LegalizeDAG.cpp revision df7096f01384c4e8a8ac9e42c2b784e54c53da8e
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalVariable.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class SelectionDAGLegalize {
56  const TargetMachine &TM;
57  const TargetLowering &TLI;
58  SelectionDAG &DAG;
59  CodeGenOpt::Level OptLevel;
60
61  // Libcall insertion helpers.
62
63  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64  /// legalized.  We use this to ensure that calls are properly serialized
65  /// against each other, including inserted libcalls.
66  SDValue LastCALLSEQ_END;
67
68  /// IsLegalizingCall - This member is used *only* for purposes of providing
69  /// helpful assertions that a libcall isn't created while another call is
70  /// being legalized (which could lead to non-serialized call sequences).
71  bool IsLegalizingCall;
72
73  enum LegalizeAction {
74    Legal,      // The target natively supports this operation.
75    Promote,    // This operation should be executed in a larger type.
76    Expand      // Try to expand this to other ops, otherwise use a libcall.
77  };
78
79  /// ValueTypeActions - This is a bitvector that contains two bits for each
80  /// value type, where the two bits correspond to the LegalizeAction enum.
81  /// This can be queried with "getTypeAction(VT)".
82  TargetLowering::ValueTypeActionImpl ValueTypeActions;
83
84  /// LegalizedNodes - For nodes that are of legal width, and that have more
85  /// than one use, this map indicates what regularized operand to use.  This
86  /// allows us to avoid legalizing the same thing more than once.
87  DenseMap<SDValue, SDValue> LegalizedNodes;
88
89  void AddLegalizedOperand(SDValue From, SDValue To) {
90    LegalizedNodes.insert(std::make_pair(From, To));
91    // If someone requests legalization of the new node, return itself.
92    if (From != To)
93      LegalizedNodes.insert(std::make_pair(To, To));
94  }
95
96public:
97  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
98
99  /// getTypeAction - Return how we should legalize values of this type, either
100  /// it is already legal or we need to expand it into multiple registers of
101  /// smaller integer type, or we need to promote it to a larger type.
102  LegalizeAction getTypeAction(EVT VT) const {
103    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
104  }
105
106  /// isTypeLegal - Return true if this type is legal on this target.
107  ///
108  bool isTypeLegal(EVT VT) const {
109    return getTypeAction(VT) == Legal;
110  }
111
112  void LegalizeDAG();
113
114private:
115  /// LegalizeOp - We know that the specified value has a legal type.
116  /// Recursively ensure that the operands have legal types, then return the
117  /// result.
118  SDValue LegalizeOp(SDValue O);
119
120  SDValue OptimizeFloatStore(StoreSDNode *ST);
121
122  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
123  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
124  /// is necessary to spill the vector being inserted into to memory, perform
125  /// the insert there, and then read the result back.
126  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
127                                         SDValue Idx, DebugLoc dl);
128  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
129                                  SDValue Idx, DebugLoc dl);
130
131  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
132  /// performs the same shuffe in terms of order or result bytes, but on a type
133  /// whose vector element type is narrower than the original shuffle type.
134  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
135  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
136                                     SDValue N1, SDValue N2,
137                                     SmallVectorImpl<int> &Mask) const;
138
139  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
140                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
141
142  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
143                             DebugLoc dl);
144
145  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
146  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
147                                                 SDNode *Node, bool isSigned);
148  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
149                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
150                          RTLIB::Libcall Call_PPCF128);
151  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
152                           RTLIB::Libcall Call_I8,
153                           RTLIB::Libcall Call_I16,
154                           RTLIB::Libcall Call_I32,
155                           RTLIB::Libcall Call_I64,
156                           RTLIB::Libcall Call_I128);
157
158  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
159  SDValue ExpandBUILD_VECTOR(SDNode *Node);
160  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
161  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
162                                SmallVectorImpl<SDValue> &Results);
163  SDValue ExpandFCOPYSIGN(SDNode *Node);
164  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
165                               DebugLoc dl);
166  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
169                                DebugLoc dl);
170
171  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
172  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
173
174  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
175  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
176
177  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
178
179  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
180  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181};
182}
183
184/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
185/// performs the same shuffe in terms of order or result bytes, but on a type
186/// whose vector element type is narrower than the original shuffle type.
187/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
188SDValue
189SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
190                                                 SDValue N1, SDValue N2,
191                                             SmallVectorImpl<int> &Mask) const {
192  unsigned NumMaskElts = VT.getVectorNumElements();
193  unsigned NumDestElts = NVT.getVectorNumElements();
194  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
195
196  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
197
198  if (NumEltsGrowth == 1)
199    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
200
201  SmallVector<int, 8> NewMask;
202  for (unsigned i = 0; i != NumMaskElts; ++i) {
203    int Idx = Mask[i];
204    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
205      if (Idx < 0)
206        NewMask.push_back(-1);
207      else
208        NewMask.push_back(Idx * NumEltsGrowth + j);
209    }
210  }
211  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
212  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
213  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
214}
215
216SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
217                                           CodeGenOpt::Level ol)
218  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
219    DAG(dag), OptLevel(ol),
220    ValueTypeActions(TLI.getValueTypeActions()) {
221  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
222         "Too many value types for ValueTypeActions to hold!");
223}
224
225void SelectionDAGLegalize::LegalizeDAG() {
226  LastCALLSEQ_END = DAG.getEntryNode();
227  IsLegalizingCall = false;
228
229  // The legalize process is inherently a bottom-up recursive process (users
230  // legalize their uses before themselves).  Given infinite stack space, we
231  // could just start legalizing on the root and traverse the whole graph.  In
232  // practice however, this causes us to run out of stack space on large basic
233  // blocks.  To avoid this problem, compute an ordering of the nodes where each
234  // node is only legalized after all of its operands are legalized.
235  DAG.AssignTopologicalOrder();
236  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
237       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
238    LegalizeOp(SDValue(I, 0));
239
240  // Finally, it's possible the root changed.  Get the new root.
241  SDValue OldRoot = DAG.getRoot();
242  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
243  DAG.setRoot(LegalizedNodes[OldRoot]);
244
245  LegalizedNodes.clear();
246
247  // Remove dead nodes now.
248  DAG.RemoveDeadNodes();
249}
250
251
252/// FindCallEndFromCallStart - Given a chained node that is part of a call
253/// sequence, find the CALLSEQ_END node that terminates the call sequence.
254static SDNode *FindCallEndFromCallStart(SDNode *Node) {
255  if (Node->getOpcode() == ISD::CALLSEQ_END)
256    return Node;
257  if (Node->use_empty())
258    return 0;   // No CallSeqEnd
259
260  // The chain is usually at the end.
261  SDValue TheChain(Node, Node->getNumValues()-1);
262  if (TheChain.getValueType() != MVT::Other) {
263    // Sometimes it's at the beginning.
264    TheChain = SDValue(Node, 0);
265    if (TheChain.getValueType() != MVT::Other) {
266      // Otherwise, hunt for it.
267      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
268        if (Node->getValueType(i) == MVT::Other) {
269          TheChain = SDValue(Node, i);
270          break;
271        }
272
273      // Otherwise, we walked into a node without a chain.
274      if (TheChain.getValueType() != MVT::Other)
275        return 0;
276    }
277  }
278
279  for (SDNode::use_iterator UI = Node->use_begin(),
280       E = Node->use_end(); UI != E; ++UI) {
281
282    // Make sure to only follow users of our token chain.
283    SDNode *User = *UI;
284    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
285      if (User->getOperand(i) == TheChain)
286        if (SDNode *Result = FindCallEndFromCallStart(User))
287          return Result;
288  }
289  return 0;
290}
291
292/// FindCallStartFromCallEnd - Given a chained node that is part of a call
293/// sequence, find the CALLSEQ_START node that initiates the call sequence.
294static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
295  assert(Node && "Didn't find callseq_start for a call??");
296  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
297
298  assert(Node->getOperand(0).getValueType() == MVT::Other &&
299         "Node doesn't have a token chain argument!");
300  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
301}
302
303/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
304/// see if any uses can reach Dest.  If no dest operands can get to dest,
305/// legalize them, legalize ourself, and return false, otherwise, return true.
306///
307/// Keep track of the nodes we fine that actually do lead to Dest in
308/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
309///
310bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
311                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
312  if (N == Dest) return true;  // N certainly leads to Dest :)
313
314  // If we've already processed this node and it does lead to Dest, there is no
315  // need to reprocess it.
316  if (NodesLeadingTo.count(N)) return true;
317
318  // If the first result of this node has been already legalized, then it cannot
319  // reach N.
320  if (LegalizedNodes.count(SDValue(N, 0))) return false;
321
322  // Okay, this node has not already been legalized.  Check and legalize all
323  // operands.  If none lead to Dest, then we can legalize this node.
324  bool OperandsLeadToDest = false;
325  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
326    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
327      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
328                                   NodesLeadingTo);
329
330  if (OperandsLeadToDest) {
331    NodesLeadingTo.insert(N);
332    return true;
333  }
334
335  // Okay, this node looks safe, legalize it and return false.
336  LegalizeOp(SDValue(N, 0));
337  return false;
338}
339
340/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
341/// a load from the constant pool.
342static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
343                                SelectionDAG &DAG, const TargetLowering &TLI) {
344  bool Extend = false;
345  DebugLoc dl = CFP->getDebugLoc();
346
347  // If a FP immediate is precise when represented as a float and if the
348  // target can do an extending load from float to double, we put it into
349  // the constant pool as a float, even if it's is statically typed as a
350  // double.  This shrinks FP constants and canonicalizes them for targets where
351  // an FP extending load is the same cost as a normal load (such as on the x87
352  // fp stack or PPC FP unit).
353  EVT VT = CFP->getValueType(0);
354  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
355  if (!UseCP) {
356    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
357    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
358                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
359  }
360
361  EVT OrigVT = VT;
362  EVT SVT = VT;
363  while (SVT != MVT::f32) {
364    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
365    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
366        // Only do this if the target has a native EXTLOAD instruction from
367        // smaller type.
368        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
369        TLI.ShouldShrinkFPConstant(OrigVT)) {
370      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
371      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
372      VT = SVT;
373      Extend = true;
374    }
375  }
376
377  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
378  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
379  if (Extend)
380    return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, dl,
381                          DAG.getEntryNode(),
382                          CPIdx, MachinePointerInfo::getConstantPool(),
383                          VT, false, false, Alignment);
384  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
385                     MachinePointerInfo::getConstantPool(), false, false,
386                     Alignment);
387}
388
389/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
390static
391SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
392                             const TargetLowering &TLI) {
393  SDValue Chain = ST->getChain();
394  SDValue Ptr = ST->getBasePtr();
395  SDValue Val = ST->getValue();
396  EVT VT = Val.getValueType();
397  int Alignment = ST->getAlignment();
398  int SVOffset = ST->getSrcValueOffset();
399  DebugLoc dl = ST->getDebugLoc();
400  if (ST->getMemoryVT().isFloatingPoint() ||
401      ST->getMemoryVT().isVector()) {
402    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
403    if (TLI.isTypeLegal(intVT)) {
404      // Expand to a bitconvert of the value to the integer type of the
405      // same size, then a (misaligned) int store.
406      // FIXME: Does not handle truncating floating point stores!
407      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
408      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
409                          SVOffset, ST->isVolatile(), ST->isNonTemporal(),
410                          Alignment);
411    } else {
412      // Do a (aligned) store to a stack slot, then copy from the stack slot
413      // to the final destination using (unaligned) integer loads and stores.
414      EVT StoredVT = ST->getMemoryVT();
415      EVT RegVT =
416        TLI.getRegisterType(*DAG.getContext(),
417                            EVT::getIntegerVT(*DAG.getContext(),
418                                              StoredVT.getSizeInBits()));
419      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
420      unsigned RegBytes = RegVT.getSizeInBits() / 8;
421      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
422
423      // Make sure the stack slot is also aligned for the register type.
424      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
425
426      // Perform the original store, only redirected to the stack slot.
427      SDValue Store = DAG.getTruncStore(Chain, dl,
428                                        Val, StackPtr, MachinePointerInfo(),
429                                        StoredVT, false, false, 0);
430      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
431      SmallVector<SDValue, 8> Stores;
432      unsigned Offset = 0;
433
434      // Do all but one copies using the full register width.
435      for (unsigned i = 1; i < NumRegs; i++) {
436        // Load one integer register's worth from the stack slot.
437        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
438                                   MachinePointerInfo(),
439                                   false, false, 0);
440        // Store it to the final location.  Remember the store.
441        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
442                                    ST->getPointerInfo().getWithOffset(Offset),
443                                      ST->isVolatile(), ST->isNonTemporal(),
444                                      MinAlign(ST->getAlignment(), Offset)));
445        // Increment the pointers.
446        Offset += RegBytes;
447        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
448                               Increment);
449        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
450      }
451
452      // The last store may be partial.  Do a truncating store.  On big-endian
453      // machines this requires an extending load from the stack slot to ensure
454      // that the bits are in the right place.
455      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
456                                    8 * (StoredBytes - Offset));
457
458      // Load from the stack slot.
