
2616  case ISD::SREM: {
2617    EVT VT = Node->getValueType(0);
2618    SDVTList VTs = DAG.getVTList(VT, VT);
2619    bool isSigned = Node->getOpcode() == ISD::SREM;
2620    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2621    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2622    Tmp2 = Node->getOperand(0);
2623    Tmp3 = Node->getOperand(1);
2624    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2625      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2626    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2627      // X % Y -> X-X/Y*Y
2628      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2629      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2630      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2631    } else if (isSigned) {
2632      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2633                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2634    } else {
2635      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2636                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2637    }
2638    Results.push_back(Tmp1);
2639    break;
2640  }
2641  case ISD::UDIV:
2642  case ISD::SDIV: {
2643    bool isSigned = Node->getOpcode() == ISD::SDIV;
2644    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2645    EVT VT = Node->getValueType(0);
2646    SDVTList VTs = DAG.getVTList(VT, VT);
2647    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2648      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2649                         Node->getOperand(1));
2650    else if (isSigned)
2651      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2652                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2653    else
2654      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2655                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2656    Results.push_back(Tmp1);
2657    break;
2658  }
2659  case ISD::MULHU:
2660  case ISD::MULHS: {
2661    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2662                                                              ISD::SMUL_LOHI;
2663    EVT VT = Node->getValueType(0);
2664    SDVTList VTs = DAG.getVTList(VT, VT);
2665    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2666           "If this wasn't legal, it shouldn't have been created!");
2667    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2668                       Node->getOperand(1));
2669    Results.push_back(Tmp1.getValue(1));
2670    break;
2671  }
2672  case ISD::MUL: {
2673    EVT VT = Node->getValueType(0);
2674    SDVTList VTs = DAG.getVTList(VT, VT);
2675    // See if multiply or divide can be lowered using two-result operations.
2676    // We just need the low half of the multiply; try both the signed
2677    // and unsigned forms. If the target supports both SMUL_LOHI and
2678    // UMUL_LOHI, form a preference by checking which forms of plain
2679    // MULH it supports.
2680    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2681    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2682    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2683    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2684    unsigned OpToUse = 0;
2685    if (HasSMUL_LOHI && !HasMULHS) {
2686      OpToUse = ISD::SMUL_LOHI;
2687    } else if (HasUMUL_LOHI && !HasMULHU) {
2688      OpToUse = ISD::UMUL_LOHI;
2689    } else if (HasSMUL_LOHI) {
2690      OpToUse = ISD::SMUL_LOHI;
2691    } else if (HasUMUL_LOHI) {
2692      OpToUse = ISD::UMUL_LOHI;
2693    }
2694    if (OpToUse) {
2695      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2696                                    Node->getOperand(1)));
2697      break;
2698    }
2699    Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2700                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2701    Results.push_back(Tmp1);
2702    break;
2703  }
2704  case ISD::SADDO:
2705  case ISD::SSUBO: {
2706    SDValue LHS = Node->getOperand(0);
2707    SDValue RHS = Node->getOperand(1);
2708    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2709                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2710                              LHS, RHS);
2711    Results.push_back(Sum);
2712    EVT OType = Node->getValueType(1);
2713
2714    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2715
2716    //   LHSSign -> LHS >= 0
2717    //   RHSSign -> RHS >= 0
2718    //   SumSign -> Sum >= 0
2719    //
2720    //   Add:
2721    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2722    //   Sub:
2723    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2724    //
2725    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2726    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2727    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2728                                      Node->getOpcode() == ISD::SADDO ?
2729                                      ISD::SETEQ : ISD::SETNE);
2730
2731    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2732    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2733
2734    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2735    Results.push_back(Cmp);
2736    break;
2737  }
2738  case ISD::UADDO:
2739  case ISD::USUBO: {
2740    SDValue LHS = Node->getOperand(0);
2741    SDValue RHS = Node->getOperand(1);
2742    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2743                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2744                              LHS, RHS);
2745    Results.push_back(Sum);
2746    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2747                                   Node->getOpcode () == ISD::UADDO ?
2748                                   ISD::SETULT : ISD::SETUGT));
2749    break;
2750  }
2751  case ISD::UMULO:
2752  case ISD::SMULO: {
2753    EVT VT = Node->getValueType(0);
2754    SDValue LHS = Node->getOperand(0);
2755    SDValue RHS = Node->getOperand(1);
2756    SDValue BottomHalf;
2757    SDValue TopHalf;
2758    static unsigned Ops[2][3] =
2759        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2760          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2761    bool isSigned = Node->getOpcode() == ISD::SMULO;
2762    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2763      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2764      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2765    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2766      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2767                               RHS);
2768      TopHalf = BottomHalf.getValue(1);
2769    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) {
2770      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2771      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2772      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2773      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2774      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2775                               DAG.getIntPtrConstant(0));
2776      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2777                            DAG.getIntPtrConstant(1));
2778    } else {
2779      // FIXME: We should be able to fall back to a libcall with an illegal
2780      // type in some cases cases.
