LegalizeIntegerTypes.cpp revision 2bd335470f8939782f3df7f6180282d3825d4f09
1//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements integer type expansion and promotion for LegalizeTypes.
11// Promotion is the act of changing a computation in an illegal type into a
12// computation in a larger type.  For example, implementing i8 arithmetic in an
13// i32 register (often needed on powerpc).
14// Expansion is the act of changing a computation in an illegal type into a
15// computation in two identical registers of a smaller type.  For example,
16// implementing i64 arithmetic in two i32 registers (often needed on 32-bit
17// targets).
18//
19//===----------------------------------------------------------------------===//
20
21#include "LegalizeTypes.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25using namespace llvm;
26
27//===----------------------------------------------------------------------===//
28//  Integer Result Promotion
29//===----------------------------------------------------------------------===//
30
31/// PromoteIntegerResult - This method is called when a result of a node is
32/// found to be in need of promotion to a larger type.  At this point, the node
33/// may also have invalid operands or may have other results that need
34/// expansion, we just know that (at least) one result needs promotion.
35void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
36  DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n");
37  SDValue Res = SDValue();
38
39  // See if the target wants to custom expand this node.
40  if (CustomLowerNode(N, N->getValueType(ResNo), true))
41    return;
42
43  switch (N->getOpcode()) {
44  default:
45#ifndef NDEBUG
46    dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
47    N->dump(&DAG); dbgs() << "\n";
48#endif
49    llvm_unreachable("Do not know how to promote this operator!");
50  case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break;
51  case ISD::AssertSext:  Res = PromoteIntRes_AssertSext(N); break;
52  case ISD::AssertZext:  Res = PromoteIntRes_AssertZext(N); break;
53  case ISD::BITCAST:     Res = PromoteIntRes_BITCAST(N); break;
54  case ISD::BSWAP:       Res = PromoteIntRes_BSWAP(N); break;
55  case ISD::BUILD_PAIR:  Res = PromoteIntRes_BUILD_PAIR(N); break;
56  case ISD::Constant:    Res = PromoteIntRes_Constant(N); break;
57  case ISD::CONVERT_RNDSAT:
58                         Res = PromoteIntRes_CONVERT_RNDSAT(N); break;
59  case ISD::CTLZ_ZERO_UNDEF:
60  case ISD::CTLZ:        Res = PromoteIntRes_CTLZ(N); break;
61  case ISD::CTPOP:       Res = PromoteIntRes_CTPOP(N); break;
62  case ISD::CTTZ_ZERO_UNDEF:
63  case ISD::CTTZ:        Res = PromoteIntRes_CTTZ(N); break;
64  case ISD::EXTRACT_VECTOR_ELT:
65                         Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
66  case ISD::LOAD:        Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N));break;
67  case ISD::SELECT:      Res = PromoteIntRes_SELECT(N); break;
68  case ISD::VSELECT:     Res = PromoteIntRes_VSELECT(N); break;
69  case ISD::SELECT_CC:   Res = PromoteIntRes_SELECT_CC(N); break;
70  case ISD::SETCC:       Res = PromoteIntRes_SETCC(N); break;
71  case ISD::SHL:         Res = PromoteIntRes_SHL(N); break;
72  case ISD::SIGN_EXTEND_INREG:
73                         Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
74  case ISD::SRA:         Res = PromoteIntRes_SRA(N); break;
75  case ISD::SRL:         Res = PromoteIntRes_SRL(N); break;
76  case ISD::TRUNCATE:    Res = PromoteIntRes_TRUNCATE(N); break;
77  case ISD::UNDEF:       Res = PromoteIntRes_UNDEF(N); break;
78  case ISD::VAARG:       Res = PromoteIntRes_VAARG(N); break;
79
80  case ISD::EXTRACT_SUBVECTOR:
81                         Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
82  case ISD::VECTOR_SHUFFLE:
83                         Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
84  case ISD::INSERT_VECTOR_ELT:
85                         Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
86  case ISD::BUILD_VECTOR:
87                         Res = PromoteIntRes_BUILD_VECTOR(N); break;
88  case ISD::SCALAR_TO_VECTOR:
89                         Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
90  case ISD::CONCAT_VECTORS:
91                         Res = PromoteIntRes_CONCAT_VECTORS(N); break;
92
93  case ISD::SIGN_EXTEND:
94  case ISD::ZERO_EXTEND:
95  case ISD::ANY_EXTEND:  Res = PromoteIntRes_INT_EXTEND(N); break;
96
97  case ISD::FP_TO_SINT:
98  case ISD::FP_TO_UINT:  Res = PromoteIntRes_FP_TO_XINT(N); break;
99
100  case ISD::FP32_TO_FP16:Res = PromoteIntRes_FP32_TO_FP16(N); break;
101
102  case ISD::AND:
103  case ISD::OR:
104  case ISD::XOR:
105  case ISD::ADD:
106  case ISD::SUB:
107  case ISD::MUL:         Res = PromoteIntRes_SimpleIntBinOp(N); break;
108
109  case ISD::SDIV:
110  case ISD::SREM:        Res = PromoteIntRes_SDIV(N); break;
111
112  case ISD::UDIV:
113  case ISD::UREM:        Res = PromoteIntRes_UDIV(N); break;
114
115  case ISD::SADDO:
116  case ISD::SSUBO:       Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
117  case ISD::UADDO:
118  case ISD::USUBO:       Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
119  case ISD::SMULO:
120  case ISD::UMULO:       Res = PromoteIntRes_XMULO(N, ResNo); break;
121
122  case ISD::ATOMIC_LOAD:
123    Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break;
124
125  case ISD::ATOMIC_LOAD_ADD:
126  case ISD::ATOMIC_LOAD_SUB:
127  case ISD::ATOMIC_LOAD_AND:
128  case ISD::ATOMIC_LOAD_OR:
129  case ISD::ATOMIC_LOAD_XOR:
130  case ISD::ATOMIC_LOAD_NAND:
131  case ISD::ATOMIC_LOAD_MIN:
132  case ISD::ATOMIC_LOAD_MAX:
133  case ISD::ATOMIC_LOAD_UMIN:
134  case ISD::ATOMIC_LOAD_UMAX:
135  case ISD::ATOMIC_SWAP:
136    Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
137
138  case ISD::ATOMIC_CMP_SWAP:
139    Res = PromoteIntRes_Atomic2(cast<AtomicSDNode>(N)); break;
140  }
141
142  // If the result is null then the sub-method took care of registering it.
143  if (Res.getNode())
144    SetPromotedInteger(SDValue(N, ResNo), Res);
145}
146
147SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N,
148                                                     unsigned ResNo) {
149  SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
150  return GetPromotedInteger(Op);
151}
152
153SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
154  // Sign-extend the new bits, and continue the assertion.
155  SDValue Op = SExtPromotedInteger(N->getOperand(0));
156  return DAG.getNode(ISD::AssertSext, N->getDebugLoc(),
157                     Op.getValueType(), Op, N->getOperand(1));
158}
159
160SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
161  // Zero the new bits, and continue the assertion.
162  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
163  return DAG.getNode(ISD::AssertZext, N->getDebugLoc(),
164                     Op.getValueType(), Op, N->getOperand(1));
165}
166
167SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
168  EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
169  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
170                              N->getMemoryVT(), ResVT,
171                              N->getChain(), N->getBasePtr(),
172                              N->getMemOperand(), N->getOrdering(),
173                              N->getSynchScope());
174  // Legalized the chain result - switch anything that used the old chain to
175  // use the new one.
176  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
177  return Res;
178}
179
180SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
181  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
182  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
183                              N->getMemoryVT(),
184                              N->getChain(), N->getBasePtr(),
185                              Op2, N->getMemOperand(), N->getOrdering(),
186                              N->getSynchScope());
187  // Legalized the chain result - switch anything that used the old chain to
188  // use the new one.