459      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Store, StackPtr,
460                                    NULL, 0, MemVT, false, false, 0);
461
462      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
463                                         ST->getSrcValue(), SVOffset + Offset,
464                                         MemVT, ST->isVolatile(),
465                                         ST->isNonTemporal(),
466                                         MinAlign(ST->getAlignment(), Offset)));
467      // The order of the stores doesn't matter - say it with a TokenFactor.
468      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
469                         Stores.size());
470    }
471  }
472  assert(ST->getMemoryVT().isInteger() &&
473         !ST->getMemoryVT().isVector() &&
474         "Unaligned store of unknown type.");
475  // Get the half-size VT
476  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
477  int NumBits = NewStoredVT.getSizeInBits();
478  int IncrementSize = NumBits / 8;
479
480  // Divide the stored value in two parts.
481  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
482  SDValue Lo = Val;
483  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
484
485  // Store the two parts
486  SDValue Store1, Store2;
487  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
488                             ST->getSrcValue(), SVOffset, NewStoredVT,
489                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
490  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
491                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
492  Alignment = MinAlign(Alignment, IncrementSize);
493  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
494                             ST->getSrcValue(), SVOffset + IncrementSize,
495                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
496                             Alignment);
497
498  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
499}
500
501/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
502static
503SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
504                            const TargetLowering &TLI) {
505  SDValue Chain = LD->getChain();
506  SDValue Ptr = LD->getBasePtr();
507  EVT VT = LD->getValueType(0);
508  EVT LoadedVT = LD->getMemoryVT();
509  DebugLoc dl = LD->getDebugLoc();
510  if (VT.isFloatingPoint() || VT.isVector()) {
511    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
512    if (TLI.isTypeLegal(intVT)) {
513      // Expand to a (misaligned) integer load of the same size,
514      // then bitconvert to floating point or vector.
515      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
516                                    LD->isVolatile(),
517                                    LD->isNonTemporal(), LD->getAlignment());
518      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
519      if (VT.isFloatingPoint() && LoadedVT != VT)
520        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
521
522      SDValue Ops[] = { Result, Chain };
523      return DAG.getMergeValues(Ops, 2, dl);
524    }
525
526    // Copy the value to a (aligned) stack slot using (unaligned) integer
527    // loads and stores, then do a (aligned) load from the stack slot.
528    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
529    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
530    unsigned RegBytes = RegVT.getSizeInBits() / 8;
531    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
532
533    // Make sure the stack slot is also aligned for the register type.
534    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
535
536    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
537    SmallVector<SDValue, 8> Stores;
538    SDValue StackPtr = StackBase;
539    unsigned Offset = 0;
540
541    // Do all but one copies using the full register width.
542    for (unsigned i = 1; i < NumRegs; i++) {
543      // Load one integer register's worth from the original location.
544      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
545                                 LD->getPointerInfo().getWithOffset(Offset),
546                                 LD->isVolatile(), LD->isNonTemporal(),
547                                 MinAlign(LD->getAlignment(), Offset));
548      // Follow the load with a store to the stack slot.  Remember the store.
549      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
550                                    NULL, 0, false, false, 0));
551      // Increment the pointers.
552      Offset += RegBytes;
553      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
554      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
555                             Increment);
556    }
557
558    // The last copy may be partial.  Do an extending load.
559    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
560                                  8 * (LoadedBytes - Offset));
561    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Chain, Ptr,
562                                  LD->getPointerInfo().getWithOffset(Offset),
563                                  MemVT, LD->isVolatile(),
564                                  LD->isNonTemporal(),
565                                  MinAlign(LD->getAlignment(), Offset));
566    // Follow the load with a store to the stack slot.  Remember the store.
567    // On big-endian machines this requires a truncating store to ensure
568    // that the bits end up in the right place.
569    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
570                                       MachinePointerInfo(), MemVT,
571                                       false, false, 0));
572
573    // The order of the stores doesn't matter - say it with a TokenFactor.
574    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
575                             Stores.size());
576
577    // Finally, perform the original load only redirected to the stack slot.
578    Load = DAG.getExtLoad(LD->getExtensionType(), VT, dl, TF, StackBase,
579                          MachinePointerInfo(), LoadedVT, false, false, 0);
580
581    // Callers expect a MERGE_VALUES node.
582    SDValue Ops[] = { Load, TF };
583    return DAG.getMergeValues(Ops, 2, dl);
584  }
585  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
586         "Unaligned load of unsupported type.");
587
588  // Compute the new VT that is half the size of the old one.  This is an
589  // integer MVT.
590  unsigned NumBits = LoadedVT.getSizeInBits();
591  EVT NewLoadedVT;
592  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
593  NumBits >>= 1;
594
595  unsigned Alignment = LD->getAlignment();
596  unsigned IncrementSize = NumBits / 8;
597  ISD::LoadExtType HiExtType = LD->getExtensionType();
598
599  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
600  if (HiExtType == ISD::NON_EXTLOAD)
601    HiExtType = ISD::ZEXTLOAD;
602
603  // Load the value in two parts
604  SDValue Lo, Hi;
605  if (TLI.isLittleEndian()) {
606    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr, LD->getPointerInfo(),
607                        NewLoadedVT, LD->isVolatile(),
608                        LD->isNonTemporal(), Alignment);
609    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
610                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
611    Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr,
612                        LD->getPointerInfo().getWithOffset(IncrementSize),
613                        NewLoadedVT, LD->isVolatile(),
614                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
615  } else {
616    Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr, LD->getPointerInfo(),
617                        NewLoadedVT, LD->isVolatile(),
618                        LD->isNonTemporal(), Alignment);
619    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
620                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
621    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr,
622                        LD->getPointerInfo().getWithOffset(IncrementSize),
623                        NewLoadedVT, LD->isVolatile(),
624                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
625  }
626
627  // aggregate the two parts
628  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
629  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
630  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
631
632  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
633                             Hi.getValue(1));
634
635  SDValue Ops[] = { Result, TF };
636  return DAG.getMergeValues(Ops, 2, dl);
637}
638
639/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
640/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
641/// is necessary to spill the vector being inserted into to memory, perform
642/// the insert there, and then read the result back.
643SDValue SelectionDAGLegalize::
644PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
645                               DebugLoc dl) {
646  SDValue Tmp1 = Vec;
647  SDValue Tmp2 = Val;
648  SDValue Tmp3 = Idx;
649
650  // If the target doesn't support this, we have to spill the input vector
651  // to a temporary stack slot, update the element, then reload it.  This is
652  // badness.  We could also load the value into a vector register (either
653  // with a "move to register" or "extload into register" instruction, then
654  // permute it into place, if the idx is a constant and if the idx is
655  // supported by the target.
656  EVT VT    = Tmp1.getValueType();
657  EVT EltVT = VT.getVectorElementType();
658  EVT IdxVT = Tmp3.getValueType();
659  EVT PtrVT = TLI.getPointerTy();
660  SDValue StackPtr = DAG.CreateStackTemporary(VT);
661
662  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
663
664  // Store the vector.
665  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
666                            MachinePointerInfo::getFixedStack(SPFI),
667                            false, false, 0);
668
669  // Truncate or zero extend offset to target pointer type.
670  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
671  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
672  // Add the offset to the index.
673  unsigned EltSize = EltVT.getSizeInBits()/8;
674  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
675  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
676  // Store the scalar value.
677  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
678                         false, false, 0);
679  // Load the updated vector.
680  return DAG.getLoad(VT, dl, Ch, StackPtr,
681                     MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
682}
683
684
685SDValue SelectionDAGLegalize::
686ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
687  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
688    // SCALAR_TO_VECTOR requires that the type of the value being inserted
689    // match the element type of the vector being created, except for
690    // integers in which case the inserted value can be over width.
691    EVT EltVT = Vec.getValueType().getVectorElementType();
692    if (Val.getValueType() == EltVT ||
693        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
694      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
695                                  Vec.getValueType(), Val);
696
697      unsigned NumElts = Vec.getValueType().getVectorNumElements();
698      // We generate a shuffle of InVec and ScVec, so the shuffle mask
699      // should be 0,1,2,3,4,5... with the appropriate element replaced with
700      // elt 0 of the RHS.
701      SmallVector<int, 8> ShufOps;
702      for (unsigned i = 0; i != NumElts; ++i)
703        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
704
705      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
706                                  &ShufOps[0]);
707    }
708  }
709  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
710}
711
712SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
713  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
714  // FIXME: We shouldn't do this for TargetConstantFP's.
715  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
716  // to phase ordering between legalized code and the dag combiner.  This
717  // probably means that we need to integrate dag combiner and legalizer
718  // together.
719  // We generally can't do this one for long doubles.
720  SDValue Tmp1 = ST->getChain();
721  SDValue Tmp2 = ST->getBasePtr();
722  SDValue Tmp3;
723  int SVOffset = ST->getSrcValueOffset();
724  unsigned Alignment = ST->getAlignment();
725  bool isVolatile = ST->isVolatile();
726  bool isNonTemporal = ST->isNonTemporal();
727  DebugLoc dl = ST->getDebugLoc();
728  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
729    if (CFP->getValueType(0) == MVT::f32 &&
730        getTypeAction(MVT::i32) == Legal) {
731      Tmp3 = DAG.getConstant(CFP->getValueAPF().
732                                      bitcastToAPInt().zextOrTrunc(32),
733                              MVT::i32);
734      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
735                          SVOffset, isVolatile, isNonTemporal, Alignment);
736    } else if (CFP->getValueType(0) == MVT::f64) {
737      // If this target supports 64-bit registers, do a single 64-bit store.
738      if (getTypeAction(MVT::i64) == Legal) {
739        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
740                                  zextOrTrunc(64), MVT::i64);
741        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
742                            SVOffset, isVolatile, isNonTemporal, Alignment);
743      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
744        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
745        // stores.  If the target supports neither 32- nor 64-bits, this
746        // xform is certainly not worth it.
747        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
748        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
749        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
750        if (TLI.isBigEndian()) std::swap(Lo, Hi);
751
752        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
753                          SVOffset, isVolatile, isNonTemporal, Alignment);
754        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
755                            DAG.getIntPtrConstant(4));
756        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
757                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
758
759        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
760      }
761    }
762  }
763  return SDValue();
764}
765
766/// LegalizeOp - We know that the specified value has a legal type, and
767/// that its operands are legal.  Now ensure that the operation itself
768/// is legal, recursively ensuring that the operands' operations remain
769/// legal.
770SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
771  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
772    return Op;
773
774  SDNode *Node = Op.getNode();
775  DebugLoc dl = Node->getDebugLoc();
776
777  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
778    assert(getTypeAction(Node->getValueType(i)) == Legal &&
779           "Unexpected illegal type!");
780
781  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
782    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
783            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
784           "Unexpected illegal type!");
785
786  // Note that LegalizeOp may be reentered even from single-use nodes, which
787  // means that we always must cache transformed nodes.
788  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
789  if (I != LegalizedNodes.end()) return I->second;
790
791  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
792  SDValue Result = Op;
793  bool isCustom = false;
794
795  // Figure out the correct action; the way to query this varies by opcode
796  TargetLowering::LegalizeAction Action;
797  bool SimpleFinishLegalizing = true;
798  switch (Node->getOpcode()) {
799  case ISD::INTRINSIC_W_CHAIN:
800  case ISD::INTRINSIC_WO_CHAIN:
801  case ISD::INTRINSIC_VOID:
802  case ISD::VAARG:
803  case ISD::STACKSAVE:
804    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
805    break;
806  case ISD::SINT_TO_FP:
807  case ISD::UINT_TO_FP:
808  case ISD::EXTRACT_VECTOR_ELT:
809    Action = TLI.getOperationAction(Node->getOpcode(),
810                                    Node->getOperand(0).getValueType());
811    break;
812  case ISD::FP_ROUND_INREG:
813  case ISD::SIGN_EXTEND_INREG: {
814    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
815    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
816    break;
817  }
818  case ISD::SELECT_CC:
819  case ISD::SETCC:
820  case ISD::BR_CC: {
821    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
822                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
823    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
824    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
825    ISD::CondCode CCCode =
826        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
827    Action = TLI.getCondCodeAction(CCCode, OpVT);
828    if (Action == TargetLowering::Legal) {
829      if (Node->getOpcode() == ISD::SELECT_CC)
830        Action = TLI.getOperationAction(Node->getOpcode(),
831                                        Node->getValueType(0));
832      else
833        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
834    }
835    break;
836  }
837  case ISD::LOAD:
838  case ISD::STORE:
839    // FIXME: Model these properly.  LOAD and STORE are complicated, and
840    // STORE expects the unlegalized operand in some cases.
841    SimpleFinishLegalizing = false;
842    break;
843  case ISD::CALLSEQ_START:
844  case ISD::CALLSEQ_END:
845    // FIXME: This shouldn't be necessary.  These nodes have special properties
846    // dealing with the recursive nature of legalization.  Removing this
847    // special case should be done as part of making LegalizeDAG non-recursive.
848    SimpleFinishLegalizing = false;
849    break;
850  case ISD::EXTRACT_ELEMENT:
851  case ISD::FLT_ROUNDS_:
852  case ISD::SADDO:
853  case ISD::SSUBO:
854  case ISD::UADDO:
855  case ISD::USUBO:
856  case ISD::SMULO:
857  case ISD::UMULO:
858  case ISD::FPOWI:
859  case ISD::MERGE_VALUES:
860  case ISD::EH_RETURN:
861  case ISD::FRAME_TO_ARGS_OFFSET:
862  case ISD::EH_SJLJ_SETJMP:
863  case ISD::EH_SJLJ_LONGJMP:
864    // These operations lie about being legal: when they claim to be legal,
865    // they should actually be expanded.