2781      // Also, we can fall back to a division in some cases, but that's a big
2782      // performance hit in the general case.
2783      llvm_unreachable("Don't know how to expand this operation yet!");
2784    }
2785    if (isSigned) {
2786      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2787      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2788      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2789                             ISD::SETNE);
2790    } else {
2791      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2792                             DAG.getConstant(0, VT), ISD::SETNE);
2793    }
2794    Results.push_back(BottomHalf);
2795    Results.push_back(TopHalf);
2796    break;
2797  }
2798  case ISD::BUILD_PAIR: {
2799    EVT PairTy = Node->getValueType(0);
2800    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2801    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2802    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2803                       DAG.getConstant(PairTy.getSizeInBits()/2,
2804                                       TLI.getShiftAmountTy()));
2805    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2806    break;
2807  }
2808  case ISD::SELECT:
2809    Tmp1 = Node->getOperand(0);
2810    Tmp2 = Node->getOperand(1);
2811    Tmp3 = Node->getOperand(2);
2812    if (Tmp1.getOpcode() == ISD::SETCC) {
2813      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2814                             Tmp2, Tmp3,
2815                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2816    } else {
2817      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2818                             DAG.getConstant(0, Tmp1.getValueType()),
2819                             Tmp2, Tmp3, ISD::SETNE);
2820    }
2821    Results.push_back(Tmp1);
2822    break;
2823  case ISD::BR_JT: {
2824    SDValue Chain = Node->getOperand(0);
2825    SDValue Table = Node->getOperand(1);
2826    SDValue Index = Node->getOperand(2);
2827
2828    EVT PTy = TLI.getPointerTy();
2829    MachineFunction &MF = DAG.getMachineFunction();
2830    unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2831    Index= DAG.getNode(ISD::MUL, dl, PTy,
2832                        Index, DAG.getConstant(EntrySize, PTy));
2833    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2834
2835    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2836    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2837                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2838    Addr = LD;
2839    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2840      // For PIC, the sequence is:
2841      // BRIND(load(Jumptable + index) + RelocBase)
2842      // RelocBase can be JumpTable, GOT or some sort of global base.
2843      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2844                          TLI.getPICJumpTableRelocBase(Table, DAG));
2845    }
2846    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2847    Results.push_back(Tmp1);
2848    break;
2849  }
2850  case ISD::BRCOND:
2851    // Expand brcond's setcc into its constituent parts and create a BR_CC
2852    // Node.
2853    Tmp1 = Node->getOperand(0);
2854    Tmp2 = Node->getOperand(1);
2855    if (Tmp2.getOpcode() == ISD::SETCC) {
2856      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2857                         Tmp1, Tmp2.getOperand(2),
2858                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2859                         Node->getOperand(2));
2860    } else {
2861      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2862                         DAG.getCondCode(ISD::SETNE), Tmp2,
2863                         DAG.getConstant(0, Tmp2.getValueType()),
2864                         Node->getOperand(2));
2865    }
2866    Results.push_back(Tmp1);
2867    break;
2868  case ISD::SETCC: {
2869    Tmp1 = Node->getOperand(0);
2870    Tmp2 = Node->getOperand(1);
2871    Tmp3 = Node->getOperand(2);
2872    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2873
2874    // If we expanded the SETCC into an AND/OR, return the new node
2875    if (Tmp2.getNode() == 0) {
2876      Results.push_back(Tmp1);
2877      break;
2878    }
2879
2880    // Otherwise, SETCC for the given comparison type must be completely
2881    // illegal; expand it into a SELECT_CC.
2882    EVT VT = Node->getValueType(0);
2883    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2884                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2885    Results.push_back(Tmp1);
2886    break;
2887  }
2888  case ISD::SELECT_CC: {
2889    Tmp1 = Node->getOperand(0);   // LHS
2890    Tmp2 = Node->getOperand(1);   // RHS
2891    Tmp3 = Node->getOperand(2);   // True
2892    Tmp4 = Node->getOperand(3);   // False
2893    SDValue CC = Node->getOperand(4);
2894
2895    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2896                          Tmp1, Tmp2, CC, dl);
2897
2898    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2899    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2900    CC = DAG.getCondCode(ISD::SETNE);
2901    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2902                       Tmp3, Tmp4, CC);
2903    Results.push_back(Tmp1);
2904    break;
2905  }
2906  case ISD::BR_CC: {
2907    Tmp1 = Node->getOperand(0);              // Chain
2908    Tmp2 = Node->getOperand(2);              // LHS
2909    Tmp3 = Node->getOperand(3);              // RHS
2910    Tmp4 = Node->getOperand(1);              // CC
2911
2912    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2913                          Tmp2, Tmp3, Tmp4, dl);
2914    LastCALLSEQ_END = DAG.getEntryNode();
2915
2916    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2917    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2918    Tmp4 = DAG.getCondCode(ISD::SETNE);
2919    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2920                       Tmp3, Node->getOperand(4));
2921    Results.push_back(Tmp1);
2922    break;
2923  }
2924  case ISD::GLOBAL_OFFSET_TABLE:
2925  case ISD::GlobalAddress:
2926  case ISD::GlobalTLSAddress:
2927  case ISD::ExternalSymbol:
2928  case ISD::ConstantPool:
2929  case ISD::JumpTable:
2930  case ISD::INTRINSIC_W_CHAIN:
2931  case ISD::INTRINSIC_WO_CHAIN:
2932  case ISD::INTRINSIC_VOID:
2933    // FIXME: Custom lowering for these operations shouldn't return null!
