LegalizeDAG.cpp revision fb695a291ec7ad5be9f4c13eb7df14c903d4ad15
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalVariable.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class SelectionDAGLegalize {
56  const TargetMachine &TM;
57  const TargetLowering &TLI;
58  SelectionDAG &DAG;
59  CodeGenOpt::Level OptLevel;
60
61  // Libcall insertion helpers.
62
63  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64  /// legalized.  We use this to ensure that calls are properly serialized
65  /// against each other, including inserted libcalls.
66  SDValue LastCALLSEQ_END;
67
68  /// IsLegalizingCall - This member is used *only* for purposes of providing
69  /// helpful assertions that a libcall isn't created while another call is
70  /// being legalized (which could lead to non-serialized call sequences).
71  bool IsLegalizingCall;
72
73  enum LegalizeAction {
74    Legal,      // The target natively supports this operation.
75    Promote,    // This operation should be executed in a larger type.
76    Expand      // Try to expand this to other ops, otherwise use a libcall.
77  };
78
79  /// ValueTypeActions - This is a bitvector that contains two bits for each
80  /// value type, where the two bits correspond to the LegalizeAction enum.
81  /// This can be queried with "getTypeAction(VT)".
82  TargetLowering::ValueTypeActionImpl ValueTypeActions;
83
84  /// LegalizedNodes - For nodes that are of legal width, and that have more
85  /// than one use, this map indicates what regularized operand to use.  This
86  /// allows us to avoid legalizing the same thing more than once.
87  DenseMap<SDValue, SDValue> LegalizedNodes;
88
89  void AddLegalizedOperand(SDValue From, SDValue To) {
90    LegalizedNodes.insert(std::make_pair(From, To));
91    // If someone requests legalization of the new node, return itself.
92    if (From != To)
93      LegalizedNodes.insert(std::make_pair(To, To));
94  }
95
96public:
97  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
98
99  /// getTypeAction - Return how we should legalize values of this type, either
100  /// it is already legal or we need to expand it into multiple registers of
101  /// smaller integer type, or we need to promote it to a larger type.
102  LegalizeAction getTypeAction(EVT VT) const {
103    return
104        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
105  }
106
107  /// isTypeLegal - Return true if this type is legal on this target.
108  ///
109  bool isTypeLegal(EVT VT) const {
110    return getTypeAction(VT) == Legal;
111  }
112
113  void LegalizeDAG();
114
115private:
116  /// LegalizeOp - We know that the specified value has a legal type.
117  /// Recursively ensure that the operands have legal types, then return the
118  /// result.
119  SDValue LegalizeOp(SDValue O);
120
121  SDValue OptimizeFloatStore(StoreSDNode *ST);
122
123  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
124  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
125  /// is necessary to spill the vector being inserted into to memory, perform
126  /// the insert there, and then read the result back.
127  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
128                                         SDValue Idx, DebugLoc dl);
129  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
130                                  SDValue Idx, DebugLoc dl);
131
132  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
133  /// performs the same shuffe in terms of order or result bytes, but on a type
134  /// whose vector element type is narrower than the original shuffle type.
135  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
136  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
137                                     SDValue N1, SDValue N2,
138                                     SmallVectorImpl<int> &Mask) const;
139
140  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
141                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
142
143  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
144                             DebugLoc dl);
145
146  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
147  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
148                                                 SDNode *Node, bool isSigned);
149  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
150                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
151                          RTLIB::Libcall Call_PPCF128);
152  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
153                           RTLIB::Libcall Call_I8,
154                           RTLIB::Libcall Call_I16,
155                           RTLIB::Libcall Call_I32,
156                           RTLIB::Libcall Call_I64,
157                           RTLIB::Libcall Call_I128);
158
159  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
160  SDValue ExpandBUILD_VECTOR(SDNode *Node);
161  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
162  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
163                                SmallVectorImpl<SDValue> &Results);
164  SDValue ExpandFCOPYSIGN(SDNode *Node);
165  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
166                               DebugLoc dl);
167  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
168                                DebugLoc dl);
169  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
170                                DebugLoc dl);
171
172  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
173  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
174
175  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
176  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
177
178  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
179
180  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
182};
183}
184
185/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
186/// performs the same shuffe in terms of order or result bytes, but on a type
187/// whose vector element type is narrower than the original shuffle type.
188/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
189SDValue
190SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
191                                                 SDValue N1, SDValue N2,
192                                             SmallVectorImpl<int> &Mask) const {
193  unsigned NumMaskElts = VT.getVectorNumElements();
194  unsigned NumDestElts = NVT.getVectorNumElements();
195  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
196
197  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
198
199  if (NumEltsGrowth == 1)
200    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
201
202  SmallVector<int, 8> NewMask;
203  for (unsigned i = 0; i != NumMaskElts; ++i) {
204    int Idx = Mask[i];
205    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
206      if (Idx < 0)
207        NewMask.push_back(-1);
208      else
209        NewMask.push_back(Idx * NumEltsGrowth + j);
210    }
211  }
212  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
213  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
214  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
215}
216
217SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
218                                           CodeGenOpt::Level ol)
219  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
220    DAG(dag), OptLevel(ol),
221    ValueTypeActions(TLI.getValueTypeActions()) {
222  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
223         "Too many value types for ValueTypeActions to hold!");
224}
225
226void SelectionDAGLegalize::LegalizeDAG() {
227  LastCALLSEQ_END = DAG.getEntryNode();
228  IsLegalizingCall = false;
229
230  // The legalize process is inherently a bottom-up recursive process (users
231  // legalize their uses before themselves).  Given infinite stack space, we
232  // could just start legalizing on the root and traverse the whole graph.  In
233  // practice however, this causes us to run out of stack space on large basic
234  // blocks.  To avoid this problem, compute an ordering of the nodes where each
235  // node is only legalized after all of its operands are legalized.
236  DAG.AssignTopologicalOrder();
237  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
238       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
239    LegalizeOp(SDValue(I, 0));
240
241  // Finally, it's possible the root changed.  Get the new root.
242  SDValue OldRoot = DAG.getRoot();
243  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
244  DAG.setRoot(LegalizedNodes[OldRoot]);
245
246  LegalizedNodes.clear();
247
248  // Remove dead nodes now.
249  DAG.RemoveDeadNodes();
250}
251
252
253/// FindCallEndFromCallStart - Given a chained node that is part of a call
254/// sequence, find the CALLSEQ_END node that terminates the call sequence.
255static SDNode *FindCallEndFromCallStart(SDNode *Node) {
256  if (Node->getOpcode() == ISD::CALLSEQ_END)
257    return Node;
258  if (Node->use_empty())
259    return 0;   // No CallSeqEnd
260
261  // The chain is usually at the end.
262  SDValue TheChain(Node, Node->getNumValues()-1);
263  if (TheChain.getValueType() != MVT::Other) {
264    // Sometimes it's at the beginning.
265    TheChain = SDValue(Node, 0);
266    if (TheChain.getValueType() != MVT::Other) {
267      // Otherwise, hunt for it.
268      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
269        if (Node->getValueType(i) == MVT::Other) {
270          TheChain = SDValue(Node, i);
271          break;
272        }
273
274      // Otherwise, we walked into a node without a chain.
275      if (TheChain.getValueType() != MVT::Other)
276        return 0;
277    }
278  }
279
280  for (SDNode::use_iterator UI = Node->use_begin(),
281       E = Node->use_end(); UI != E; ++UI) {
282
283    // Make sure to only follow users of our token chain.
284    SDNode *User = *UI;
285    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
286      if (User->getOperand(i) == TheChain)
287        if (SDNode *Result = FindCallEndFromCallStart(User))
288          return Result;
289  }
290  return 0;
291}
292
293/// FindCallStartFromCallEnd - Given a chained node that is part of a call
294/// sequence, find the CALLSEQ_START node that initiates the call sequence.
295static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
296  assert(Node && "Didn't find callseq_start for a call??");
297  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
298
299  assert(Node->getOperand(0).getValueType() == MVT::Other &&
300         "Node doesn't have a token chain argument!");
301  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
302}
303
304/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
305/// see if any uses can reach Dest.  If no dest operands can get to dest,
306/// legalize them, legalize ourself, and return false, otherwise, return true.
307///
308/// Keep track of the nodes we fine that actually do lead to Dest in
309/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
310///
311bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
312                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
313  if (N == Dest) return true;  // N certainly leads to Dest :)
314
315  // If we've already processed this node and it does lead to Dest, there is no
316  // need to reprocess it.
317  if (NodesLeadingTo.count(N)) return true;
318
319  // If the first result of this node has been already legalized, then it cannot
320  // reach N.
321  if (LegalizedNodes.count(SDValue(N, 0))) return false;
322
323  // Okay, this node has not already been legalized.  Check and legalize all
324  // operands.  If none lead to Dest, then we can legalize this node.
325  bool OperandsLeadToDest = false;
326  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
327    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
328      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
329                                   NodesLeadingTo);
330
331  if (OperandsLeadToDest) {
332    NodesLeadingTo.insert(N);
333    return true;
334  }
335
336  // Okay, this node looks safe, legalize it and return false.
337  LegalizeOp(SDValue(N, 0));
338  return false;
339}
340
341/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
342/// a load from the constant pool.
343static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
344                                SelectionDAG &DAG, const TargetLowering &TLI) {
345  bool Extend = false;
346  DebugLoc dl = CFP->getDebugLoc();
347
348  // If a FP immediate is precise when represented as a float and if the
349  // target can do an extending load from float to double, we put it into
350  // the constant pool as a float, even if it's is statically typed as a
351  // double.  This shrinks FP constants and canonicalizes them for targets where
352  // an FP extending load is the same cost as a normal load (such as on the x87
353  // fp stack or PPC FP unit).
354  EVT VT = CFP->getValueType(0);
355  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
356  if (!UseCP) {
357    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
358    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
359                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
360  }
361
362  EVT OrigVT = VT;
363  EVT SVT = VT;
364  while (SVT != MVT::f32) {
365    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
366    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
367        // Only do this if the target has a native EXTLOAD instruction from
368        // smaller type.
369        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
370        TLI.ShouldShrinkFPConstant(OrigVT)) {
371      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
372      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
373      VT = SVT;
374      Extend = true;
375    }
376  }
377
378  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
379  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
380  if (Extend)
381    return DAG.getExtLoad(ISD::EXTLOAD, dl,
382                          OrigVT, DAG.getEntryNode(),
383                          CPIdx, PseudoSourceValue::getConstantPool(),
384                          0, VT, false, false, Alignment);
385  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
386                     PseudoSourceValue::getConstantPool(), 0, false, false,
387                     Alignment);
388}
389
390/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
391static
392SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
393                             const TargetLowering &TLI) {
394  SDValue Chain = ST->getChain();
395  SDValue Ptr = ST->getBasePtr();
396  SDValue Val = ST->getValue();
397  EVT VT = Val.getValueType();
398  int Alignment = ST->getAlignment();
399  int SVOffset = ST->getSrcValueOffset();
400  DebugLoc dl = ST->getDebugLoc();
401  if (ST->getMemoryVT().isFloatingPoint() ||
402      ST->getMemoryVT().isVector()) {
403    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
404    if (TLI.isTypeLegal(intVT)) {
405      // Expand to a bitconvert of the value to the integer type of the
406      // same size, then a (misaligned) int store.
407      // FIXME: Does not handle truncating floating point stores!
408      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
409      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
410                          SVOffset, ST->isVolatile(), ST->isNonTemporal(),
411                          Alignment);
412    } else {
413      // Do a (aligned) store to a stack slot, then copy from the stack slot
414      // to the final destination using (unaligned) integer loads and stores.
415      EVT StoredVT = ST->getMemoryVT();
416      EVT RegVT =
417        TLI.getRegisterType(*DAG.getContext(),
418                            EVT::getIntegerVT(*DAG.getContext(),
419                                              StoredVT.getSizeInBits()));
420      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
421      unsigned RegBytes = RegVT.getSizeInBits() / 8;
422      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
423
424      // Make sure the stack slot is also aligned for the register type.
425      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
426
427      // Perform the original store, only redirected to the stack slot.
428      SDValue Store = DAG.getTruncStore(Chain, dl,
429                                        Val, StackPtr, NULL, 0, StoredVT,
430                                        false, false, 0);
431      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
432      SmallVector<SDValue, 8> Stores;
433      unsigned Offset = 0;
434
435      // Do all but one copies using the full register width.
436      for (unsigned i = 1; i < NumRegs; i++) {
437        // Load one integer register's worth from the stack slot.
438        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0,
439                                   false, false, 0);
440        // Store it to the final location.  Remember the store.
441        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
442                                      ST->getSrcValue(), SVOffset + Offset,
443                                      ST->isVolatile(), ST->isNonTemporal(),
444                                      MinAlign(ST->getAlignment(), Offset)));
445        // Increment the pointers.
446        Offset += RegBytes;
447        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
448                               Increment);
449        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
450      }
451
452      // The last store may be partial.  Do a truncating store.  On big-endian
453      // machines this requires an extending load from the stack slot to ensure
454      // that the bits are in the right place.
455      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
456                                    8 * (StoredBytes - Offset));
457
458      // Load from the stack slot.
