LegalizeDAG.cpp revision ddb45ea7c3b1b064b732f37ae4fea58e9299058d
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include <map>
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class VISIBILITY_HIDDEN SelectionDAGLegalize {
56  TargetLowering &TLI;
57  SelectionDAG &DAG;
58  CodeGenOpt::Level OptLevel;
59
60  // Libcall insertion helpers.
61
62  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
63  /// legalized.  We use this to ensure that calls are properly serialized
64  /// against each other, including inserted libcalls.
65  SDValue LastCALLSEQ_END;
66
67  /// IsLegalizingCall - This member is used *only* for purposes of providing
68  /// helpful assertions that a libcall isn't created while another call is
69  /// being legalized (which could lead to non-serialized call sequences).
70  bool IsLegalizingCall;
71
72  enum LegalizeAction {
73    Legal,      // The target natively supports this operation.
74    Promote,    // This operation should be executed in a larger type.
75    Expand      // Try to expand this to other ops, otherwise use a libcall.
76  };
77
78  /// ValueTypeActions - This is a bitvector that contains two bits for each
79  /// value type, where the two bits correspond to the LegalizeAction enum.
80  /// This can be queried with "getTypeAction(VT)".
81  TargetLowering::ValueTypeActionImpl ValueTypeActions;
82
83  /// LegalizedNodes - For nodes that are of legal width, and that have more
84  /// than one use, this map indicates what regularized operand to use.  This
85  /// allows us to avoid legalizing the same thing more than once.
86  DenseMap<SDValue, SDValue> LegalizedNodes;
87
88  void AddLegalizedOperand(SDValue From, SDValue To) {
89    LegalizedNodes.insert(std::make_pair(From, To));
90    // If someone requests legalization of the new node, return itself.
91    if (From != To)
92      LegalizedNodes.insert(std::make_pair(To, To));
93  }
94
95public:
96  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
97
98  /// getTypeAction - Return how we should legalize values of this type, either
99  /// it is already legal or we need to expand it into multiple registers of
100  /// smaller integer type, or we need to promote it to a larger type.
101  LegalizeAction getTypeAction(MVT VT) const {
102    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
103  }
104
105  /// isTypeLegal - Return true if this type is legal on this target.
106  ///
107  bool isTypeLegal(MVT VT) const {
108    return getTypeAction(VT) == Legal;
109  }
110
111  void LegalizeDAG();
112
113private:
114  /// HandleOp - Legalize, Promote, or Expand the specified operand as
115  /// appropriate for its type.
116  void HandleOp(SDValue Op);
117
118  /// LegalizeOp - We know that the specified value has a legal type.
119  /// Recursively ensure that the operands have legal types, then return the
120  /// result.
121  SDValue LegalizeOp(SDValue O);
122
123  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
124  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
125  /// is necessary to spill the vector being inserted into to memory, perform
126  /// the insert there, and then read the result back.
127  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
128                                         SDValue Idx, DebugLoc dl);
129  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
130                                  SDValue Idx, DebugLoc dl);
131
132  /// Useful 16 element vector type that is used to pass operands for widening.
133  typedef SmallVector<SDValue, 16> SDValueVector;
134
135  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
136  /// performs the same shuffe in terms of order or result bytes, but on a type
137  /// whose vector element type is narrower than the original shuffle type.
138  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
139  SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
140                                     SDValue N1, SDValue N2,
141                                     SmallVectorImpl<int> &Mask) const;
142
143  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
144                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
145
146  void LegalizeSetCCOperands(SDValue &LHS, SDValue &RHS, SDValue &CC,
147                             DebugLoc dl);
148  void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
149                             DebugLoc dl);
150  void LegalizeSetCC(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
151                     DebugLoc dl) {
152    LegalizeSetCCOperands(LHS, RHS, CC, dl);
153    LegalizeSetCCCondCode(VT, LHS, RHS, CC, dl);
154  }
155
156  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
157  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
158                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
159                          RTLIB::Libcall Call_PPCF128);
160  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
161                           RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
162                           RTLIB::Libcall Call_I128);
163
164  SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
165  SDValue ExpandBUILD_VECTOR(SDNode *Node);
166  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
167  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
168                               DebugLoc dl);
169  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
170                                DebugLoc dl);
171  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
172                                DebugLoc dl);
173
174  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
175  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
176
177  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
178
179  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
180  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181};
182}
183
184/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
185/// performs the same shuffe in terms of order or result bytes, but on a type
186/// whose vector element type is narrower than the original shuffle type.
187/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
188SDValue
189SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT,  DebugLoc dl,
190                                                 SDValue N1, SDValue N2,
191                                             SmallVectorImpl<int> &Mask) const {
192  MVT EltVT = NVT.getVectorElementType();
193  unsigned NumMaskElts = VT.getVectorNumElements();
194  unsigned NumDestElts = NVT.getVectorNumElements();
195  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
196
197  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
198
199  if (NumEltsGrowth == 1)
200    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
201
202  SmallVector<int, 8> NewMask;
203  for (unsigned i = 0; i != NumMaskElts; ++i) {
204    int Idx = Mask[i];
205    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
206      if (Idx < 0)
207        NewMask.push_back(-1);
208      else
209        NewMask.push_back(Idx * NumEltsGrowth + j);
210    }
211  }
212  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
213  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
214  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
215}
216
217SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
218                                           CodeGenOpt::Level ol)
219  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
220    ValueTypeActions(TLI.getValueTypeActions()) {
221  assert(MVT::LAST_VALUETYPE <= 32 &&
222         "Too many value types for ValueTypeActions to hold!");
223}
224
225void SelectionDAGLegalize::LegalizeDAG() {
226  LastCALLSEQ_END = DAG.getEntryNode();
227  IsLegalizingCall = false;
228
229  // The legalize process is inherently a bottom-up recursive process (users
230  // legalize their uses before themselves).  Given infinite stack space, we
231  // could just start legalizing on the root and traverse the whole graph.  In
232  // practice however, this causes us to run out of stack space on large basic
233  // blocks.  To avoid this problem, compute an ordering of the nodes where each
234  // node is only legalized after all of its operands are legalized.
235  DAG.AssignTopologicalOrder();
236  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
237       E = prior(DAG.allnodes_end()); I != next(E); ++I)
238    HandleOp(SDValue(I, 0));
239
240  // Finally, it's possible the root changed.  Get the new root.
241  SDValue OldRoot = DAG.getRoot();
242  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
243  DAG.setRoot(LegalizedNodes[OldRoot]);
244
245  LegalizedNodes.clear();
246
247  // Remove dead nodes now.
248  DAG.RemoveDeadNodes();
249}
250
251
252/// FindCallEndFromCallStart - Given a chained node that is part of a call
253/// sequence, find the CALLSEQ_END node that terminates the call sequence.
254static SDNode *FindCallEndFromCallStart(SDNode *Node) {
255  if (Node->getOpcode() == ISD::CALLSEQ_END)
256    return Node;
257  if (Node->use_empty())
258    return 0;   // No CallSeqEnd
259
260  // The chain is usually at the end.
261  SDValue TheChain(Node, Node->getNumValues()-1);
262  if (TheChain.getValueType() != MVT::Other) {
263    // Sometimes it's at the beginning.
264    TheChain = SDValue(Node, 0);
265    if (TheChain.getValueType() != MVT::Other) {
266      // Otherwise, hunt for it.
267      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
268        if (Node->getValueType(i) == MVT::Other) {
269          TheChain = SDValue(Node, i);
270          break;
271        }
272
273      // Otherwise, we walked into a node without a chain.
274      if (TheChain.getValueType() != MVT::Other)
275        return 0;
276    }
277  }
278
279  for (SDNode::use_iterator UI = Node->use_begin(),
280       E = Node->use_end(); UI != E; ++UI) {
281
282    // Make sure to only follow users of our token chain.
283    SDNode *User = *UI;
284    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
285      if (User->getOperand(i) == TheChain)
286        if (SDNode *Result = FindCallEndFromCallStart(User))
287          return Result;
288  }
289  return 0;
290}
291
292/// FindCallStartFromCallEnd - Given a chained node that is part of a call
293/// sequence, find the CALLSEQ_START node that initiates the call sequence.
294static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
295  assert(Node && "Didn't find callseq_start for a call??");
296  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
297
298  assert(Node->getOperand(0).getValueType() == MVT::Other &&
299         "Node doesn't have a token chain argument!");
300  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
301}
302
303/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
304/// see if any uses can reach Dest.  If no dest operands can get to dest,
305/// legalize them, legalize ourself, and return false, otherwise, return true.
306///
307/// Keep track of the nodes we fine that actually do lead to Dest in
308/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
309///
310bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
311                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
312  if (N == Dest) return true;  // N certainly leads to Dest :)
313
314  // If we've already processed this node and it does lead to Dest, there is no
315  // need to reprocess it.
316  if (NodesLeadingTo.count(N)) return true;
317
318  // If the first result of this node has been already legalized, then it cannot
319  // reach N.
320  if (LegalizedNodes.count(SDValue(N, 0))) return false;
321
322  // Okay, this node has not already been legalized.  Check and legalize all
323  // operands.  If none lead to Dest, then we can legalize this node.
324  bool OperandsLeadToDest = false;
325  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
326    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
327      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
328
329  if (OperandsLeadToDest) {
330    NodesLeadingTo.insert(N);
331    return true;
332  }
333
334  // Okay, this node looks safe, legalize it and return false.
335  HandleOp(SDValue(N, 0));
336  return false;
337}
338
339/// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as
340/// appropriate for its type.
341void SelectionDAGLegalize::HandleOp(SDValue Op) {
342  // Don't touch TargetConstants
343  if (Op.getOpcode() == ISD::TargetConstant)
344    return;
345  MVT VT = Op.getValueType();
346  // We should never see any illegal result types here.
347  assert(isTypeLegal(VT) && "Illegal type introduced after type legalization?");
348  (void)LegalizeOp(Op);
349}
350
351/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
352/// a load from the constant pool.
353static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
354                                SelectionDAG &DAG, const TargetLowering &TLI) {
355  bool Extend = false;
356  DebugLoc dl = CFP->getDebugLoc();
357
358  // If a FP immediate is precise when represented as a float and if the
359  // target can do an extending load from float to double, we put it into
360  // the constant pool as a float, even if it's is statically typed as a
361  // double.  This shrinks FP constants and canonicalizes them for targets where
362  // an FP extending load is the same cost as a normal load (such as on the x87
363  // fp stack or PPC FP unit).
364  MVT VT = CFP->getValueType(0);
365  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
366  if (!UseCP) {
367    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
368    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
369                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
370  }
371
372  MVT OrigVT = VT;
373  MVT SVT = VT;
374  while (SVT != MVT::f32) {
375    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
376    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
377        // Only do this if the target has a native EXTLOAD instruction from
378        // smaller type.
379        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
380        TLI.ShouldShrinkFPConstant(OrigVT)) {
381      const Type *SType = SVT.getTypeForMVT();
382      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
383      VT = SVT;
384      Extend = true;
385    }
386  }
387
388  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
389  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
390  if (Extend)
391    return DAG.getExtLoad(ISD::EXTLOAD, dl,
392                          OrigVT, DAG.getEntryNode(),
393                          CPIdx, PseudoSourceValue::getConstantPool(),
394                          0, VT, false, Alignment);
395  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
396                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
397}
398
399/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
400static
401SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
402                             const TargetLowering &TLI) {
403  SDValue Chain = ST->getChain();
404  SDValue Ptr = ST->getBasePtr();
405  SDValue Val = ST->getValue();
406  MVT VT = Val.getValueType();
407  int Alignment = ST->getAlignment();
408  int SVOffset = ST->getSrcValueOffset();
409  DebugLoc dl = ST->getDebugLoc();
410  if (ST->getMemoryVT().isFloatingPoint() ||
411      ST->getMemoryVT().isVector()) {
412    MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
413    if (TLI.isTypeLegal(intVT)) {
414      // Expand to a bitconvert of the value to the integer type of the
415      // same size, then a (misaligned) int store.
416      // FIXME: Does not handle truncating floating point stores!
417      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
418      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
419                          SVOffset, ST->isVolatile(), Alignment);
420    } else {
421      // Do a (aligned) store to a stack slot, then copy from the stack slot
422      // to the final destination using (unaligned) integer loads and stores.
423      MVT StoredVT = ST->getMemoryVT();
424      MVT RegVT =
425        TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
426      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
427      unsigned RegBytes = RegVT.getSizeInBits() / 8;
428      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
429
430      // Make sure the stack slot is also aligned for the register type.
431      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
432
433      // Perform the original store, only redirected to the stack slot.
434      SDValue Store = DAG.getTruncStore(Chain, dl,
435                                        Val, StackPtr, NULL, 0, StoredVT);
436      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
437      SmallVector<SDValue, 8> Stores;
438      unsigned Offset = 0;
439
440      // Do all but one copies using the full register width.
441      for (unsigned i = 1; i < NumRegs; i++) {
442        // Load one integer register's worth from the stack slot.
443        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
444        // Store it to the final location.  Remember the store.
445        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
446                                      ST->getSrcValue(), SVOffset + Offset,
447                                      ST->isVolatile(),
448                                      MinAlign(ST->getAlignment(), Offset)));
449        // Increment the pointers.
450        Offset += RegBytes;
451        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
452                               Increment);
453        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
454      }
455
456      // The last store may be partial.  Do a truncating store.  On big-endian
457      // machines this requires an extending load from the stack slot to ensure
458      // that the bits are in the right place.
459      MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
460
461      // Load from the stack slot.
462      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
463                                    NULL, 0, MemVT);
464
465      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
466                                         ST->getSrcValue(), SVOffset + Offset,
467                                         MemVT, ST->isVolatile(),
468                                         MinAlign(ST->getAlignment(), Offset)));
469      // The order of the stores doesn't matter - say it with a TokenFactor.
470      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
471                         Stores.size());
472    }
473  }
474  assert(ST->getMemoryVT().isInteger() &&
475         !ST->getMemoryVT().isVector() &&
476         "Unaligned store of unknown type.");
477  // Get the half-size VT
478  MVT NewStoredVT =
479    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
480  int NumBits = NewStoredVT.getSizeInBits();
481  int IncrementSize = NumBits / 8;
482
483  // Divide the stored value in two parts.