189  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
190  return Res;
191}
192
193SDValue DAGTypeLegalizer::PromoteIntRes_Atomic2(AtomicSDNode *N) {
194  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
195  SDValue Op3 = GetPromotedInteger(N->getOperand(3));
196  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
197                              N->getMemoryVT(), N->getChain(), N->getBasePtr(),
198                              Op2, Op3, N->getMemOperand(), N->getOrdering(),
199                              N->getSynchScope());
200  // Legalized the chain result - switch anything that used the old chain to
201  // use the new one.
202  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
203  return Res;
204}
205
206SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
207  SDValue InOp = N->getOperand(0);
208  EVT InVT = InOp.getValueType();
209  EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
210  EVT OutVT = N->getValueType(0);
211  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
212  DebugLoc dl = N->getDebugLoc();
213
214  switch (getTypeAction(InVT)) {
215  case TargetLowering::TypeLegal:
216    break;
217  case TargetLowering::TypePromoteInteger:
218    if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector())
219      // The input promotes to the same size.  Convert the promoted value.
220      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
221    break;
222  case TargetLowering::TypeSoftenFloat:
223    // Promote the integer operand by hand.
224    return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
225  case TargetLowering::TypeExpandInteger:
226  case TargetLowering::TypeExpandFloat:
227    break;
228  case TargetLowering::TypeScalarizeVector:
229    // Convert the element to an integer and promote it by hand.
230    if (!NOutVT.isVector())
231      return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
232                         BitConvertToInteger(GetScalarizedVector(InOp)));
233    break;
234  case TargetLowering::TypeSplitVector: {
235    // For example, i32 = BITCAST v2i16 on alpha.  Convert the split
236    // pieces of the input into integers and reassemble in the final type.
237    SDValue Lo, Hi;
238    GetSplitVector(N->getOperand(0), Lo, Hi);
239    Lo = BitConvertToInteger(Lo);
240    Hi = BitConvertToInteger(Hi);
241
242    if (TLI.isBigEndian())
243      std::swap(Lo, Hi);
244
245    InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
246                       EVT::getIntegerVT(*DAG.getContext(),
247                                         NOutVT.getSizeInBits()),
248                       JoinIntegers(Lo, Hi));
249    return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
250  }
251  case TargetLowering::TypeWidenVector:
252    if (NOutVT.bitsEq(NInVT))
253      // The input is widened to the same size.  Convert to the widened value.
254      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp));
255  }
256
257  return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
258                     CreateStackStoreLoad(InOp, OutVT));
259}
260
261SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
262  SDValue Op = GetPromotedInteger(N->getOperand(0));
263  EVT OVT = N->getValueType(0);
264  EVT NVT = Op.getValueType();
265  DebugLoc dl = N->getDebugLoc();
266
267  unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
268  return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
269                     DAG.getConstant(DiffBits, TLI.getPointerTy()));
270}
271
272SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
273  // The pair element type may be legal, or may not promote to the same type as
274  // the result, for example i14 = BUILD_PAIR (i7, i7).  Handle all cases.
275  return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(),
276                     TLI.getTypeToTransformTo(*DAG.getContext(),
277                     N->getValueType(0)), JoinIntegers(N->getOperand(0),
278                     N->getOperand(1)));
279}
280
281SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
282  EVT VT = N->getValueType(0);
283  // FIXME there is no actual debug info here
284  DebugLoc dl = N->getDebugLoc();
285  // Zero extend things like i1, sign extend everything else.  It shouldn't
286  // matter in theory which one we pick, but this tends to give better code?
287  unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
288  SDValue Result = DAG.getNode(Opc, dl,
289                               TLI.getTypeToTransformTo(*DAG.getContext(), VT),
290                               SDValue(N, 0));
291  assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
292  return Result;
293}
294
295SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
296  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
297  assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
298           CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
299           CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
300          "can only promote integers");
301  EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
302  return DAG.getConvertRndSat(OutVT, N->getDebugLoc(), N->getOperand(0),
303                              N->getOperand(1), N->getOperand(2),
304                              N->getOperand(3), N->getOperand(4), CvtCode);
305}
306
307SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
308  // Zero extend to the promoted type and do the count there.