459      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
460                                    NULL, 0, MemVT, false, false, 0);
461
462      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
463                                         ST->getSrcValue(), SVOffset + Offset,
464                                         MemVT, ST->isVolatile(),
465                                         ST->isNonTemporal(),
466                                         MinAlign(ST->getAlignment(), Offset)));
467      // The order of the stores doesn't matter - say it with a TokenFactor.
468      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
469                         Stores.size());
470    }
471  }
472  assert(ST->getMemoryVT().isInteger() &&
473         !ST->getMemoryVT().isVector() &&
474         "Unaligned store of unknown type.");
475  // Get the half-size VT
476  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
477  int NumBits = NewStoredVT.getSizeInBits();
478  int IncrementSize = NumBits / 8;
479
480  // Divide the stored value in two parts.
481  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
482  SDValue Lo = Val;
483  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
484
485  // Store the two parts
486  SDValue Store1, Store2;
487  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
488                             ST->getSrcValue(), SVOffset, NewStoredVT,
489                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
490  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
491                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
492  Alignment = MinAlign(Alignment, IncrementSize);
493  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
494                             ST->getSrcValue(), SVOffset + IncrementSize,
495                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
496                             Alignment);
497
498  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
499}
500
501/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
502static
503SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
504                            const TargetLowering &TLI) {
505  int SVOffset = LD->getSrcValueOffset();
506  SDValue Chain = LD->getChain();
507  SDValue Ptr = LD->getBasePtr();
508  EVT VT = LD->getValueType(0);
509  EVT LoadedVT = LD->getMemoryVT();
510  DebugLoc dl = LD->getDebugLoc();
511  if (VT.isFloatingPoint() || VT.isVector()) {
512    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
513    if (TLI.isTypeLegal(intVT)) {
514      // Expand to a (misaligned) integer load of the same size,
515      // then bitconvert to floating point or vector.
516      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
517                                    SVOffset, LD->isVolatile(),
518                                    LD->isNonTemporal(), LD->getAlignment());
519      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
520      if (VT.isFloatingPoint() && LoadedVT != VT)
521        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
522
523      SDValue Ops[] = { Result, Chain };
524      return DAG.getMergeValues(Ops, 2, dl);
525    } else {
526      // Copy the value to a (aligned) stack slot using (unaligned) integer
527      // loads and stores, then do a (aligned) load from the stack slot.
528      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
529      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
530      unsigned RegBytes = RegVT.getSizeInBits() / 8;
531      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
532
533      // Make sure the stack slot is also aligned for the register type.
534      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
535
536      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
537      SmallVector<SDValue, 8> Stores;
538      SDValue StackPtr = StackBase;
539      unsigned Offset = 0;
540
541      // Do all but one copies using the full register width.
542      for (unsigned i = 1; i < NumRegs; i++) {
543        // Load one integer register's worth from the original location.
544        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
545                                   SVOffset + Offset, LD->isVolatile(),
546                                   LD->isNonTemporal(),
547                                   MinAlign(LD->getAlignment(), Offset));
548        // Follow the load with a store to the stack slot.  Remember the store.
549        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
550                                      NULL, 0, false, false, 0));
551        // Increment the pointers.
552        Offset += RegBytes;
553        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
554        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
555                               Increment);
556      }
557
558      // The last copy may be partial.  Do an extending load.
559      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
560                                    8 * (LoadedBytes - Offset));
561      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
562                                    LD->getSrcValue(), SVOffset + Offset,
563                                    MemVT, LD->isVolatile(),
564                                    LD->isNonTemporal(),
565                                    MinAlign(LD->getAlignment(), Offset));
566      // Follow the load with a store to the stack slot.  Remember the store.
567      // On big-endian machines this requires a truncating store to ensure
568      // that the bits end up in the right place.
569      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
570                                         NULL, 0, MemVT, false, false, 0));
571
572      // The order of the stores doesn't matter - say it with a TokenFactor.
573      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
574                               Stores.size());
575
576      // Finally, perform the original load only redirected to the stack slot.
577      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
578                            NULL, 0, LoadedVT, false, false, 0);
579
580      // Callers expect a MERGE_VALUES node.
581      SDValue Ops[] = { Load, TF };
582      return DAG.getMergeValues(Ops, 2, dl);
583    }
584  }
585  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
586         "Unaligned load of unsupported type.");
587
588  // Compute the new VT that is half the size of the old one.  This is an
589  // integer MVT.
590  unsigned NumBits = LoadedVT.getSizeInBits();
591  EVT NewLoadedVT;
592  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
593  NumBits >>= 1;
594
595  unsigned Alignment = LD->getAlignment();
596  unsigned IncrementSize = NumBits / 8;
597  ISD::LoadExtType HiExtType = LD->getExtensionType();
598
599  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
600  if (HiExtType == ISD::NON_EXTLOAD)
601    HiExtType = ISD::ZEXTLOAD;
602
603  // Load the value in two parts
604  SDValue Lo, Hi;
605  if (TLI.isLittleEndian()) {
606    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
607                        SVOffset, NewLoadedVT, LD->isVolatile(),
608                        LD->isNonTemporal(), Alignment);
609    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
610                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
611    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
612                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
613                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
614  } else {
615    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
616                        SVOffset, NewLoadedVT, LD->isVolatile(),
617                        LD->isNonTemporal(), Alignment);
618    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
619                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
620    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
621                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
622                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
623  }
624
625  // aggregate the two parts
626  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
627  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
628  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
629
630  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
631                             Hi.getValue(1));
632
633  SDValue Ops[] = { Result, TF };
634  return DAG.getMergeValues(Ops, 2, dl);
635}
636
637/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
638/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
639/// is necessary to spill the vector being inserted into to memory, perform
640/// the insert there, and then read the result back.
641SDValue SelectionDAGLegalize::
642PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
643                               DebugLoc dl) {
644  SDValue Tmp1 = Vec;
645  SDValue Tmp2 = Val;
646  SDValue Tmp3 = Idx;
647
648  // If the target doesn't support this, we have to spill the input vector
649  // to a temporary stack slot, update the element, then reload it.  This is
650  // badness.  We could also load the value into a vector register (either
651  // with a "move to register" or "extload into register" instruction, then
652  // permute it into place, if the idx is a constant and if the idx is
653  // supported by the target.
654  EVT VT    = Tmp1.getValueType();
655  EVT EltVT = VT.getVectorElementType();
656  EVT IdxVT = Tmp3.getValueType();
657  EVT PtrVT = TLI.getPointerTy();
658  SDValue StackPtr = DAG.CreateStackTemporary(VT);
659
660  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
661
662  // Store the vector.
663  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
664                            PseudoSourceValue::getFixedStack(SPFI), 0,
665                            false, false, 0);
666
667  // Truncate or zero extend offset to target pointer type.
668  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
669  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
670  // Add the offset to the index.
671  unsigned EltSize = EltVT.getSizeInBits()/8;
672  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
673  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
674  // Store the scalar value.
675  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
676                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT,
677                         false, false, 0);
678  // Load the updated vector.
679  return DAG.getLoad(VT, dl, Ch, StackPtr,
680                     PseudoSourceValue::getFixedStack(SPFI), 0,
681                     false, false, 0);
682}
683
684
685SDValue SelectionDAGLegalize::
686ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
687  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
688    // SCALAR_TO_VECTOR requires that the type of the value being inserted
689    // match the element type of the vector being created, except for
690    // integers in which case the inserted value can be over width.
691    EVT EltVT = Vec.getValueType().getVectorElementType();
692    if (Val.getValueType() == EltVT ||
693        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
694      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
695                                  Vec.getValueType(), Val);
696
697      unsigned NumElts = Vec.getValueType().getVectorNumElements();
698      // We generate a shuffle of InVec and ScVec, so the shuffle mask
699      // should be 0,1,2,3,4,5... with the appropriate element replaced with
700      // elt 0 of the RHS.
701      SmallVector<int, 8> ShufOps;
702      for (unsigned i = 0; i != NumElts; ++i)
703        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
704
705      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
706                                  &ShufOps[0]);
707    }
708  }
709  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
710}
711
712SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
713  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
714  // FIXME: We shouldn't do this for TargetConstantFP's.
715  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
716  // to phase ordering between legalized code and the dag combiner.  This
717  // probably means that we need to integrate dag combiner and legalizer
718  // together.
719  // We generally can't do this one for long doubles.
720  SDValue Tmp1 = ST->getChain();
721  SDValue Tmp2 = ST->getBasePtr();
722  SDValue Tmp3;
723  int SVOffset = ST->getSrcValueOffset();
724  unsigned Alignment = ST->getAlignment();
725  bool isVolatile = ST->isVolatile();
726  bool isNonTemporal = ST->isNonTemporal();
727  DebugLoc dl = ST->getDebugLoc();
728  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
729    if (CFP->getValueType(0) == MVT::f32 &&
730        getTypeAction(MVT::i32) == Legal) {
731      Tmp3 = DAG.getConstant(CFP->getValueAPF().
732                                      bitcastToAPInt().zextOrTrunc(32),
733                              MVT::i32);
734      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
735                          SVOffset, isVolatile, isNonTemporal, Alignment);
736    } else if (CFP->getValueType(0) == MVT::f64) {
737      // If this target supports 64-bit registers, do a single 64-bit store.
738      if (getTypeAction(MVT::i64) == Legal) {
739        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
740                                  zextOrTrunc(64), MVT::i64);
741        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
742                            SVOffset, isVolatile, isNonTemporal, Alignment);
743      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
744        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
745        // stores.  If the target supports neither 32- nor 64-bits, this
746        // xform is certainly not worth it.
747        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
748        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
749        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
750        if (TLI.isBigEndian()) std::swap(Lo, Hi);
751
752        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
753                          SVOffset, isVolatile, isNonTemporal, Alignment);
754        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
755                            DAG.getIntPtrConstant(4));
756        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
757                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
758
759        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
760      }
761    }
762  }
763  return SDValue();
764}
765
766/// LegalizeOp - We know that the specified value has a legal type, and
767/// that its operands are legal.  Now ensure that the operation itself
768/// is legal, recursively ensuring that the operands' operations remain
769/// legal.
770SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
771  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
772    return Op;
773
774  SDNode *Node = Op.getNode();
775  DebugLoc dl = Node->getDebugLoc();
776
777  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
778    assert(getTypeAction(Node->getValueType(i)) == Legal &&
779           "Unexpected illegal type!");
780
781  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
782    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
783            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
784           "Unexpected illegal type!");
785
786  // Note that LegalizeOp may be reentered even from single-use nodes, which
787  // means that we always must cache transformed nodes.
788  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
789  if (I != LegalizedNodes.end()) return I->second;
790
791  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
792  SDValue Result = Op;
793  bool isCustom = false;
794
795  // Figure out the correct action; the way to query this varies by opcode
796  TargetLowering::LegalizeAction Action;
797  bool SimpleFinishLegalizing = true;
798  switch (Node->getOpcode()) {
799  case ISD::INTRINSIC_W_CHAIN:
800  case ISD::INTRINSIC_WO_CHAIN:
801  case ISD::INTRINSIC_VOID:
802  case ISD::VAARG:
803  case ISD::STACKSAVE:
804    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
805    break;
806  case ISD::SINT_TO_FP:
807  case ISD::UINT_TO_FP:
808  case ISD::EXTRACT_VECTOR_ELT:
809    Action = TLI.getOperationAction(Node->getOpcode(),
810                                    Node->getOperand(0).getValueType());
811    break;
812  case ISD::FP_ROUND_INREG:
813  case ISD::SIGN_EXTEND_INREG: {
814    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
815    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
816    break;
817  }
818  case ISD::SELECT_CC:
819  case ISD::SETCC:
820  case ISD::BR_CC: {
821    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
822                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
823    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
824    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
825    ISD::CondCode CCCode =
826        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
827    Action = TLI.getCondCodeAction(CCCode, OpVT);
828    if (Action == TargetLowering::Legal) {
829      if (Node->getOpcode() == ISD::SELECT_CC)
830        Action = TLI.getOperationAction(Node->getOpcode(),
831                                        Node->getValueType(0));
832      else
833        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
834    }
835    break;
836  }
837  case ISD::LOAD:
838  case ISD::STORE:
839    // FIXME: Model these properly.  LOAD and STORE are complicated, and
840    // STORE expects the unlegalized operand in some cases.
841    SimpleFinishLegalizing = false;
842    break;
843  case ISD::CALLSEQ_START:
844  case ISD::CALLSEQ_END:
845    // FIXME: This shouldn't be necessary.  These nodes have special properties
846    // dealing with the recursive nature of legalization.  Removing this
847    // special case should be done as part of making LegalizeDAG non-recursive.
848    SimpleFinishLegalizing = false;
849    break;
850  case ISD::EXTRACT_ELEMENT:
851  case ISD::FLT_ROUNDS_:
852  case ISD::SADDO:
853  case ISD::SSUBO:
854  case ISD::UADDO:
855  case ISD::USUBO:
856  case ISD::SMULO:
857  case ISD::UMULO:
858  case ISD::FPOWI:
859  case ISD::MERGE_VALUES:
860  case ISD::EH_RETURN:
861  case ISD::FRAME_TO_ARGS_OFFSET:
862  case ISD::EH_SJLJ_SETJMP:
863  case ISD::EH_SJLJ_LONGJMP:
864    // These operations lie about being legal: when they claim to be legal,
865    // they should actually be expanded.