866    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
867    if (Action == TargetLowering::Legal)
868      Action = TargetLowering::Expand;
869    break;
870  case ISD::TRAMPOLINE:
871  case ISD::FRAMEADDR:
872  case ISD::RETURNADDR:
873    // These operations lie about being legal: when they claim to be legal,
874    // they should actually be custom-lowered.
875    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
876    if (Action == TargetLowering::Legal)
877      Action = TargetLowering::Custom;
878    break;
879  case ISD::BUILD_VECTOR:
880    // A weird case: legalization for BUILD_VECTOR never legalizes the
881    // operands!
882    // FIXME: This really sucks... changing it isn't semantically incorrect,
883    // but it massively pessimizes the code for floating-point BUILD_VECTORs
884    // because ConstantFP operands get legalized into constant pool loads
885    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
886    // though, because BUILD_VECTORS usually get lowered into other nodes
887    // which get legalized properly.
888    SimpleFinishLegalizing = false;
889    break;
890  default:
891    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
892      Action = TargetLowering::Legal;
893    } else {
894      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
895    }
896    break;
897  }
898
899  if (SimpleFinishLegalizing) {
900    SmallVector<SDValue, 8> Ops, ResultVals;
901    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
902      Ops.push_back(LegalizeOp(Node->getOperand(i)));
903    switch (Node->getOpcode()) {
904    default: break;
905    case ISD::BR:
906    case ISD::BRIND:
907    case ISD::BR_JT:
908    case ISD::BR_CC:
909    case ISD::BRCOND:
910      // Branches tweak the chain to include LastCALLSEQ_END
911      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
912                            LastCALLSEQ_END);
913      Ops[0] = LegalizeOp(Ops[0]);
914      LastCALLSEQ_END = DAG.getEntryNode();
915      break;
916    case ISD::SHL:
917    case ISD::SRL:
918    case ISD::SRA:
919    case ISD::ROTL:
920    case ISD::ROTR:
921      // Legalizing shifts/rotates requires adjusting the shift amount
922      // to the appropriate width.
923      if (!Ops[1].getValueType().isVector())
924        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
925      break;
926    case ISD::SRL_PARTS:
927    case ISD::SRA_PARTS:
928    case ISD::SHL_PARTS:
929      // Legalizing shifts/rotates requires adjusting the shift amount
930      // to the appropriate width.
931      if (!Ops[2].getValueType().isVector())
932        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
933      break;
934    }
935
936    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
937                                            Ops.size()), 0);
938    switch (Action) {
939    case TargetLowering::Legal:
940      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
941        ResultVals.push_back(Result.getValue(i));
942      break;
943    case TargetLowering::Custom:
944      // FIXME: The handling for custom lowering with multiple results is
945      // a complete mess.
946      Tmp1 = TLI.LowerOperation(Result, DAG);
947      if (Tmp1.getNode()) {
948        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
949          if (e == 1)
950            ResultVals.push_back(Tmp1);
951          else
952            ResultVals.push_back(Tmp1.getValue(i));
953        }
954        break;
955      }
956
957      // FALL THROUGH
958    case TargetLowering::Expand:
959      ExpandNode(Result.getNode(), ResultVals);
960      break;
961    case TargetLowering::Promote:
962      PromoteNode(Result.getNode(), ResultVals);
963      break;
964    }
965    if (!ResultVals.empty()) {
966      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
967        if (ResultVals[i] != SDValue(Node, i))
968          ResultVals[i] = LegalizeOp(ResultVals[i]);
969        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
970      }
971      return ResultVals[Op.getResNo()];
972    }
973  }
974
975  switch (Node->getOpcode()) {
976  default:
977#ifndef NDEBUG
978    dbgs() << "NODE: ";
979    Node->dump( &DAG);
980    dbgs() << "\n";
981#endif
982    assert(0 && "Do not know how to legalize this operator!");
983
984  case ISD::BUILD_VECTOR:
985    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
986    default: assert(0 && "This action is not supported yet!");
987    case TargetLowering::Custom:
988      Tmp3 = TLI.LowerOperation(Result, DAG);
989      if (Tmp3.getNode()) {
990        Result = Tmp3;
991        break;
992      }
993      // FALLTHROUGH
994    case TargetLowering::Expand:
995      Result = ExpandBUILD_VECTOR(Result.getNode());
996      break;
997    }
998    break;
999  case ISD::CALLSEQ_START: {
1000    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1001
1002    // Recursively Legalize all of the inputs of the call end that do not lead
1003    // to this call start.  This ensures that any libcalls that need be inserted
1004    // are inserted *before* the CALLSEQ_START.
1005    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1006    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1007      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1008                                   NodesLeadingTo);
1009    }
1010
1011    // Now that we have legalized all of the inputs (which may have inserted
1012    // libcalls), create the new CALLSEQ_START node.
1013    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1014
1015    // Merge in the last call to ensure that this call starts after the last
1016    // call ended.
1017    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1018      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1019                         Tmp1, LastCALLSEQ_END);
1020      Tmp1 = LegalizeOp(Tmp1);
1021    }
1022
1023    // Do not try to legalize the target-specific arguments (#1+).
1024    if (Tmp1 != Node->getOperand(0)) {
1025      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1026      Ops[0] = Tmp1;
1027      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1028                                              Ops.size()), Result.getResNo());
1029    }
1030
1031    // Remember that the CALLSEQ_START is legalized.
1032    AddLegalizedOperand(Op.getValue(0), Result);
1033    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1034      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1035
1036    // Now that the callseq_start and all of the non-call nodes above this call
1037    // sequence have been legalized, legalize the call itself.  During this
1038    // process, no libcalls can/will be inserted, guaranteeing that no calls
1039    // can overlap.
1040    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1041    // Note that we are selecting this call!
1042    LastCALLSEQ_END = SDValue(CallEnd, 0);
1043    IsLegalizingCall = true;
1044
1045    // Legalize the call, starting from the CALLSEQ_END.
1046    LegalizeOp(LastCALLSEQ_END);
1047    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1048    return Result;
1049  }
1050  case ISD::CALLSEQ_END:
1051    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1052    // will cause this node to be legalized as well as handling libcalls right.
1053    if (LastCALLSEQ_END.getNode() != Node) {
1054      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1055      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1056      assert(I != LegalizedNodes.end() &&
1057             "Legalizing the call start should have legalized this node!");
1058      return I->second;
1059    }
1060
1061    // Otherwise, the call start has been legalized and everything is going
1062    // according to plan.  Just legalize ourselves normally here.
1063    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1064    // Do not try to legalize the target-specific arguments (#1+), except for
1065    // an optional flag input.
1066    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1067      if (Tmp1 != Node->getOperand(0)) {
1068        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1069        Ops[0] = Tmp1;
1070        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1071                                                &Ops[0], Ops.size()),
1072                         Result.getResNo());
1073      }
1074    } else {
1075      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1076      if (Tmp1 != Node->getOperand(0) ||
1077          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1078        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1079        Ops[0] = Tmp1;
1080        Ops.back() = Tmp2;
1081        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1082                                                &Ops[0], Ops.size()),
1083                         Result.getResNo());
1084      }
1085    }
1086    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1087    // This finishes up call legalization.
1088    IsLegalizingCall = false;
1089
1090    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1091    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1092    if (Node->getNumValues() == 2)
1093      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1094    return Result.getValue(Op.getResNo());
1095  case ISD::LOAD: {
1096    LoadSDNode *LD = cast<LoadSDNode>(Node);
1097    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1098    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1099
1100    ISD::LoadExtType ExtType = LD->getExtensionType();
1101    if (ExtType == ISD::NON_EXTLOAD) {
1102      EVT VT = Node->getValueType(0);
1103      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1104                                              Tmp1, Tmp2, LD->getOffset()),
1105                       Result.getResNo());
1106      Tmp3 = Result.getValue(0);
1107      Tmp4 = Result.getValue(1);
1108
1109      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1110      default: assert(0 && "This action is not supported yet!");
1111      case TargetLowering::Legal:
1112        // If this is an unaligned load and the target doesn't support it,
1113        // expand it.
1114        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1115          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1116          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1117          if (LD->getAlignment() < ABIAlignment){
1118            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1119                                         DAG, TLI);
1120            Tmp3 = Result.getOperand(0);
1121            Tmp4 = Result.getOperand(1);
1122            Tmp3 = LegalizeOp(Tmp3);
1123            Tmp4 = LegalizeOp(Tmp4);
1124          }
1125        }
1126        break;
1127      case TargetLowering::Custom:
1128        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1129        if (Tmp1.getNode()) {
1130          Tmp3 = LegalizeOp(Tmp1);
1131          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1132        }
1133        break;
1134      case TargetLowering::Promote: {
1135        // Only promote a load of vector type to another.
1136        assert(VT.isVector() && "Cannot promote this load!");
1137        // Change base type to a different vector type.
1138        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1139
1140        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
1141                           LD->isVolatile(), LD->isNonTemporal(),
1142                           LD->getAlignment());
1143        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1144        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1145        break;
1146      }
1147      }
1148      // Since loads produce two values, make sure to remember that we
1149      // legalized both of them.
1150      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1151      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1152      return Op.getResNo() ? Tmp4 : Tmp3;
1153    } else {
1154      EVT SrcVT = LD->getMemoryVT();
1155      unsigned SrcWidth = SrcVT.getSizeInBits();
1156      int SVOffset = LD->getSrcValueOffset();
1157      unsigned Alignment = LD->getAlignment();
1158      bool isVolatile = LD->isVolatile();
1159      bool isNonTemporal = LD->isNonTemporal();
1160
1161      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1162          // Some targets pretend to have an i1 loading operation, and actually
1163          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1164          // bits are guaranteed to be zero; it helps the optimizers understand
1165          // that these bits are zero.  It is also useful for EXTLOAD, since it
1166          // tells the optimizers that those bits are undefined.  It would be
1167          // nice to have an effective generic way of getting these benefits...
1168          // Until such a way is found, don't insist on promoting i1 here.
1169          (SrcVT != MVT::i1 ||
1170           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1171        // Promote to a byte-sized load if not loading an integral number of
1172        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1173        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1174        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1175        SDValue Ch;
1176
1177        // The extra bits are guaranteed to be zero, since we stored them that
1178        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1179
1180        ISD::LoadExtType NewExtType =
1181          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1182
1183        Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), dl,
1184                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1185                                NVT, isVolatile, isNonTemporal, Alignment);
1186
1187        Ch = Result.getValue(1); // The chain.
1188
1189        if (ExtType == ISD::SEXTLOAD)
1190          // Having the top bits zero doesn't help when sign extending.
1191          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1192                               Result.getValueType(),
1193                               Result, DAG.getValueType(SrcVT));
1194        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1195          // All the top bits are guaranteed to be zero - inform the optimizers.
1196          Result = DAG.getNode(ISD::AssertZext, dl,
1197                               Result.getValueType(), Result,
1198                               DAG.getValueType(SrcVT));
1199
1200        Tmp1 = LegalizeOp(Result);
1201        Tmp2 = LegalizeOp(Ch);
1202      } else if (SrcWidth & (SrcWidth - 1)) {
1203        // If not loading a power-of-2 number of bits, expand as two loads.
1204        assert(!SrcVT.isVector() && "Unsupported extload!");
1205        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1206        assert(RoundWidth < SrcWidth);
1207        unsigned ExtraWidth = SrcWidth - RoundWidth;
1208        assert(ExtraWidth < RoundWidth);
1209        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1210               "Load size not an integral number of bytes!");
1211        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1212        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1213        SDValue Lo, Hi, Ch;
1214        unsigned IncrementSize;
1215
1216        if (TLI.isLittleEndian()) {
1217          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1218          // Load the bottom RoundWidth bits.
1219          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), dl,
1220                              Tmp1, Tmp2,
1221                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1222                              isNonTemporal, Alignment);
1223
1224          // Load the remaining ExtraWidth bits.
1225          IncrementSize = RoundWidth / 8;
1226          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1227                             DAG.getIntPtrConstant(IncrementSize));
1228          Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1229                              LD->getSrcValue(), SVOffset + IncrementSize,
1230                              ExtraVT, isVolatile, isNonTemporal,
1231                              MinAlign(Alignment, IncrementSize));
1232
1233          // Build a factor node to remember that this load is independent of
1234          // the other one.
1235          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1236                           Hi.getValue(1));
1237
1238          // Move the top bits to the right place.
1239          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1240                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1241
1242          // Join the hi and lo parts.
1243          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1244        } else {
1245          // Big endian - avoid unaligned loads.
1246          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1247          // Load the top RoundWidth bits.
1248          Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1249                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1250                              isNonTemporal, Alignment);
1251
1252          // Load the remaining ExtraWidth bits.
1253          IncrementSize = RoundWidth / 8;
1254          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1255                             DAG.getIntPtrConstant(IncrementSize));
1256          Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1257                              Node->getValueType(0), dl, Tmp1, Tmp2,
1258                              LD->getSrcValue(), SVOffset + IncrementSize,
1259                              ExtraVT, isVolatile, isNonTemporal,
1260                              MinAlign(Alignment, IncrementSize));
1261
1262          // Build a factor node to remember that this load is independent of
1263          // the other one.