484  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
485  SDValue Lo = Val;
486  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
487
488  // Store the two parts
489  SDValue Store1, Store2;
490  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
491                             ST->getSrcValue(), SVOffset, NewStoredVT,
492                             ST->isVolatile(), Alignment);
493  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
494                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
495  Alignment = MinAlign(Alignment, IncrementSize);
496  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
497                             ST->getSrcValue(), SVOffset + IncrementSize,
498                             NewStoredVT, ST->isVolatile(), Alignment);
499
500  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
501}
502
503/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
504static
505SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
506                            const TargetLowering &TLI) {
507  int SVOffset = LD->getSrcValueOffset();
508  SDValue Chain = LD->getChain();
509  SDValue Ptr = LD->getBasePtr();
510  MVT VT = LD->getValueType(0);
511  MVT LoadedVT = LD->getMemoryVT();
512  DebugLoc dl = LD->getDebugLoc();
513  if (VT.isFloatingPoint() || VT.isVector()) {
514    MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
515    if (TLI.isTypeLegal(intVT)) {
516      // Expand to a (misaligned) integer load of the same size,
517      // then bitconvert to floating point or vector.
518      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
519                                    SVOffset, LD->isVolatile(),
520                                    LD->getAlignment());
521      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
522      if (VT.isFloatingPoint() && LoadedVT != VT)
523        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
524
525      SDValue Ops[] = { Result, Chain };
526      return DAG.getMergeValues(Ops, 2, dl);
527    } else {
528      // Copy the value to a (aligned) stack slot using (unaligned) integer
529      // loads and stores, then do a (aligned) load from the stack slot.
530      MVT RegVT = TLI.getRegisterType(intVT);
531      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
532      unsigned RegBytes = RegVT.getSizeInBits() / 8;
533      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
534
535      // Make sure the stack slot is also aligned for the register type.
536      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
537
538      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
539      SmallVector<SDValue, 8> Stores;
540      SDValue StackPtr = StackBase;
541      unsigned Offset = 0;
542
543      // Do all but one copies using the full register width.
544      for (unsigned i = 1; i < NumRegs; i++) {
545        // Load one integer register's worth from the original location.
546        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
547                                   SVOffset + Offset, LD->isVolatile(),
548                                   MinAlign(LD->getAlignment(), Offset));
549        // Follow the load with a store to the stack slot.  Remember the store.
550        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
551                                      NULL, 0));
552        // Increment the pointers.
553        Offset += RegBytes;
554        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
555        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
556                               Increment);
557      }
558
559      // The last copy may be partial.  Do an extending load.
560      MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
561      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
562                                    LD->getSrcValue(), SVOffset + Offset,
563                                    MemVT, LD->isVolatile(),
564                                    MinAlign(LD->getAlignment(), Offset));
565      // Follow the load with a store to the stack slot.  Remember the store.
566      // On big-endian machines this requires a truncating store to ensure
567      // that the bits end up in the right place.
568      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
569                                         NULL, 0, MemVT));
570
571      // The order of the stores doesn't matter - say it with a TokenFactor.
572      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
573                               Stores.size());
574
575      // Finally, perform the original load only redirected to the stack slot.
576      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
577                            NULL, 0, LoadedVT);
578
579      // Callers expect a MERGE_VALUES node.
580      SDValue Ops[] = { Load, TF };
581      return DAG.getMergeValues(Ops, 2, dl);
582    }
583  }
584  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
585         "Unaligned load of unsupported type.");
586
587  // Compute the new VT that is half the size of the old one.  This is an
588  // integer MVT.
589  unsigned NumBits = LoadedVT.getSizeInBits();
590  MVT NewLoadedVT;
591  NewLoadedVT = MVT::getIntegerVT(NumBits/2);
592  NumBits >>= 1;
593
594  unsigned Alignment = LD->getAlignment();
595  unsigned IncrementSize = NumBits / 8;
596  ISD::LoadExtType HiExtType = LD->getExtensionType();
597
598  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
599  if (HiExtType == ISD::NON_EXTLOAD)
600    HiExtType = ISD::ZEXTLOAD;
601
602  // Load the value in two parts
603  SDValue Lo, Hi;
604  if (TLI.isLittleEndian()) {
605    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
606                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
607    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
608                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
609    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
610                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
611                        MinAlign(Alignment, IncrementSize));
612  } else {
613    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
614                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
615    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
616                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
617    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
618                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
619                        MinAlign(Alignment, IncrementSize));
620  }
621
622  // aggregate the two parts
623  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
624  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
625  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
626
627  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
628                             Hi.getValue(1));
629
630  SDValue Ops[] = { Result, TF };
631  return DAG.getMergeValues(Ops, 2, dl);
632}
633
634/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
635/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
636/// is necessary to spill the vector being inserted into to memory, perform
637/// the insert there, and then read the result back.
638SDValue SelectionDAGLegalize::
639PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
640                               DebugLoc dl) {
641  SDValue Tmp1 = Vec;
642  SDValue Tmp2 = Val;
643  SDValue Tmp3 = Idx;
644
645  // If the target doesn't support this, we have to spill the input vector
646  // to a temporary stack slot, update the element, then reload it.  This is
647  // badness.  We could also load the value into a vector register (either
648  // with a "move to register" or "extload into register" instruction, then
649  // permute it into place, if the idx is a constant and if the idx is
650  // supported by the target.
651  MVT VT    = Tmp1.getValueType();
652  MVT EltVT = VT.getVectorElementType();
653  MVT IdxVT = Tmp3.getValueType();
654  MVT PtrVT = TLI.getPointerTy();
655  SDValue StackPtr = DAG.CreateStackTemporary(VT);
656
657  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
658
659  // Store the vector.
660  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
661                            PseudoSourceValue::getFixedStack(SPFI), 0);
662
663  // Truncate or zero extend offset to target pointer type.
664  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
665  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
666  // Add the offset to the index.
667  unsigned EltSize = EltVT.getSizeInBits()/8;
668  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
669  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
670  // Store the scalar value.
671  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
672                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
673  // Load the updated vector.
674  return DAG.getLoad(VT, dl, Ch, StackPtr,
675                     PseudoSourceValue::getFixedStack(SPFI), 0);
676}
677
678
679SDValue SelectionDAGLegalize::
680ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
681  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
682    // SCALAR_TO_VECTOR requires that the type of the value being inserted
683    // match the element type of the vector being created, except for
684    // integers in which case the inserted value can be over width.
685    MVT EltVT = Vec.getValueType().getVectorElementType();
686    if (Val.getValueType() == EltVT ||
687        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
688      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
689                                  Vec.getValueType(), Val);
690
691      unsigned NumElts = Vec.getValueType().getVectorNumElements();
692      // We generate a shuffle of InVec and ScVec, so the shuffle mask
693      // should be 0,1,2,3,4,5... with the appropriate element replaced with
694      // elt 0 of the RHS.
695      SmallVector<int, 8> ShufOps;
696      for (unsigned i = 0; i != NumElts; ++i)
697        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
698
699      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
700                                  &ShufOps[0]);
701    }
702  }
703  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
704}
705
706/// LegalizeOp - We know that the specified value has a legal type, and
707/// that its operands are legal.  Now ensure that the operation itself
708/// is legal, recursively ensuring that the operands' operations remain
709/// legal.
710SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
711  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
712    return Op;
713
714  SDNode *Node = Op.getNode();
715  DebugLoc dl = Node->getDebugLoc();
716
717  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
718    assert(getTypeAction(Node->getValueType(i)) == Legal &&
719           "Unexpected illegal type!");
720
721  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
722    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
723            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
724           "Unexpected illegal type!");
725
726  // Note that LegalizeOp may be reentered even from single-use nodes, which
727  // means that we always must cache transformed nodes.
728  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
729  if (I != LegalizedNodes.end()) return I->second;
730
731  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
732  SDValue Result = Op;
733  bool isCustom = false;
734
735  // Figure out the correct action; the way to query this varies by opcode
736  TargetLowering::LegalizeAction Action;
737  bool SimpleFinishLegalizing = true;
738  switch (Node->getOpcode()) {
739  case ISD::INTRINSIC_W_CHAIN:
740  case ISD::INTRINSIC_WO_CHAIN:
741  case ISD::INTRINSIC_VOID:
742  case ISD::VAARG:
743  case ISD::STACKSAVE:
744    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
745    break;
746  case ISD::SINT_TO_FP:
747  case ISD::UINT_TO_FP:
748  case ISD::EXTRACT_VECTOR_ELT:
749    Action = TLI.getOperationAction(Node->getOpcode(),
750                                    Node->getOperand(0).getValueType());
751    break;
752  case ISD::FP_ROUND_INREG:
753  case ISD::SIGN_EXTEND_INREG: {
754    MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
755    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
756    break;
757  }
758  case ISD::LOAD:
759  case ISD::STORE:
760  case ISD::BR_CC:
761  case ISD::FORMAL_ARGUMENTS:
762  case ISD::CALL:
763  case ISD::CALLSEQ_START:
764  case ISD::CALLSEQ_END:
765  case ISD::SELECT_CC:
766  case ISD::SETCC:
767    // These instructions have properties that aren't modeled in the
768    // generic codepath
769    SimpleFinishLegalizing = false;
770    break;
771  case ISD::EXTRACT_ELEMENT:
772  case ISD::FLT_ROUNDS_:
773  case ISD::SADDO:
774  case ISD::SSUBO:
775  case ISD::UADDO:
776  case ISD::USUBO:
777  case ISD::SMULO:
778  case ISD::UMULO:
779  case ISD::FPOWI:
780  case ISD::MERGE_VALUES:
781  case ISD::EH_RETURN:
782  case ISD::FRAME_TO_ARGS_OFFSET:
783    // These operations lie about being legal: when they claim to be legal,
784    // they should actually be expanded.
785    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
786    if (Action == TargetLowering::Legal)
787      Action = TargetLowering::Expand;
788    break;
789  case ISD::TRAMPOLINE:
790  case ISD::FRAMEADDR:
791  case ISD::RETURNADDR:
792    // These operations lie about being legal: they must always be
793    // custom-lowered.
794    Action = TargetLowering::Custom;
795    break;
796  case ISD::BUILD_VECTOR:
797    // A weird case: when a BUILD_VECTOR is custom-lowered, it doesn't legalize
798    // its operands first!
799    SimpleFinishLegalizing = false;
800    break;
801  default:
802    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
803      Action = TargetLowering::Legal;
804    } else {
805      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
806    }
807    break;
808  }
809
810  if (SimpleFinishLegalizing) {
811    SmallVector<SDValue, 8> Ops, ResultVals;
812    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
813      Ops.push_back(LegalizeOp(Node->getOperand(i)));
814    switch (Node->getOpcode()) {
815    default: break;
816    case ISD::BR:
817    case ISD::BRIND:
818    case ISD::BR_JT:
819    case ISD::BR_CC:
820    case ISD::BRCOND:
821    case ISD::RET:
822      // Branches tweak the chain to include LastCALLSEQ_END
823      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
824                            LastCALLSEQ_END);
825      Ops[0] = LegalizeOp(Ops[0]);
826      LastCALLSEQ_END = DAG.getEntryNode();
827      break;
828    case ISD::SHL:
829    case ISD::SRL:
830    case ISD::SRA:
831    case ISD::ROTL:
832    case ISD::ROTR:
833      // Legalizing shifts/rotates requires adjusting the shift amount
834      // to the appropriate width.
835      if (!Ops[1].getValueType().isVector())
836        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
837      break;
838    }
839
840    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
841                                    Ops.size());
842    switch (Action) {
843    case TargetLowering::Legal:
844      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
845        ResultVals.push_back(Result.getValue(i));
846      break;
847    case TargetLowering::Custom:
848      // FIXME: The handling for custom lowering with multiple results is
849      // a complete mess.
850      Tmp1 = TLI.LowerOperation(Result, DAG);
851      if (Tmp1.getNode()) {
852        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
853          if (e == 1)
854            ResultVals.push_back(Tmp1);
855          else
856            ResultVals.push_back(Tmp1.getValue(i));
857        }
858        break;
859      }
860
861      // FALL THROUGH
862    case TargetLowering::Expand:
863      ExpandNode(Result.getNode(), ResultVals);
864      break;
865    case TargetLowering::Promote:
866      PromoteNode(Result.getNode(), ResultVals);
867      break;
868    }
869    if (!ResultVals.empty()) {
870      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
871        if (ResultVals[i] != SDValue(Node, i))
872          ResultVals[i] = LegalizeOp(ResultVals[i]);
873        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
874      }
875      return ResultVals[Op.getResNo()];
876    }
877  }
878
879  switch (Node->getOpcode()) {
880  default:
881#ifndef NDEBUG
882    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
883#endif
884    assert(0 && "Do not know how to legalize this operator!");
885    abort();
886  case ISD::DBG_STOPPOINT:
887    assert(Node->getNumOperands() == 1 && "Invalid DBG_STOPPOINT node!");
888    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the input chain.
889
890    switch (TLI.getOperationAction(ISD::DBG_STOPPOINT, MVT::Other)) {
891    case TargetLowering::Promote:
892    default: assert(0 && "This action is not supported yet!");
893    case TargetLowering::Expand: {
894      DwarfWriter *DW = DAG.getDwarfWriter();
895      bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
896                                                       MVT::Other);
897      bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
898
899      const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
900      GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
901      if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
902        DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
903
904        unsigned Line = DSP->getLine();
905        unsigned Col = DSP->getColumn();
906
907        if (OptLevel == CodeGenOpt::None) {
908          // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
909          // won't hurt anything.
910          if (useDEBUG_LOC) {
911            SDValue Ops[] = { Tmp1, DAG.getConstant(Line, MVT::i32),
912                              DAG.getConstant(Col, MVT::i32),
913                              DAG.getSrcValue(CU.getGV()) };
914            Result = DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Ops, 4);
915          } else {
916            unsigned ID = DW->RecordSourceLine(Line, Col, CU);
917            Result = DAG.getLabel(ISD::DBG_LABEL, dl, Tmp1, ID);
918          }
919        } else {
920          Result = Tmp1;  // chain
921        }
922      } else {
923        Result = Tmp1;  // chain
924      }
925      break;
926    }
927   case TargetLowering::Custom:
928      Result = TLI.LowerOperation(Op, DAG);
929      if (Result.getNode())
930        break;
931    case TargetLowering::Legal: {
932      if (Tmp1 == Node->getOperand(0))
933        break;
934
935      SmallVector<SDValue, 8> Ops;
936      Ops.push_back(Tmp1);
937      Ops.push_back(Node->getOperand(1));  // line # must be legal.
938      Ops.push_back(Node->getOperand(2));  // col # must be legal.
939      Ops.push_back(Node->getOperand(3));  // filename must be legal.
940      Ops.push_back(Node->getOperand(4));  // working dir # must be legal.
941      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
942      break;
943    }
944    }
945    break;
946  case ISD::ConstantFP: {
947    // Spill FP immediates to the constant pool if the target cannot directly
948    // codegen them.  Targets often have some immediate values that can be
949    // efficiently generated into an FP register without a load.  We explicitly
950    // leave these constants as ConstantFP nodes for the target to deal with.