866    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
867    if (Action == TargetLowering::Legal)
868      Action = TargetLowering::Expand;
869    break;
870  case ISD::TRAMPOLINE:
871  case ISD::FRAMEADDR:
872  case ISD::RETURNADDR:
873    // These operations lie about being legal: when they claim to be legal,
874    // they should actually be custom-lowered.
875    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
876    if (Action == TargetLowering::Legal)
877      Action = TargetLowering::Custom;
878    break;
879  case ISD::BUILD_VECTOR:
880    // A weird case: legalization for BUILD_VECTOR never legalizes the
881    // operands!
882    // FIXME: This really sucks... changing it isn't semantically incorrect,
883    // but it massively pessimizes the code for floating-point BUILD_VECTORs
884    // because ConstantFP operands get legalized into constant pool loads
885    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
886    // though, because BUILD_VECTORS usually get lowered into other nodes
887    // which get legalized properly.
888    SimpleFinishLegalizing = false;
889    break;
890  default:
891    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
892      Action = TargetLowering::Legal;
893    } else {
894      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
895    }
896    break;
897  }
898
899  if (SimpleFinishLegalizing) {
900    SmallVector<SDValue, 8> Ops, ResultVals;
901    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
902      Ops.push_back(LegalizeOp(Node->getOperand(i)));
903    switch (Node->getOpcode()) {
904    default: break;
905    case ISD::BR:
906    case ISD::BRIND:
907    case ISD::BR_JT:
908    case ISD::BR_CC:
909    case ISD::BRCOND:
910      // Branches tweak the chain to include LastCALLSEQ_END
911      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
912                            LastCALLSEQ_END);
913      Ops[0] = LegalizeOp(Ops[0]);
914      LastCALLSEQ_END = DAG.getEntryNode();
915      break;
916    case ISD::SHL:
917    case ISD::SRL:
918    case ISD::SRA:
919    case ISD::ROTL:
920    case ISD::ROTR:
921      // Legalizing shifts/rotates requires adjusting the shift amount
922      // to the appropriate width.
923      if (!Ops[1].getValueType().isVector())
924        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
925      break;
926    case ISD::SRL_PARTS:
927    case ISD::SRA_PARTS:
928    case ISD::SHL_PARTS:
929      // Legalizing shifts/rotates requires adjusting the shift amount
930      // to the appropriate width.
931      if (!Ops[2].getValueType().isVector())
932        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
933      break;
934    }
935
936    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
937                                            Ops.size()), 0);
938    switch (Action) {
939    case TargetLowering::Legal:
940      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
941        ResultVals.push_back(Result.getValue(i));
942      break;
943    case TargetLowering::Custom:
944      // FIXME: The handling for custom lowering with multiple results is
945      // a complete mess.
946      Tmp1 = TLI.LowerOperation(Result, DAG);
947      if (Tmp1.getNode()) {
948        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
949          if (e == 1)
950            ResultVals.push_back(Tmp1);
951          else
952            ResultVals.push_back(Tmp1.getValue(i));
953        }
954        break;
955      }
956
957      // FALL THROUGH
958    case TargetLowering::Expand:
959      ExpandNode(Result.getNode(), ResultVals);
960      break;
961    case TargetLowering::Promote:
962      PromoteNode(Result.getNode(), ResultVals);
963      break;
964    }
965    if (!ResultVals.empty()) {
966      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
967        if (ResultVals[i] != SDValue(Node, i))
968          ResultVals[i] = LegalizeOp(ResultVals[i]);
969        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
970      }
971      return ResultVals[Op.getResNo()];
972    }
973  }
974
975  switch (Node->getOpcode()) {
976  default:
977#ifndef NDEBUG
978    dbgs() << "NODE: ";
979    Node->dump( &DAG);
980    dbgs() << "\n";
981#endif
982    assert(0 && "Do not know how to legalize this operator!");
983
984  case ISD::BUILD_VECTOR:
985    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
986    default: assert(0 && "This action is not supported yet!");
987    case TargetLowering::Custom:
988      Tmp3 = TLI.LowerOperation(Result, DAG);
989      if (Tmp3.getNode()) {
990        Result = Tmp3;
991        break;
992      }
993      // FALLTHROUGH
994    case TargetLowering::Expand:
995      Result = ExpandBUILD_VECTOR(Result.getNode());
996      break;
997    }
998    break;
999  case ISD::CALLSEQ_START: {
1000    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1001
1002    // Recursively Legalize all of the inputs of the call end that do not lead
1003    // to this call start.  This ensures that any libcalls that need be inserted
1004    // are inserted *before* the CALLSEQ_START.
1005    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1006    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1007      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1008                                   NodesLeadingTo);
1009    }
1010
1011    // Now that we have legalized all of the inputs (which may have inserted
1012    // libcalls), create the new CALLSEQ_START node.
1013    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1014
1015    // Merge in the last call to ensure that this call starts after the last
1016    // call ended.
1017    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1018      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1019                         Tmp1, LastCALLSEQ_END);
1020      Tmp1 = LegalizeOp(Tmp1);
1021    }
1022
1023    // Do not try to legalize the target-specific arguments (#1+).
1024    if (Tmp1 != Node->getOperand(0)) {
1025      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1026      Ops[0] = Tmp1;
1027      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1028                                              Ops.size()), Result.getResNo());
1029    }
1030
1031    // Remember that the CALLSEQ_START is legalized.
1032    AddLegalizedOperand(Op.getValue(0), Result);
1033    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1034      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1035
1036    // Now that the callseq_start and all of the non-call nodes above this call
1037    // sequence have been legalized, legalize the call itself.  During this
1038    // process, no libcalls can/will be inserted, guaranteeing that no calls
1039    // can overlap.
1040    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1041    // Note that we are selecting this call!
1042    LastCALLSEQ_END = SDValue(CallEnd, 0);
1043    IsLegalizingCall = true;
1044
1045    // Legalize the call, starting from the CALLSEQ_END.
1046    LegalizeOp(LastCALLSEQ_END);
1047    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1048    return Result;
1049  }
1050  case ISD::CALLSEQ_END:
1051    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1052    // will cause this node to be legalized as well as handling libcalls right.
1053    if (LastCALLSEQ_END.getNode() != Node) {
1054      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1055      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1056      assert(I != LegalizedNodes.end() &&
1057             "Legalizing the call start should have legalized this node!");
1058      return I->second;
1059    }
1060
1061    // Otherwise, the call start has been legalized and everything is going
1062    // according to plan.  Just legalize ourselves normally here.
1063    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1064    // Do not try to legalize the target-specific arguments (#1+), except for
1065    // an optional flag input.
1066    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1067      if (Tmp1 != Node->getOperand(0)) {
1068        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1069        Ops[0] = Tmp1;
1070        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1071                                                &Ops[0], Ops.size()),
1072                         Result.getResNo());
1073      }
1074    } else {
1075      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1076      if (Tmp1 != Node->getOperand(0) ||
1077          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1078        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1079        Ops[0] = Tmp1;
1080        Ops.back() = Tmp2;
1081        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1082                                                &Ops[0], Ops.size()),
1083                         Result.getResNo());
1084      }
1085    }
1086    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1087    // This finishes up call legalization.
1088    IsLegalizingCall = false;
1089
1090    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1091    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1092    if (Node->getNumValues() == 2)
1093      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1094    return Result.getValue(Op.getResNo());
1095  case ISD::LOAD: {
1096    LoadSDNode *LD = cast<LoadSDNode>(Node);
1097    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1098    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1099
1100    ISD::LoadExtType ExtType = LD->getExtensionType();
1101    if (ExtType == ISD::NON_EXTLOAD) {
1102      EVT VT = Node->getValueType(0);
1103      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1104                                              Tmp1, Tmp2, LD->getOffset()),
1105                       Result.getResNo());
1106      Tmp3 = Result.getValue(0);
1107      Tmp4 = Result.getValue(1);
1108
1109      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1110      default: assert(0 && "This action is not supported yet!");
1111      case TargetLowering::Legal:
1112        // If this is an unaligned load and the target doesn't support it,
1113        // expand it.
1114        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1115          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1116          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1117          if (LD->getAlignment() < ABIAlignment){
1118            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1119                                         DAG, TLI);
1120            Tmp3 = Result.getOperand(0);
1121            Tmp4 = Result.getOperand(1);
1122            Tmp3 = LegalizeOp(Tmp3);
1123            Tmp4 = LegalizeOp(Tmp4);
1124          }
1125        }
1126        break;
1127      case TargetLowering::Custom:
1128        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1129        if (Tmp1.getNode()) {
1130          Tmp3 = LegalizeOp(Tmp1);
1131          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1132        }
1133        break;
1134      case TargetLowering::Promote: {
1135        // Only promote a load of vector type to another.
1136        assert(VT.isVector() && "Cannot promote this load!");
1137        // Change base type to a different vector type.
1138        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1139
1140        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1141                           LD->getSrcValueOffset(),
1142                           LD->isVolatile(), LD->isNonTemporal(),
1143                           LD->getAlignment());
1144        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1145        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1146        break;
1147      }
1148      }
1149      // Since loads produce two values, make sure to remember that we
1150      // legalized both of them.
1151      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1152      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1153      return Op.getResNo() ? Tmp4 : Tmp3;
1154    } else {
1155      EVT SrcVT = LD->getMemoryVT();
1156      unsigned SrcWidth = SrcVT.getSizeInBits();
1157      int SVOffset = LD->getSrcValueOffset();
1158      unsigned Alignment = LD->getAlignment();
1159      bool isVolatile = LD->isVolatile();
1160      bool isNonTemporal = LD->isNonTemporal();
1161
1162      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1163          // Some targets pretend to have an i1 loading operation, and actually
1164          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1165          // bits are guaranteed to be zero; it helps the optimizers understand
1166          // that these bits are zero.  It is also useful for EXTLOAD, since it
1167          // tells the optimizers that those bits are undefined.  It would be
1168          // nice to have an effective generic way of getting these benefits...
1169          // Until such a way is found, don't insist on promoting i1 here.
1170          (SrcVT != MVT::i1 ||
1171           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1172        // Promote to a byte-sized load if not loading an integral number of
1173        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1174        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1175        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1176        SDValue Ch;
1177
1178        // The extra bits are guaranteed to be zero, since we stored them that
1179        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1180
1181        ISD::LoadExtType NewExtType =
1182          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1183
1184        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1185                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1186                                NVT, isVolatile, isNonTemporal, Alignment);
1187
1188        Ch = Result.getValue(1); // The chain.
1189
1190        if (ExtType == ISD::SEXTLOAD)
1191          // Having the top bits zero doesn't help when sign extending.
1192          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1193                               Result.getValueType(),
1194                               Result, DAG.getValueType(SrcVT));
1195        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1196          // All the top bits are guaranteed to be zero - inform the optimizers.
1197          Result = DAG.getNode(ISD::AssertZext, dl,
1198                               Result.getValueType(), Result,
1199                               DAG.getValueType(SrcVT));
1200
1201        Tmp1 = LegalizeOp(Result);
1202        Tmp2 = LegalizeOp(Ch);
1203      } else if (SrcWidth & (SrcWidth - 1)) {
1204        // If not loading a power-of-2 number of bits, expand as two loads.
1205        assert(!SrcVT.isVector() && "Unsupported extload!");
1206        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1207        assert(RoundWidth < SrcWidth);
1208        unsigned ExtraWidth = SrcWidth - RoundWidth;
1209        assert(ExtraWidth < RoundWidth);
1210        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1211               "Load size not an integral number of bytes!");
1212        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1213        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1214        SDValue Lo, Hi, Ch;
1215        unsigned IncrementSize;
1216
1217        if (TLI.isLittleEndian()) {
1218          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1219          // Load the bottom RoundWidth bits.
1220          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1221                              Node->getValueType(0), Tmp1, Tmp2,
1222                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1223                              isNonTemporal, Alignment);
1224
1225          // Load the remaining ExtraWidth bits.
1226          IncrementSize = RoundWidth / 8;
1227          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1228                             DAG.getIntPtrConstant(IncrementSize));
1229          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1230                              LD->getSrcValue(), SVOffset + IncrementSize,
1231                              ExtraVT, isVolatile, isNonTemporal,
1232                              MinAlign(Alignment, IncrementSize));
1233
1234          // Build a factor node to remember that this load is independent of
1235          // the other one.
1236          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1237                           Hi.getValue(1));
1238
1239          // Move the top bits to the right place.
1240          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1241                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1242
1243          // Join the hi and lo parts.
1244          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1245        } else {
1246          // Big endian - avoid unaligned loads.
1247          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1248          // Load the top RoundWidth bits.
1249          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1250                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1251                              isNonTemporal, Alignment);
1252
1253          // Load the remaining ExtraWidth bits.