309  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
310  DebugLoc dl = N->getDebugLoc();
311  EVT OVT = N->getValueType(0);
312  EVT NVT = Op.getValueType();
313  Op = DAG.getNode(N->getOpcode(), dl, NVT, Op);
314  // Subtract off the extra leading bits in the bigger type.
315  return DAG.getNode(ISD::SUB, dl, NVT, Op,
316                     DAG.getConstant(NVT.getSizeInBits() -
317                                     OVT.getSizeInBits(), NVT));
318}
319
320SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
321  // Zero extend to the promoted type and do the count there.
322  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
323  return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), Op.getValueType(), Op);
324}
325
326SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
327  SDValue Op = GetPromotedInteger(N->getOperand(0));
328  EVT OVT = N->getValueType(0);
329  EVT NVT = Op.getValueType();
330  DebugLoc dl = N->getDebugLoc();
331  if (N->getOpcode() == ISD::CTTZ) {
332    // The count is the same in the promoted type except if the original
333    // value was zero.  This can be handled by setting the bit just off
334    // the top of the original type.
335    APInt TopBit(NVT.getSizeInBits(), 0);
336    TopBit.setBit(OVT.getSizeInBits());
337    Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, NVT));
338  }
339  return DAG.getNode(N->getOpcode(), dl, NVT, Op);
340}
341
342SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
343  DebugLoc dl = N->getDebugLoc();
344  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
345  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0),
346                     N->getOperand(1));
347}
348
349SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
350  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
351  unsigned NewOpc = N->getOpcode();
352  DebugLoc dl = N->getDebugLoc();
353
354  // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
355  // not Legal, check to see if we can use FP_TO_SINT instead.  (If both UINT
356  // and SINT conversions are Custom, there is no way to tell which is
357  // preferable. We choose SINT because that's the right thing on PPC.)
358  if (N->getOpcode() == ISD::FP_TO_UINT &&
359      !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
360      TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
361    NewOpc = ISD::FP_TO_SINT;
362
363  SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
364
365  // Assert that the converted value fits in the original type.  If it doesn't
366  // (eg: because the value being converted is too big), then the result of the
367  // original operation was undefined anyway, so the assert is still correct.
368  return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
369                     ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
370                     DAG.getValueType(N->getValueType(0).getScalarType()));
371}
372
373SDValue DAGTypeLegalizer::PromoteIntRes_FP32_TO_FP16(SDNode *N) {
374  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
375  DebugLoc dl = N->getDebugLoc();
376
377  SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
378
379  return DAG.getNode(ISD::AssertZext, dl,
380                     NVT, Res, DAG.getValueType(N->getValueType(0)));
381}
382
383SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
384  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
385  DebugLoc dl = N->getDebugLoc();
386
387  if (getTypeAction(N->getOperand(0).getValueType())
388      == TargetLowering::TypePromoteInteger) {
389    SDValue Res = GetPromotedInteger(N->getOperand(0));
390    assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
391
392    // If the result and operand types are the same after promotion, simplify
393    // to an in-register extension.
394    if (NVT == Res.getValueType()) {
395      // The high bits are not guaranteed to be anything.  Insert an extend.
396      if (N->getOpcode() == ISD::SIGN_EXTEND)
397        return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
398                           DAG.getValueType(N->getOperand(0).getValueType()));
399      if (N->getOpcode() == ISD::ZERO_EXTEND)
400        return DAG.getZeroExtendInReg(Res, dl,
401                      N->getOperand(0).getValueType().getScalarType());
402      assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
403      return Res;
404    }
405  }
406
407  // Otherwise, just extend the original operand all the way to the larger type.