951    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
952
953    switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) {
954    default: assert(0 && "This action is not supported yet!");
955    case TargetLowering::Legal:
956      break;
957    case TargetLowering::Custom:
958      Tmp3 = TLI.LowerOperation(Result, DAG);
959      if (Tmp3.getNode()) {
960        Result = Tmp3;
961        break;
962      }
963      // FALLTHROUGH
964    case TargetLowering::Expand: {
965      // Check to see if this FP immediate is already legal.
966      bool isLegal = false;
967      for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
968             E = TLI.legal_fpimm_end(); I != E; ++I) {
969        if (CFP->isExactlyValue(*I)) {
970          isLegal = true;
971          break;
972        }
973      }
974      // If this is a legal constant, turn it into a TargetConstantFP node.
975      if (isLegal)
976        break;
977      Result = ExpandConstantFP(CFP, true, DAG, TLI);
978    }
979    }
980    break;
981  }
982  case ISD::FORMAL_ARGUMENTS:
983  case ISD::CALL:
984    // The only option for this is to custom lower it.
985    Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
986    assert(Tmp3.getNode() && "Target didn't custom lower this node!");
987    // A call within a calling sequence must be legalized to something
988    // other than the normal CALLSEQ_END.  Violating this gets Legalize
989    // into an infinite loop.
990    assert ((!IsLegalizingCall ||
991             Node->getOpcode() != ISD::CALL ||
992             Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
993            "Nested CALLSEQ_START..CALLSEQ_END not supported.");
994
995    // The number of incoming and outgoing values should match; unless the final
996    // outgoing value is a flag.
997    assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
998            (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
999             Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
1000               MVT::Flag)) &&
1001           "Lowering call/formal_arguments produced unexpected # results!");
1002
1003    // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
1004    // remember that we legalized all of them, so it doesn't get relegalized.
1005    for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
1006      if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
1007        continue;
1008      Tmp1 = LegalizeOp(Tmp3.getValue(i));
1009      if (Op.getResNo() == i)
1010        Tmp2 = Tmp1;
1011      AddLegalizedOperand(SDValue(Node, i), Tmp1);
1012    }
1013    return Tmp2;
1014  case ISD::BUILD_VECTOR:
1015    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
1016    default: assert(0 && "This action is not supported yet!");
1017    case TargetLowering::Custom:
1018      Tmp3 = TLI.LowerOperation(Result, DAG);
1019      if (Tmp3.getNode()) {
1020        Result = Tmp3;
1021        break;
1022      }
1023      // FALLTHROUGH
1024    case TargetLowering::Expand:
1025      Result = ExpandBUILD_VECTOR(Result.getNode());
1026      break;
1027    }
1028    break;
1029  case ISD::VECTOR_SHUFFLE: {
1030    Tmp1 = LegalizeOp(Node->getOperand(0));   // Legalize the input vectors,
1031    Tmp2 = LegalizeOp(Node->getOperand(1));   // but not the shuffle mask.
1032    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
1033    MVT VT = Result.getValueType();
1034
1035    // Copy the Mask to a local SmallVector for use with isShuffleMaskLegal.
1036    SmallVector<int, 8> Mask;
1037    cast<ShuffleVectorSDNode>(Result)->getMask(Mask);
1038
1039    // Allow targets to custom lower the SHUFFLEs they support.
1040    switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) {
1041    default: assert(0 && "Unknown operation action!");
1042    case TargetLowering::Legal:
1043      assert(TLI.isShuffleMaskLegal(Mask, VT) &&
1044             "vector shuffle should not be created if not legal!");
1045      break;
1046    case TargetLowering::Custom:
1047      Tmp3 = TLI.LowerOperation(Result, DAG);
1048      if (Tmp3.getNode()) {
1049        Result = Tmp3;
1050        break;
1051      }
1052      // FALLTHROUGH
1053    case TargetLowering::Expand: {
1054      MVT EltVT = VT.getVectorElementType();
1055      unsigned NumElems = VT.getVectorNumElements();
1056      SmallVector<SDValue, 8> Ops;
1057      for (unsigned i = 0; i != NumElems; ++i) {
1058        if (Mask[i] < 0) {
1059          Ops.push_back(DAG.getUNDEF(EltVT));
1060          continue;
1061        }
1062        unsigned Idx = Mask[i];
1063        if (Idx < NumElems)
1064          Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Tmp1,
1065                                    DAG.getIntPtrConstant(Idx)));
1066        else
1067          Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Tmp2,
1068                                    DAG.getIntPtrConstant(Idx - NumElems)));
1069      }
1070      Result = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
1071      break;
1072    }
1073    case TargetLowering::Promote: {
1074      // Change base type to a different vector type.
1075      MVT OVT = Node->getValueType(0);
1076      MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
1077
1078      // Cast the two input vectors.
1079      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp1);
1080      Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp2);
1081
1082      // Convert the shuffle mask to the right # elements.
1083      Result = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
1084      Result = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Result);
1085      break;
1086    }
1087    }
1088    break;
1089  }
1090  case ISD::CONCAT_VECTORS: {
1091    // Legalize the operands.
1092    SmallVector<SDValue, 8> Ops;
1093    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1094      Ops.push_back(LegalizeOp(Node->getOperand(i)));
1095    Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1096
1097    switch (TLI.getOperationAction(ISD::CONCAT_VECTORS,
1098                                   Node->getValueType(0))) {
1099    default: assert(0 && "Unknown operation action!");
1100    case TargetLowering::Legal:
1101      break;
1102    case TargetLowering::Custom:
1103      Tmp3 = TLI.LowerOperation(Result, DAG);
1104      if (Tmp3.getNode()) {
1105        Result = Tmp3;
1106        break;
1107      }
1108      // FALLTHROUGH
1109    case TargetLowering::Expand: {
1110      // Use extract/insert/build vector for now. We might try to be
1111      // more clever later.
1112      MVT PtrVT = TLI.getPointerTy();
1113      SmallVector<SDValue, 8> Ops;
1114      unsigned NumOperands = Node->getNumOperands();
1115      for (unsigned i=0; i < NumOperands; ++i) {
1116        SDValue SubOp = Node->getOperand(i);
1117        MVT VVT = SubOp.getNode()->getValueType(0);
1118        MVT EltVT = VVT.getVectorElementType();
1119        unsigned NumSubElem = VVT.getVectorNumElements();
1120        for (unsigned j=0; j < NumSubElem; ++j) {
1121          Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1122                                    DAG.getConstant(j, PtrVT)));
1123        }
1124      }
1125      return LegalizeOp(DAG.getNode(ISD::BUILD_VECTOR, dl,
1126                                    Node->getValueType(0),
1127                                    &Ops[0], Ops.size()));
1128    }
1129    }
1130    break;
1131  }
1132
1133  case ISD::CALLSEQ_START: {
1134    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1135
1136    // Recursively Legalize all of the inputs of the call end that do not lead
1137    // to this call start.  This ensures that any libcalls that need be inserted
1138    // are inserted *before* the CALLSEQ_START.
1139    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1140    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1141      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1142                                   NodesLeadingTo);
1143    }
1144
1145    // Now that we legalized all of the inputs (which may have inserted
1146    // libcalls) create the new CALLSEQ_START node.
1147    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1148
1149    // Merge in the last call, to ensure that this call start after the last
1150    // call ended.
1151    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1152      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1153                         Tmp1, LastCALLSEQ_END);
1154      Tmp1 = LegalizeOp(Tmp1);
1155    }
1156
1157    // Do not try to legalize the target-specific arguments (#1+).
1158    if (Tmp1 != Node->getOperand(0)) {
1159      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1160      Ops[0] = Tmp1;
1161      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1162    }
1163
1164    // Remember that the CALLSEQ_START is legalized.
1165    AddLegalizedOperand(Op.getValue(0), Result);
1166    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1167      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1168
1169    // Now that the callseq_start and all of the non-call nodes above this call
1170    // sequence have been legalized, legalize the call itself.  During this
1171    // process, no libcalls can/will be inserted, guaranteeing that no calls
1172    // can overlap.
1173    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1174    // Note that we are selecting this call!
1175    LastCALLSEQ_END = SDValue(CallEnd, 0);
1176    IsLegalizingCall = true;
1177
1178    // Legalize the call, starting from the CALLSEQ_END.
1179    LegalizeOp(LastCALLSEQ_END);
1180    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1181    return Result;
1182  }
1183  case ISD::CALLSEQ_END:
1184    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1185    // will cause this node to be legalized as well as handling libcalls right.
1186    if (LastCALLSEQ_END.getNode() != Node) {
1187      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1188      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1189      assert(I != LegalizedNodes.end() &&
1190             "Legalizing the call start should have legalized this node!");
1191      return I->second;
1192    }
1193
1194    // Otherwise, the call start has been legalized and everything is going
1195    // according to plan.  Just legalize ourselves normally here.
1196    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1197    // Do not try to legalize the target-specific arguments (#1+), except for
1198    // an optional flag input.
1199    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1200      if (Tmp1 != Node->getOperand(0)) {
1201        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1202        Ops[0] = Tmp1;
1203        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1204      }
1205    } else {
1206      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1207      if (Tmp1 != Node->getOperand(0) ||
1208          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1209        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1210        Ops[0] = Tmp1;
1211        Ops.back() = Tmp2;
1212        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1213      }
1214    }
1215    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1216    // This finishes up call legalization.
1217    IsLegalizingCall = false;
1218
1219    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1220    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1221    if (Node->getNumValues() == 2)
1222      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1223    return Result.getValue(Op.getResNo());
1224  case ISD::DYNAMIC_STACKALLOC: {
1225    MVT VT = Node->getValueType(0);
1226    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1227    Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the size.
1228    Tmp3 = LegalizeOp(Node->getOperand(2));  // Legalize the alignment.
1229    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
1230
1231    Tmp1 = Result.getValue(0);
1232    Tmp2 = Result.getValue(1);
1233    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1234    default: assert(0 && "This action is not supported yet!");
1235    case TargetLowering::Expand: {
1236      unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1237      assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1238             " not tell us which reg is the stack pointer!");
1239      SDValue Chain = Tmp1.getOperand(0);
1240
1241      // Chain the dynamic stack allocation so that it doesn't modify the stack
1242      // pointer when other instructions are using the stack.
1243      Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1244
1245      SDValue Size  = Tmp2.getOperand(1);
1246      SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1247      Chain = SP.getValue(1);
1248      unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1249      unsigned StackAlign =
1250        TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1251      if (Align > StackAlign)
1252        SP = DAG.getNode(ISD::AND, dl, VT, SP,
1253                         DAG.getConstant(-(uint64_t)Align, VT));
1254      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1255      Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1256
1257      Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1258                                DAG.getIntPtrConstant(0, true), SDValue());
1259
1260      Tmp1 = LegalizeOp(Tmp1);
1261      Tmp2 = LegalizeOp(Tmp2);
1262      break;
1263    }
1264    case TargetLowering::Custom:
1265      Tmp3 = TLI.LowerOperation(Tmp1, DAG);
1266      if (Tmp3.getNode()) {
1267        Tmp1 = LegalizeOp(Tmp3);
1268        Tmp2 = LegalizeOp(Tmp3.getValue(1));
1269      }
1270      break;
1271    case TargetLowering::Legal:
1272      break;
1273    }
1274    // Since this op produce two values, make sure to remember that we
1275    // legalized both of them.
1276    AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1277    AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1278    return Op.getResNo() ? Tmp2 : Tmp1;
1279  }
1280  case ISD::BR_JT:
1281    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1282    // Ensure that libcalls are emitted before a branch.
1283    Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END);
1284    Tmp1 = LegalizeOp(Tmp1);
1285    LastCALLSEQ_END = DAG.getEntryNode();
1286
1287    Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the jumptable node.
1288    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
1289
1290    switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) {
1291    default: assert(0 && "This action is not supported yet!");
1292    case TargetLowering::Legal: break;
1293    case TargetLowering::Custom:
1294      Tmp1 = TLI.LowerOperation(Result, DAG);
1295      if (Tmp1.getNode()) Result = Tmp1;
1296      break;
1297    case TargetLowering::Expand: {
1298      SDValue Chain = Result.getOperand(0);
1299      SDValue Table = Result.getOperand(1);
1300      SDValue Index = Result.getOperand(2);
1301
1302      MVT PTy = TLI.getPointerTy();
1303      MachineFunction &MF = DAG.getMachineFunction();
1304      unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
1305      Index= DAG.getNode(ISD::MUL, dl, PTy,
1306                         Index, DAG.getConstant(EntrySize, PTy));
1307      SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
1308
1309      MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
1310      SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
1311                                  PseudoSourceValue::getJumpTable(), 0, MemVT);
1312      Addr = LD;
1313      if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1314        // For PIC, the sequence is:
1315        // BRIND(load(Jumptable + index) + RelocBase)
1316        // RelocBase can be JumpTable, GOT or some sort of global base.
1317        Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
1318                           TLI.getPICJumpTableRelocBase(Table, DAG));
1319      }
1320      Result = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
1321    }
1322    }
1323    break;
1324  case ISD::BRCOND:
1325    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1326    // Ensure that libcalls are emitted before a return.
1327    Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END);
1328    Tmp1 = LegalizeOp(Tmp1);
1329    LastCALLSEQ_END = DAG.getEntryNode();
1330
1331    Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition.
1332
1333    // Basic block destination (Op#2) is always legal.
1334    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
1335
1336    switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) {
1337    default: assert(0 && "This action is not supported yet!");
1338    case TargetLowering::Legal: break;
1339    case TargetLowering::Custom:
1340      Tmp1 = TLI.LowerOperation(Result, DAG);
1341      if (Tmp1.getNode()) Result = Tmp1;
1342      break;
1343    case TargetLowering::Expand:
1344      // Expand brcond's setcc into its constituent parts and create a BR_CC
1345      // Node.