1264          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1265                           Hi.getValue(1));
1266
1267          // Move the top bits to the right place.
1268          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1269                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1270
1271          // Join the hi and lo parts.
1272          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1273        }
1274
1275        Tmp1 = LegalizeOp(Result);
1276        Tmp2 = LegalizeOp(Ch);
1277      } else {
1278        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1279        default: assert(0 && "This action is not supported yet!");
1280        case TargetLowering::Custom:
1281          isCustom = true;
1282          // FALLTHROUGH
1283        case TargetLowering::Legal:
1284          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1285                                                  Tmp1, Tmp2, LD->getOffset()),
1286                           Result.getResNo());
1287          Tmp1 = Result.getValue(0);
1288          Tmp2 = Result.getValue(1);
1289
1290          if (isCustom) {
1291            Tmp3 = TLI.LowerOperation(Result, DAG);
1292            if (Tmp3.getNode()) {
1293              Tmp1 = LegalizeOp(Tmp3);
1294              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1295            }
1296          } else {
1297            // If this is an unaligned load and the target doesn't support it,
1298            // expand it.
1299            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1300              const Type *Ty =
1301                LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1302              unsigned ABIAlignment =
1303                TLI.getTargetData()->getABITypeAlignment(Ty);
1304              if (LD->getAlignment() < ABIAlignment){
1305                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1306                                             DAG, TLI);
1307                Tmp1 = Result.getOperand(0);
1308                Tmp2 = Result.getOperand(1);
1309                Tmp1 = LegalizeOp(Tmp1);
1310                Tmp2 = LegalizeOp(Tmp2);
1311              }
1312            }
1313          }
1314          break;
1315        case TargetLowering::Expand:
1316          if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && isTypeLegal(SrcVT)) {
1317            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1318                                       LD->getPointerInfo(),
1319                                       LD->isVolatile(), LD->isNonTemporal(),
1320                                       LD->getAlignment());
1321            unsigned ExtendOp;
1322            switch (ExtType) {
1323            case ISD::EXTLOAD:
1324              ExtendOp = (SrcVT.isFloatingPoint() ?
1325                          ISD::FP_EXTEND : ISD::ANY_EXTEND);
1326              break;
1327            case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1328            case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1329            default: llvm_unreachable("Unexpected extend load type!");
1330            }
1331            Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1332            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1333            Tmp2 = LegalizeOp(Load.getValue(1));
1334            break;
1335          }
1336          // FIXME: This does not work for vectors on most targets.  Sign- and
1337          // zero-extend operations are currently folded into extending loads,
1338          // whether they are legal or not, and then we end up here without any
1339          // support for legalizing them.
1340          assert(ExtType != ISD::EXTLOAD &&
1341                 "EXTLOAD should always be supported!");
1342          // Turn the unsupported load into an EXTLOAD followed by an explicit
1343          // zero/sign extend inreg.
1344          Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), dl,
1345                                  Tmp1, Tmp2, LD->getSrcValue(),
1346                                  LD->getSrcValueOffset(), SrcVT,
1347                                  LD->isVolatile(), LD->isNonTemporal(),
1348                                  LD->getAlignment());
1349          SDValue ValRes;
1350          if (ExtType == ISD::SEXTLOAD)
1351            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1352                                 Result.getValueType(),
1353                                 Result, DAG.getValueType(SrcVT));
1354          else
1355            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1356          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1357          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1358          break;
1359        }
1360      }
1361
1362      // Since loads produce two values, make sure to remember that we legalized
1363      // both of them.
1364      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1365      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1366      return Op.getResNo() ? Tmp2 : Tmp1;
1367    }
1368  }
1369  case ISD::STORE: {
1370    StoreSDNode *ST = cast<StoreSDNode>(Node);
1371    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1372    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1373    int SVOffset = ST->getSrcValueOffset();
1374    unsigned Alignment = ST->getAlignment();
1375    bool isVolatile = ST->isVolatile();
1376    bool isNonTemporal = ST->isNonTemporal();
1377
1378    if (!ST->isTruncatingStore()) {
1379      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1380        Result = SDValue(OptStore, 0);
1381        break;
1382      }
1383
1384      {
1385        Tmp3 = LegalizeOp(ST->getValue());
1386        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1387                                                Tmp1, Tmp3, Tmp2,
1388                                                ST->getOffset()),
1389                         Result.getResNo());
1390
1391        EVT VT = Tmp3.getValueType();
1392        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1393        default: assert(0 && "This action is not supported yet!");
1394        case TargetLowering::Legal:
1395          // If this is an unaligned store and the target doesn't support it,
1396          // expand it.
1397          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1398            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1399            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1400            if (ST->getAlignment() < ABIAlignment)
1401              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1402                                            DAG, TLI);
1403          }
1404          break;
1405        case TargetLowering::Custom:
1406          Tmp1 = TLI.LowerOperation(Result, DAG);
1407          if (Tmp1.getNode()) Result = Tmp1;
1408          break;
1409        case TargetLowering::Promote:
1410          assert(VT.isVector() && "Unknown legal promote case!");
1411          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1412                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1413          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1414                                ST->getSrcValue(), SVOffset, isVolatile,
1415                                isNonTemporal, Alignment);
1416          break;
1417        }
1418        break;
1419      }
1420    } else {
1421      Tmp3 = LegalizeOp(ST->getValue());
1422
1423      EVT StVT = ST->getMemoryVT();
1424      unsigned StWidth = StVT.getSizeInBits();
1425
1426      if (StWidth != StVT.getStoreSizeInBits()) {
1427        // Promote to a byte-sized store with upper bits zero if not
1428        // storing an integral number of bytes.  For example, promote
1429        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1430        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1431                                    StVT.getStoreSizeInBits());
1432        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1433        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1434                                   SVOffset, NVT, isVolatile, isNonTemporal,
1435                                   Alignment);
1436      } else if (StWidth & (StWidth - 1)) {
1437        // If not storing a power-of-2 number of bits, expand as two stores.
1438        assert(!StVT.isVector() && "Unsupported truncstore!");
1439        unsigned RoundWidth = 1 << Log2_32(StWidth);
1440        assert(RoundWidth < StWidth);
1441        unsigned ExtraWidth = StWidth - RoundWidth;
1442        assert(ExtraWidth < RoundWidth);
1443        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1444               "Store size not an integral number of bytes!");
1445        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1446        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1447        SDValue Lo, Hi;
1448        unsigned IncrementSize;
1449
1450        if (TLI.isLittleEndian()) {
1451          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1452          // Store the bottom RoundWidth bits.
1453          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1454                                 SVOffset, RoundVT,
1455                                 isVolatile, isNonTemporal, Alignment);
1456
1457          // Store the remaining ExtraWidth bits.
1458          IncrementSize = RoundWidth / 8;
1459          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1460                             DAG.getIntPtrConstant(IncrementSize));
1461          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1462                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1463          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1464                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1465                                 isNonTemporal,
1466                                 MinAlign(Alignment, IncrementSize));
1467        } else {
1468          // Big endian - avoid unaligned stores.
1469          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1470          // Store the top RoundWidth bits.
1471          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1472                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1473          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1474                                 SVOffset, RoundVT, isVolatile, isNonTemporal,
1475                                 Alignment);
1476
1477          // Store the remaining ExtraWidth bits.
1478          IncrementSize = RoundWidth / 8;
1479          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1480                             DAG.getIntPtrConstant(IncrementSize));
1481          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1482                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1483                                 isNonTemporal,
1484                                 MinAlign(Alignment, IncrementSize));
1485        }
1486
1487        // The order of the stores doesn't matter.
1488        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1489      } else {
1490        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1491            Tmp2 != ST->getBasePtr())
1492          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1493                                                  Tmp1, Tmp3, Tmp2,
1494                                                  ST->getOffset()),
1495                           Result.getResNo());
1496
1497        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1498        default: assert(0 && "This action is not supported yet!");
1499        case TargetLowering::Legal:
1500          // If this is an unaligned store and the target doesn't support it,
1501          // expand it.
1502          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1503            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1504            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1505            if (ST->getAlignment() < ABIAlignment)
1506              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1507                                            DAG, TLI);
1508          }
1509          break;
1510        case TargetLowering::Custom:
1511          Result = TLI.LowerOperation(Result, DAG);
1512          break;
1513        case Expand:
1514          // TRUNCSTORE:i16 i32 -> STORE i16
1515          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1516          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1517          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1518                                SVOffset, isVolatile, isNonTemporal,
1519                                Alignment);
1520          break;
1521        }
1522      }
1523    }
1524    break;
1525  }
1526  }
1527  assert(Result.getValueType() == Op.getValueType() &&
1528         "Bad legalization!");
1529
1530  // Make sure that the generated code is itself legal.
1531  if (Result != Op)
1532    Result = LegalizeOp(Result);
1533
1534  // Note that LegalizeOp may be reentered even from single-use nodes, which
1535  // means that we always must cache transformed nodes.
1536  AddLegalizedOperand(Op, Result);
1537  return Result;
1538}
1539
1540SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1541  SDValue Vec = Op.getOperand(0);
1542  SDValue Idx = Op.getOperand(1);
1543  DebugLoc dl = Op.getDebugLoc();
1544  // Store the value to a temporary stack slot, then LOAD the returned part.
1545  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1546  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1547                            false, false, 0);
1548
1549  // Add the offset to the index.
1550  unsigned EltSize =
1551      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1552  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1553                    DAG.getConstant(EltSize, Idx.getValueType()));
1554
1555  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1556    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1557  else
1558    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1559
1560  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1561
1562  if (Op.getValueType().isVector())
1563    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1564                       false, false, 0);
1565  else
1566    return DAG.getExtLoad(ISD::EXTLOAD, Op.getValueType(), dl, Ch, StackPtr,
1567                          MachinePointerInfo(),
1568                          Vec.getValueType().getVectorElementType(),
1569                          false, false, 0);
1570}
1571
1572SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1573  // We can't handle this case efficiently.  Allocate a sufficiently
1574  // aligned object on the stack, store each element into it, then load
1575  // the result as a vector.
1576  // Create the stack frame object.
1577  EVT VT = Node->getValueType(0);
1578  EVT EltVT = VT.getVectorElementType();
1579  DebugLoc dl = Node->getDebugLoc();
1580  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1581  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1582  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1583
1584  // Emit a store of each element to the stack slot.
1585  SmallVector<SDValue, 8> Stores;
1586  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1587  // Store (in the right endianness) the elements to memory.
1588  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1589    // Ignore undef elements.
1590    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1591
1592    unsigned Offset = TypeByteSize*i;
1593
1594    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1595    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1596
1597    // If the destination vector element type is narrower than the source
1598    // element type, only store the bits necessary.
1599    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1600      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1601                                         Node->getOperand(i), Idx,
1602                                         PtrInfo.getWithOffset(Offset),
1603                                         EltVT, false, false, 0));
1604    } else
1605      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1606                                    Node->getOperand(i), Idx,
1607                                    PtrInfo.getWithOffset(Offset),
1608                                    false, false, 0));
1609  }
1610
1611  SDValue StoreChain;
1612  if (!Stores.empty())    // Not all undef elements?
1613    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1614                             &Stores[0], Stores.size());
1615  else
1616    StoreChain = DAG.getEntryNode();
1617
1618  // Result is a load from the stack slot.
1619  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1620}
1621
1622SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1623  DebugLoc dl = Node->getDebugLoc();
1624  SDValue Tmp1 = Node->getOperand(0);
1625  SDValue Tmp2 = Node->getOperand(1);
1626
1627  // Get the sign bit of the RHS.  First obtain a value that has the same
1628  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1629  SDValue SignBit;
1630  EVT FloatVT = Tmp2.getValueType();
1631  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1632  if (isTypeLegal(IVT)) {
1633    // Convert to an integer with the same sign bit.
1634    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1635  } else {
1636    // Store the float to memory, then load the sign part out as an integer.
1637    MVT LoadTy = TLI.getPointerTy();
1638    // First create a temporary that is aligned for both the load and store.
1639    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1640    // Then store the float to it.
1641    SDValue Ch =
1642      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1643                   false, false, 0);
1644    if (TLI.isBigEndian()) {
1645      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1646      // Load out a legal integer with the same sign bit as the float.
1647      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1648                            false, false, 0);
1649    } else { // Little endian
1650      SDValue LoadPtr = StackPtr;
1651      // The float may be wider than the integer we are going to load.  Advance
1652      // the pointer so that the loaded integer will contain the sign bit.
1653      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1654      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1655      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1656                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1657      // Load a legal integer containing the sign bit.
1658      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1659                            false, false, 0);
1660      // Move the sign bit to the top bit of the loaded integer.
1661      unsigned BitShift = LoadTy.getSizeInBits() -
1662        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1663      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1664      if (BitShift)
1665        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1666                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1667    }
1668  }
1669  // Now get the sign bit proper, by seeing whether the value is negative.
1670  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1671                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1672                         ISD::SETLT);
1673  // Get the absolute value of the result.
1674  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1675  // Select between the nabs and abs value based on the sign bit of
1676  // the input.