1254          IncrementSize = RoundWidth / 8;
1255          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1256                             DAG.getIntPtrConstant(IncrementSize));
1257          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1258                              Node->getValueType(0), Tmp1, Tmp2,
1259                              LD->getSrcValue(), SVOffset + IncrementSize,
1260                              ExtraVT, isVolatile, isNonTemporal,
1261                              MinAlign(Alignment, IncrementSize));
1262
1263          // Build a factor node to remember that this load is independent of
1264          // the other one.
1265          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1266                           Hi.getValue(1));
1267
1268          // Move the top bits to the right place.
1269          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1270                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1271
1272          // Join the hi and lo parts.
1273          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1274        }
1275
1276        Tmp1 = LegalizeOp(Result);
1277        Tmp2 = LegalizeOp(Ch);
1278      } else {
1279        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1280        default: assert(0 && "This action is not supported yet!");
1281        case TargetLowering::Custom:
1282          isCustom = true;
1283          // FALLTHROUGH
1284        case TargetLowering::Legal:
1285          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1286                                                  Tmp1, Tmp2, LD->getOffset()),
1287                           Result.getResNo());
1288          Tmp1 = Result.getValue(0);
1289          Tmp2 = Result.getValue(1);
1290
1291          if (isCustom) {
1292            Tmp3 = TLI.LowerOperation(Result, DAG);
1293            if (Tmp3.getNode()) {
1294              Tmp1 = LegalizeOp(Tmp3);
1295              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1296            }
1297          } else {
1298            // If this is an unaligned load and the target doesn't support it,
1299            // expand it.
1300            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1301              const Type *Ty =
1302                LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1303              unsigned ABIAlignment =
1304                TLI.getTargetData()->getABITypeAlignment(Ty);
1305              if (LD->getAlignment() < ABIAlignment){
1306                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1307                                             DAG, TLI);
1308                Tmp1 = Result.getOperand(0);
1309                Tmp2 = Result.getOperand(1);
1310                Tmp1 = LegalizeOp(Tmp1);
1311                Tmp2 = LegalizeOp(Tmp2);
1312              }
1313            }
1314          }
1315          break;
1316        case TargetLowering::Expand:
1317          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1318          // f128 = EXTLOAD {f32,f64} too
1319          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1320                                     Node->getValueType(0) == MVT::f128)) ||
1321              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1322            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1323                                       LD->getSrcValueOffset(),
1324                                       LD->isVolatile(), LD->isNonTemporal(),
1325                                       LD->getAlignment());
1326            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1327                                 Node->getValueType(0), Load);
1328            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1329            Tmp2 = LegalizeOp(Load.getValue(1));
1330            break;
1331          }
1332          assert(ExtType != ISD::EXTLOAD &&
1333                 "EXTLOAD should always be supported!");
1334          // Turn the unsupported load into an EXTLOAD followed by an explicit
1335          // zero/sign extend inreg.
1336          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1337                                  Tmp1, Tmp2, LD->getSrcValue(),
1338                                  LD->getSrcValueOffset(), SrcVT,
1339                                  LD->isVolatile(), LD->isNonTemporal(),
1340                                  LD->getAlignment());
1341          SDValue ValRes;
1342          if (ExtType == ISD::SEXTLOAD)
1343            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1344                                 Result.getValueType(),
1345                                 Result, DAG.getValueType(SrcVT));
1346          else
1347            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1348          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1349          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1350          break;
1351        }
1352      }
1353
1354      // Since loads produce two values, make sure to remember that we legalized
1355      // both of them.
1356      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1357      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1358      return Op.getResNo() ? Tmp2 : Tmp1;
1359    }
1360  }
1361  case ISD::STORE: {
1362    StoreSDNode *ST = cast<StoreSDNode>(Node);
1363    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1364    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1365    int SVOffset = ST->getSrcValueOffset();
1366    unsigned Alignment = ST->getAlignment();
1367    bool isVolatile = ST->isVolatile();
1368    bool isNonTemporal = ST->isNonTemporal();
1369
1370    if (!ST->isTruncatingStore()) {
1371      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1372        Result = SDValue(OptStore, 0);
1373        break;
1374      }
1375
1376      {
1377        Tmp3 = LegalizeOp(ST->getValue());
1378        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1379                                                Tmp1, Tmp3, Tmp2,
1380                                                ST->getOffset()),
1381                         Result.getResNo());
1382
1383        EVT VT = Tmp3.getValueType();
1384        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1385        default: assert(0 && "This action is not supported yet!");
1386        case TargetLowering::Legal:
1387          // If this is an unaligned store and the target doesn't support it,
1388          // expand it.
1389          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1390            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1391            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1392            if (ST->getAlignment() < ABIAlignment)
1393              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1394                                            DAG, TLI);
1395          }
1396          break;
1397        case TargetLowering::Custom:
1398          Tmp1 = TLI.LowerOperation(Result, DAG);
1399          if (Tmp1.getNode()) Result = Tmp1;
1400          break;
1401        case TargetLowering::Promote:
1402          assert(VT.isVector() && "Unknown legal promote case!");
1403          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1404                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1405          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1406                                ST->getSrcValue(), SVOffset, isVolatile,
1407                                isNonTemporal, Alignment);
1408          break;
1409        }
1410        break;
1411      }
1412    } else {
1413      Tmp3 = LegalizeOp(ST->getValue());
1414
1415      EVT StVT = ST->getMemoryVT();
1416      unsigned StWidth = StVT.getSizeInBits();
1417
1418      if (StWidth != StVT.getStoreSizeInBits()) {
1419        // Promote to a byte-sized store with upper bits zero if not
1420        // storing an integral number of bytes.  For example, promote
1421        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1422        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1423                                    StVT.getStoreSizeInBits());
1424        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1425        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1426                                   SVOffset, NVT, isVolatile, isNonTemporal,
1427                                   Alignment);
1428      } else if (StWidth & (StWidth - 1)) {
1429        // If not storing a power-of-2 number of bits, expand as two stores.
1430        assert(!StVT.isVector() && "Unsupported truncstore!");
1431        unsigned RoundWidth = 1 << Log2_32(StWidth);
1432        assert(RoundWidth < StWidth);
1433        unsigned ExtraWidth = StWidth - RoundWidth;
1434        assert(ExtraWidth < RoundWidth);
1435        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1436               "Store size not an integral number of bytes!");
1437        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1438        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1439        SDValue Lo, Hi;
1440        unsigned IncrementSize;
1441
1442        if (TLI.isLittleEndian()) {
1443          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1444          // Store the bottom RoundWidth bits.
1445          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1446                                 SVOffset, RoundVT,
1447                                 isVolatile, isNonTemporal, Alignment);
1448
1449          // Store the remaining ExtraWidth bits.
1450          IncrementSize = RoundWidth / 8;
1451          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1452                             DAG.getIntPtrConstant(IncrementSize));
1453          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1454                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1455          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1456                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1457                                 isNonTemporal,
1458                                 MinAlign(Alignment, IncrementSize));
1459        } else {
1460          // Big endian - avoid unaligned stores.
1461          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1462          // Store the top RoundWidth bits.
1463          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1464                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1465          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1466                                 SVOffset, RoundVT, isVolatile, isNonTemporal,
1467                                 Alignment);
1468
1469          // Store the remaining ExtraWidth bits.
1470          IncrementSize = RoundWidth / 8;
1471          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1472                             DAG.getIntPtrConstant(IncrementSize));
1473          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1474                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1475                                 isNonTemporal,
1476                                 MinAlign(Alignment, IncrementSize));
1477        }
1478
1479        // The order of the stores doesn't matter.
1480        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1481      } else {
1482        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1483            Tmp2 != ST->getBasePtr())
1484          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1485                                                  Tmp1, Tmp3, Tmp2,
1486                                                  ST->getOffset()),
1487                           Result.getResNo());
1488
1489        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1490        default: assert(0 && "This action is not supported yet!");
1491        case TargetLowering::Legal:
1492          // If this is an unaligned store and the target doesn't support it,
1493          // expand it.
1494          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1495            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1496            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1497            if (ST->getAlignment() < ABIAlignment)
1498              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1499                                            DAG, TLI);
1500          }
1501          break;
1502        case TargetLowering::Custom:
1503          Result = TLI.LowerOperation(Result, DAG);
1504          break;
1505        case Expand:
1506          // TRUNCSTORE:i16 i32 -> STORE i16
1507          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1508          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1509          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1510                                SVOffset, isVolatile, isNonTemporal,
1511                                Alignment);
1512          break;
1513        }
1514      }
1515    }
1516    break;
1517  }
1518  }
1519  assert(Result.getValueType() == Op.getValueType() &&
1520         "Bad legalization!");
1521
1522  // Make sure that the generated code is itself legal.
1523  if (Result != Op)
1524    Result = LegalizeOp(Result);
1525
1526  // Note that LegalizeOp may be reentered even from single-use nodes, which
1527  // means that we always must cache transformed nodes.
1528  AddLegalizedOperand(Op, Result);
1529  return Result;
1530}
1531
1532SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1533  SDValue Vec = Op.getOperand(0);
1534  SDValue Idx = Op.getOperand(1);
1535  DebugLoc dl = Op.getDebugLoc();
1536  // Store the value to a temporary stack slot, then LOAD the returned part.
1537  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1538  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1539                            false, false, 0);
1540
1541  // Add the offset to the index.
1542  unsigned EltSize =
1543      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1544  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1545                    DAG.getConstant(EltSize, Idx.getValueType()));
1546
1547  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1548    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1549  else
1550    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1551
1552  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1553
1554  if (Op.getValueType().isVector())
1555    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0,
1556                       false, false, 0);
1557  else
1558    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1559                          NULL, 0, Vec.getValueType().getVectorElementType(),
1560                          false, false, 0);
1561}
1562
1563SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1564  // We can't handle this case efficiently.  Allocate a sufficiently
1565  // aligned object on the stack, store each element into it, then load
1566  // the result as a vector.
1567  // Create the stack frame object.
1568  EVT VT = Node->getValueType(0);
1569  EVT EltVT = VT.getVectorElementType();
1570  DebugLoc dl = Node->getDebugLoc();
1571  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1572  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1573  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1574
1575  // Emit a store of each element to the stack slot.
1576  SmallVector<SDValue, 8> Stores;
1577  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1578  // Store (in the right endianness) the elements to memory.
1579  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1580    // Ignore undef elements.
1581    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1582
1583    unsigned Offset = TypeByteSize*i;
1584
1585    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1586    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1587
1588    // If the destination vector element type is narrower than the source
1589    // element type, only store the bits necessary.
1590    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1591      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1592                                         Node->getOperand(i), Idx, SV, Offset,
1593                                         EltVT, false, false, 0));
1594    } else
1595      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1596                                    Node->getOperand(i), Idx, SV, Offset,
1597                                    false, false, 0));
1598  }
1599
1600  SDValue StoreChain;
1601  if (!Stores.empty())    // Not all undef elements?
1602    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1603                             &Stores[0], Stores.size());
1604  else
1605    StoreChain = DAG.getEntryNode();
1606
1607  // Result is a load from the stack slot.
1608  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0);
1609}
1610
1611SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1612  DebugLoc dl = Node->getDebugLoc();
1613  SDValue Tmp1 = Node->getOperand(0);
1614  SDValue Tmp2 = Node->getOperand(1);
1615
1616  // Get the sign bit of the RHS.  First obtain a value that has the same
1617  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1618  SDValue SignBit;
1619  EVT FloatVT = Tmp2.getValueType();
1620  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1621  if (isTypeLegal(IVT)) {
1622    // Convert to an integer with the same sign bit.
1623    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1624  } else {
1625    // Store the float to memory, then load the sign part out as an integer.
1626    MVT LoadTy = TLI.getPointerTy();
1627    // First create a temporary that is aligned for both the load and store.
1628    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1629    // Then store the float to it.
1630    SDValue Ch =
1631      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1632                   false, false, 0);
1633    if (TLI.isBigEndian()) {
1634      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1635      // Load out a legal integer with the same sign bit as the float.
1636      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, NULL, 0, false, false, 0);
1637    } else { // Little endian
1638      SDValue LoadPtr = StackPtr;
1639      // The float may be wider than the integer we are going to load.  Advance
1640      // the pointer so that the loaded integer will contain the sign bit.
1641      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1642      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1643      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1644                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1645      // Load a legal integer containing the sign bit.
1646      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, NULL, 0, false, false, 0);
1647      // Move the sign bit to the top bit of the loaded integer.
1648      unsigned BitShift = LoadTy.getSizeInBits() -
1649        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1650      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1651      if (BitShift)
1652        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1653                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1654    }
1655  }
1656  // Now get the sign bit proper, by seeing whether the value is negative.
1657  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1658                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1659                         ISD::SETLT);
1660  // Get the absolute value of the result.
1661  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1662  // Select between the nabs and abs value based on the sign bit of
1663  // the input.
1664  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1665                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1666                     AbsVal);
1667}
1668
1669void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1670                                           SmallVectorImpl<SDValue> &Results) {
1671  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1672  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1673          " not tell us which reg is the stack pointer!");
1674  DebugLoc dl = Node->getDebugLoc();
1675  EVT VT = Node->getValueType(0);
1676  SDValue Tmp1 = SDValue(Node, 0);
1677  SDValue Tmp2 = SDValue(Node, 1);
1678  SDValue Tmp3 = Node->getOperand(2);
1679  SDValue Chain = Tmp1.getOperand(0);
1680
1681  // Chain the dynamic stack allocation so that it doesn't modify the stack
1682  // pointer when other instructions are using the stack.