1346      if (Tmp2.getOpcode() == ISD::SETCC) {
1347        Result = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
1348                             Tmp1, Tmp2.getOperand(2),
1349                             Tmp2.getOperand(0), Tmp2.getOperand(1),
1350                             Node->getOperand(2));
1351      } else {
1352        Result = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
1353                             DAG.getCondCode(ISD::SETNE), Tmp2,
1354                             DAG.getConstant(0, Tmp2.getValueType()),
1355                             Node->getOperand(2));
1356      }
1357      break;
1358    }
1359    break;
1360  case ISD::BR_CC:
1361    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1362    // Ensure that libcalls are emitted before a branch.
1363    Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END);
1364    Tmp1 = LegalizeOp(Tmp1);
1365    Tmp2 = Node->getOperand(2);              // LHS
1366    Tmp3 = Node->getOperand(3);              // RHS
1367    Tmp4 = Node->getOperand(1);              // CC
1368
1369    LegalizeSetCC(TLI.getSetCCResultType(Tmp2.getValueType()),
1370                  Tmp2, Tmp3, Tmp4, dl);
1371    LastCALLSEQ_END = DAG.getEntryNode();
1372
1373    // If we didn't get both a LHS and RHS back from LegalizeSetCC,
1374    // the LHS is a legal SETCC itself.  In this case, we need to compare
1375    // the result against zero to select between true and false values.
1376    if (Tmp3.getNode() == 0) {
1377      Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
1378      Tmp4 = DAG.getCondCode(ISD::SETNE);
1379    }
1380
1381    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3,
1382                                    Node->getOperand(4));
1383
1384    switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) {
1385    default: assert(0 && "Unexpected action for BR_CC!");
1386    case TargetLowering::Legal: break;
1387    case TargetLowering::Custom:
1388      Tmp4 = TLI.LowerOperation(Result, DAG);
1389      if (Tmp4.getNode()) Result = Tmp4;
1390      break;
1391    }
1392    break;
1393  case ISD::LOAD: {
1394    LoadSDNode *LD = cast<LoadSDNode>(Node);
1395    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1396    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1397
1398    ISD::LoadExtType ExtType = LD->getExtensionType();
1399    if (ExtType == ISD::NON_EXTLOAD) {
1400      MVT VT = Node->getValueType(0);
1401      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1402      Tmp3 = Result.getValue(0);
1403      Tmp4 = Result.getValue(1);
1404
1405      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1406      default: assert(0 && "This action is not supported yet!");
1407      case TargetLowering::Legal:
1408        // If this is an unaligned load and the target doesn't support it,
1409        // expand it.
1410        if (!TLI.allowsUnalignedMemoryAccesses()) {
1411          unsigned ABIAlignment = TLI.getTargetData()->
1412            getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
1413          if (LD->getAlignment() < ABIAlignment){
1414            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1415                                         TLI);
1416            Tmp3 = Result.getOperand(0);
1417            Tmp4 = Result.getOperand(1);
1418            Tmp3 = LegalizeOp(Tmp3);
1419            Tmp4 = LegalizeOp(Tmp4);
1420          }
1421        }
1422        break;
1423      case TargetLowering::Custom:
1424        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1425        if (Tmp1.getNode()) {
1426          Tmp3 = LegalizeOp(Tmp1);
1427          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1428        }
1429        break;
1430      case TargetLowering::Promote: {
1431        // Only promote a load of vector type to another.
1432        assert(VT.isVector() && "Cannot promote this load!");
1433        // Change base type to a different vector type.
1434        MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1435
1436        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1437                           LD->getSrcValueOffset(),
1438                           LD->isVolatile(), LD->getAlignment());
1439        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1440        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1441        break;
1442      }
1443      }
1444      // Since loads produce two values, make sure to remember that we
1445      // legalized both of them.
1446      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1447      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1448      return Op.getResNo() ? Tmp4 : Tmp3;
1449    } else {
1450      MVT SrcVT = LD->getMemoryVT();
1451      unsigned SrcWidth = SrcVT.getSizeInBits();
1452      int SVOffset = LD->getSrcValueOffset();
1453      unsigned Alignment = LD->getAlignment();
1454      bool isVolatile = LD->isVolatile();
1455
1456      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1457          // Some targets pretend to have an i1 loading operation, and actually
1458          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1459          // bits are guaranteed to be zero; it helps the optimizers understand
1460          // that these bits are zero.  It is also useful for EXTLOAD, since it
1461          // tells the optimizers that those bits are undefined.  It would be
1462          // nice to have an effective generic way of getting these benefits...
1463          // Until such a way is found, don't insist on promoting i1 here.
1464          (SrcVT != MVT::i1 ||
1465           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1466        // Promote to a byte-sized load if not loading an integral number of
1467        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1468        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1469        MVT NVT = MVT::getIntegerVT(NewWidth);
1470        SDValue Ch;
1471
1472        // The extra bits are guaranteed to be zero, since we stored them that
1473        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1474
1475        ISD::LoadExtType NewExtType =
1476          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1477
1478        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1479                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1480                                NVT, isVolatile, Alignment);
1481
1482        Ch = Result.getValue(1); // The chain.
1483
1484        if (ExtType == ISD::SEXTLOAD)
1485          // Having the top bits zero doesn't help when sign extending.
1486          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1487                               Result.getValueType(),
1488                               Result, DAG.getValueType(SrcVT));
1489        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1490          // All the top bits are guaranteed to be zero - inform the optimizers.
1491          Result = DAG.getNode(ISD::AssertZext, dl,
1492                               Result.getValueType(), Result,
1493                               DAG.getValueType(SrcVT));
1494
1495        Tmp1 = LegalizeOp(Result);
1496        Tmp2 = LegalizeOp(Ch);
1497      } else if (SrcWidth & (SrcWidth - 1)) {
1498        // If not loading a power-of-2 number of bits, expand as two loads.
1499        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1500               "Unsupported extload!");
1501        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1502        assert(RoundWidth < SrcWidth);
1503        unsigned ExtraWidth = SrcWidth - RoundWidth;
1504        assert(ExtraWidth < RoundWidth);
1505        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1506               "Load size not an integral number of bytes!");
1507        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1508        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1509        SDValue Lo, Hi, Ch;
1510        unsigned IncrementSize;
1511
1512        if (TLI.isLittleEndian()) {
1513          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1514          // Load the bottom RoundWidth bits.
1515          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1516                              Node->getValueType(0), Tmp1, Tmp2,
1517                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1518                              Alignment);
1519
1520          // Load the remaining ExtraWidth bits.
1521          IncrementSize = RoundWidth / 8;
1522          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1523                             DAG.getIntPtrConstant(IncrementSize));
1524          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1525                              LD->getSrcValue(), SVOffset + IncrementSize,
1526                              ExtraVT, isVolatile,
1527                              MinAlign(Alignment, IncrementSize));
1528
1529          // Build a factor node to remember that this load is independent of the
1530          // other one.
1531          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1532                           Hi.getValue(1));
1533
1534          // Move the top bits to the right place.
1535          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1536                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1537
1538          // Join the hi and lo parts.
1539          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1540        } else {
1541          // Big endian - avoid unaligned loads.
1542          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1543          // Load the top RoundWidth bits.
1544          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1545                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1546                              Alignment);
1547
1548          // Load the remaining ExtraWidth bits.
1549          IncrementSize = RoundWidth / 8;
1550          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1551                             DAG.getIntPtrConstant(IncrementSize));
1552          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1553                              Node->getValueType(0), Tmp1, Tmp2,
1554                              LD->getSrcValue(), SVOffset + IncrementSize,
1555                              ExtraVT, isVolatile,
1556                              MinAlign(Alignment, IncrementSize));
1557
1558          // Build a factor node to remember that this load is independent of the
1559          // other one.
1560          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1561                           Hi.getValue(1));
1562
1563          // Move the top bits to the right place.
1564          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1565                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1566
1567          // Join the hi and lo parts.
1568          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1569        }
1570
1571        Tmp1 = LegalizeOp(Result);
1572        Tmp2 = LegalizeOp(Ch);
1573      } else {
1574        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1575        default: assert(0 && "This action is not supported yet!");
1576        case TargetLowering::Custom:
1577          isCustom = true;
1578          // FALLTHROUGH
1579        case TargetLowering::Legal:
1580          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1581          Tmp1 = Result.getValue(0);
1582          Tmp2 = Result.getValue(1);
1583
1584          if (isCustom) {
1585            Tmp3 = TLI.LowerOperation(Result, DAG);
1586            if (Tmp3.getNode()) {
1587              Tmp1 = LegalizeOp(Tmp3);
1588              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1589            }
1590          } else {
1591            // If this is an unaligned load and the target doesn't support it,
1592            // expand it.
1593            if (!TLI.allowsUnalignedMemoryAccesses()) {
1594              unsigned ABIAlignment = TLI.getTargetData()->
1595                getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
1596              if (LD->getAlignment() < ABIAlignment){
1597                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1598                                             TLI);
1599                Tmp1 = Result.getOperand(0);
1600                Tmp2 = Result.getOperand(1);
1601                Tmp1 = LegalizeOp(Tmp1);
1602                Tmp2 = LegalizeOp(Tmp2);
1603              }
1604            }
1605          }
1606          break;
1607        case TargetLowering::Expand:
1608          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1609          if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1610            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1611                                         LD->getSrcValueOffset(),
1612                                         LD->isVolatile(), LD->getAlignment());
1613            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1614                                 Node->getValueType(0), Load);
1615            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1616            Tmp2 = LegalizeOp(Load.getValue(1));
1617            break;
1618          }
1619          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1620          // Turn the unsupported load into an EXTLOAD followed by an explicit
1621          // zero/sign extend inreg.
1622          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1623                                  Tmp1, Tmp2, LD->getSrcValue(),
1624                                  LD->getSrcValueOffset(), SrcVT,
1625                                  LD->isVolatile(), LD->getAlignment());
1626          SDValue ValRes;
1627          if (ExtType == ISD::SEXTLOAD)
1628            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1629                                 Result.getValueType(),
1630                                 Result, DAG.getValueType(SrcVT));
1631          else
1632            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1633          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1634          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1635          break;
1636        }
1637      }
1638
1639      // Since loads produce two values, make sure to remember that we legalized
1640      // both of them.
1641      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1642      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1643      return Op.getResNo() ? Tmp2 : Tmp1;
1644    }
1645  }
1646  case ISD::STORE: {
1647    StoreSDNode *ST = cast<StoreSDNode>(Node);
1648    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1649    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1650    int SVOffset = ST->getSrcValueOffset();
1651    unsigned Alignment = ST->getAlignment();
1652    bool isVolatile = ST->isVolatile();
1653
1654    if (!ST->isTruncatingStore()) {
1655      // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
1656      // FIXME: We shouldn't do this for TargetConstantFP's.
1657      // FIXME: move this to the DAG Combiner!  Note that we can't regress due
1658      // to phase ordering between legalized code and the dag combiner.  This
1659      // probably means that we need to integrate dag combiner and legalizer
1660      // together.
1661      // We generally can't do this one for long doubles.
1662      if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
1663        if (CFP->getValueType(0) == MVT::f32 &&
1664            getTypeAction(MVT::i32) == Legal) {
1665          Tmp3 = DAG.getConstant(CFP->getValueAPF().
1666                                          bitcastToAPInt().zextOrTrunc(32),
1667                                  MVT::i32);
1668          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1669                                SVOffset, isVolatile, Alignment);
1670          break;
1671        } else if (CFP->getValueType(0) == MVT::f64) {
1672          // If this target supports 64-bit registers, do a single 64-bit store.
1673          if (getTypeAction(MVT::i64) == Legal) {
1674            Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
1675                                     zextOrTrunc(64), MVT::i64);
1676            Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1677                                  SVOffset, isVolatile, Alignment);
1678            break;
1679          } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
1680            // Otherwise, if the target supports 32-bit registers, use 2 32-bit
1681            // stores.  If the target supports neither 32- nor 64-bits, this
1682            // xform is certainly not worth it.
1683            const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
1684            SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
1685            SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
1686            if (TLI.isBigEndian()) std::swap(Lo, Hi);
1687
1688            Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
1689                              SVOffset, isVolatile, Alignment);
1690            Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1691                               DAG.getIntPtrConstant(4));
1692            Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
1693                              isVolatile, MinAlign(Alignment, 4U));
1694
1695            Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1696            break;
1697          }
1698        }
1699      }
1700
1701      {
1702        Tmp3 = LegalizeOp(ST->getValue());
1703        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1704                                        ST->getOffset());
1705
1706        MVT VT = Tmp3.getValueType();
1707        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1708        default: assert(0 && "This action is not supported yet!");
1709        case TargetLowering::Legal:
1710          // If this is an unaligned store and the target doesn't support it,
1711          // expand it.
1712          if (!TLI.allowsUnalignedMemoryAccesses()) {
1713            unsigned ABIAlignment = TLI.getTargetData()->
1714              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
1715            if (ST->getAlignment() < ABIAlignment)
1716              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1717                                            TLI);
1718          }
1719          break;
1720        case TargetLowering::Custom:
1721          Tmp1 = TLI.LowerOperation(Result, DAG);
1722          if (Tmp1.getNode()) Result = Tmp1;
1723          break;
1724        case TargetLowering::Promote:
1725          assert(VT.isVector() && "Unknown legal promote case!");
1726          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1727                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1728          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1729                                ST->getSrcValue(), SVOffset, isVolatile,
1730                                Alignment);
1731          break;
1732        }
1733        break;
1734      }
1735    } else {
1736      Tmp3 = LegalizeOp(ST->getValue());
1737
1738      MVT StVT = ST->getMemoryVT();
1739      unsigned StWidth = StVT.getSizeInBits();
1740
1741      if (StWidth != StVT.getStoreSizeInBits()) {
1742        // Promote to a byte-sized store with upper bits zero if not
1743        // storing an integral number of bytes.  For example, promote
1744        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1745        MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
1746        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1747        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1748                                   SVOffset, NVT, isVolatile, Alignment);
1749      } else if (StWidth & (StWidth - 1)) {
1750        // If not storing a power-of-2 number of bits, expand as two stores.
1751        assert(StVT.isExtended() && !StVT.isVector() &&
1752               "Unsupported truncstore!");
1753        unsigned RoundWidth = 1 << Log2_32(StWidth);
1754        assert(RoundWidth < StWidth);
1755        unsigned ExtraWidth = StWidth - RoundWidth;
1756        assert(ExtraWidth < RoundWidth);
1757        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1758               "Store size not an integral number of bytes!");
1759        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1760        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1761        SDValue Lo, Hi;
1762        unsigned IncrementSize;
1763
1764        if (TLI.isLittleEndian()) {
1765          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1766          // Store the bottom RoundWidth bits.