2934    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2935      Results.push_back(SDValue(Node, i));
2936    break;
2937  }
2938}
2939void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2940                                       SmallVectorImpl<SDValue> &Results) {
2941  EVT OVT = Node->getValueType(0);
2942  if (Node->getOpcode() == ISD::UINT_TO_FP ||
2943      Node->getOpcode() == ISD::SINT_TO_FP ||
2944      Node->getOpcode() == ISD::SETCC) {
2945    OVT = Node->getOperand(0).getValueType();
2946  }
2947  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2948  DebugLoc dl = Node->getDebugLoc();
2949  SDValue Tmp1, Tmp2, Tmp3;
2950  switch (Node->getOpcode()) {
2951  case ISD::CTTZ:
2952  case ISD::CTLZ:
2953  case ISD::CTPOP:
2954    // Zero extend the argument.
2955    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2956    // Perform the larger operation.
2957    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
2958    if (Node->getOpcode() == ISD::CTTZ) {
2959      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2960      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
2961                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2962                          ISD::SETEQ);
2963      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2964                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2965    } else if (Node->getOpcode() == ISD::CTLZ) {
2966      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2967      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
2968                          DAG.getConstant(NVT.getSizeInBits() -
2969                                          OVT.getSizeInBits(), NVT));
2970    }
2971    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
2972    break;
2973  case ISD::BSWAP: {
2974    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
2975    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
2976    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
2977    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
2978                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
2979    Results.push_back(Tmp1);
2980    break;
2981  }
2982  case ISD::FP_TO_UINT:
2983  case ISD::FP_TO_SINT:
2984    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
2985                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
2986    Results.push_back(Tmp1);
2987    break;
2988  case ISD::UINT_TO_FP:
2989  case ISD::SINT_TO_FP:
2990    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
2991                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
2992    Results.push_back(Tmp1);
2993    break;
2994  case ISD::AND:
2995  case ISD::OR:
2996  case ISD::XOR: {
2997    unsigned ExtOp, TruncOp;
2998    if (OVT.isVector()) {
2999      ExtOp   = ISD::BIT_CONVERT;
3000      TruncOp = ISD::BIT_CONVERT;
3001    } else if (OVT.isInteger()) {
3002      ExtOp   = ISD::ANY_EXTEND;
3003      TruncOp = ISD::TRUNCATE;
3004    } else {
3005      llvm_report_error("Cannot promote logic operation");
3006    }
3007    // Promote each of the values to the new type.
3008    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3009    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3010    // Perform the larger operation, then convert back
3011    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3012    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3013    break;
3014  }
3015  case ISD::SELECT: {
3016    unsigned ExtOp, TruncOp;
3017    if (Node->getValueType(0).isVector()) {
3018      ExtOp   = ISD::BIT_CONVERT;
3019      TruncOp = ISD::BIT_CONVERT;
3020    } else if (Node->getValueType(0).isInteger()) {
3021      ExtOp   = ISD::ANY_EXTEND;
3022      TruncOp = ISD::TRUNCATE;
3023    } else {
3024      ExtOp   = ISD::FP_EXTEND;
3025      TruncOp = ISD::FP_ROUND;
3026    }
3027    Tmp1 = Node->getOperand(0);
3028    // Promote each of the values to the new type.
3029    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3030    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3031    // Perform the larger operation, then round down.
3032    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3033    if (TruncOp != ISD::FP_ROUND)
3034      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3035    else
3036      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3037                         DAG.getIntPtrConstant(0));
3038    Results.push_back(Tmp1);
3039    break;
3040  }
3041  case ISD::VECTOR_SHUFFLE: {
3042    SmallVector<int, 8> Mask;
3043    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3044
3045    // Cast the two input vectors.
3046    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3047    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3048
3049    // Convert the shuffle mask to the right # elements.
3050    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3051    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3052    Results.push_back(Tmp1);
3053    break;
3054  }
3055  case ISD::SETCC: {
3056    unsigned ExtOp = ISD::FP_EXTEND;
3057    if (NVT.isInteger()) {
3058      ISD::CondCode CCCode =
3059        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3060      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3061    }
3062    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3063    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3064    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3065                                  Tmp1, Tmp2, Node->getOperand(2)));
3066    break;
3067  }
3068  }
3069}
3070
3071// SelectionDAG::Legalize - This is the entry point for the file.
3072//
3073void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3074                            CodeGenOpt::Level OptLevel) {
3075  /// run - This is the main entry point to this class.
3076  ///
3077  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3078}
3079
3080