1683  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1684
1685  SDValue Size  = Tmp2.getOperand(1);
1686  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1687  Chain = SP.getValue(1);
1688  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1689  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1690  if (Align > StackAlign)
1691    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1692                      DAG.getConstant(-(uint64_t)Align, VT));
1693  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1694  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1695
1696  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1697                            DAG.getIntPtrConstant(0, true), SDValue());
1698
1699  Results.push_back(Tmp1);
1700  Results.push_back(Tmp2);
1701}
1702
1703/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1704/// condition code CC on the current target. This routine expands SETCC with
1705/// illegal condition code into AND / OR of multiple SETCC values.
1706void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1707                                                 SDValue &LHS, SDValue &RHS,
1708                                                 SDValue &CC,
1709                                                 DebugLoc dl) {
1710  EVT OpVT = LHS.getValueType();
1711  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1712  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1713  default: assert(0 && "Unknown condition code action!");
1714  case TargetLowering::Legal:
1715    // Nothing to do.
1716    break;
1717  case TargetLowering::Expand: {
1718    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1719    unsigned Opc = 0;
1720    switch (CCCode) {
1721    default: assert(0 && "Don't know how to expand this condition!");
1722    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1723    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1724    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1725    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1726    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1727    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1728    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1729    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1730    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1731    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1732    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1733    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1734    // FIXME: Implement more expansions.
1735    }
1736
1737    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1738    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1739    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1740    RHS = SDValue();
1741    CC  = SDValue();
1742    break;
1743  }
1744  }
1745}
1746
1747/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1748/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1749/// a load from the stack slot to DestVT, extending it if needed.
1750/// The resultant code need not be legal.
1751SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1752                                               EVT SlotVT,
1753                                               EVT DestVT,
1754                                               DebugLoc dl) {
1755  // Create the stack frame object.
1756  unsigned SrcAlign =
1757    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1758                                              getTypeForEVT(*DAG.getContext()));
1759  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1760
1761  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1762  int SPFI = StackPtrFI->getIndex();
1763  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1764
1765  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1766  unsigned SlotSize = SlotVT.getSizeInBits();
1767  unsigned DestSize = DestVT.getSizeInBits();
1768  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1769  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1770
1771  // Emit a store to the stack slot.  Use a truncstore if the input value is
1772  // later than DestVT.
1773  SDValue Store;
1774
1775  if (SrcSize > SlotSize)
1776    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1777                              SV, 0, SlotVT, false, false, SrcAlign);
1778  else {
1779    assert(SrcSize == SlotSize && "Invalid store");
1780    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1781                         SV, 0, false, false, SrcAlign);
1782  }
1783
1784  // Result is a load from the stack slot.
1785  if (SlotSize == DestSize)
1786    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false,
1787                       DestAlign);
1788
1789  assert(SlotSize < DestSize && "Unknown extension!");
1790  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1791                        false, false, DestAlign);
1792}
1793
1794SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1795  DebugLoc dl = Node->getDebugLoc();
1796  // Create a vector sized/aligned stack slot, store the value to element #0,
1797  // then load the whole vector back out.
1798  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1799
1800  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1801  int SPFI = StackPtrFI->getIndex();
1802
1803  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1804                                 StackPtr,
1805                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1806                                 Node->getValueType(0).getVectorElementType(),
1807                                 false, false, 0);
1808  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1809                     PseudoSourceValue::getFixedStack(SPFI), 0,
1810                     false, false, 0);
1811}
1812
1813
1814/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1815/// support the operation, but do support the resultant vector type.
1816SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1817  unsigned NumElems = Node->getNumOperands();
1818  SDValue Value1, Value2;
1819  DebugLoc dl = Node->getDebugLoc();
1820  EVT VT = Node->getValueType(0);
1821  EVT OpVT = Node->getOperand(0).getValueType();
1822  EVT EltVT = VT.getVectorElementType();
1823
1824  // If the only non-undef value is the low element, turn this into a
1825  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1826  bool isOnlyLowElement = true;
1827  bool MoreThanTwoValues = false;
1828  bool isConstant = true;
1829  for (unsigned i = 0; i < NumElems; ++i) {
1830    SDValue V = Node->getOperand(i);
1831    if (V.getOpcode() == ISD::UNDEF)
1832      continue;
1833    if (i > 0)
1834      isOnlyLowElement = false;
1835    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1836      isConstant = false;
1837
1838    if (!Value1.getNode()) {
1839      Value1 = V;
1840    } else if (!Value2.getNode()) {
1841      if (V != Value1)
1842        Value2 = V;
1843    } else if (V != Value1 && V != Value2) {
1844      MoreThanTwoValues = true;
1845    }
1846  }
1847
1848  if (!Value1.getNode())
1849    return DAG.getUNDEF(VT);
1850
1851  if (isOnlyLowElement)
1852    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1853
1854  // If all elements are constants, create a load from the constant pool.
1855  if (isConstant) {
1856    std::vector<Constant*> CV;
1857    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1858      if (ConstantFPSDNode *V =
1859          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1860        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1861      } else if (ConstantSDNode *V =
1862                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1863        if (OpVT==EltVT)
1864          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1865        else {
1866          // If OpVT and EltVT don't match, EltVT is not legal and the
1867          // element values have been promoted/truncated earlier.  Undo this;
1868          // we don't want a v16i8 to become a v16i32 for example.
1869          const ConstantInt *CI = V->getConstantIntValue();
1870          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1871                                        CI->getZExtValue()));
1872        }
1873      } else {
1874        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1875        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1876        CV.push_back(UndefValue::get(OpNTy));
1877      }
1878    }
1879    Constant *CP = ConstantVector::get(CV);
1880    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1881    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1882    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1883                       PseudoSourceValue::getConstantPool(), 0,
1884                       false, false, Alignment);
1885  }
1886
1887  if (!MoreThanTwoValues) {
1888    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1889    for (unsigned i = 0; i < NumElems; ++i) {
1890      SDValue V = Node->getOperand(i);
1891      if (V.getOpcode() == ISD::UNDEF)
1892        continue;
1893      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1894    }
1895    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1896      // Get the splatted value into the low element of a vector register.
1897      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1898      SDValue Vec2;
1899      if (Value2.getNode())
1900        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1901      else
1902        Vec2 = DAG.getUNDEF(VT);
1903
1904      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1905      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1906    }
1907  }
1908
1909  // Otherwise, we can't handle this case efficiently.
1910  return ExpandVectorBuildThroughStack(Node);
1911}
1912
1913// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1914// does not fit into a register, return the lo part and set the hi part to the
1915// by-reg argument.  If it does fit into a single register, return the result
1916// and leave the Hi part unset.
1917SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1918                                            bool isSigned) {
1919  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1920  // The input chain to this libcall is the entry node of the function.
1921  // Legalizing the call will automatically add the previous call to the
1922  // dependence.
1923  SDValue InChain = DAG.getEntryNode();
1924
1925  TargetLowering::ArgListTy Args;
1926  TargetLowering::ArgListEntry Entry;
1927  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1928    EVT ArgVT = Node->getOperand(i).getValueType();
1929    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1930    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1931    Entry.isSExt = isSigned;
1932    Entry.isZExt = !isSigned;
1933    Args.push_back(Entry);
1934  }
1935  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1936                                         TLI.getPointerTy());
1937
1938  // Splice the libcall in wherever FindInputOutputChains tells us to.
1939  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1940  std::pair<SDValue, SDValue> CallInfo =
1941    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1942                    0, TLI.getLibcallCallingConv(LC), false,
1943                    /*isReturnValueUsed=*/true,
1944                    Callee, Args, DAG, Node->getDebugLoc());
1945
1946  // Legalize the call sequence, starting with the chain.  This will advance
1947  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1948  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1949  LegalizeOp(CallInfo.second);
1950  return CallInfo.first;
1951}
1952
1953// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1954// ExpandLibCall except that the first operand is the in-chain.
1955std::pair<SDValue, SDValue>
1956SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1957                                         SDNode *Node,
1958                                         bool isSigned) {
1959  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1960  SDValue InChain = Node->getOperand(0);
1961
1962  TargetLowering::ArgListTy Args;
1963  TargetLowering::ArgListEntry Entry;
1964  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1965    EVT ArgVT = Node->getOperand(i).getValueType();
1966    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1967    Entry.Node = Node->getOperand(i);
1968    Entry.Ty = ArgTy;
1969    Entry.isSExt = isSigned;
1970    Entry.isZExt = !isSigned;
1971    Args.push_back(Entry);
1972  }
1973  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1974                                         TLI.getPointerTy());
1975
1976  // Splice the libcall in wherever FindInputOutputChains tells us to.
1977  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1978  std::pair<SDValue, SDValue> CallInfo =
1979    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1980                    0, TLI.getLibcallCallingConv(LC), false,
1981                    /*isReturnValueUsed=*/true,
1982                    Callee, Args, DAG, Node->getDebugLoc());
1983
1984  // Legalize the call sequence, starting with the chain.  This will advance
1985  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1986  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1987  LegalizeOp(CallInfo.second);
1988  return CallInfo;
1989}
1990
1991SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1992                                              RTLIB::Libcall Call_F32,
1993                                              RTLIB::Libcall Call_F64,
1994                                              RTLIB::Libcall Call_F80,
1995                                              RTLIB::Libcall Call_PPCF128) {
1996  RTLIB::Libcall LC;
1997  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1998  default: assert(0 && "Unexpected request for libcall!");
1999  case MVT::f32: LC = Call_F32; break;
2000  case MVT::f64: LC = Call_F64; break;
2001  case MVT::f80: LC = Call_F80; break;
2002  case MVT::ppcf128: LC = Call_PPCF128; break;
2003  }
2004  return ExpandLibCall(LC, Node, false);
2005}
2006
2007SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2008                                               RTLIB::Libcall Call_I8,
2009                                               RTLIB::Libcall Call_I16,
2010                                               RTLIB::Libcall Call_I32,
2011                                               RTLIB::Libcall Call_I64,
2012                                               RTLIB::Libcall Call_I128) {
2013  RTLIB::Libcall LC;
2014  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2015  default: assert(0 && "Unexpected request for libcall!");
2016  case MVT::i8:   LC = Call_I8; break;
2017  case MVT::i16:  LC = Call_I16; break;
2018  case MVT::i32:  LC = Call_I32; break;
2019  case MVT::i64:  LC = Call_I64; break;
2020  case MVT::i128: LC = Call_I128; break;
2021  }
2022  return ExpandLibCall(LC, Node, isSigned);
2023}
2024
2025/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2026/// INT_TO_FP operation of the specified operand when the target requests that
2027/// we expand it.  At this point, we know that the result and operand types are
2028/// legal for the target.
2029SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2030                                                   SDValue Op0,
2031                                                   EVT DestVT,
2032                                                   DebugLoc dl) {
2033  if (Op0.getValueType() == MVT::i32) {
2034    // simple 32-bit [signed|unsigned] integer to float/double expansion
2035
2036    // Get the stack frame index of a 8 byte buffer.
2037    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2038
2039    // word offset constant for Hi/Lo address computation
2040    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2041    // set up Hi and Lo (into buffer) address based on endian
2042    SDValue Hi = StackSlot;
2043    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2044                             TLI.getPointerTy(), StackSlot, WordOff);
2045    if (TLI.isLittleEndian())
2046      std::swap(Hi, Lo);
2047
2048    // if signed map to unsigned space
2049    SDValue Op0Mapped;
2050    if (isSigned) {
2051      // constant used to invert sign bit (signed to unsigned mapping)
2052      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2053      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2054    } else {
2055      Op0Mapped = Op0;
2056    }
2057    // store the lo of the constructed double - based on integer input
2058    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2059                                  Op0Mapped, Lo, NULL, 0,
2060                                  false, false, 0);
2061    // initial hi portion of constructed double
2062    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2063    // store the hi of the constructed double - biased exponent
2064    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
2065                                false, false, 0);
2066    // load the constructed double
2067    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0,
2068                               false, false, 0);
2069    // FP constant to bias correct the final result
2070    SDValue Bias = DAG.getConstantFP(isSigned ?
2071                                     BitsToDouble(0x4330000080000000ULL) :
2072                                     BitsToDouble(0x4330000000000000ULL),
2073                                     MVT::f64);
2074    // subtract the bias
2075    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2076    // final result
2077    SDValue Result;
2078    // handle final rounding
2079    if (DestVT == MVT::f64) {
2080      // do nothing
2081      Result = Sub;
2082    } else if (DestVT.bitsLT(MVT::f64)) {
2083      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2084                           DAG.getIntPtrConstant(0));
2085    } else if (DestVT.bitsGT(MVT::f64)) {
2086      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2087    }
2088    return Result;
2089  }
2090  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2091  // Code below here assumes !isSigned without checking again.