1767          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1768                                 SVOffset, RoundVT,
1769                                 isVolatile, Alignment);
1770
1771          // Store the remaining ExtraWidth bits.
1772          IncrementSize = RoundWidth / 8;
1773          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1774                             DAG.getIntPtrConstant(IncrementSize));
1775          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1776                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1777          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1778                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1779                                 MinAlign(Alignment, IncrementSize));
1780        } else {
1781          // Big endian - avoid unaligned stores.
1782          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1783          // Store the top RoundWidth bits.
1784          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1785                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1786          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1787                                 SVOffset, RoundVT, isVolatile, Alignment);
1788
1789          // Store the remaining ExtraWidth bits.
1790          IncrementSize = RoundWidth / 8;
1791          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1792                             DAG.getIntPtrConstant(IncrementSize));
1793          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1794                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1795                                 MinAlign(Alignment, IncrementSize));
1796        }
1797
1798        // The order of the stores doesn't matter.
1799        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1800      } else {
1801        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1802            Tmp2 != ST->getBasePtr())
1803          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1804                                          ST->getOffset());
1805
1806        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1807        default: assert(0 && "This action is not supported yet!");
1808        case TargetLowering::Legal:
1809          // If this is an unaligned store and the target doesn't support it,
1810          // expand it.
1811          if (!TLI.allowsUnalignedMemoryAccesses()) {
1812            unsigned ABIAlignment = TLI.getTargetData()->
1813              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
1814            if (ST->getAlignment() < ABIAlignment)
1815              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1816                                            TLI);
1817          }
1818          break;
1819        case TargetLowering::Custom:
1820          Result = TLI.LowerOperation(Result, DAG);
1821          break;
1822        case Expand:
1823          // TRUNCSTORE:i16 i32 -> STORE i16
1824          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1825          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1826          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1827                                SVOffset, isVolatile, Alignment);
1828          break;
1829        }
1830      }
1831    }
1832    break;
1833  }
1834  case ISD::SELECT:
1835    Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition.
1836    Tmp2 = LegalizeOp(Node->getOperand(1));   // TrueVal
1837    Tmp3 = LegalizeOp(Node->getOperand(2));   // FalseVal
1838
1839    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
1840
1841    switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) {
1842    default: assert(0 && "This action is not supported yet!");
1843    case TargetLowering::Legal: break;
1844    case TargetLowering::Custom: {
1845      Tmp1 = TLI.LowerOperation(Result, DAG);
1846      if (Tmp1.getNode()) Result = Tmp1;
1847      break;
1848    }
1849    case TargetLowering::Expand:
1850      if (Tmp1.getOpcode() == ISD::SETCC) {
1851        Result = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
1852                              Tmp2, Tmp3,
1853                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
1854      } else {
1855        Result = DAG.getSelectCC(dl, Tmp1,
1856                                 DAG.getConstant(0, Tmp1.getValueType()),
1857                                 Tmp2, Tmp3, ISD::SETNE);
1858      }
1859      break;
1860    case TargetLowering::Promote: {
1861      MVT NVT =
1862        TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType());
1863      unsigned ExtOp, TruncOp;
1864      if (Tmp2.getValueType().isVector()) {
1865        ExtOp   = ISD::BIT_CONVERT;
1866        TruncOp = ISD::BIT_CONVERT;
1867      } else if (Tmp2.getValueType().isInteger()) {
1868        ExtOp   = ISD::ANY_EXTEND;
1869        TruncOp = ISD::TRUNCATE;
1870      } else {
1871        ExtOp   = ISD::FP_EXTEND;
1872        TruncOp = ISD::FP_ROUND;
1873      }
1874      // Promote each of the values to the new type.
1875      Tmp2 = DAG.getNode(ExtOp, dl, NVT, Tmp2);
1876      Tmp3 = DAG.getNode(ExtOp, dl, NVT, Tmp3);
1877      // Perform the larger operation, then round down.
1878      Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
1879      if (TruncOp != ISD::FP_ROUND)
1880        Result = DAG.getNode(TruncOp, dl, Node->getValueType(0), Result);
1881      else
1882        Result = DAG.getNode(TruncOp, dl, Node->getValueType(0), Result,
1883                             DAG.getIntPtrConstant(0));
1884      break;
1885    }
1886    }
1887    break;
1888  case ISD::SELECT_CC: {
1889    Tmp1 = Node->getOperand(0);               // LHS
1890    Tmp2 = Node->getOperand(1);               // RHS
1891    Tmp3 = LegalizeOp(Node->getOperand(2));   // True
1892    Tmp4 = LegalizeOp(Node->getOperand(3));   // False
1893    SDValue CC = Node->getOperand(4);
1894
1895    LegalizeSetCC(TLI.getSetCCResultType(Tmp1.getValueType()),
1896                  Tmp1, Tmp2, CC, dl);
1897
1898    // If we didn't get both a LHS and RHS back from LegalizeSetCC,
1899    // the LHS is a legal SETCC itself.  In this case, we need to compare
1900    // the result against zero to select between true and false values.
1901    if (Tmp2.getNode() == 0) {
1902      Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
1903      CC = DAG.getCondCode(ISD::SETNE);
1904    }
1905    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC);
1906
1907    // Everything is legal, see if we should expand this op or something.
1908    switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) {
1909    default: assert(0 && "This action is not supported yet!");
1910    case TargetLowering::Legal: break;
1911    case TargetLowering::Custom:
1912      Tmp1 = TLI.LowerOperation(Result, DAG);
1913      if (Tmp1.getNode()) Result = Tmp1;
1914      break;
1915    }
1916    break;
1917  }
1918  case ISD::SETCC:
1919    Tmp1 = Node->getOperand(0);
1920    Tmp2 = Node->getOperand(1);
1921    Tmp3 = Node->getOperand(2);
1922    LegalizeSetCC(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
1923
1924    // If we had to Expand the SetCC operands into a SELECT node, then it may
1925    // not always be possible to return a true LHS & RHS.  In this case, just
1926    // return the value we legalized, returned in the LHS
1927    if (Tmp2.getNode() == 0) {
1928      Result = Tmp1;
1929      break;
1930    }
1931
1932    switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) {
1933    default: assert(0 && "Cannot handle this action for SETCC yet!");
1934    case TargetLowering::Custom:
1935      isCustom = true;
1936      // FALLTHROUGH.
1937    case TargetLowering::Legal:
1938      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
1939      if (isCustom) {
1940        Tmp4 = TLI.LowerOperation(Result, DAG);
1941        if (Tmp4.getNode()) Result = Tmp4;
1942      }
1943      break;
1944    case TargetLowering::Promote: {
1945      // First step, figure out the appropriate operation to use.
1946      // Allow SETCC to not be supported for all legal data types
1947      // Mostly this targets FP
1948      MVT NewInTy = Node->getOperand(0).getValueType();
1949      MVT OldVT = NewInTy; OldVT = OldVT;
1950
1951      // Scan for the appropriate larger type to use.
1952      while (1) {
1953        NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
1954
1955        assert(NewInTy.isInteger() == OldVT.isInteger() &&
1956               "Fell off of the edge of the integer world");
1957        assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() &&
1958               "Fell off of the edge of the floating point world");
1959
1960        // If the target supports SETCC of this type, use it.
1961        if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy))
1962          break;
1963      }
1964      if (NewInTy.isInteger())
1965        assert(0 && "Cannot promote Legal Integer SETCC yet");
1966      else {
1967        Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1);
1968        Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2);
1969      }
1970      Tmp1 = LegalizeOp(Tmp1);
1971      Tmp2 = LegalizeOp(Tmp2);
1972      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
1973      Result = LegalizeOp(Result);
1974      break;
1975    }
1976    case TargetLowering::Expand:
1977      // Expand a setcc node into a select_cc of the same condition, lhs, and
1978      // rhs that selects between const 1 (true) and const 0 (false).
1979      MVT VT = Node->getValueType(0);
1980      Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
1981                           DAG.getConstant(1, VT), DAG.getConstant(0, VT),
1982                           Tmp3);
1983      break;
1984    }
1985    break;
1986
1987    // Binary operators
1988  case ISD::FCOPYSIGN:  // FCOPYSIGN does not require LHS/RHS to match type!
1989    Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS
1990    Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS.
1991
1992    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
1993
1994    switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
1995    default: assert(0 && "Operation not supported");
1996    case TargetLowering::Custom:
1997      Tmp1 = TLI.LowerOperation(Result, DAG);
1998      if (Tmp1.getNode()) Result = Tmp1;
1999      break;
2000    case TargetLowering::Legal: break;
2001    case TargetLowering::Expand: {
2002      assert((Tmp2.getValueType() == MVT::f32 ||
2003              Tmp2.getValueType() == MVT::f64) &&
2004              "Ugly special-cased code!");
2005      // Get the sign bit of the RHS.
2006      SDValue SignBit;
2007      MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
2008      if (isTypeLegal(IVT)) {
2009        SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
2010      } else {
2011        assert(isTypeLegal(TLI.getPointerTy()) &&
2012               (TLI.getPointerTy() == MVT::i32 ||
2013                TLI.getPointerTy() == MVT::i64) &&
2014               "Legal type for load?!");
2015        SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
2016        SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
2017        SDValue Ch =
2018            DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
2019        if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
2020          LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
2021                                LoadPtr, DAG.getIntPtrConstant(4));
2022        SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
2023                                 Ch, LoadPtr, NULL, 0, MVT::i32);
2024      }
2025      SignBit =
2026          DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
2027                       SignBit, DAG.getConstant(0, SignBit.getValueType()),
2028                       ISD::SETLT);
2029      // Get the absolute value of the result.
2030      SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
2031      // Select between the nabs and abs value based on the sign bit of
2032      // the input.
2033      Result = DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
2034                           DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(),
2035                                       AbsVal),
2036                           AbsVal);
2037      Result = LegalizeOp(Result);
2038      break;
2039    }
2040    }
2041    break;
2042  case ISD::BUILD_PAIR: {
2043    MVT PairTy = Node->getValueType(0);
2044    // TODO: handle the case where the Lo and Hi operands are not of legal type
2045    Tmp1 = LegalizeOp(Node->getOperand(0));   // Lo
2046    Tmp2 = LegalizeOp(Node->getOperand(1));   // Hi
2047    switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) {
2048    case TargetLowering::Promote:
2049    case TargetLowering::Custom:
2050      assert(0 && "Cannot promote/custom this yet!");
2051    case TargetLowering::Legal:
2052      if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1))
2053        Result = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Tmp1, Tmp2);
2054      break;
2055    case TargetLowering::Expand:
2056      Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Tmp1);
2057      Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Tmp2);
2058      Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2059                         DAG.getConstant(PairTy.getSizeInBits()/2,
2060                                         TLI.getShiftAmountTy()));
2061      Result = DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2);
2062      break;
2063    }
2064    break;
2065  }
2066
2067  case ISD::UREM:
2068  case ISD::SREM:
2069    Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS
2070    Tmp2 = LegalizeOp(Node->getOperand(1));   // RHS
2071
2072    switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
2073    case TargetLowering::Promote: assert(0 && "Cannot promote this yet!");
2074    case TargetLowering::Custom:
2075      isCustom = true;
2076      // FALLTHROUGH
2077    case TargetLowering::Legal:
2078      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
2079      if (isCustom) {
2080        Tmp1 = TLI.LowerOperation(Result, DAG);
2081        if (Tmp1.getNode()) Result = Tmp1;
2082      }
2083      break;
2084    case TargetLowering::Expand: {
2085      unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV;
2086      bool isSigned = DivOpc == ISD::SDIV;
2087      MVT VT = Node->getValueType(0);
2088
2089      // See if remainder can be lowered using two-result operations.
2090      SDVTList VTs = DAG.getVTList(VT, VT);
2091      if (Node->getOpcode() == ISD::SREM &&
2092          TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
2093        Result = SDValue(DAG.getNode(ISD::SDIVREM, dl,
2094                                     VTs, Tmp1, Tmp2).getNode(), 1);
2095        break;
2096      }
2097      if (Node->getOpcode() == ISD::UREM &&
2098          TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) {
2099        Result = SDValue(DAG.getNode(ISD::UDIVREM, dl,
2100                                     VTs, Tmp1, Tmp2).getNode(), 1);
2101        break;
2102      }
2103
2104      if (VT.isInteger() &&
2105          TLI.getOperationAction(DivOpc, VT) == TargetLowering::Legal) {
2106        // X % Y -> X-X/Y*Y
2107        Result = DAG.getNode(DivOpc, dl, VT, Tmp1, Tmp2);
2108        Result = DAG.getNode(ISD::MUL, dl, VT, Result, Tmp2);
2109        Result = DAG.getNode(ISD::SUB, dl, VT, Tmp1, Result);
2110        break;
2111      }
2112
2113      // Check to see if we have a libcall for this operator.
2114      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2115      switch (Node->getOpcode()) {
2116      default: break;
2117      case ISD::UREM:
2118      case ISD::SREM:
2119       if (VT == MVT::i16)
2120         LC = (isSigned ? RTLIB::SREM_I16  : RTLIB::UREM_I16);
2121       else if (VT == MVT::i32)
2122         LC = (isSigned ? RTLIB::SREM_I32  : RTLIB::UREM_I32);
2123       else if (VT == MVT::i64)
2124         LC = (isSigned ? RTLIB::SREM_I64  : RTLIB::UREM_I64);
2125       else if (VT == MVT::i128)
2126         LC = (isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128);
2127       break;
2128      }
2129
2130      if (LC != RTLIB::UNKNOWN_LIBCALL) {
2131        Result = ExpandLibCall(LC, Node, isSigned);
2132        break;
2133      }
2134
2135      assert(0 && "Cannot expand this binary operator!");
2136      break;
2137    }
2138    }
2139    break;
2140  case ISD::VAARG: {
2141    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
2142    Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the pointer.