1677  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1678                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1679                     AbsVal);
1680}
1681
1682void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1683                                           SmallVectorImpl<SDValue> &Results) {
1684  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1685  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1686          " not tell us which reg is the stack pointer!");
1687  DebugLoc dl = Node->getDebugLoc();
1688  EVT VT = Node->getValueType(0);
1689  SDValue Tmp1 = SDValue(Node, 0);
1690  SDValue Tmp2 = SDValue(Node, 1);
1691  SDValue Tmp3 = Node->getOperand(2);
1692  SDValue Chain = Tmp1.getOperand(0);
1693
1694  // Chain the dynamic stack allocation so that it doesn't modify the stack
1695  // pointer when other instructions are using the stack.
1696  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1697
1698  SDValue Size  = Tmp2.getOperand(1);
1699  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1700  Chain = SP.getValue(1);
1701  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1702  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1703  if (Align > StackAlign)
1704    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1705                      DAG.getConstant(-(uint64_t)Align, VT));
1706  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1707  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1708
1709  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1710                            DAG.getIntPtrConstant(0, true), SDValue());
1711
1712  Results.push_back(Tmp1);
1713  Results.push_back(Tmp2);
1714}
1715
1716/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1717/// condition code CC on the current target. This routine expands SETCC with
1718/// illegal condition code into AND / OR of multiple SETCC values.
1719void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1720                                                 SDValue &LHS, SDValue &RHS,
1721                                                 SDValue &CC,
1722                                                 DebugLoc dl) {
1723  EVT OpVT = LHS.getValueType();
1724  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1725  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1726  default: assert(0 && "Unknown condition code action!");
1727  case TargetLowering::Legal:
1728    // Nothing to do.
1729    break;
1730  case TargetLowering::Expand: {
1731    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1732    unsigned Opc = 0;
1733    switch (CCCode) {
1734    default: assert(0 && "Don't know how to expand this condition!");
1735    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1736    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1737    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1738    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1739    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1740    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1741    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1742    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1743    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1744    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1745    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1746    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1747    // FIXME: Implement more expansions.
1748    }
1749
1750    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1751    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1752    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1753    RHS = SDValue();
1754    CC  = SDValue();
1755    break;
1756  }
1757  }
1758}
1759
1760/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1761/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1762/// a load from the stack slot to DestVT, extending it if needed.
1763/// The resultant code need not be legal.
1764SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1765                                               EVT SlotVT,
1766                                               EVT DestVT,
1767                                               DebugLoc dl) {
1768  // Create the stack frame object.
1769  unsigned SrcAlign =
1770    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1771                                              getTypeForEVT(*DAG.getContext()));
1772  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1773
1774  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1775  int SPFI = StackPtrFI->getIndex();
1776  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1777
1778  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1779  unsigned SlotSize = SlotVT.getSizeInBits();
1780  unsigned DestSize = DestVT.getSizeInBits();
1781  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1782  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1783
1784  // Emit a store to the stack slot.  Use a truncstore if the input value is
1785  // later than DestVT.
1786  SDValue Store;
1787
1788  if (SrcSize > SlotSize)
1789    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1790                              SV, 0, SlotVT, false, false, SrcAlign);
1791  else {
1792    assert(SrcSize == SlotSize && "Invalid store");
1793    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1794                         SV, 0, false, false, SrcAlign);
1795  }
1796
1797  // Result is a load from the stack slot.
1798  if (SlotSize == DestSize)
1799    return DAG.getLoad(DestVT, dl, Store, FIPtr, MachinePointerInfo(SV),
1800                       false, false, DestAlign);
1801
1802  assert(SlotSize < DestSize && "Unknown extension!");
1803  return DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl, Store, FIPtr,
1804                        MachinePointerInfo(SV), SlotVT,
1805                        false, false, DestAlign);
1806}
1807
1808SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1809  DebugLoc dl = Node->getDebugLoc();
1810  // Create a vector sized/aligned stack slot, store the value to element #0,
1811  // then load the whole vector back out.
1812  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1813
1814  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1815  int SPFI = StackPtrFI->getIndex();
1816
1817  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1818                                 StackPtr,
1819                                 MachinePointerInfo::getFixedStack(SPFI),
1820                                 Node->getValueType(0).getVectorElementType(),
1821                                 false, false, 0);
1822  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1823                     MachinePointerInfo::getFixedStack(SPFI),
1824                     false, false, 0);
1825}
1826
1827
1828/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1829/// support the operation, but do support the resultant vector type.
1830SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1831  unsigned NumElems = Node->getNumOperands();
1832  SDValue Value1, Value2;
1833  DebugLoc dl = Node->getDebugLoc();
1834  EVT VT = Node->getValueType(0);
1835  EVT OpVT = Node->getOperand(0).getValueType();
1836  EVT EltVT = VT.getVectorElementType();
1837
1838  // If the only non-undef value is the low element, turn this into a
1839  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1840  bool isOnlyLowElement = true;
1841  bool MoreThanTwoValues = false;
1842  bool isConstant = true;
1843  for (unsigned i = 0; i < NumElems; ++i) {
1844    SDValue V = Node->getOperand(i);
1845    if (V.getOpcode() == ISD::UNDEF)
1846      continue;
1847    if (i > 0)
1848      isOnlyLowElement = false;
1849    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1850      isConstant = false;
1851
1852    if (!Value1.getNode()) {
1853      Value1 = V;
1854    } else if (!Value2.getNode()) {
1855      if (V != Value1)
1856        Value2 = V;
1857    } else if (V != Value1 && V != Value2) {
1858      MoreThanTwoValues = true;
1859    }
1860  }
1861
1862  if (!Value1.getNode())
1863    return DAG.getUNDEF(VT);
1864
1865  if (isOnlyLowElement)
1866    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1867
1868  // If all elements are constants, create a load from the constant pool.
1869  if (isConstant) {
1870    std::vector<Constant*> CV;
1871    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1872      if (ConstantFPSDNode *V =
1873          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1874        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1875      } else if (ConstantSDNode *V =
1876                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1877        if (OpVT==EltVT)
1878          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1879        else {
1880          // If OpVT and EltVT don't match, EltVT is not legal and the
1881          // element values have been promoted/truncated earlier.  Undo this;
1882          // we don't want a v16i8 to become a v16i32 for example.
1883          const ConstantInt *CI = V->getConstantIntValue();
1884          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1885                                        CI->getZExtValue()));
1886        }
1887      } else {
1888        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1889        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1890        CV.push_back(UndefValue::get(OpNTy));
1891      }
1892    }
1893    Constant *CP = ConstantVector::get(CV);
1894    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1895    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1896    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1897                       MachinePointerInfo::getConstantPool(),
1898                       false, false, Alignment);
1899  }
1900
1901  if (!MoreThanTwoValues) {
1902    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1903    for (unsigned i = 0; i < NumElems; ++i) {
1904      SDValue V = Node->getOperand(i);
1905      if (V.getOpcode() == ISD::UNDEF)
1906        continue;
1907      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1908    }
1909    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1910      // Get the splatted value into the low element of a vector register.
1911      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1912      SDValue Vec2;
1913      if (Value2.getNode())
1914        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1915      else
1916        Vec2 = DAG.getUNDEF(VT);
1917
1918      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1919      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1920    }
1921  }
1922
1923  // Otherwise, we can't handle this case efficiently.
1924  return ExpandVectorBuildThroughStack(Node);
1925}
1926
1927// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1928// does not fit into a register, return the lo part and set the hi part to the
1929// by-reg argument.  If it does fit into a single register, return the result
1930// and leave the Hi part unset.
1931SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1932                                            bool isSigned) {
1933  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1934  // The input chain to this libcall is the entry node of the function.
1935  // Legalizing the call will automatically add the previous call to the
1936  // dependence.
1937  SDValue InChain = DAG.getEntryNode();
1938
1939  TargetLowering::ArgListTy Args;
1940  TargetLowering::ArgListEntry Entry;
1941  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1942    EVT ArgVT = Node->getOperand(i).getValueType();
1943    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1944    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1945    Entry.isSExt = isSigned;
1946    Entry.isZExt = !isSigned;
1947    Args.push_back(Entry);
1948  }
1949  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1950                                         TLI.getPointerTy());
1951
1952  // Splice the libcall in wherever FindInputOutputChains tells us to.
1953  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1954  std::pair<SDValue, SDValue> CallInfo =
1955    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1956                    0, TLI.getLibcallCallingConv(LC), false,
1957                    /*isReturnValueUsed=*/true,
1958                    Callee, Args, DAG, Node->getDebugLoc());
1959
1960  // Legalize the call sequence, starting with the chain.  This will advance
1961  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1962  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1963  LegalizeOp(CallInfo.second);
1964  return CallInfo.first;
1965}
1966
1967// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1968// ExpandLibCall except that the first operand is the in-chain.
1969std::pair<SDValue, SDValue>
1970SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1971                                         SDNode *Node,
1972                                         bool isSigned) {
1973  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1974  SDValue InChain = Node->getOperand(0);
1975
1976  TargetLowering::ArgListTy Args;
1977  TargetLowering::ArgListEntry Entry;
1978  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1979    EVT ArgVT = Node->getOperand(i).getValueType();
1980    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1981    Entry.Node = Node->getOperand(i);
1982    Entry.Ty = ArgTy;
1983    Entry.isSExt = isSigned;
1984    Entry.isZExt = !isSigned;
1985    Args.push_back(Entry);
1986  }
1987  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1988                                         TLI.getPointerTy());
1989
1990  // Splice the libcall in wherever FindInputOutputChains tells us to.
1991  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1992  std::pair<SDValue, SDValue> CallInfo =
1993    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1994                    0, TLI.getLibcallCallingConv(LC), false,
1995                    /*isReturnValueUsed=*/true,
1996                    Callee, Args, DAG, Node->getDebugLoc());
1997
1998  // Legalize the call sequence, starting with the chain.  This will advance
1999  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2000  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2001  LegalizeOp(CallInfo.second);
2002  return CallInfo;
2003}
2004
2005SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2006                                              RTLIB::Libcall Call_F32,
2007                                              RTLIB::Libcall Call_F64,
2008                                              RTLIB::Libcall Call_F80,
2009                                              RTLIB::Libcall Call_PPCF128) {
2010  RTLIB::Libcall LC;
2011  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2012  default: assert(0 && "Unexpected request for libcall!");
2013  case MVT::f32: LC = Call_F32; break;
2014  case MVT::f64: LC = Call_F64; break;
2015  case MVT::f80: LC = Call_F80; break;
2016  case MVT::ppcf128: LC = Call_PPCF128; break;
2017  }
2018  return ExpandLibCall(LC, Node, false);
2019}
2020
2021SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2022                                               RTLIB::Libcall Call_I8,
2023                                               RTLIB::Libcall Call_I16,
2024                                               RTLIB::Libcall Call_I32,
2025                                               RTLIB::Libcall Call_I64,
2026                                               RTLIB::Libcall Call_I128) {
2027  RTLIB::Libcall LC;
2028  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2029  default: assert(0 && "Unexpected request for libcall!");
2030  case MVT::i8:   LC = Call_I8; break;
2031  case MVT::i16:  LC = Call_I16; break;
2032  case MVT::i32:  LC = Call_I32; break;
2033  case MVT::i64:  LC = Call_I64; break;
2034  case MVT::i128: LC = Call_I128; break;
2035  }
2036  return ExpandLibCall(LC, Node, isSigned);
2037}
2038
2039/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2040/// INT_TO_FP operation of the specified operand when the target requests that
2041/// we expand it.  At this point, we know that the result and operand types are
2042/// legal for the target.
2043SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2044                                                   SDValue Op0,
2045                                                   EVT DestVT,
2046                                                   DebugLoc dl) {
2047  if (Op0.getValueType() == MVT::i32) {
2048    // simple 32-bit [signed|unsigned] integer to float/double expansion
2049
2050    // Get the stack frame index of a 8 byte buffer.
2051    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2052
2053    // word offset constant for Hi/Lo address computation
2054    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2055    // set up Hi and Lo (into buffer) address based on endian
2056    SDValue Hi = StackSlot;
2057    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2058                             TLI.getPointerTy(), StackSlot, WordOff);
2059    if (TLI.isLittleEndian())
2060      std::swap(Hi, Lo);
2061
2062    // if signed map to unsigned space
2063    SDValue Op0Mapped;
2064    if (isSigned) {
2065      // constant used to invert sign bit (signed to unsigned mapping)
2066      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2067      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2068    } else {
2069      Op0Mapped = Op0;
2070    }
2071    // store the lo of the constructed double - based on integer input
2072    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2073                                  Op0Mapped, Lo, NULL, 0,
2074                                  false, false, 0);
2075    // initial hi portion of constructed double
2076    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2077    // store the hi of the constructed double - biased exponent
2078    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
2079                                false, false, 0);
2080    // load the constructed double
2081    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2082                               MachinePointerInfo(), false, false, 0);
2083    // FP constant to bias correct the final result
2084    SDValue Bias = DAG.getConstantFP(isSigned ?
2085                                     BitsToDouble(0x4330000080000000ULL) :
2086                                     BitsToDouble(0x4330000000000000ULL),
2087                                     MVT::f64);
2088    // subtract the bias
2089    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2090    // final result
2091    SDValue Result;
2092    // handle final rounding
2093    if (DestVT == MVT::f64) {
2094      // do nothing
2095      Result = Sub;
2096    } else if (DestVT.bitsLT(MVT::f64)) {
2097      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2098                           DAG.getIntPtrConstant(0));
2099    } else if (DestVT.bitsGT(MVT::f64)) {
2100      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2101    }
2102    return Result;
2103  }
2104  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2105  // Code below here assumes !isSigned without checking again.