2092
2093  // Implementation of unsigned i64 to f64 following the algorithm in
2094  // __floatundidf in compiler_rt. This implementation has the advantage
2095  // of performing rounding correctly, both in the default rounding mode
2096  // and in all alternate rounding modes.
2097  // TODO: Generalize this for use with other types.
2098  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2099    SDValue TwoP52 =
2100      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2101    SDValue TwoP84PlusTwoP52 =
2102      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2103    SDValue TwoP84 =
2104      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2105
2106    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2107    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2108                             DAG.getConstant(32, MVT::i64));
2109    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2110    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2111    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2112    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2113    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2114                                TwoP84PlusTwoP52);
2115    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2116  }
2117
2118  // Implementation of unsigned i64 to f32.  This implementation has the
2119  // advantage of performing rounding correctly.
2120  // TODO: Generalize this for use with other types.
2121  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2122    EVT SHVT = TLI.getShiftAmountTy();
2123
2124    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2125         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2126    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2127         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2128    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2129         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2130    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2131                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2132    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2133    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2134                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2135                    ISD::SETUGE);
2136    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2137
2138    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2139                             DAG.getConstant(32, SHVT));
2140    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2141    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2142    SDValue TwoP32 =
2143      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2144    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2145    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2146    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2147    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2148    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2149                       DAG.getIntPtrConstant(0));
2150
2151  }
2152
2153  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2154
2155  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2156                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2157                                 ISD::SETLT);
2158  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2159  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2160                                    SignSet, Four, Zero);
2161
2162  // If the sign bit of the integer is set, the large number will be treated
2163  // as a negative number.  To counteract this, the dynamic code adds an
2164  // offset depending on the data type.
2165  uint64_t FF;
2166  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2167  default: assert(0 && "Unsupported integer type!");
2168  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2169  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2170  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2171  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2172  }
2173  if (TLI.isLittleEndian()) FF <<= 32;
2174  Constant *FudgeFactor = ConstantInt::get(
2175                                       Type::getInt64Ty(*DAG.getContext()), FF);
2176
2177  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2178  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2179  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2180  Alignment = std::min(Alignment, 4u);
2181  SDValue FudgeInReg;
2182  if (DestVT == MVT::f32)
2183    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2184                             PseudoSourceValue::getConstantPool(), 0,
2185                             false, false, Alignment);
2186  else {
2187    FudgeInReg =
2188      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2189                                DAG.getEntryNode(), CPIdx,
2190                                PseudoSourceValue::getConstantPool(), 0,
2191                                MVT::f32, false, false, Alignment));
2192  }
2193
2194  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2195}
2196
2197/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2198/// *INT_TO_FP operation of the specified operand when the target requests that
2199/// we promote it.  At this point, we know that the result and operand types are
2200/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2201/// operation that takes a larger input.
2202SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2203                                                    EVT DestVT,
2204                                                    bool isSigned,
2205                                                    DebugLoc dl) {
2206  // First step, figure out the appropriate *INT_TO_FP operation to use.
2207  EVT NewInTy = LegalOp.getValueType();
2208
2209  unsigned OpToUse = 0;
2210
2211  // Scan for the appropriate larger type to use.
2212  while (1) {
2213    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2214    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2215
2216    // If the target supports SINT_TO_FP of this type, use it.
2217    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2218      OpToUse = ISD::SINT_TO_FP;
2219      break;
2220    }
2221    if (isSigned) continue;
2222
2223    // If the target supports UINT_TO_FP of this type, use it.
2224    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2225      OpToUse = ISD::UINT_TO_FP;
2226      break;
2227    }
2228
2229    // Otherwise, try a larger type.
2230  }
2231
2232  // Okay, we found the operation and type to use.  Zero extend our input to the
2233  // desired type then run the operation on it.
2234  return DAG.getNode(OpToUse, dl, DestVT,
2235                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2236                                 dl, NewInTy, LegalOp));
2237}
2238
2239/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2240/// FP_TO_*INT operation of the specified operand when the target requests that
2241/// we promote it.  At this point, we know that the result and operand types are
2242/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2243/// operation that returns a larger result.
2244SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2245                                                    EVT DestVT,
2246                                                    bool isSigned,
2247                                                    DebugLoc dl) {
2248  // First step, figure out the appropriate FP_TO*INT operation to use.
2249  EVT NewOutTy = DestVT;
2250
2251  unsigned OpToUse = 0;
2252
2253  // Scan for the appropriate larger type to use.
2254  while (1) {
2255    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2256    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2257
2258    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2259      OpToUse = ISD::FP_TO_SINT;
2260      break;
2261    }
2262
2263    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2264      OpToUse = ISD::FP_TO_UINT;
2265      break;
2266    }
2267
2268    // Otherwise, try a larger type.
2269  }
2270
2271
2272  // Okay, we found the operation and type to use.
2273  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2274
2275  // Truncate the result of the extended FP_TO_*INT operation to the desired
2276  // size.
2277  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2278}
2279
2280/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2281///
2282SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2283  EVT VT = Op.getValueType();
2284  EVT SHVT = TLI.getShiftAmountTy();
2285  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2286  switch (VT.getSimpleVT().SimpleTy) {
2287  default: assert(0 && "Unhandled Expand type in BSWAP!");
2288  case MVT::i16:
2289    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2290    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2291    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2292  case MVT::i32:
2293    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2294    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2295    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2296    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2297    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2298    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2299    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2300    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2301    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2302  case MVT::i64:
2303    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2304    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2305    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2306    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2307    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2308    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2309    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2310    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2311    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2312    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2313    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2314    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2315    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2316    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2317    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2318    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2319    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2320    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2321    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2322    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2323    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2324  }
2325}
2326
2327/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2328///
2329SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2330                                             DebugLoc dl) {
2331  switch (Opc) {
2332  default: assert(0 && "Cannot expand this yet!");
2333  case ISD::CTPOP: {
2334    static const uint64_t mask[6] = {
2335      0x5555555555555555ULL, 0x3333333333333333ULL,
2336      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2337      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2338    };
2339    EVT VT = Op.getValueType();
2340    EVT ShVT = TLI.getShiftAmountTy();
2341    unsigned len = VT.getSizeInBits();
2342    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2343      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2344      unsigned EltSize = VT.isVector() ?
2345        VT.getVectorElementType().getSizeInBits() : len;
2346      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2347      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2348      Op = DAG.getNode(ISD::ADD, dl, VT,
2349                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2350                       DAG.getNode(ISD::AND, dl, VT,
2351                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2352                                   Tmp2));
2353    }
2354    return Op;
2355  }
2356  case ISD::CTLZ: {
2357    // for now, we do this:
2358    // x = x | (x >> 1);
2359    // x = x | (x >> 2);
2360    // ...
2361    // x = x | (x >>16);
2362    // x = x | (x >>32); // for 64-bit input
2363    // return popcount(~x);
2364    //
2365    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2366    EVT VT = Op.getValueType();
2367    EVT ShVT = TLI.getShiftAmountTy();
2368    unsigned len = VT.getSizeInBits();
2369    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2370      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2371      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2372                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2373    }
2374    Op = DAG.getNOT(dl, Op, VT);
2375    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2376  }
2377  case ISD::CTTZ: {
2378    // for now, we use: { return popcount(~x & (x - 1)); }
2379    // unless the target has ctlz but not ctpop, in which case we use:
2380    // { return 32 - nlz(~x & (x-1)); }
2381    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2382    EVT VT = Op.getValueType();
2383    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2384                               DAG.getNOT(dl, Op, VT),
2385                               DAG.getNode(ISD::SUB, dl, VT, Op,
2386                                           DAG.getConstant(1, VT)));
2387    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2388    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2389        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2390      return DAG.getNode(ISD::SUB, dl, VT,
2391                         DAG.getConstant(VT.getSizeInBits(), VT),
2392                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2393    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2394  }
2395  }
2396}
2397
2398std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2399  unsigned Opc = Node->getOpcode();
2400  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2401  RTLIB::Libcall LC;
2402
2403  switch (Opc) {
2404  default:
2405    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2406    break;
2407  case ISD::ATOMIC_SWAP:
2408    switch (VT.SimpleTy) {
2409    default: llvm_unreachable("Unexpected value type for atomic!");
2410    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2411    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2412    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2413    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2414    }
2415    break;
2416  case ISD::ATOMIC_CMP_SWAP:
2417    switch (VT.SimpleTy) {
2418    default: llvm_unreachable("Unexpected value type for atomic!");
2419    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2420    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2421    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2422    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2423    }
2424    break;
2425  case ISD::ATOMIC_LOAD_ADD:
2426    switch (VT.SimpleTy) {
2427    default: llvm_unreachable("Unexpected value type for atomic!");
2428    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2429    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2430    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2431    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2432    }
2433    break;
2434  case ISD::ATOMIC_LOAD_SUB:
2435    switch (VT.SimpleTy) {
2436    default: llvm_unreachable("Unexpected value type for atomic!");
2437    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2438    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2439    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2440    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2441    }
2442    break;
2443  case ISD::ATOMIC_LOAD_AND:
2444    switch (VT.SimpleTy) {
2445    default: llvm_unreachable("Unexpected value type for atomic!");
2446    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2447    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2448    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2449    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2450    }
2451    break;
2452  case ISD::ATOMIC_LOAD_OR:
2453    switch (VT.SimpleTy) {
2454    default: llvm_unreachable("Unexpected value type for atomic!");
2455    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2456    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2457    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2458    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2459    }
2460    break;
2461  case ISD::ATOMIC_LOAD_XOR:
2462    switch (VT.SimpleTy) {
2463    default: llvm_unreachable("Unexpected value type for atomic!");
2464    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2465    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2466    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2467    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2468    }
2469    break;
2470  case ISD::ATOMIC_LOAD_NAND:
2471    switch (VT.SimpleTy) {
2472    default: llvm_unreachable("Unexpected value type for atomic!");
2473    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2474    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2475    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2476    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2477    }
2478    break;
2479  }
2480
2481  return ExpandChainLibCall(LC, Node, false);
2482}
2483
2484void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2485                                      SmallVectorImpl<SDValue> &Results) {
2486  DebugLoc dl = Node->getDebugLoc();
2487  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2488  switch (Node->getOpcode()) {
2489  case ISD::CTPOP:
2490  case ISD::CTLZ:
2491  case ISD::CTTZ:
2492    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2493    Results.push_back(Tmp1);
2494    break;
2495  case ISD::BSWAP:
2496    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2497    break;
2498  case ISD::FRAMEADDR:
2499  case ISD::RETURNADDR:
2500  case ISD::FRAME_TO_ARGS_OFFSET:
2501    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2502    break;
2503  case ISD::FLT_ROUNDS_:
2504    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2505    break;
2506  case ISD::EH_RETURN:
2507  case ISD::EH_LABEL:
2508  case ISD::PREFETCH:
2509  case ISD::VAEND:
2510  case ISD::EH_SJLJ_LONGJMP:
2511    Results.push_back(Node->getOperand(0));
2512    break;
2513  case ISD::EH_SJLJ_SETJMP:
2514    Results.push_back(DAG.getConstant(0, MVT::i32));
2515    Results.push_back(Node->getOperand(0));
2516    break;
2517  case ISD::MEMBARRIER: {
2518    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2519    TargetLowering::ArgListTy Args;
2520    std::pair<SDValue, SDValue> CallResult =
2521      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2522                      false, false, false, false, 0, CallingConv::C, false,
2523                      /*isReturnValueUsed=*/true,
2524                      DAG.getExternalSymbol("__sync_synchronize",
2525                                            TLI.getPointerTy()),
2526                      Args, DAG, dl);
2527    Results.push_back(CallResult.second);
2528    break;
2529  }
2530  // By default, atomic intrinsics are marked Legal and lowered. Targets
2531  // which don't support them directly, however, may want libcalls, in which
2532  // case they mark them Expand, and we get here.
2533  // FIXME: Unimplemented for now. Add libcalls.