2143
2144    MVT VT = Node->getValueType(0);
2145    switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) {
2146    default: assert(0 && "This action is not supported yet!");
2147    case TargetLowering::Custom:
2148      isCustom = true;
2149      // FALLTHROUGH
2150    case TargetLowering::Legal:
2151      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
2152      Result = Result.getValue(0);
2153      Tmp1 = Result.getValue(1);
2154
2155      if (isCustom) {
2156        Tmp2 = TLI.LowerOperation(Result, DAG);
2157        if (Tmp2.getNode()) {
2158          Result = LegalizeOp(Tmp2);
2159          Tmp1 = LegalizeOp(Tmp2.getValue(1));
2160        }
2161      }
2162      break;
2163    case TargetLowering::Expand: {
2164      const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2165      SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2166      // Increment the pointer, VAList, to the next vaarg
2167      Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2168                         DAG.getConstant(TLI.getTargetData()->
2169                                         getTypeAllocSize(VT.getTypeForMVT()),
2170                                         TLI.getPointerTy()));
2171      // Store the incremented VAList to the legalized pointer
2172      Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2173      // Load the actual argument out of the pointer VAList
2174      Result = DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0);
2175      Tmp1 = LegalizeOp(Result.getValue(1));
2176      Result = LegalizeOp(Result);
2177      break;
2178    }
2179    }
2180    // Since VAARG produces two values, make sure to remember that we
2181    // legalized both of them.
2182    AddLegalizedOperand(SDValue(Node, 0), Result);
2183    AddLegalizedOperand(SDValue(Node, 1), Tmp1);
2184    return Op.getResNo() ? Tmp1 : Result;
2185  }
2186  case ISD::SADDO:
2187  case ISD::SSUBO: {
2188    MVT VT = Node->getValueType(0);
2189    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
2190    default: assert(0 && "This action not supported for this op yet!");
2191    case TargetLowering::Custom:
2192      Result = TLI.LowerOperation(Op, DAG);
2193      if (Result.getNode()) break;
2194      // FALLTHROUGH
2195    case TargetLowering::Legal: {
2196      SDValue LHS = LegalizeOp(Node->getOperand(0));
2197      SDValue RHS = LegalizeOp(Node->getOperand(1));
2198
2199      SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2200                                ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2201                                LHS, RHS);
2202      MVT OType = Node->getValueType(1);
2203
2204      SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2205
2206      //   LHSSign -> LHS >= 0
2207      //   RHSSign -> RHS >= 0
2208      //   SumSign -> Sum >= 0
2209      //
2210      //   Add:
2211      //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2212      //   Sub:
2213      //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2214      //
2215      SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2216      SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2217      SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2218                                        Node->getOpcode() == ISD::SADDO ?
2219                                        ISD::SETEQ : ISD::SETNE);
2220
2221      SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2222      SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2223
2224      SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2225
2226      MVT ValueVTs[] = { LHS.getValueType(), OType };
2227      SDValue Ops[] = { Sum, Cmp };
2228
2229      Result = DAG.getNode(ISD::MERGE_VALUES, dl,
2230                           DAG.getVTList(&ValueVTs[0], 2),
2231                           &Ops[0], 2);
2232      SDNode *RNode = Result.getNode();
2233      DAG.ReplaceAllUsesWith(Node, RNode);
2234      break;
2235    }
2236    }
2237
2238    break;
2239  }
2240  case ISD::UADDO:
2241  case ISD::USUBO: {
2242    MVT VT = Node->getValueType(0);
2243    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
2244    default: assert(0 && "This action not supported for this op yet!");
2245    case TargetLowering::Custom:
2246      Result = TLI.LowerOperation(Op, DAG);
2247      if (Result.getNode()) break;
2248      // FALLTHROUGH
2249    case TargetLowering::Legal: {
2250      SDValue LHS = LegalizeOp(Node->getOperand(0));
2251      SDValue RHS = LegalizeOp(Node->getOperand(1));
2252
2253      SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2254                                ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2255                                LHS, RHS);
2256      MVT OType = Node->getValueType(1);
2257      SDValue Cmp = DAG.getSetCC(dl, OType, Sum, LHS,
2258                                 Node->getOpcode () == ISD::UADDO ?
2259                                 ISD::SETULT : ISD::SETUGT);
2260
2261      MVT ValueVTs[] = { LHS.getValueType(), OType };
2262      SDValue Ops[] = { Sum, Cmp };
2263
2264      Result = DAG.getNode(ISD::MERGE_VALUES, dl,
2265                           DAG.getVTList(&ValueVTs[0], 2),
2266                           &Ops[0], 2);
2267      SDNode *RNode = Result.getNode();
2268      DAG.ReplaceAllUsesWith(Node, RNode);
2269      break;
2270    }
2271    }
2272
2273    break;
2274  }
2275  }
2276
2277  assert(Result.getValueType() == Op.getValueType() &&
2278         "Bad legalization!");
2279
2280  // Make sure that the generated code is itself legal.
2281  if (Result != Op)
2282    Result = LegalizeOp(Result);
2283
2284  // Note that LegalizeOp may be reentered even from single-use nodes, which
2285  // means that we always must cache transformed nodes.
2286  AddLegalizedOperand(Op, Result);
2287  return Result;
2288}
2289
2290SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
2291  SDValue Vec = Op.getOperand(0);
2292  SDValue Idx = Op.getOperand(1);
2293  DebugLoc dl = Op.getDebugLoc();
2294  // Store the value to a temporary stack slot, then LOAD the returned part.
2295  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
2296  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
2297
2298  // Add the offset to the index.
2299  unsigned EltSize =
2300      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
2301  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
2302                    DAG.getConstant(EltSize, Idx.getValueType()));
2303
2304  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
2305    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
2306  else
2307    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
2308
2309  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
2310
2311  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
2312}
2313
2314/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC
2315/// with condition CC on the current target.  This usually involves legalizing
2316/// or promoting the arguments.  In the case where LHS and RHS must be expanded,
2317/// there may be no choice but to create a new SetCC node to represent the
2318/// legalized value of setcc lhs, rhs.  In this case, the value is returned in
2319/// LHS, and the SDValue returned in RHS has a nil SDNode value.
2320void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue &LHS,
2321                                                 SDValue &RHS,
2322                                                 SDValue &CC,
2323                                                 DebugLoc dl) {
2324  LHS = LegalizeOp(LHS);
2325  RHS = LegalizeOp(RHS);
2326}
2327
2328/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
2329/// condition code CC on the current target. This routine assumes LHS and rHS
2330/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
2331/// illegal condition code into AND / OR of multiple SETCC values.
2332void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
2333                                                 SDValue &LHS, SDValue &RHS,
2334                                                 SDValue &CC,
2335                                                 DebugLoc dl) {
2336  MVT OpVT = LHS.getValueType();
2337  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
2338  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
2339  default: assert(0 && "Unknown condition code action!");
2340  case TargetLowering::Legal:
2341    // Nothing to do.
2342    break;
2343  case TargetLowering::Expand: {
2344    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
2345    unsigned Opc = 0;
2346    switch (CCCode) {
2347    default: assert(0 && "Don't know how to expand this condition!"); abort();
2348    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
2349    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
2350    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
2351    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
2352    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
2353    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
2354    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
2355    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
2356    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
2357    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
2358    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
2359    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
2360    // FIXME: Implement more expansions.
2361    }
2362
2363    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
2364    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
2365    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
2366    RHS = SDValue();
2367    CC  = SDValue();
2368    break;
2369  }
2370  }
2371}
2372
2373/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
2374/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
2375/// a load from the stack slot to DestVT, extending it if needed.
2376/// The resultant code need not be legal.
2377SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
2378                                               MVT SlotVT,
2379                                               MVT DestVT,
2380                                               DebugLoc dl) {
2381  // Create the stack frame object.
2382  unsigned SrcAlign =
2383    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
2384                                              getTypeForMVT());
2385  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
2386
2387  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
2388  int SPFI = StackPtrFI->getIndex();
2389  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
2390
2391  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
2392  unsigned SlotSize = SlotVT.getSizeInBits();
2393  unsigned DestSize = DestVT.getSizeInBits();
2394  unsigned DestAlign =
2395    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT());
2396
2397  // Emit a store to the stack slot.  Use a truncstore if the input value is
2398  // later than DestVT.
2399  SDValue Store;
2400
2401  if (SrcSize > SlotSize)
2402    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
2403                              SV, 0, SlotVT, false, SrcAlign);
2404  else {
2405    assert(SrcSize == SlotSize && "Invalid store");
2406    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
2407                         SV, 0, false, SrcAlign);
2408  }
2409
2410  // Result is a load from the stack slot.
2411  if (SlotSize == DestSize)
2412    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
2413
2414  assert(SlotSize < DestSize && "Unknown extension!");
2415  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
2416                        false, DestAlign);
2417}
2418
2419SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
2420  DebugLoc dl = Node->getDebugLoc();
2421  // Create a vector sized/aligned stack slot, store the value to element #0,
2422  // then load the whole vector back out.
2423  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
2424
2425  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
2426  int SPFI = StackPtrFI->getIndex();
2427
2428  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
2429                                 StackPtr,
2430                                 PseudoSourceValue::getFixedStack(SPFI), 0,
2431                                 Node->getValueType(0).getVectorElementType());
2432  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
2433                     PseudoSourceValue::getFixedStack(SPFI), 0);
2434}
2435
2436
2437/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
2438/// support the operation, but do support the resultant vector type.
2439SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
2440  unsigned NumElems = Node->getNumOperands();
2441  SDValue SplatValue = Node->getOperand(0);
2442  DebugLoc dl = Node->getDebugLoc();
2443  MVT VT = Node->getValueType(0);
2444  MVT OpVT = SplatValue.getValueType();
2445  MVT EltVT = VT.getVectorElementType();
2446
2447  // If the only non-undef value is the low element, turn this into a
2448  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
2449  bool isOnlyLowElement = true;
2450
2451  // FIXME: it would be far nicer to change this into map<SDValue,uint64_t>
2452  // and use a bitmask instead of a list of elements.
2453  // FIXME: this doesn't treat <0, u, 0, u> for example, as a splat.
2454  std::map<SDValue, std::vector<unsigned> > Values;
2455  Values[SplatValue].push_back(0);
2456  bool isConstant = true;
2457  if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) &&
2458      SplatValue.getOpcode() != ISD::UNDEF)
2459    isConstant = false;
2460
2461  for (unsigned i = 1; i < NumElems; ++i) {
2462    SDValue V = Node->getOperand(i);
2463    Values[V].push_back(i);
2464    if (V.getOpcode() != ISD::UNDEF)
2465      isOnlyLowElement = false;
2466    if (SplatValue != V)
2467      SplatValue = SDValue(0, 0);
2468
2469    // If this isn't a constant element or an undef, we can't use a constant
2470    // pool load.
2471    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) &&
2472        V.getOpcode() != ISD::UNDEF)
2473      isConstant = false;
2474  }
2475
2476  if (isOnlyLowElement) {
2477    // If the low element is an undef too, then this whole things is an undef.
2478    if (Node->getOperand(0).getOpcode() == ISD::UNDEF)
2479      return DAG.getUNDEF(VT);
2480    // Otherwise, turn this into a scalar_to_vector node.
2481    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
2482  }
2483
2484  // If all elements are constants, create a load from the constant pool.
2485  if (isConstant) {
2486    std::vector<Constant*> CV;
2487    for (unsigned i = 0, e = NumElems; i != e; ++i) {
2488      if (ConstantFPSDNode *V =
2489          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
2490        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
2491      } else if (ConstantSDNode *V =
2492                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
2493        CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
2494      } else {
2495        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
2496        const Type *OpNTy = OpVT.getTypeForMVT();
2497        CV.push_back(UndefValue::get(OpNTy));
2498      }
2499    }
2500    Constant *CP = ConstantVector::get(CV);
2501    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
2502    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2503    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
2504                       PseudoSourceValue::getConstantPool(), 0,
2505                       false, Alignment);
2506  }
2507
2508  if (SplatValue.getNode()) {   // Splat of one value?
2509    // Build the shuffle constant vector: <0, 0, 0, 0>
2510    SmallVector<int, 8> ZeroVec(NumElems, 0);
2511
2512    // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
2513    if (TLI.isShuffleMaskLegal(ZeroVec, Node->getValueType(0))) {
2514      // Get the splatted value into the low element of a vector register.
2515      SDValue LowValVec =
2516        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, SplatValue);
2517
2518      // Return shuffle(LowValVec, undef, <0,0,0,0>)
2519      return DAG.getVectorShuffle(VT, dl, LowValVec, DAG.getUNDEF(VT),
2520                                  &ZeroVec[0]);
2521    }
2522  }
2523
2524  // If there are only two unique elements, we may be able to turn this into a
2525  // vector shuffle.
2526  if (Values.size() == 2) {
2527    // Get the two values in deterministic order.
2528    SDValue Val1 = Node->getOperand(1);
2529    SDValue Val2;
2530    std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin();
2531    if (MI->first != Val1)
2532      Val2 = MI->first;
2533    else
2534      Val2 = (++MI)->first;
2535
2536    // If Val1 is an undef, make sure it ends up as Val2, to ensure that our
2537    // vector shuffle has the undef vector on the RHS.
2538    if (Val1.getOpcode() == ISD::UNDEF)
2539      std::swap(Val1, Val2);
2540
2541    // Build the shuffle constant vector: e.g. <0, 4, 0, 4>
2542    SmallVector<int, 8> ShuffleMask(NumElems, -1);
2543
2544    // Set elements of the shuffle mask for Val1.
2545    std::vector<unsigned> &Val1Elts = Values[Val1];
2546    for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i)
2547      ShuffleMask[Val1Elts[i]] = 0;
2548
2549    // Set elements of the shuffle mask for Val2.
2550    std::vector<unsigned> &Val2Elts = Values[Val2];
2551    for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i)
2552      if (Val2.getOpcode() != ISD::UNDEF)
2553        ShuffleMask[Val2Elts[i]] = NumElems;
2554
2555    // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it.
2556    if (TLI.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR, VT) &&
2557        TLI.isShuffleMaskLegal(ShuffleMask, VT)) {
2558      Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val1);
2559      Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val2);
2560      return DAG.getVectorShuffle(VT, dl, Val1, Val2, &ShuffleMask[0]);
2561    }
2562  }
2563
2564  // Otherwise, we can't handle this case efficiently.  Allocate a sufficiently
2565  // aligned object on the stack, store each element into it, then load
2566  // the result as a vector.
2567  // Create the stack frame object.
2568  SDValue FIPtr = DAG.CreateStackTemporary(VT);
2569  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
2570  const Value *SV = PseudoSourceValue::getFixedStack(FI);
2571
2572  // Emit a store of each element to the stack slot.