2106
2107  // Implementation of unsigned i64 to f64 following the algorithm in
2108  // __floatundidf in compiler_rt. This implementation has the advantage
2109  // of performing rounding correctly, both in the default rounding mode
2110  // and in all alternate rounding modes.
2111  // TODO: Generalize this for use with other types.
2112  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2113    SDValue TwoP52 =
2114      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2115    SDValue TwoP84PlusTwoP52 =
2116      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2117    SDValue TwoP84 =
2118      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2119
2120    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2121    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2122                             DAG.getConstant(32, MVT::i64));
2123    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2124    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2125    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2126    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2127    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2128                                TwoP84PlusTwoP52);
2129    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2130  }
2131
2132  // Implementation of unsigned i64 to f32.  This implementation has the
2133  // advantage of performing rounding correctly.
2134  // TODO: Generalize this for use with other types.
2135  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2136    EVT SHVT = TLI.getShiftAmountTy();
2137
2138    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2139         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2140    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2141         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2142    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2143         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2144    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2145                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2146    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2147    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2148                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2149                    ISD::SETUGE);
2150    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2151
2152    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2153                             DAG.getConstant(32, SHVT));
2154    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2155    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2156    SDValue TwoP32 =
2157      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2158    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2159    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2160    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2161    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2162    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2163                       DAG.getIntPtrConstant(0));
2164
2165  }
2166
2167  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2168
2169  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2170                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2171                                 ISD::SETLT);
2172  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2173  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2174                                    SignSet, Four, Zero);
2175
2176  // If the sign bit of the integer is set, the large number will be treated
2177  // as a negative number.  To counteract this, the dynamic code adds an
2178  // offset depending on the data type.
2179  uint64_t FF;
2180  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2181  default: assert(0 && "Unsupported integer type!");
2182  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2183  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2184  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2185  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2186  }
2187  if (TLI.isLittleEndian()) FF <<= 32;
2188  Constant *FudgeFactor = ConstantInt::get(
2189                                       Type::getInt64Ty(*DAG.getContext()), FF);
2190
2191  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2192  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2193  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2194  Alignment = std::min(Alignment, 4u);
2195  SDValue FudgeInReg;
2196  if (DestVT == MVT::f32)
2197    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2198                             MachinePointerInfo::getConstantPool(),
2199                             false, false, Alignment);
2200  else {
2201    FudgeInReg =
2202      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl,
2203                                DAG.getEntryNode(), CPIdx,
2204                                MachinePointerInfo::getConstantPool(),
2205                                MVT::f32, false, false, Alignment));
2206  }
2207
2208  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2209}
2210
2211/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2212/// *INT_TO_FP operation of the specified operand when the target requests that
2213/// we promote it.  At this point, we know that the result and operand types are
2214/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2215/// operation that takes a larger input.
2216SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2217                                                    EVT DestVT,
2218                                                    bool isSigned,
2219                                                    DebugLoc dl) {
2220  // First step, figure out the appropriate *INT_TO_FP operation to use.
2221  EVT NewInTy = LegalOp.getValueType();
2222
2223  unsigned OpToUse = 0;
2224
2225  // Scan for the appropriate larger type to use.
2226  while (1) {
2227    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2228    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2229
2230    // If the target supports SINT_TO_FP of this type, use it.
2231    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2232      OpToUse = ISD::SINT_TO_FP;
2233      break;
2234    }
2235    if (isSigned) continue;
2236
2237    // If the target supports UINT_TO_FP of this type, use it.
2238    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2239      OpToUse = ISD::UINT_TO_FP;
2240      break;
2241    }
2242
2243    // Otherwise, try a larger type.
2244  }
2245
2246  // Okay, we found the operation and type to use.  Zero extend our input to the
2247  // desired type then run the operation on it.
2248  return DAG.getNode(OpToUse, dl, DestVT,
2249                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2250                                 dl, NewInTy, LegalOp));
2251}
2252
2253/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2254/// FP_TO_*INT operation of the specified operand when the target requests that
2255/// we promote it.  At this point, we know that the result and operand types are
2256/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2257/// operation that returns a larger result.
2258SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2259                                                    EVT DestVT,
2260                                                    bool isSigned,
2261                                                    DebugLoc dl) {
2262  // First step, figure out the appropriate FP_TO*INT operation to use.
2263  EVT NewOutTy = DestVT;
2264
2265  unsigned OpToUse = 0;
2266
2267  // Scan for the appropriate larger type to use.
2268  while (1) {
2269    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2270    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2271
2272    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2273      OpToUse = ISD::FP_TO_SINT;
2274      break;
2275    }
2276
2277    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2278      OpToUse = ISD::FP_TO_UINT;
2279      break;
2280    }
2281
2282    // Otherwise, try a larger type.
2283  }
2284
2285
2286  // Okay, we found the operation and type to use.
2287  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2288
2289  // Truncate the result of the extended FP_TO_*INT operation to the desired
2290  // size.
2291  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2292}
2293
2294/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2295///
2296SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2297  EVT VT = Op.getValueType();
2298  EVT SHVT = TLI.getShiftAmountTy();
2299  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2300  switch (VT.getSimpleVT().SimpleTy) {
2301  default: assert(0 && "Unhandled Expand type in BSWAP!");
2302  case MVT::i16:
2303    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2304    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2305    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2306  case MVT::i32:
2307    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2308    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2309    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2310    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2311    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2312    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2313    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2314    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2315    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2316  case MVT::i64:
2317    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2318    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2319    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2320    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2321    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2322    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2323    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2324    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2325    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2326    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2327    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2328    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2329    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2330    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2331    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2332    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2333    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2334    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2335    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2336    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2337    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2338  }
2339}
2340
2341/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2342///
2343SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2344                                             DebugLoc dl) {
2345  switch (Opc) {
2346  default: assert(0 && "Cannot expand this yet!");
2347  case ISD::CTPOP: {
2348    static const uint64_t mask[6] = {
2349      0x5555555555555555ULL, 0x3333333333333333ULL,
2350      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2351      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2352    };
2353    EVT VT = Op.getValueType();
2354    EVT ShVT = TLI.getShiftAmountTy();
2355    unsigned len = VT.getSizeInBits();
2356    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2357      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2358      unsigned EltSize = VT.isVector() ?
2359        VT.getVectorElementType().getSizeInBits() : len;
2360      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2361      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2362      Op = DAG.getNode(ISD::ADD, dl, VT,
2363                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2364                       DAG.getNode(ISD::AND, dl, VT,
2365                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2366                                   Tmp2));
2367    }
2368    return Op;
2369  }
2370  case ISD::CTLZ: {
2371    // for now, we do this:
2372    // x = x | (x >> 1);
2373    // x = x | (x >> 2);
2374    // ...
2375    // x = x | (x >>16);
2376    // x = x | (x >>32); // for 64-bit input
2377    // return popcount(~x);
2378    //
2379    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2380    EVT VT = Op.getValueType();
2381    EVT ShVT = TLI.getShiftAmountTy();
2382    unsigned len = VT.getSizeInBits();
2383    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2384      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2385      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2386                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2387    }
2388    Op = DAG.getNOT(dl, Op, VT);
2389    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2390  }
2391  case ISD::CTTZ: {
2392    // for now, we use: { return popcount(~x & (x - 1)); }
2393    // unless the target has ctlz but not ctpop, in which case we use:
2394    // { return 32 - nlz(~x & (x-1)); }
2395    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2396    EVT VT = Op.getValueType();
2397    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2398                               DAG.getNOT(dl, Op, VT),
2399                               DAG.getNode(ISD::SUB, dl, VT, Op,
2400                                           DAG.getConstant(1, VT)));
2401    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2402    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2403        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2404      return DAG.getNode(ISD::SUB, dl, VT,
2405                         DAG.getConstant(VT.getSizeInBits(), VT),
2406                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2407    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2408  }
2409  }
2410}
2411
2412std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2413  unsigned Opc = Node->getOpcode();
2414  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2415  RTLIB::Libcall LC;
2416
2417  switch (Opc) {
2418  default:
2419    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2420    break;
2421  case ISD::ATOMIC_SWAP:
2422    switch (VT.SimpleTy) {
2423    default: llvm_unreachable("Unexpected value type for atomic!");
2424    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2425    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2426    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2427    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2428    }
2429    break;
2430  case ISD::ATOMIC_CMP_SWAP:
2431    switch (VT.SimpleTy) {
2432    default: llvm_unreachable("Unexpected value type for atomic!");
2433    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2434    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2435    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2436    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2437    }
2438    break;
2439  case ISD::ATOMIC_LOAD_ADD:
2440    switch (VT.SimpleTy) {
2441    default: llvm_unreachable("Unexpected value type for atomic!");
2442    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2443    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2444    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2445    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2446    }
2447    break;
2448  case ISD::ATOMIC_LOAD_SUB:
2449    switch (VT.SimpleTy) {
2450    default: llvm_unreachable("Unexpected value type for atomic!");
2451    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2452    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2453    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2454    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2455    }
2456    break;
2457  case ISD::ATOMIC_LOAD_AND:
2458    switch (VT.SimpleTy) {
2459    default: llvm_unreachable("Unexpected value type for atomic!");
2460    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2461    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2462    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2463    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2464    }
2465    break;
2466  case ISD::ATOMIC_LOAD_OR:
2467    switch (VT.SimpleTy) {
2468    default: llvm_unreachable("Unexpected value type for atomic!");
2469    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2470    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2471    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2472    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2473    }
2474    break;
2475  case ISD::ATOMIC_LOAD_XOR:
2476    switch (VT.SimpleTy) {
2477    default: llvm_unreachable("Unexpected value type for atomic!");
2478    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2479    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2480    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2481    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2482    }
2483    break;
2484  case ISD::ATOMIC_LOAD_NAND:
2485    switch (VT.SimpleTy) {
2486    default: llvm_unreachable("Unexpected value type for atomic!");
2487    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2488    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2489    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2490    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2491    }
2492    break;
2493  }
2494
2495  return ExpandChainLibCall(LC, Node, false);
2496}
2497
2498void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2499                                      SmallVectorImpl<SDValue> &Results) {
2500  DebugLoc dl = Node->getDebugLoc();
2501  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2502  switch (Node->getOpcode()) {
2503  case ISD::CTPOP:
2504  case ISD::CTLZ:
2505  case ISD::CTTZ:
2506    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2507    Results.push_back(Tmp1);
2508    break;
2509  case ISD::BSWAP:
2510    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2511    break;
2512  case ISD::FRAMEADDR:
2513  case ISD::RETURNADDR:
2514  case ISD::FRAME_TO_ARGS_OFFSET:
2515    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2516    break;
2517  case ISD::FLT_ROUNDS_:
2518    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2519    break;
2520  case ISD::EH_RETURN:
2521  case ISD::EH_LABEL:
2522  case ISD::PREFETCH:
2523  case ISD::VAEND:
2524  case ISD::EH_SJLJ_LONGJMP:
2525    Results.push_back(Node->getOperand(0));
2526    break;
2527  case ISD::EH_SJLJ_SETJMP:
2528    Results.push_back(DAG.getConstant(0, MVT::i32));
2529    Results.push_back(Node->getOperand(0));
2530    break;
2531  case ISD::MEMBARRIER: {
2532    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2533    TargetLowering::ArgListTy Args;
2534    std::pair<SDValue, SDValue> CallResult =
2535      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2536                      false, false, false, false, 0, CallingConv::C, false,
2537                      /*isReturnValueUsed=*/true,
2538                      DAG.getExternalSymbol("__sync_synchronize",
2539                                            TLI.getPointerTy()),
2540                      Args, DAG, dl);
2541    Results.push_back(CallResult.second);
2542    break;
2543  }
2544  // By default, atomic intrinsics are marked Legal and lowered. Targets
2545  // which don't support them directly, however, may want libcalls, in which
2546  // case they mark them Expand, and we get here.
2547  // FIXME: Unimplemented for now. Add libcalls.