2534  case ISD::ATOMIC_SWAP:
2535  case ISD::ATOMIC_LOAD_ADD:
2536  case ISD::ATOMIC_LOAD_SUB:
2537  case ISD::ATOMIC_LOAD_AND:
2538  case ISD::ATOMIC_LOAD_OR:
2539  case ISD::ATOMIC_LOAD_XOR:
2540  case ISD::ATOMIC_LOAD_NAND:
2541  case ISD::ATOMIC_LOAD_MIN:
2542  case ISD::ATOMIC_LOAD_MAX:
2543  case ISD::ATOMIC_LOAD_UMIN:
2544  case ISD::ATOMIC_LOAD_UMAX:
2545  case ISD::ATOMIC_CMP_SWAP: {
2546    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2547    Results.push_back(Tmp.first);
2548    Results.push_back(Tmp.second);
2549    break;
2550  }
2551  case ISD::DYNAMIC_STACKALLOC:
2552    ExpandDYNAMIC_STACKALLOC(Node, Results);
2553    break;
2554  case ISD::MERGE_VALUES:
2555    for (unsigned i = 0; i < Node->getNumValues(); i++)
2556      Results.push_back(Node->getOperand(i));
2557    break;
2558  case ISD::UNDEF: {
2559    EVT VT = Node->getValueType(0);
2560    if (VT.isInteger())
2561      Results.push_back(DAG.getConstant(0, VT));
2562    else {
2563      assert(VT.isFloatingPoint() && "Unknown value type!");
2564      Results.push_back(DAG.getConstantFP(0, VT));
2565    }
2566    break;
2567  }
2568  case ISD::TRAP: {
2569    // If this operation is not supported, lower it to 'abort()' call
2570    TargetLowering::ArgListTy Args;
2571    std::pair<SDValue, SDValue> CallResult =
2572      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2573                      false, false, false, false, 0, CallingConv::C, false,
2574                      /*isReturnValueUsed=*/true,
2575                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2576                      Args, DAG, dl);
2577    Results.push_back(CallResult.second);
2578    break;
2579  }
2580  case ISD::FP_ROUND:
2581  case ISD::BIT_CONVERT:
2582    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2583                            Node->getValueType(0), dl);
2584    Results.push_back(Tmp1);
2585    break;
2586  case ISD::FP_EXTEND:
2587    Tmp1 = EmitStackConvert(Node->getOperand(0),
2588                            Node->getOperand(0).getValueType(),
2589                            Node->getValueType(0), dl);
2590    Results.push_back(Tmp1);
2591    break;
2592  case ISD::SIGN_EXTEND_INREG: {
2593    // NOTE: we could fall back on load/store here too for targets without
2594    // SAR.  However, it is doubtful that any exist.
2595    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2596    EVT VT = Node->getValueType(0);
2597    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2598    if (VT.isVector())
2599      ShiftAmountTy = VT;
2600    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2601                        ExtraVT.getScalarType().getSizeInBits();
2602    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2603    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2604                       Node->getOperand(0), ShiftCst);
2605    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2606    Results.push_back(Tmp1);
2607    break;
2608  }
2609  case ISD::FP_ROUND_INREG: {
2610    // The only way we can lower this is to turn it into a TRUNCSTORE,
2611    // EXTLOAD pair, targetting a temporary location (a stack slot).
2612
2613    // NOTE: there is a choice here between constantly creating new stack
2614    // slots and always reusing the same one.  We currently always create
2615    // new ones, as reuse may inhibit scheduling.
2616    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2617    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2618                            Node->getValueType(0), dl);
2619    Results.push_back(Tmp1);
2620    break;
2621  }
2622  case ISD::SINT_TO_FP:
2623  case ISD::UINT_TO_FP:
2624    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2625                                Node->getOperand(0), Node->getValueType(0), dl);
2626    Results.push_back(Tmp1);
2627    break;
2628  case ISD::FP_TO_UINT: {
2629    SDValue True, False;
2630    EVT VT =  Node->getOperand(0).getValueType();
2631    EVT NVT = Node->getValueType(0);
2632    const uint64_t zero[] = {0, 0};
2633    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2634    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2635    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2636    Tmp1 = DAG.getConstantFP(apf, VT);
2637    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2638                        Node->getOperand(0),
2639                        Tmp1, ISD::SETLT);
2640    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2641    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2642                        DAG.getNode(ISD::FSUB, dl, VT,
2643                                    Node->getOperand(0), Tmp1));
2644    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2645                        DAG.getConstant(x, NVT));
2646    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2647    Results.push_back(Tmp1);
2648    break;
2649  }
2650  case ISD::VAARG: {
2651    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2652    EVT VT = Node->getValueType(0);
2653    Tmp1 = Node->getOperand(0);
2654    Tmp2 = Node->getOperand(1);
2655    unsigned Align = Node->getConstantOperandVal(3);
2656
2657    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0,
2658                                     false, false, 0);
2659    SDValue VAList = VAListLoad;
2660
2661    if (Align != 0 ) {
2662      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2663                           DAG.getConstant(Align - 1,
2664                                           TLI.getPointerTy()));
2665
2666      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2667                           DAG.getConstant(-Align,
2668                                           TLI.getPointerTy()));
2669    }
2670
2671    // Increment the pointer, VAList, to the next vaarg
2672    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2673                       DAG.getConstant(TLI.getTargetData()->
2674                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2675                                       TLI.getPointerTy()));
2676    // Store the incremented VAList to the legalized pointer
2677    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, V, 0,
2678                        false, false, 0);
2679    // Load the actual argument out of the pointer VAList
2680    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0,
2681                                  false, false, 0));
2682    Results.push_back(Results[0].getValue(1));
2683    break;
2684  }
2685  case ISD::VACOPY: {
2686    // This defaults to loading a pointer from the input and storing it to the
2687    // output, returning the chain.
2688    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2689    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2690    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2691                       Node->getOperand(2), VS, 0, false, false, 0);
2692    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0,
2693                        false, false, 0);
2694    Results.push_back(Tmp1);
2695    break;
2696  }
2697  case ISD::EXTRACT_VECTOR_ELT:
2698    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2699      // This must be an access of the only element.  Return it.
2700      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2701                         Node->getOperand(0));
2702    else
2703      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2704    Results.push_back(Tmp1);
2705    break;
2706  case ISD::EXTRACT_SUBVECTOR:
2707    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2708    break;
2709  case ISD::CONCAT_VECTORS: {
2710    Results.push_back(ExpandVectorBuildThroughStack(Node));
2711    break;
2712  }
2713  case ISD::SCALAR_TO_VECTOR:
2714    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2715    break;
2716  case ISD::INSERT_VECTOR_ELT:
2717    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2718                                              Node->getOperand(1),
2719                                              Node->getOperand(2), dl));
2720    break;
2721  case ISD::VECTOR_SHUFFLE: {
2722    SmallVector<int, 8> Mask;
2723    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2724
2725    EVT VT = Node->getValueType(0);
2726    EVT EltVT = VT.getVectorElementType();
2727    if (getTypeAction(EltVT) == Promote)
2728      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2729    unsigned NumElems = VT.getVectorNumElements();
2730    SmallVector<SDValue, 8> Ops;
2731    for (unsigned i = 0; i != NumElems; ++i) {
2732      if (Mask[i] < 0) {
2733        Ops.push_back(DAG.getUNDEF(EltVT));
2734        continue;
2735      }
2736      unsigned Idx = Mask[i];
2737      if (Idx < NumElems)
2738        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2739                                  Node->getOperand(0),
2740                                  DAG.getIntPtrConstant(Idx)));
2741      else
2742        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2743                                  Node->getOperand(1),
2744                                  DAG.getIntPtrConstant(Idx - NumElems)));
2745    }
2746    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2747    Results.push_back(Tmp1);
2748    break;
2749  }
2750  case ISD::EXTRACT_ELEMENT: {
2751    EVT OpTy = Node->getOperand(0).getValueType();
2752    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2753      // 1 -> Hi
2754      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2755                         DAG.getConstant(OpTy.getSizeInBits()/2,
2756                                         TLI.getShiftAmountTy()));
2757      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2758    } else {
2759      // 0 -> Lo
2760      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2761                         Node->getOperand(0));
2762    }
2763    Results.push_back(Tmp1);
2764    break;
2765  }
2766  case ISD::STACKSAVE:
2767    // Expand to CopyFromReg if the target set
2768    // StackPointerRegisterToSaveRestore.
2769    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2770      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2771                                           Node->getValueType(0)));
2772      Results.push_back(Results[0].getValue(1));
2773    } else {
2774      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2775      Results.push_back(Node->getOperand(0));
2776    }
2777    break;
2778  case ISD::STACKRESTORE:
2779    // Expand to CopyToReg if the target set
2780    // StackPointerRegisterToSaveRestore.
2781    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2782      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2783                                         Node->getOperand(1)));
2784    } else {
2785      Results.push_back(Node->getOperand(0));
2786    }
2787    break;
2788  case ISD::FCOPYSIGN:
2789    Results.push_back(ExpandFCOPYSIGN(Node));
2790    break;
2791  case ISD::FNEG:
2792    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2793    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2794    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2795                       Node->getOperand(0));
2796    Results.push_back(Tmp1);
2797    break;
2798  case ISD::FABS: {
2799    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2800    EVT VT = Node->getValueType(0);
2801    Tmp1 = Node->getOperand(0);
2802    Tmp2 = DAG.getConstantFP(0.0, VT);
2803    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2804                        Tmp1, Tmp2, ISD::SETUGT);
2805    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2806    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2807    Results.push_back(Tmp1);
2808    break;
2809  }
2810  case ISD::FSQRT:
2811    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2812                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2813    break;
2814  case ISD::FSIN:
2815    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2816                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2817    break;
2818  case ISD::FCOS:
2819    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2820                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2821    break;
2822  case ISD::FLOG:
2823    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2824                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2825    break;
2826  case ISD::FLOG2:
2827    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2828                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2829    break;
2830  case ISD::FLOG10:
2831    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2832                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2833    break;
2834  case ISD::FEXP:
2835    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2836                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2837    break;
2838  case ISD::FEXP2:
2839    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2840                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2841    break;
2842  case ISD::FTRUNC:
2843    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2844                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2845    break;
2846  case ISD::FFLOOR:
2847    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2848                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2849    break;
2850  case ISD::FCEIL:
2851    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2852                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2853    break;
2854  case ISD::FRINT:
2855    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2856                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2857    break;
2858  case ISD::FNEARBYINT:
2859    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2860                                      RTLIB::NEARBYINT_F64,
2861                                      RTLIB::NEARBYINT_F80,
2862                                      RTLIB::NEARBYINT_PPCF128));
2863    break;
2864  case ISD::FPOWI:
2865    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2866                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2867    break;
2868  case ISD::FPOW:
2869    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2870                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2871    break;
2872  case ISD::FDIV:
2873    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2874                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2875    break;
2876  case ISD::FREM:
2877    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2878                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2879    break;
2880  case ISD::FP16_TO_FP32:
2881    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2882    break;
2883  case ISD::FP32_TO_FP16:
2884    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2885    break;
2886  case ISD::ConstantFP: {
2887    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2888    // Check to see if this FP immediate is already legal.
2889    // If this is a legal constant, turn it into a TargetConstantFP node.
2890    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2891      Results.push_back(SDValue(Node, 0));
2892    else
2893      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2894    break;
2895  }
2896  case ISD::EHSELECTION: {
2897    unsigned Reg = TLI.getExceptionSelectorRegister();
2898    assert(Reg && "Can't expand to unknown register!");
2899    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2900                                         Node->getValueType(0)));
2901    Results.push_back(Results[0].getValue(1));
2902    break;
2903  }
2904  case ISD::EXCEPTIONADDR: {
2905    unsigned Reg = TLI.getExceptionAddressRegister();
2906    assert(Reg && "Can't expand to unknown register!");
2907    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2908                                         Node->getValueType(0)));
2909    Results.push_back(Results[0].getValue(1));
2910    break;
2911  }
2912  case ISD::SUB: {
2913    EVT VT = Node->getValueType(0);
2914    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2915           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2916           "Don't know how to expand this subtraction!");
2917    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2918               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2919    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2920    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2921    break;
2922  }
2923  case ISD::UREM:
2924  case ISD::SREM: {
2925    EVT VT = Node->getValueType(0);
2926    SDVTList VTs = DAG.getVTList(VT, VT);
2927    bool isSigned = Node->getOpcode() == ISD::SREM;
2928    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2929    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2930    Tmp2 = Node->getOperand(0);
2931    Tmp3 = Node->getOperand(1);
2932    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2933      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2934    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2935      // X % Y -> X-X/Y*Y
2936      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2937      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2938      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2939    } else if (isSigned) {
2940      Tmp1 = ExpandIntLibCall(Node, true,
2941                              RTLIB::SREM_I8,
2942                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2943                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2944    } else {
2945      Tmp1 = ExpandIntLibCall(Node, false,
2946                              RTLIB::UREM_I8,
2947                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2948                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2949    }
2950    Results.push_back(Tmp1);
2951    break;
2952  }
2953  case ISD::UDIV:
2954  case ISD::SDIV: {
2955    bool isSigned = Node->getOpcode() == ISD::SDIV;
2956    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2957    EVT VT = Node->getValueType(0);
2958    SDVTList VTs = DAG.getVTList(VT, VT);
2959    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2960      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2961                         Node->getOperand(1));
2962    else if (isSigned)
2963      Tmp1 = ExpandIntLibCall(Node, true,
2964                              RTLIB::SDIV_I8,
2965                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2966                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2967    else
2968      Tmp1 = ExpandIntLibCall(Node, false,
2969                              RTLIB::UDIV_I8,
2970                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2971                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2972    Results.push_back(Tmp1);
2973    break;
2974  }
2975  case ISD::MULHU:
2976  case ISD::MULHS: {
2977    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2978                                                              ISD::SMUL_LOHI;
2979    EVT VT = Node->getValueType(0);
2980    SDVTList VTs = DAG.getVTList(VT, VT);
2981    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2982           "If this wasn't legal, it shouldn't have been created!");
2983    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2984                       Node->getOperand(1));
2985    Results.push_back(Tmp1.getValue(1));
2986    break;
2987  }
2988  case ISD::MUL: {
2989    EVT VT = Node->getValueType(0);
2990    SDVTList VTs = DAG.getVTList(VT, VT);
2991    // See if multiply or divide can be lowered using two-result operations.