2573  SmallVector<SDValue, 8> Stores;
2574  unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
2575  // Store (in the right endianness) the elements to memory.
2576  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2577    // Ignore undef elements.
2578    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
2579
2580    unsigned Offset = TypeByteSize*i;
2581
2582    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
2583    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
2584
2585    Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
2586                                  Idx, SV, Offset));
2587  }
2588
2589  SDValue StoreChain;
2590  if (!Stores.empty())    // Not all undef elements?
2591    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2592                             &Stores[0], Stores.size());
2593  else
2594    StoreChain = DAG.getEntryNode();
2595
2596  // Result is a load from the stack slot.
2597  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
2598}
2599
2600// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
2601// does not fit into a register, return the lo part and set the hi part to the
2602// by-reg argument.  If it does fit into a single register, return the result
2603// and leave the Hi part unset.
2604SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2605                                            bool isSigned) {
2606  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
2607  // The input chain to this libcall is the entry node of the function.
2608  // Legalizing the call will automatically add the previous call to the
2609  // dependence.
2610  SDValue InChain = DAG.getEntryNode();
2611
2612  TargetLowering::ArgListTy Args;
2613  TargetLowering::ArgListEntry Entry;
2614  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2615    MVT ArgVT = Node->getOperand(i).getValueType();
2616    const Type *ArgTy = ArgVT.getTypeForMVT();
2617    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2618    Entry.isSExt = isSigned;
2619    Entry.isZExt = !isSigned;
2620    Args.push_back(Entry);
2621  }
2622  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2623                                         TLI.getPointerTy());
2624
2625  // Splice the libcall in wherever FindInputOutputChains tells us to.
2626  const Type *RetTy = Node->getValueType(0).getTypeForMVT();
2627  std::pair<SDValue, SDValue> CallInfo =
2628    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2629                    CallingConv::C, false, Callee, Args, DAG,
2630                    Node->getDebugLoc());
2631
2632  // Legalize the call sequence, starting with the chain.  This will advance
2633  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2634  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2635  LegalizeOp(CallInfo.second);
2636  return CallInfo.first;
2637}
2638
2639SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2640                                              RTLIB::Libcall Call_F32,
2641                                              RTLIB::Libcall Call_F64,
2642                                              RTLIB::Libcall Call_F80,
2643                                              RTLIB::Libcall Call_PPCF128) {
2644  RTLIB::Libcall LC;
2645  switch (Node->getValueType(0).getSimpleVT()) {
2646  default: assert(0 && "Unexpected request for libcall!");
2647  case MVT::f32: LC = Call_F32; break;
2648  case MVT::f64: LC = Call_F64; break;
2649  case MVT::f80: LC = Call_F80; break;
2650  case MVT::ppcf128: LC = Call_PPCF128; break;
2651  }
2652  return ExpandLibCall(LC, Node, false);
2653}
2654
2655SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2656                                               RTLIB::Libcall Call_I16,
2657                                               RTLIB::Libcall Call_I32,
2658                                               RTLIB::Libcall Call_I64,
2659                                               RTLIB::Libcall Call_I128) {
2660  RTLIB::Libcall LC;
2661  switch (Node->getValueType(0).getSimpleVT()) {
2662  default: assert(0 && "Unexpected request for libcall!");
2663  case MVT::i16: LC = Call_I16; break;
2664  case MVT::i32: LC = Call_I32; break;
2665  case MVT::i64: LC = Call_I64; break;
2666  case MVT::i128: LC = Call_I128; break;
2667  }
2668  return ExpandLibCall(LC, Node, isSigned);
2669}
2670
2671/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2672/// INT_TO_FP operation of the specified operand when the target requests that
2673/// we expand it.  At this point, we know that the result and operand types are
2674/// legal for the target.
2675SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2676                                                   SDValue Op0,
2677                                                   MVT DestVT,
2678                                                   DebugLoc dl) {
2679  if (Op0.getValueType() == MVT::i32) {
2680    // simple 32-bit [signed|unsigned] integer to float/double expansion
2681
2682    // Get the stack frame index of a 8 byte buffer.
2683    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2684
2685    // word offset constant for Hi/Lo address computation
2686    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2687    // set up Hi and Lo (into buffer) address based on endian
2688    SDValue Hi = StackSlot;
2689    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2690                             TLI.getPointerTy(), StackSlot, WordOff);
2691    if (TLI.isLittleEndian())
2692      std::swap(Hi, Lo);
2693
2694    // if signed map to unsigned space
2695    SDValue Op0Mapped;
2696    if (isSigned) {
2697      // constant used to invert sign bit (signed to unsigned mapping)
2698      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2699      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2700    } else {
2701      Op0Mapped = Op0;
2702    }
2703    // store the lo of the constructed double - based on integer input
2704    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2705                                  Op0Mapped, Lo, NULL, 0);
2706    // initial hi portion of constructed double
2707    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2708    // store the hi of the constructed double - biased exponent
2709    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
2710    // load the constructed double
2711    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
2712    // FP constant to bias correct the final result
2713    SDValue Bias = DAG.getConstantFP(isSigned ?
2714                                     BitsToDouble(0x4330000080000000ULL) :
2715                                     BitsToDouble(0x4330000000000000ULL),
2716                                     MVT::f64);
2717    // subtract the bias
2718    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2719    // final result
2720    SDValue Result;
2721    // handle final rounding
2722    if (DestVT == MVT::f64) {
2723      // do nothing
2724      Result = Sub;
2725    } else if (DestVT.bitsLT(MVT::f64)) {
2726      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2727                           DAG.getIntPtrConstant(0));
2728    } else if (DestVT.bitsGT(MVT::f64)) {
2729      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2730    }
2731    return Result;
2732  }
2733  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2734  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2735
2736  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2737                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2738                                 ISD::SETLT);
2739  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2740  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2741                                    SignSet, Four, Zero);
2742
2743  // If the sign bit of the integer is set, the large number will be treated
2744  // as a negative number.  To counteract this, the dynamic code adds an
2745  // offset depending on the data type.
2746  uint64_t FF;
2747  switch (Op0.getValueType().getSimpleVT()) {
2748  default: assert(0 && "Unsupported integer type!");
2749  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2750  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2751  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2752  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2753  }
2754  if (TLI.isLittleEndian()) FF <<= 32;
2755  Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
2756
2757  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2758  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2759  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2760  Alignment = std::min(Alignment, 4u);
2761  SDValue FudgeInReg;
2762  if (DestVT == MVT::f32)
2763    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2764                             PseudoSourceValue::getConstantPool(), 0,
2765                             false, Alignment);
2766  else {
2767    FudgeInReg =
2768      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2769                                DAG.getEntryNode(), CPIdx,
2770                                PseudoSourceValue::getConstantPool(), 0,
2771                                MVT::f32, false, Alignment));
2772  }
2773
2774  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2775}
2776
2777/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2778/// *INT_TO_FP operation of the specified operand when the target requests that
2779/// we promote it.  At this point, we know that the result and operand types are
2780/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2781/// operation that takes a larger input.
2782SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2783                                                    MVT DestVT,
2784                                                    bool isSigned,
2785                                                    DebugLoc dl) {
2786  // First step, figure out the appropriate *INT_TO_FP operation to use.
2787  MVT NewInTy = LegalOp.getValueType();
2788
2789  unsigned OpToUse = 0;
2790
2791  // Scan for the appropriate larger type to use.
2792  while (1) {
2793    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
2794    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2795
2796    // If the target supports SINT_TO_FP of this type, use it.
2797    switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) {
2798      default: break;
2799      case TargetLowering::Legal:
2800        if (!TLI.isTypeLegal(NewInTy))
2801          break;  // Can't use this datatype.
2802        // FALL THROUGH.
2803      case TargetLowering::Custom:
2804        OpToUse = ISD::SINT_TO_FP;
2805        break;
2806    }
2807    if (OpToUse) break;
2808    if (isSigned) continue;
2809
2810    // If the target supports UINT_TO_FP of this type, use it.
2811    switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) {
2812      default: break;
2813      case TargetLowering::Legal:
2814        if (!TLI.isTypeLegal(NewInTy))
2815          break;  // Can't use this datatype.
2816        // FALL THROUGH.
2817      case TargetLowering::Custom:
2818        OpToUse = ISD::UINT_TO_FP;
2819        break;
2820    }
2821    if (OpToUse) break;
2822
2823    // Otherwise, try a larger type.
2824  }
2825
2826  // Okay, we found the operation and type to use.  Zero extend our input to the
2827  // desired type then run the operation on it.
2828  return DAG.getNode(OpToUse, dl, DestVT,
2829                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2830                                 dl, NewInTy, LegalOp));
2831}
2832
2833/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2834/// FP_TO_*INT operation of the specified operand when the target requests that
2835/// we promote it.  At this point, we know that the result and operand types are
2836/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2837/// operation that returns a larger result.
2838SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2839                                                    MVT DestVT,
2840                                                    bool isSigned,
2841                                                    DebugLoc dl) {
2842  // First step, figure out the appropriate FP_TO*INT operation to use.
2843  MVT NewOutTy = DestVT;
2844
2845  unsigned OpToUse = 0;
2846
2847  // Scan for the appropriate larger type to use.
2848  while (1) {
2849    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
2850    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2851
2852    // If the target supports FP_TO_SINT returning this type, use it.
2853    switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) {
2854    default: break;
2855    case TargetLowering::Legal:
2856      if (!TLI.isTypeLegal(NewOutTy))
2857        break;  // Can't use this datatype.
2858      // FALL THROUGH.
2859    case TargetLowering::Custom:
2860      OpToUse = ISD::FP_TO_SINT;
2861      break;
2862    }
2863    if (OpToUse) break;
2864
2865    // If the target supports FP_TO_UINT of this type, use it.
2866    switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) {
2867    default: break;
2868    case TargetLowering::Legal:
2869      if (!TLI.isTypeLegal(NewOutTy))
2870        break;  // Can't use this datatype.
2871      // FALL THROUGH.
2872    case TargetLowering::Custom:
2873      OpToUse = ISD::FP_TO_UINT;
2874      break;
2875    }
2876    if (OpToUse) break;
2877
2878    // Otherwise, try a larger type.
2879  }
2880
2881
2882  // Okay, we found the operation and type to use.
2883  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2884
2885  // If the operation produces an invalid type, it must be custom lowered.  Use
2886  // the target lowering hooks to expand it.  Just keep the low part of the
2887  // expanded operation, we know that we're truncating anyway.
2888  if (getTypeAction(NewOutTy) == Expand) {
2889    SmallVector<SDValue, 2> Results;
2890    TLI.ReplaceNodeResults(Operation.getNode(), Results, DAG);
2891    assert(Results.size() == 1 && "Incorrect FP_TO_XINT lowering!");
2892    Operation = Results[0];
2893  }
2894
2895  // Truncate the result of the extended FP_TO_*INT operation to the desired
2896  // size.
2897  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2898}
2899
2900/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2901///
2902SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2903  MVT VT = Op.getValueType();
2904  MVT SHVT = TLI.getShiftAmountTy();
2905  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2906  switch (VT.getSimpleVT()) {
2907  default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
2908  case MVT::i16:
2909    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2910    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2911    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2912  case MVT::i32:
2913    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2914    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2915    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2916    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2917    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2918    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2919    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2920    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2921    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2922  case MVT::i64:
2923    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2924    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2925    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2926    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2927    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2928    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2929    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2930    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2931    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2932    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2933    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2934    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2935    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2936    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2937    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2938    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2939    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2940    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2941    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2942    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2943    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2944  }
2945}
2946
2947/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2948///
2949SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2950                                             DebugLoc dl) {
2951  switch (Opc) {
2952  default: assert(0 && "Cannot expand this yet!");
2953  case ISD::CTPOP: {
2954    static const uint64_t mask[6] = {
2955      0x5555555555555555ULL, 0x3333333333333333ULL,
2956      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2957      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2958    };
2959    MVT VT = Op.getValueType();
2960    MVT ShVT = TLI.getShiftAmountTy();
2961    unsigned len = VT.getSizeInBits();
2962    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2963      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2964      unsigned EltSize = VT.isVector() ?
2965        VT.getVectorElementType().getSizeInBits() : len;
2966      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2967      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2968      Op = DAG.getNode(ISD::ADD, dl, VT,
2969                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2970                       DAG.getNode(ISD::AND, dl, VT,
2971                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2972                                   Tmp2));
2973    }
2974    return Op;
2975  }
2976  case ISD::CTLZ: {
2977    // for now, we do this:
2978    // x = x | (x >> 1);
2979    // x = x | (x >> 2);
2980    // ...