2548  case ISD::ATOMIC_SWAP:
2549  case ISD::ATOMIC_LOAD_ADD:
2550  case ISD::ATOMIC_LOAD_SUB:
2551  case ISD::ATOMIC_LOAD_AND:
2552  case ISD::ATOMIC_LOAD_OR:
2553  case ISD::ATOMIC_LOAD_XOR:
2554  case ISD::ATOMIC_LOAD_NAND:
2555  case ISD::ATOMIC_LOAD_MIN:
2556  case ISD::ATOMIC_LOAD_MAX:
2557  case ISD::ATOMIC_LOAD_UMIN:
2558  case ISD::ATOMIC_LOAD_UMAX:
2559  case ISD::ATOMIC_CMP_SWAP: {
2560    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2561    Results.push_back(Tmp.first);
2562    Results.push_back(Tmp.second);
2563    break;
2564  }
2565  case ISD::DYNAMIC_STACKALLOC:
2566    ExpandDYNAMIC_STACKALLOC(Node, Results);
2567    break;
2568  case ISD::MERGE_VALUES:
2569    for (unsigned i = 0; i < Node->getNumValues(); i++)
2570      Results.push_back(Node->getOperand(i));
2571    break;
2572  case ISD::UNDEF: {
2573    EVT VT = Node->getValueType(0);
2574    if (VT.isInteger())
2575      Results.push_back(DAG.getConstant(0, VT));
2576    else {
2577      assert(VT.isFloatingPoint() && "Unknown value type!");
2578      Results.push_back(DAG.getConstantFP(0, VT));
2579    }
2580    break;
2581  }
2582  case ISD::TRAP: {
2583    // If this operation is not supported, lower it to 'abort()' call
2584    TargetLowering::ArgListTy Args;
2585    std::pair<SDValue, SDValue> CallResult =
2586      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2587                      false, false, false, false, 0, CallingConv::C, false,
2588                      /*isReturnValueUsed=*/true,
2589                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2590                      Args, DAG, dl);
2591    Results.push_back(CallResult.second);
2592    break;
2593  }
2594  case ISD::FP_ROUND:
2595  case ISD::BIT_CONVERT:
2596    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2597                            Node->getValueType(0), dl);
2598    Results.push_back(Tmp1);
2599    break;
2600  case ISD::FP_EXTEND:
2601    Tmp1 = EmitStackConvert(Node->getOperand(0),
2602                            Node->getOperand(0).getValueType(),
2603                            Node->getValueType(0), dl);
2604    Results.push_back(Tmp1);
2605    break;
2606  case ISD::SIGN_EXTEND_INREG: {
2607    // NOTE: we could fall back on load/store here too for targets without
2608    // SAR.  However, it is doubtful that any exist.
2609    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2610    EVT VT = Node->getValueType(0);
2611    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2612    if (VT.isVector())
2613      ShiftAmountTy = VT;
2614    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2615                        ExtraVT.getScalarType().getSizeInBits();
2616    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2617    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2618                       Node->getOperand(0), ShiftCst);
2619    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2620    Results.push_back(Tmp1);
2621    break;
2622  }
2623  case ISD::FP_ROUND_INREG: {
2624    // The only way we can lower this is to turn it into a TRUNCSTORE,
2625    // EXTLOAD pair, targetting a temporary location (a stack slot).
2626
2627    // NOTE: there is a choice here between constantly creating new stack
2628    // slots and always reusing the same one.  We currently always create
2629    // new ones, as reuse may inhibit scheduling.
2630    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2631    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2632                            Node->getValueType(0), dl);
2633    Results.push_back(Tmp1);
2634    break;
2635  }
2636  case ISD::SINT_TO_FP:
2637  case ISD::UINT_TO_FP:
2638    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2639                                Node->getOperand(0), Node->getValueType(0), dl);
2640    Results.push_back(Tmp1);
2641    break;
2642  case ISD::FP_TO_UINT: {
2643    SDValue True, False;
2644    EVT VT =  Node->getOperand(0).getValueType();
2645    EVT NVT = Node->getValueType(0);
2646    const uint64_t zero[] = {0, 0};
2647    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2648    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2649    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2650    Tmp1 = DAG.getConstantFP(apf, VT);
2651    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2652                        Node->getOperand(0),
2653                        Tmp1, ISD::SETLT);
2654    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2655    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2656                        DAG.getNode(ISD::FSUB, dl, VT,
2657                                    Node->getOperand(0), Tmp1));
2658    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2659                        DAG.getConstant(x, NVT));
2660    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2661    Results.push_back(Tmp1);
2662    break;
2663  }
2664  case ISD::VAARG: {
2665    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2666    EVT VT = Node->getValueType(0);
2667    Tmp1 = Node->getOperand(0);
2668    Tmp2 = Node->getOperand(1);
2669    unsigned Align = Node->getConstantOperandVal(3);
2670
2671    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2672                                     MachinePointerInfo(V), false, false, 0);
2673    SDValue VAList = VAListLoad;
2674
2675    if (Align > TLI.getMinStackArgumentAlignment()) {
2676      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2677
2678      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2679                           DAG.getConstant(Align - 1,
2680                                           TLI.getPointerTy()));
2681
2682      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2683                           DAG.getConstant(-Align,
2684                                           TLI.getPointerTy()));
2685    }
2686
2687    // Increment the pointer, VAList, to the next vaarg
2688    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2689                       DAG.getConstant(TLI.getTargetData()->
2690                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2691                                       TLI.getPointerTy()));
2692    // Store the incremented VAList to the legalized pointer
2693    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, V, 0,
2694                        false, false, 0);
2695    // Load the actual argument out of the pointer VAList
2696    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2697                                  false, false, 0));
2698    Results.push_back(Results[0].getValue(1));
2699    break;
2700  }
2701  case ISD::VACOPY: {
2702    // This defaults to loading a pointer from the input and storing it to the
2703    // output, returning the chain.
2704    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2705    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2706    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2707                       Node->getOperand(2), MachinePointerInfo(VS),
2708                       false, false, 0);
2709    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2710                        MachinePointerInfo(VD), false, false, 0);
2711    Results.push_back(Tmp1);
2712    break;
2713  }
2714  case ISD::EXTRACT_VECTOR_ELT:
2715    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2716      // This must be an access of the only element.  Return it.
2717      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2718                         Node->getOperand(0));
2719    else
2720      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2721    Results.push_back(Tmp1);
2722    break;
2723  case ISD::EXTRACT_SUBVECTOR:
2724    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2725    break;
2726  case ISD::CONCAT_VECTORS: {
2727    Results.push_back(ExpandVectorBuildThroughStack(Node));
2728    break;
2729  }
2730  case ISD::SCALAR_TO_VECTOR:
2731    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2732    break;
2733  case ISD::INSERT_VECTOR_ELT:
2734    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2735                                              Node->getOperand(1),
2736                                              Node->getOperand(2), dl));
2737    break;
2738  case ISD::VECTOR_SHUFFLE: {
2739    SmallVector<int, 8> Mask;
2740    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2741
2742    EVT VT = Node->getValueType(0);
2743    EVT EltVT = VT.getVectorElementType();
2744    if (getTypeAction(EltVT) == Promote)
2745      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2746    unsigned NumElems = VT.getVectorNumElements();
2747    SmallVector<SDValue, 8> Ops;
2748    for (unsigned i = 0; i != NumElems; ++i) {
2749      if (Mask[i] < 0) {
2750        Ops.push_back(DAG.getUNDEF(EltVT));
2751        continue;
2752      }
2753      unsigned Idx = Mask[i];
2754      if (Idx < NumElems)
2755        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2756                                  Node->getOperand(0),
2757                                  DAG.getIntPtrConstant(Idx)));
2758      else
2759        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2760                                  Node->getOperand(1),
2761                                  DAG.getIntPtrConstant(Idx - NumElems)));
2762    }
2763    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2764    Results.push_back(Tmp1);
2765    break;
2766  }
2767  case ISD::EXTRACT_ELEMENT: {
2768    EVT OpTy = Node->getOperand(0).getValueType();
2769    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2770      // 1 -> Hi
2771      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2772                         DAG.getConstant(OpTy.getSizeInBits()/2,
2773                                         TLI.getShiftAmountTy()));
2774      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2775    } else {
2776      // 0 -> Lo
2777      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2778                         Node->getOperand(0));
2779    }
2780    Results.push_back(Tmp1);
2781    break;
2782  }
2783  case ISD::STACKSAVE:
2784    // Expand to CopyFromReg if the target set
2785    // StackPointerRegisterToSaveRestore.
2786    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2787      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2788                                           Node->getValueType(0)));
2789      Results.push_back(Results[0].getValue(1));
2790    } else {
2791      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2792      Results.push_back(Node->getOperand(0));
2793    }
2794    break;
2795  case ISD::STACKRESTORE:
2796    // Expand to CopyToReg if the target set
2797    // StackPointerRegisterToSaveRestore.
2798    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2799      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2800                                         Node->getOperand(1)));
2801    } else {
2802      Results.push_back(Node->getOperand(0));
2803    }
2804    break;
2805  case ISD::FCOPYSIGN:
2806    Results.push_back(ExpandFCOPYSIGN(Node));
2807    break;
2808  case ISD::FNEG:
2809    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2810    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2811    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2812                       Node->getOperand(0));
2813    Results.push_back(Tmp1);
2814    break;
2815  case ISD::FABS: {
2816    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2817    EVT VT = Node->getValueType(0);
2818    Tmp1 = Node->getOperand(0);
2819    Tmp2 = DAG.getConstantFP(0.0, VT);
2820    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2821                        Tmp1, Tmp2, ISD::SETUGT);
2822    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2823    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2824    Results.push_back(Tmp1);
2825    break;
2826  }
2827  case ISD::FSQRT:
2828    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2829                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2830    break;
2831  case ISD::FSIN:
2832    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2833                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2834    break;
2835  case ISD::FCOS:
2836    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2837                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2838    break;
2839  case ISD::FLOG:
2840    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2841                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2842    break;
2843  case ISD::FLOG2:
2844    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2845                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2846    break;
2847  case ISD::FLOG10:
2848    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2849                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2850    break;
2851  case ISD::FEXP:
2852    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2853                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2854    break;
2855  case ISD::FEXP2:
2856    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2857                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2858    break;
2859  case ISD::FTRUNC:
2860    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2861                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2862    break;
2863  case ISD::FFLOOR:
2864    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2865                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2866    break;
2867  case ISD::FCEIL:
2868    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2869                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2870    break;
2871  case ISD::FRINT:
2872    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2873                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2874    break;
2875  case ISD::FNEARBYINT:
2876    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2877                                      RTLIB::NEARBYINT_F64,
2878                                      RTLIB::NEARBYINT_F80,
2879                                      RTLIB::NEARBYINT_PPCF128));
2880    break;
2881  case ISD::FPOWI:
2882    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2883                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2884    break;
2885  case ISD::FPOW:
2886    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2887                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2888    break;
2889  case ISD::FDIV:
2890    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2891                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2892    break;
2893  case ISD::FREM:
2894    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2895                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2896    break;
2897  case ISD::FP16_TO_FP32:
2898    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2899    break;
2900  case ISD::FP32_TO_FP16:
2901    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2902    break;
2903  case ISD::ConstantFP: {
2904    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2905    // Check to see if this FP immediate is already legal.
2906    // If this is a legal constant, turn it into a TargetConstantFP node.
2907    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2908      Results.push_back(SDValue(Node, 0));
2909    else
2910      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2911    break;
2912  }
2913  case ISD::EHSELECTION: {
2914    unsigned Reg = TLI.getExceptionSelectorRegister();
2915    assert(Reg && "Can't expand to unknown register!");
2916    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2917                                         Node->getValueType(0)));
2918    Results.push_back(Results[0].getValue(1));
2919    break;
2920  }
2921  case ISD::EXCEPTIONADDR: {
2922    unsigned Reg = TLI.getExceptionAddressRegister();
2923    assert(Reg && "Can't expand to unknown register!");
2924    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2925                                         Node->getValueType(0)));
2926    Results.push_back(Results[0].getValue(1));
2927    break;
2928  }
2929  case ISD::SUB: {
2930    EVT VT = Node->getValueType(0);
2931    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2932           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2933           "Don't know how to expand this subtraction!");
2934    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2935               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2936    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2937    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2938    break;
2939  }
2940  case ISD::UREM:
2941  case ISD::SREM: {
2942    EVT VT = Node->getValueType(0);
2943    SDVTList VTs = DAG.getVTList(VT, VT);
2944    bool isSigned = Node->getOpcode() == ISD::SREM;
2945    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2946    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2947    Tmp2 = Node->getOperand(0);
2948    Tmp3 = Node->getOperand(1);
2949    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2950      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2951    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2952      // X % Y -> X-X/Y*Y
2953      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2954      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2955      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2956    } else if (isSigned) {
2957      Tmp1 = ExpandIntLibCall(Node, true,
2958                              RTLIB::SREM_I8,
2959                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2960                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2961    } else {
2962      Tmp1 = ExpandIntLibCall(Node, false,
2963                              RTLIB::UREM_I8,
2964                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2965                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2966    }
2967    Results.push_back(Tmp1);
2968    break;
2969  }
2970  case ISD::UDIV:
2971  case ISD::SDIV: {
2972    bool isSigned = Node->getOpcode() == ISD::SDIV;
2973    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2974    EVT VT = Node->getValueType(0);
2975    SDVTList VTs = DAG.getVTList(VT, VT);
2976    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2977      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2978                         Node->getOperand(1));
2979    else if (isSigned)
2980      Tmp1 = ExpandIntLibCall(Node, true,
2981                              RTLIB::SDIV_I8,
2982                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2983                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2984    else
2985      Tmp1 = ExpandIntLibCall(Node, false,
2986                              RTLIB::UDIV_I8,
2987                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2988                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2989    Results.push_back(Tmp1);
2990    break;
2991  }
2992  case ISD::MULHU:
2993  case ISD::MULHS: {
2994    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2995                                                              ISD::SMUL_LOHI;
2996    EVT VT = Node->getValueType(0);
2997    SDVTList VTs = DAG.getVTList(VT, VT);
2998    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2999           "If this wasn't legal, it shouldn't have been created!");
3000    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3001                       Node->getOperand(1));
3002    Results.push_back(Tmp1.getValue(1));
3003    break;
3004  }
3005  case ISD::MUL: {
3006    EVT VT = Node->getValueType(0);
3007    SDVTList VTs = DAG.getVTList(VT, VT);
3008    // See if multiply or divide can be lowered using two-result operations.