2992    // We just need the low half of the multiply; try both the signed
2993    // and unsigned forms. If the target supports both SMUL_LOHI and
2994    // UMUL_LOHI, form a preference by checking which forms of plain
2995    // MULH it supports.
2996    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2997    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2998    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2999    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3000    unsigned OpToUse = 0;
3001    if (HasSMUL_LOHI && !HasMULHS) {
3002      OpToUse = ISD::SMUL_LOHI;
3003    } else if (HasUMUL_LOHI && !HasMULHU) {
3004      OpToUse = ISD::UMUL_LOHI;
3005    } else if (HasSMUL_LOHI) {
3006      OpToUse = ISD::SMUL_LOHI;
3007    } else if (HasUMUL_LOHI) {
3008      OpToUse = ISD::UMUL_LOHI;
3009    }
3010    if (OpToUse) {
3011      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3012                                    Node->getOperand(1)));
3013      break;
3014    }
3015    Tmp1 = ExpandIntLibCall(Node, false,
3016                            RTLIB::MUL_I8,
3017                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3018                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3019    Results.push_back(Tmp1);
3020    break;
3021  }
3022  case ISD::SADDO:
3023  case ISD::SSUBO: {
3024    SDValue LHS = Node->getOperand(0);
3025    SDValue RHS = Node->getOperand(1);
3026    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3027                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3028                              LHS, RHS);
3029    Results.push_back(Sum);
3030    EVT OType = Node->getValueType(1);
3031
3032    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3033
3034    //   LHSSign -> LHS >= 0
3035    //   RHSSign -> RHS >= 0
3036    //   SumSign -> Sum >= 0
3037    //
3038    //   Add:
3039    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3040    //   Sub:
3041    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3042    //
3043    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3044    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3045    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3046                                      Node->getOpcode() == ISD::SADDO ?
3047                                      ISD::SETEQ : ISD::SETNE);
3048
3049    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3050    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3051
3052    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3053    Results.push_back(Cmp);
3054    break;
3055  }
3056  case ISD::UADDO:
3057  case ISD::USUBO: {
3058    SDValue LHS = Node->getOperand(0);
3059    SDValue RHS = Node->getOperand(1);
3060    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3061                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3062                              LHS, RHS);
3063    Results.push_back(Sum);
3064    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3065                                   Node->getOpcode () == ISD::UADDO ?
3066                                   ISD::SETULT : ISD::SETUGT));
3067    break;
3068  }
3069  case ISD::UMULO:
3070  case ISD::SMULO: {
3071    EVT VT = Node->getValueType(0);
3072    SDValue LHS = Node->getOperand(0);
3073    SDValue RHS = Node->getOperand(1);
3074    SDValue BottomHalf;
3075    SDValue TopHalf;
3076    static const unsigned Ops[2][3] =
3077        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3078          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3079    bool isSigned = Node->getOpcode() == ISD::SMULO;
3080    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3081      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3082      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3083    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3084      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3085                               RHS);
3086      TopHalf = BottomHalf.getValue(1);
3087    } else {
3088      // FIXME: We should be able to fall back to a libcall with an illegal
3089      // type in some cases.
3090      // Also, we can fall back to a division in some cases, but that's a big
3091      // performance hit in the general case.
3092      assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3093                                               VT.getSizeInBits() * 2)) &&
3094             "Don't know how to expand this operation yet!");
3095      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3096      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3097      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3098      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3099      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3100                               DAG.getIntPtrConstant(0));
3101      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3102                            DAG.getIntPtrConstant(1));
3103    }
3104    if (isSigned) {
3105      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
3106      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3107      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3108                             ISD::SETNE);
3109    } else {
3110      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3111                             DAG.getConstant(0, VT), ISD::SETNE);
3112    }
3113    Results.push_back(BottomHalf);
3114    Results.push_back(TopHalf);
3115    break;
3116  }
3117  case ISD::BUILD_PAIR: {
3118    EVT PairTy = Node->getValueType(0);
3119    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3120    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3121    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3122                       DAG.getConstant(PairTy.getSizeInBits()/2,
3123                                       TLI.getShiftAmountTy()));
3124    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3125    break;
3126  }
3127  case ISD::SELECT:
3128    Tmp1 = Node->getOperand(0);
3129    Tmp2 = Node->getOperand(1);
3130    Tmp3 = Node->getOperand(2);
3131    if (Tmp1.getOpcode() == ISD::SETCC) {
3132      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3133                             Tmp2, Tmp3,
3134                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3135    } else {
3136      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3137                             DAG.getConstant(0, Tmp1.getValueType()),
3138                             Tmp2, Tmp3, ISD::SETNE);
3139    }
3140    Results.push_back(Tmp1);
3141    break;
3142  case ISD::BR_JT: {
3143    SDValue Chain = Node->getOperand(0);
3144    SDValue Table = Node->getOperand(1);
3145    SDValue Index = Node->getOperand(2);
3146
3147    EVT PTy = TLI.getPointerTy();
3148
3149    const TargetData &TD = *TLI.getTargetData();
3150    unsigned EntrySize =
3151      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3152
3153    Index = DAG.getNode(ISD::MUL, dl, PTy,
3154                        Index, DAG.getConstant(EntrySize, PTy));
3155    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3156
3157    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3158    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3159                                PseudoSourceValue::getJumpTable(), 0, MemVT,
3160                                false, false, 0);
3161    Addr = LD;
3162    if (TM.getRelocationModel() == Reloc::PIC_) {
3163      // For PIC, the sequence is:
3164      // BRIND(load(Jumptable + index) + RelocBase)
3165      // RelocBase can be JumpTable, GOT or some sort of global base.
3166      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3167                          TLI.getPICJumpTableRelocBase(Table, DAG));
3168    }
3169    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3170    Results.push_back(Tmp1);
3171    break;
3172  }
3173  case ISD::BRCOND:
3174    // Expand brcond's setcc into its constituent parts and create a BR_CC
3175    // Node.
3176    Tmp1 = Node->getOperand(0);
3177    Tmp2 = Node->getOperand(1);
3178    if (Tmp2.getOpcode() == ISD::SETCC) {
3179      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3180                         Tmp1, Tmp2.getOperand(2),
3181                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3182                         Node->getOperand(2));
3183    } else {
3184      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3185                         DAG.getCondCode(ISD::SETNE), Tmp2,
3186                         DAG.getConstant(0, Tmp2.getValueType()),
3187                         Node->getOperand(2));
3188    }
3189    Results.push_back(Tmp1);
3190    break;
3191  case ISD::SETCC: {
3192    Tmp1 = Node->getOperand(0);
3193    Tmp2 = Node->getOperand(1);
3194    Tmp3 = Node->getOperand(2);
3195    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3196
3197    // If we expanded the SETCC into an AND/OR, return the new node
3198    if (Tmp2.getNode() == 0) {
3199      Results.push_back(Tmp1);
3200      break;
3201    }
3202
3203    // Otherwise, SETCC for the given comparison type must be completely
3204    // illegal; expand it into a SELECT_CC.
3205    EVT VT = Node->getValueType(0);
3206    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3207                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3208    Results.push_back(Tmp1);
3209    break;
3210  }
3211  case ISD::SELECT_CC: {
3212    Tmp1 = Node->getOperand(0);   // LHS
3213    Tmp2 = Node->getOperand(1);   // RHS
3214    Tmp3 = Node->getOperand(2);   // True
3215    Tmp4 = Node->getOperand(3);   // False
3216    SDValue CC = Node->getOperand(4);
3217
3218    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3219                          Tmp1, Tmp2, CC, dl);
3220
3221    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3222    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3223    CC = DAG.getCondCode(ISD::SETNE);
3224    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3225                       Tmp3, Tmp4, CC);
3226    Results.push_back(Tmp1);
3227    break;
3228  }
3229  case ISD::BR_CC: {
3230    Tmp1 = Node->getOperand(0);              // Chain
3231    Tmp2 = Node->getOperand(2);              // LHS
3232    Tmp3 = Node->getOperand(3);              // RHS
3233    Tmp4 = Node->getOperand(1);              // CC
3234
3235    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3236                          Tmp2, Tmp3, Tmp4, dl);
3237    LastCALLSEQ_END = DAG.getEntryNode();
3238
3239    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3240    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3241    Tmp4 = DAG.getCondCode(ISD::SETNE);
3242    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3243                       Tmp3, Node->getOperand(4));
3244    Results.push_back(Tmp1);
3245    break;
3246  }
3247  case ISD::GLOBAL_OFFSET_TABLE:
3248  case ISD::GlobalAddress:
3249  case ISD::GlobalTLSAddress:
3250  case ISD::ExternalSymbol:
3251  case ISD::ConstantPool:
3252  case ISD::JumpTable:
3253  case ISD::INTRINSIC_W_CHAIN:
3254  case ISD::INTRINSIC_WO_CHAIN:
3255  case ISD::INTRINSIC_VOID:
3256    // FIXME: Custom lowering for these operations shouldn't return null!
3257    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3258      Results.push_back(SDValue(Node, i));
3259    break;
3260  }
3261}
3262void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3263                                       SmallVectorImpl<SDValue> &Results) {
3264  EVT OVT = Node->getValueType(0);
3265  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3266      Node->getOpcode() == ISD::SINT_TO_FP ||
3267      Node->getOpcode() == ISD::SETCC) {
3268    OVT = Node->getOperand(0).getValueType();
3269  }
3270  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3271  DebugLoc dl = Node->getDebugLoc();
3272  SDValue Tmp1, Tmp2, Tmp3;
3273  switch (Node->getOpcode()) {
3274  case ISD::CTTZ:
3275  case ISD::CTLZ:
3276  case ISD::CTPOP:
3277    // Zero extend the argument.
3278    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3279    // Perform the larger operation.
3280    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3281    if (Node->getOpcode() == ISD::CTTZ) {
3282      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3283      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3284                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3285                          ISD::SETEQ);
3286      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3287                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3288    } else if (Node->getOpcode() == ISD::CTLZ) {
3289      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3290      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3291                          DAG.getConstant(NVT.getSizeInBits() -
3292                                          OVT.getSizeInBits(), NVT));
3293    }
3294    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3295    break;
3296  case ISD::BSWAP: {
3297    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3298    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3299    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3300    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3301                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3302    Results.push_back(Tmp1);
3303    break;
3304  }
3305  case ISD::FP_TO_UINT:
3306  case ISD::FP_TO_SINT:
3307    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3308                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3309    Results.push_back(Tmp1);
3310    break;
3311  case ISD::UINT_TO_FP:
3312  case ISD::SINT_TO_FP:
3313    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3314                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3315    Results.push_back(Tmp1);
3316    break;
3317  case ISD::AND:
3318  case ISD::OR:
3319  case ISD::XOR: {
3320    unsigned ExtOp, TruncOp;
3321    if (OVT.isVector()) {
3322      ExtOp   = ISD::BIT_CONVERT;
3323      TruncOp = ISD::BIT_CONVERT;
3324    } else {
3325      assert(OVT.isInteger() && "Cannot promote logic operation");
3326      ExtOp   = ISD::ANY_EXTEND;
3327      TruncOp = ISD::TRUNCATE;
3328    }
3329    // Promote each of the values to the new type.
3330    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3331    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3332    // Perform the larger operation, then convert back
3333    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3334    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3335    break;
3336  }
3337  case ISD::SELECT: {
3338    unsigned ExtOp, TruncOp;
3339    if (Node->getValueType(0).isVector()) {
3340      ExtOp   = ISD::BIT_CONVERT;
3341      TruncOp = ISD::BIT_CONVERT;
3342    } else if (Node->getValueType(0).isInteger()) {
3343      ExtOp   = ISD::ANY_EXTEND;
3344      TruncOp = ISD::TRUNCATE;
3345    } else {
3346      ExtOp   = ISD::FP_EXTEND;
3347      TruncOp = ISD::FP_ROUND;
3348    }
3349    Tmp1 = Node->getOperand(0);
3350    // Promote each of the values to the new type.
3351    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3352    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3353    // Perform the larger operation, then round down.
3354    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3355    if (TruncOp != ISD::FP_ROUND)
3356      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3357    else
3358      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3359                         DAG.getIntPtrConstant(0));
3360    Results.push_back(Tmp1);
3361    break;
3362  }
3363  case ISD::VECTOR_SHUFFLE: {
3364    SmallVector<int, 8> Mask;
3365    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3366
3367    // Cast the two input vectors.
3368    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3369    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3370
3371    // Convert the shuffle mask to the right # elements.
3372    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3373    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3374    Results.push_back(Tmp1);
3375    break;
3376  }
3377  case ISD::SETCC: {
3378    unsigned ExtOp = ISD::FP_EXTEND;
3379    if (NVT.isInteger()) {
3380      ISD::CondCode CCCode =
3381        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3382      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3383    }
3384    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3385    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3386    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3387                                  Tmp1, Tmp2, Node->getOperand(2)));
3388    break;
3389  }
3390  }
3391}
3392
3393// SelectionDAG::Legalize - This is the entry point for the file.
3394//
3395void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3396  /// run - This is the main entry point to this class.
3397  ///
3398  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3399}
3400
3401