2981    // x = x | (x >>16);
2982    // x = x | (x >>32); // for 64-bit input
2983    // return popcount(~x);
2984    //
2985    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2986    MVT VT = Op.getValueType();
2987    MVT ShVT = TLI.getShiftAmountTy();
2988    unsigned len = VT.getSizeInBits();
2989    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2990      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2991      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2992                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2993    }
2994    Op = DAG.getNOT(dl, Op, VT);
2995    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2996  }
2997  case ISD::CTTZ: {
2998    // for now, we use: { return popcount(~x & (x - 1)); }
2999    // unless the target has ctlz but not ctpop, in which case we use:
3000    // { return 32 - nlz(~x & (x-1)); }
3001    // see also http://www.hackersdelight.org/HDcode/ntz.cc
3002    MVT VT = Op.getValueType();
3003    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
3004                               DAG.getNOT(dl, Op, VT),
3005                               DAG.getNode(ISD::SUB, dl, VT, Op,
3006                                           DAG.getConstant(1, VT)));
3007    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
3008    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
3009        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
3010      return DAG.getNode(ISD::SUB, dl, VT,
3011                         DAG.getConstant(VT.getSizeInBits(), VT),
3012                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
3013    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
3014  }
3015  }
3016}
3017
3018void SelectionDAGLegalize::ExpandNode(SDNode *Node,
3019                                      SmallVectorImpl<SDValue> &Results) {
3020  DebugLoc dl = Node->getDebugLoc();
3021  SDValue Tmp1, Tmp2, Tmp3;
3022  switch (Node->getOpcode()) {
3023  case ISD::CTPOP:
3024  case ISD::CTLZ:
3025  case ISD::CTTZ:
3026    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
3027    Results.push_back(Tmp1);
3028    break;
3029  case ISD::BSWAP:
3030    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
3031    break;
3032  case ISD::FRAMEADDR:
3033  case ISD::RETURNADDR:
3034  case ISD::FRAME_TO_ARGS_OFFSET:
3035    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
3036    break;
3037  case ISD::FLT_ROUNDS_:
3038    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
3039    break;
3040  case ISD::EH_RETURN:
3041  case ISD::DECLARE:
3042  case ISD::DBG_LABEL:
3043  case ISD::EH_LABEL:
3044  case ISD::PREFETCH:
3045  case ISD::MEMBARRIER:
3046  case ISD::VAEND:
3047    Results.push_back(Node->getOperand(0));
3048    break;
3049  case ISD::MERGE_VALUES:
3050    for (unsigned i = 0; i < Node->getNumValues(); i++)
3051      Results.push_back(Node->getOperand(i));
3052    break;
3053  case ISD::UNDEF: {
3054    MVT VT = Node->getValueType(0);
3055    if (VT.isInteger())
3056      Results.push_back(DAG.getConstant(0, VT));
3057    else if (VT.isFloatingPoint())
3058      Results.push_back(DAG.getConstantFP(0, VT));
3059    else
3060      assert(0 && "Unknown value type!");
3061    break;
3062  }
3063  case ISD::TRAP: {
3064    // If this operation is not supported, lower it to 'abort()' call
3065    TargetLowering::ArgListTy Args;
3066    std::pair<SDValue, SDValue> CallResult =
3067      TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
3068                      false, false, false, false, CallingConv::C, false,
3069                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
3070                      Args, DAG, dl);
3071    Results.push_back(CallResult.second);
3072    break;
3073  }
3074  case ISD::FP_ROUND:
3075  case ISD::BIT_CONVERT:
3076    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
3077                            Node->getValueType(0), dl);
3078    Results.push_back(Tmp1);
3079    break;
3080  case ISD::FP_EXTEND:
3081    Tmp1 = EmitStackConvert(Node->getOperand(0),
3082                            Node->getOperand(0).getValueType(),
3083                            Node->getValueType(0), dl);
3084    Results.push_back(Tmp1);
3085    break;
3086  case ISD::SIGN_EXTEND_INREG: {
3087    // NOTE: we could fall back on load/store here too for targets without
3088    // SAR.  However, it is doubtful that any exist.
3089    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3090    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
3091                        ExtraVT.getSizeInBits();
3092    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
3093    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3094                       Node->getOperand(0), ShiftCst);
3095    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3096    Results.push_back(Tmp1);
3097    break;
3098  }
3099  case ISD::FP_ROUND_INREG: {
3100    // The only way we can lower this is to turn it into a TRUNCSTORE,
3101    // EXTLOAD pair, targetting a temporary location (a stack slot).
3102
3103    // NOTE: there is a choice here between constantly creating new stack
3104    // slots and always reusing the same one.  We currently always create
3105    // new ones, as reuse may inhibit scheduling.
3106    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3107    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
3108                            Node->getValueType(0), dl);
3109    Results.push_back(Tmp1);
3110    break;
3111  }
3112  case ISD::SINT_TO_FP:
3113  case ISD::UINT_TO_FP:
3114    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
3115                                Node->getOperand(0), Node->getValueType(0), dl);
3116    Results.push_back(Tmp1);
3117    break;
3118  case ISD::FP_TO_UINT: {
3119    SDValue True, False;
3120    MVT VT =  Node->getOperand(0).getValueType();
3121    MVT NVT = Node->getValueType(0);
3122    const uint64_t zero[] = {0, 0};
3123    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
3124    APInt x = APInt::getSignBit(NVT.getSizeInBits());
3125    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
3126    Tmp1 = DAG.getConstantFP(apf, VT);
3127    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
3128                        Node->getOperand(0),
3129                        Tmp1, ISD::SETLT);
3130    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
3131    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
3132                        DAG.getNode(ISD::FSUB, dl, VT,
3133                                    Node->getOperand(0), Tmp1));
3134    False = DAG.getNode(ISD::XOR, dl, NVT, False,
3135                        DAG.getConstant(x, NVT));
3136    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
3137    Results.push_back(Tmp1);
3138    break;
3139  }
3140  case ISD::VACOPY: {
3141    // This defaults to loading a pointer from the input and storing it to the
3142    // output, returning the chain.
3143    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
3144    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
3145    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
3146                       Node->getOperand(2), VS, 0);
3147    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
3148    Results.push_back(Tmp1);
3149    break;
3150  }
3151  case ISD::EXTRACT_VECTOR_ELT:
3152    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3153      // This must be an access of the only element.  Return it.
3154      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
3155                         Node->getOperand(0));
3156    else
3157      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3158    Results.push_back(Tmp1);
3159    break;
3160  case ISD::EXTRACT_SUBVECTOR:
3161    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3162    break;
3163  case ISD::SCALAR_TO_VECTOR:
3164    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3165    break;
3166  case ISD::INSERT_VECTOR_ELT:
3167    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3168                                              Node->getOperand(1),
3169                                              Node->getOperand(2), dl));
3170    break;
3171  case ISD::EXTRACT_ELEMENT: {
3172    MVT OpTy = Node->getOperand(0).getValueType();
3173    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3174      // 1 -> Hi
3175      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3176                         DAG.getConstant(OpTy.getSizeInBits()/2,
3177                                         TLI.getShiftAmountTy()));
3178      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3179    } else {
3180      // 0 -> Lo
3181      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3182                         Node->getOperand(0));
3183    }
3184    Results.push_back(Tmp1);
3185    break;
3186  }
3187  case ISD::STACKSAVE:
3188    // Expand to CopyFromReg if the target set
3189    // StackPointerRegisterToSaveRestore.
3190    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3191      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3192                                           Node->getValueType(0)));
3193      Results.push_back(Results[0].getValue(1));
3194    } else {
3195      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3196      Results.push_back(Node->getOperand(0));
3197    }
3198    break;
3199  case ISD::STACKRESTORE:
3200    // Expand to CopyToReg if the target set
3201    // StackPointerRegisterToSaveRestore.
3202    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3203      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3204                                         Node->getOperand(1)));
3205    } else {
3206      Results.push_back(Node->getOperand(0));
3207    }
3208    break;
3209  case ISD::FNEG:
3210    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3211    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3212    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3213                       Node->getOperand(0));
3214    Results.push_back(Tmp1);
3215    break;
3216  case ISD::FABS: {
3217    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3218    MVT VT = Node->getValueType(0);
3219    Tmp1 = Node->getOperand(0);
3220    Tmp2 = DAG.getConstantFP(0.0, VT);
3221    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3222                        Tmp1, Tmp2, ISD::SETUGT);
3223    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3224    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
3225    Results.push_back(Tmp1);
3226    break;
3227  }
3228  case ISD::FSQRT:
3229    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3230                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
3231    break;
3232  case ISD::FSIN:
3233    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3234                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
3235    break;
3236  case ISD::FCOS:
3237    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3238                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
3239    break;
3240  case ISD::FLOG:
3241    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3242                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
3243    break;
3244  case ISD::FLOG2:
3245    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3246                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
3247    break;
3248  case ISD::FLOG10:
3249    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3250                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
3251    break;
3252  case ISD::FEXP:
3253    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3254                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
3255    break;
3256  case ISD::FEXP2:
3257    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3258                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
3259    break;
3260  case ISD::FTRUNC:
3261    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3262                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
3263    break;
3264  case ISD::FFLOOR:
3265    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3266                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
3267    break;
3268  case ISD::FCEIL:
3269    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3270                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
3271    break;
3272  case ISD::FRINT:
3273    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3274                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
3275    break;
3276  case ISD::FNEARBYINT:
3277    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3278                                      RTLIB::NEARBYINT_F64,
3279                                      RTLIB::NEARBYINT_F80,
3280                                      RTLIB::NEARBYINT_PPCF128));
3281    break;
3282  case ISD::FPOWI:
3283    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3284                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3285    break;
3286  case ISD::FPOW:
3287    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3288                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
3289    break;
3290  case ISD::FDIV:
3291    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3292                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3293    break;
3294  case ISD::FREM:
3295    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3296                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3297    break;
3298  case ISD::EHSELECTION: {
3299    unsigned Reg = TLI.getExceptionSelectorRegister();
3300    assert(Reg && "Can't expand to unknown register!");
3301    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3302                                         Node->getValueType(0)));
3303    Results.push_back(Results[0].getValue(1));
3304    break;
3305  }
3306  case ISD::EXCEPTIONADDR: {
3307    unsigned Reg = TLI.getExceptionAddressRegister();
3308    assert(Reg && "Can't expand to unknown register!");
3309    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3310                                         Node->getValueType(0)));
3311    Results.push_back(Results[0].getValue(1));
3312    break;
3313  }
3314  case ISD::SUB: {
3315    MVT VT = Node->getValueType(0);
3316    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3317           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3318           "Don't know how to expand this subtraction!");
3319    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3320               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3321    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
3322    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3323    break;
3324  }
3325  case ISD::UDIV:
3326  case ISD::UREM: {
3327    bool isRem = Node->getOpcode() == ISD::UREM;
3328    MVT VT = Node->getValueType(0);
3329    SDVTList VTs = DAG.getVTList(VT, VT);
3330    if (TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT))
3331      Tmp1 = DAG.getNode(ISD::UDIVREM, dl, VTs, Node->getOperand(0),
3332                         Node->getOperand(1)).getValue(isRem);
3333    else if (isRem)
3334      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
3335                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3336    else
3337      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3338                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3339    Results.push_back(Tmp1);
3340    break;
3341  }
3342  case ISD::SDIV:
3343  case ISD::SREM: {
3344    bool isRem = Node->getOpcode() == ISD::SREM;
3345    MVT VT = Node->getValueType(0);
3346    SDVTList VTs = DAG.getVTList(VT, VT);
3347    if (TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT))
3348      Tmp1 = DAG.getNode(ISD::SDIVREM, dl, VTs, Node->getOperand(0),
3349                         Node->getOperand(1)).getValue(isRem);
3350    else if (isRem)
3351      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
3352                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3353    else
3354      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3355                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3356    Results.push_back(Tmp1);
3357    break;
3358  }
3359  case ISD::MULHU:
3360  case ISD::MULHS: {
3361    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3362                                                              ISD::SMUL_LOHI;
3363    MVT VT = Node->getValueType(0);
3364    SDVTList VTs = DAG.getVTList(VT, VT);
3365    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3366           "If this wasn't legal, it shouldn't have been created!");
3367    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3368                       Node->getOperand(1));
3369    Results.push_back(Tmp1.getValue(1));
3370    break;
3371  }
3372  case ISD::MUL: {
3373    MVT VT = Node->getValueType(0);
3374    SDVTList VTs = DAG.getVTList(VT, VT);
3375    // See if multiply or divide can be lowered using two-result operations.
3376    // We just need the low half of the multiply; try both the signed
3377    // and unsigned forms. If the target supports both SMUL_LOHI and
3378    // UMUL_LOHI, form a preference by checking which forms of plain
3379    // MULH it supports.
3380    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3381    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3382    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3383    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3384    unsigned OpToUse = 0;
3385    if (HasSMUL_LOHI && !HasMULHS) {
3386      OpToUse = ISD::SMUL_LOHI;
3387    } else if (HasUMUL_LOHI && !HasMULHU) {
3388      OpToUse = ISD::UMUL_LOHI;
3389    } else if (HasSMUL_LOHI) {
3390      OpToUse = ISD::SMUL_LOHI;
3391    } else if (HasUMUL_LOHI) {
3392      OpToUse = ISD::UMUL_LOHI;
3393    }
3394    if (OpToUse) {
3395      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Tmp1, Tmp2));
3396      break;
3397    }
3398    Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
3399                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3400    Results.push_back(Tmp1);
3401    break;
3402  }
3403  case ISD::GLOBAL_OFFSET_TABLE:
3404  case ISD::GlobalAddress:
3405  case ISD::GlobalTLSAddress:
3406  case ISD::ExternalSymbol:
3407  case ISD::ConstantPool:
3408  case ISD::JumpTable:
3409  case ISD::INTRINSIC_W_CHAIN:
3410  case ISD::INTRINSIC_WO_CHAIN:
3411  case ISD::INTRINSIC_VOID:
3412    // FIXME: Custom lowering for these operations shouldn't return null!
3413    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3414      Results.push_back(SDValue(Node, i));
3415    break;
3416  }
3417}
3418void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3419                                       SmallVectorImpl<SDValue> &Results) {
3420  MVT OVT = Node->getValueType(0);
3421  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3422      Node->getOpcode() == ISD::SINT_TO_FP) {
3423    OVT = Node->getOperand(0).getValueType();
3424  }
3425  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3426  DebugLoc dl = Node->getDebugLoc();
3427  SDValue Tmp1, Tmp2;
3428  switch (Node->getOpcode()) {
3429  case ISD::CTTZ:
3430  case ISD::CTLZ:
3431  case ISD::CTPOP:
3432    // Zero extend the argument.
3433    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3434    // Perform the larger operation.
3435    Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1);
3436    if (Node->getOpcode() == ISD::CTTZ) {
3437      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3438      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3439                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3440                          ISD::SETEQ);
3441      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3442                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3443    } else if (Node->getOpcode() == ISD::CTLZ) {
3444      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3445      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3446                          DAG.getConstant(NVT.getSizeInBits() -
3447                                          OVT.getSizeInBits(), NVT));
3448    }
3449    Results.push_back(Tmp1);
3450    break;
3451  case ISD::BSWAP: {
3452    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3453    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
3454    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3455    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3456                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3457    Results.push_back(Tmp1);
3458    break;
3459  }
3460  case ISD::FP_TO_UINT:
3461  case ISD::FP_TO_SINT:
3462    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3463                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3464    Results.push_back(Tmp1);
3465    break;
3466  case ISD::UINT_TO_FP:
3467  case ISD::SINT_TO_FP:
3468    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3469                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3470    Results.push_back(Tmp1);
3471    break;
3472  case ISD::AND:
3473  case ISD::OR:
3474  case ISD::XOR:
3475    assert(OVT.isVector() && "Don't know how to promote scalar logic ops");
3476    // Bit convert each of the values to the new type.
3477    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3478    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3479    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3480    // Bit convert the result back the original type.
3481    Results.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1));
3482    break;
3483  }
3484}
3485
3486// SelectionDAG::Legalize - This is the entry point for the file.
3487//
3488void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3489                            CodeGenOpt::Level OptLevel) {
3490  /// run - This is the main entry point to this class.
3491  ///
3492  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3493}
3494
3495