3009    // We just need the low half of the multiply; try both the signed
3010    // and unsigned forms. If the target supports both SMUL_LOHI and
3011    // UMUL_LOHI, form a preference by checking which forms of plain
3012    // MULH it supports.
3013    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3014    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3015    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3016    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3017    unsigned OpToUse = 0;
3018    if (HasSMUL_LOHI && !HasMULHS) {
3019      OpToUse = ISD::SMUL_LOHI;
3020    } else if (HasUMUL_LOHI && !HasMULHU) {
3021      OpToUse = ISD::UMUL_LOHI;
3022    } else if (HasSMUL_LOHI) {
3023      OpToUse = ISD::SMUL_LOHI;
3024    } else if (HasUMUL_LOHI) {
3025      OpToUse = ISD::UMUL_LOHI;
3026    }
3027    if (OpToUse) {
3028      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3029                                    Node->getOperand(1)));
3030      break;
3031    }
3032    Tmp1 = ExpandIntLibCall(Node, false,
3033                            RTLIB::MUL_I8,
3034                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3035                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3036    Results.push_back(Tmp1);
3037    break;
3038  }
3039  case ISD::SADDO:
3040  case ISD::SSUBO: {
3041    SDValue LHS = Node->getOperand(0);
3042    SDValue RHS = Node->getOperand(1);
3043    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3044                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3045                              LHS, RHS);
3046    Results.push_back(Sum);
3047    EVT OType = Node->getValueType(1);
3048
3049    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3050
3051    //   LHSSign -> LHS >= 0
3052    //   RHSSign -> RHS >= 0
3053    //   SumSign -> Sum >= 0
3054    //
3055    //   Add:
3056    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3057    //   Sub:
3058    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3059    //
3060    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3061    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3062    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3063                                      Node->getOpcode() == ISD::SADDO ?
3064                                      ISD::SETEQ : ISD::SETNE);
3065
3066    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3067    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3068
3069    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3070    Results.push_back(Cmp);
3071    break;
3072  }
3073  case ISD::UADDO:
3074  case ISD::USUBO: {
3075    SDValue LHS = Node->getOperand(0);
3076    SDValue RHS = Node->getOperand(1);
3077    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3078                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3079                              LHS, RHS);
3080    Results.push_back(Sum);
3081    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3082                                   Node->getOpcode () == ISD::UADDO ?
3083                                   ISD::SETULT : ISD::SETUGT));
3084    break;
3085  }
3086  case ISD::UMULO:
3087  case ISD::SMULO: {
3088    EVT VT = Node->getValueType(0);
3089    SDValue LHS = Node->getOperand(0);
3090    SDValue RHS = Node->getOperand(1);
3091    SDValue BottomHalf;
3092    SDValue TopHalf;
3093    static const unsigned Ops[2][3] =
3094        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3095          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3096    bool isSigned = Node->getOpcode() == ISD::SMULO;
3097    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3098      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3099      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3100    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3101      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3102                               RHS);
3103      TopHalf = BottomHalf.getValue(1);
3104    } else {
3105      // FIXME: We should be able to fall back to a libcall with an illegal
3106      // type in some cases.
3107      // Also, we can fall back to a division in some cases, but that's a big
3108      // performance hit in the general case.
3109      assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3110                                               VT.getSizeInBits() * 2)) &&
3111             "Don't know how to expand this operation yet!");
3112      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3113      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3114      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3115      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3116      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3117                               DAG.getIntPtrConstant(0));
3118      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3119                            DAG.getIntPtrConstant(1));
3120    }
3121    if (isSigned) {
3122      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
3123      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3124      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3125                             ISD::SETNE);
3126    } else {
3127      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3128                             DAG.getConstant(0, VT), ISD::SETNE);
3129    }
3130    Results.push_back(BottomHalf);
3131    Results.push_back(TopHalf);
3132    break;
3133  }
3134  case ISD::BUILD_PAIR: {
3135    EVT PairTy = Node->getValueType(0);
3136    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3137    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3138    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3139                       DAG.getConstant(PairTy.getSizeInBits()/2,
3140                                       TLI.getShiftAmountTy()));
3141    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3142    break;
3143  }
3144  case ISD::SELECT:
3145    Tmp1 = Node->getOperand(0);
3146    Tmp2 = Node->getOperand(1);
3147    Tmp3 = Node->getOperand(2);
3148    if (Tmp1.getOpcode() == ISD::SETCC) {
3149      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3150                             Tmp2, Tmp3,
3151                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3152    } else {
3153      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3154                             DAG.getConstant(0, Tmp1.getValueType()),
3155                             Tmp2, Tmp3, ISD::SETNE);
3156    }
3157    Results.push_back(Tmp1);
3158    break;
3159  case ISD::BR_JT: {
3160    SDValue Chain = Node->getOperand(0);
3161    SDValue Table = Node->getOperand(1);
3162    SDValue Index = Node->getOperand(2);
3163
3164    EVT PTy = TLI.getPointerTy();
3165
3166    const TargetData &TD = *TLI.getTargetData();
3167    unsigned EntrySize =
3168      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3169
3170    Index = DAG.getNode(ISD::MUL, dl, PTy,
3171                        Index, DAG.getConstant(EntrySize, PTy));
3172    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3173
3174    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3175    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, PTy, dl, Chain, Addr,
3176                                MachinePointerInfo::getJumpTable(), MemVT,
3177                                false, false, 0);
3178    Addr = LD;
3179    if (TM.getRelocationModel() == Reloc::PIC_) {
3180      // For PIC, the sequence is:
3181      // BRIND(load(Jumptable + index) + RelocBase)
3182      // RelocBase can be JumpTable, GOT or some sort of global base.
3183      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3184                          TLI.getPICJumpTableRelocBase(Table, DAG));
3185    }
3186    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3187    Results.push_back(Tmp1);
3188    break;
3189  }
3190  case ISD::BRCOND:
3191    // Expand brcond's setcc into its constituent parts and create a BR_CC
3192    // Node.
3193    Tmp1 = Node->getOperand(0);
3194    Tmp2 = Node->getOperand(1);
3195    if (Tmp2.getOpcode() == ISD::SETCC) {
3196      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3197                         Tmp1, Tmp2.getOperand(2),
3198                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3199                         Node->getOperand(2));
3200    } else {
3201      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3202                         DAG.getCondCode(ISD::SETNE), Tmp2,
3203                         DAG.getConstant(0, Tmp2.getValueType()),
3204                         Node->getOperand(2));
3205    }
3206    Results.push_back(Tmp1);
3207    break;
3208  case ISD::SETCC: {
3209    Tmp1 = Node->getOperand(0);
3210    Tmp2 = Node->getOperand(1);
3211    Tmp3 = Node->getOperand(2);
3212    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3213
3214    // If we expanded the SETCC into an AND/OR, return the new node
3215    if (Tmp2.getNode() == 0) {
3216      Results.push_back(Tmp1);
3217      break;
3218    }
3219
3220    // Otherwise, SETCC for the given comparison type must be completely
3221    // illegal; expand it into a SELECT_CC.
3222    EVT VT = Node->getValueType(0);
3223    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3224                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3225    Results.push_back(Tmp1);
3226    break;
3227  }
3228  case ISD::SELECT_CC: {
3229    Tmp1 = Node->getOperand(0);   // LHS
3230    Tmp2 = Node->getOperand(1);   // RHS
3231    Tmp3 = Node->getOperand(2);   // True
3232    Tmp4 = Node->getOperand(3);   // False
3233    SDValue CC = Node->getOperand(4);
3234
3235    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3236                          Tmp1, Tmp2, CC, dl);
3237
3238    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3239    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3240    CC = DAG.getCondCode(ISD::SETNE);
3241    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3242                       Tmp3, Tmp4, CC);
3243    Results.push_back(Tmp1);
3244    break;
3245  }
3246  case ISD::BR_CC: {
3247    Tmp1 = Node->getOperand(0);              // Chain
3248    Tmp2 = Node->getOperand(2);              // LHS
3249    Tmp3 = Node->getOperand(3);              // RHS
3250    Tmp4 = Node->getOperand(1);              // CC
3251
3252    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3253                          Tmp2, Tmp3, Tmp4, dl);
3254    LastCALLSEQ_END = DAG.getEntryNode();
3255
3256    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3257    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3258    Tmp4 = DAG.getCondCode(ISD::SETNE);
3259    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3260                       Tmp3, Node->getOperand(4));
3261    Results.push_back(Tmp1);
3262    break;
3263  }
3264  case ISD::GLOBAL_OFFSET_TABLE:
3265  case ISD::GlobalAddress:
3266  case ISD::GlobalTLSAddress:
3267  case ISD::ExternalSymbol:
3268  case ISD::ConstantPool:
3269  case ISD::JumpTable:
3270  case ISD::INTRINSIC_W_CHAIN:
3271  case ISD::INTRINSIC_WO_CHAIN:
3272  case ISD::INTRINSIC_VOID:
3273    // FIXME: Custom lowering for these operations shouldn't return null!
3274    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3275      Results.push_back(SDValue(Node, i));
3276    break;
3277  }
3278}
3279void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3280                                       SmallVectorImpl<SDValue> &Results) {
3281  EVT OVT = Node->getValueType(0);
3282  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3283      Node->getOpcode() == ISD::SINT_TO_FP ||
3284      Node->getOpcode() == ISD::SETCC) {
3285    OVT = Node->getOperand(0).getValueType();
3286  }
3287  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3288  DebugLoc dl = Node->getDebugLoc();
3289  SDValue Tmp1, Tmp2, Tmp3;
3290  switch (Node->getOpcode()) {
3291  case ISD::CTTZ:
3292  case ISD::CTLZ:
3293  case ISD::CTPOP:
3294    // Zero extend the argument.
3295    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3296    // Perform the larger operation.
3297    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3298    if (Node->getOpcode() == ISD::CTTZ) {
3299      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3300      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3301                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3302                          ISD::SETEQ);
3303      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3304                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3305    } else if (Node->getOpcode() == ISD::CTLZ) {
3306      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3307      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3308                          DAG.getConstant(NVT.getSizeInBits() -
3309                                          OVT.getSizeInBits(), NVT));
3310    }
3311    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3312    break;
3313  case ISD::BSWAP: {
3314    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3315    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3316    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3317    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3318                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3319    Results.push_back(Tmp1);
3320    break;
3321  }
3322  case ISD::FP_TO_UINT:
3323  case ISD::FP_TO_SINT:
3324    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3325                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3326    Results.push_back(Tmp1);
3327    break;
3328  case ISD::UINT_TO_FP:
3329  case ISD::SINT_TO_FP:
3330    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3331                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3332    Results.push_back(Tmp1);
3333    break;
3334  case ISD::AND:
3335  case ISD::OR:
3336  case ISD::XOR: {
3337    unsigned ExtOp, TruncOp;
3338    if (OVT.isVector()) {
3339      ExtOp   = ISD::BIT_CONVERT;
3340      TruncOp = ISD::BIT_CONVERT;
3341    } else {
3342      assert(OVT.isInteger() && "Cannot promote logic operation");
3343      ExtOp   = ISD::ANY_EXTEND;
3344      TruncOp = ISD::TRUNCATE;
3345    }
3346    // Promote each of the values to the new type.
3347    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3348    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3349    // Perform the larger operation, then convert back
3350    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3351    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3352    break;
3353  }
3354  case ISD::SELECT: {
3355    unsigned ExtOp, TruncOp;
3356    if (Node->getValueType(0).isVector()) {
3357      ExtOp   = ISD::BIT_CONVERT;
3358      TruncOp = ISD::BIT_CONVERT;
3359    } else if (Node->getValueType(0).isInteger()) {
3360      ExtOp   = ISD::ANY_EXTEND;
3361      TruncOp = ISD::TRUNCATE;
3362    } else {
3363      ExtOp   = ISD::FP_EXTEND;
3364      TruncOp = ISD::FP_ROUND;
3365    }
3366    Tmp1 = Node->getOperand(0);
3367    // Promote each of the values to the new type.
3368    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3369    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3370    // Perform the larger operation, then round down.
3371    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3372    if (TruncOp != ISD::FP_ROUND)
3373      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3374    else
3375      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3376                         DAG.getIntPtrConstant(0));
3377    Results.push_back(Tmp1);
3378    break;
3379  }
3380  case ISD::VECTOR_SHUFFLE: {
3381    SmallVector<int, 8> Mask;
3382    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3383
3384    // Cast the two input vectors.
3385    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3386    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3387
3388    // Convert the shuffle mask to the right # elements.
3389    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3390    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3391    Results.push_back(Tmp1);
3392    break;
3393  }
3394  case ISD::SETCC: {
3395    unsigned ExtOp = ISD::FP_EXTEND;
3396    if (NVT.isInteger()) {
3397      ISD::CondCode CCCode =
3398        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3399      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3400    }
3401    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3402    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3403    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3404                                  Tmp1, Tmp2, Node->getOperand(2)));
3405    break;
3406  }
3407  }
3408}
3409
3410// SelectionDAG::Legalize - This is the entry point for the file.
3411//
3412void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3413  /// run - This is the main entry point to this class.
3414  ///
3415  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3416}
3417
3418