408  return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
409}
410
411SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
412  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
413  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
414  ISD::LoadExtType ExtType =
415    ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
416  DebugLoc dl = N->getDebugLoc();
417  SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
418                               N->getPointerInfo(),
419                               N->getMemoryVT(), N->isVolatile(),
420                               N->isNonTemporal(), N->getAlignment());
421
422  // Legalized the chain result - switch anything that used the old chain to
423  // use the new one.
424  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
425  return Res;
426}
427
428/// Promote the overflow flag of an overflowing arithmetic node.
429SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
430  // Simply change the return type of the boolean result.
431  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
432  EVT ValueVTs[] = { N->getValueType(0), NVT };
433  SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
434  SDValue Res = DAG.getNode(N->getOpcode(), N->getDebugLoc(),
435                            DAG.getVTList(ValueVTs, 2), Ops, 2);
436
437  // Modified the sum result - switch anything that used the old sum to use
438  // the new one.
439  ReplaceValueWith(SDValue(N, 0), Res);
440
441  return SDValue(Res.getNode(), 1);
442}
443
444SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
445  if (ResNo == 1)
446    return PromoteIntRes_Overflow(N);
447
448  // The operation overflowed iff the result in the larger type is not the
449  // sign extension of its truncation to the original type.
450  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
451  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
452  EVT OVT = N->getOperand(0).getValueType();
453  EVT NVT = LHS.getValueType();
454  DebugLoc dl = N->getDebugLoc();
455
456  // Do the arithmetic in the larger type.
457  unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
458  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
459
460  // Calculate the overflow flag: sign extend the arithmetic result from
461  // the original type.
462  SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
463                            DAG.getValueType(OVT));
464  // Overflowed if and only if this is not equal to Res.
465  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
466
467  // Use the calculated overflow everywhere.
468  ReplaceValueWith(SDValue(N, 1), Ofl);
469
470  return Res;
471}
472
473SDValue DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) {
474  // Sign extend the input.
475  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
476  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
477  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
478                     LHS.getValueType(), LHS, RHS);
479}
480
481SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
482  SDValue LHS = GetPromotedInteger(N->getOperand(1));
483  SDValue RHS = GetPromotedInteger(N->getOperand(2));
484  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
485                     LHS.getValueType(), N->getOperand(0),LHS,RHS);
486}
487
488SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) {
489  SDValue Mask = N->getOperand(0);
490  EVT OpTy = N->getOperand(1).getValueType();
491
492  // Promote all the way up to the canonical SetCC type.
493  Mask = PromoteTargetBoolean(Mask, TLI.getSetCCResultType(OpTy));
494  SDValue LHS = GetPromotedInteger(N->getOperand(1));
495  SDValue RHS = GetPromotedInteger(N->getOperand(2));
496  return DAG.getNode(ISD::VSELECT, N->getDebugLoc(),
497                     LHS.getValueType(), Mask, LHS, RHS);
498}
499
500SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
501  SDValue LHS = GetPromotedInteger(N->getOperand(2));
502  SDValue RHS = GetPromotedInteger(N->getOperand(3));
503  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
504                     LHS.getValueType(), N->getOperand(0),
505                     N->getOperand(1), LHS, RHS, N->getOperand(4));
506}
507
508SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
509  EVT SVT = TLI.getSetCCResultType(N->getOperand(0).getValueType());
510
511  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
512
513  // Only use the result of getSetCCResultType if it is legal,
514  // otherwise just use the promoted result type (NVT).
515  if (!TLI.isTypeLegal(SVT))
516      SVT = NVT;
517
518  DebugLoc dl = N->getDebugLoc();
519  assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
520         "Vector compare must return a vector result!");
521
522  // Get the SETCC result using the canonical SETCC type.
523  SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, N->getOperand(0),
524                              N->getOperand(1), N->getOperand(2));
525
526  assert(NVT.bitsLE(SVT) && "Integer type overpromoted?");
527  // Convert to the expected type.
528  return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC);
529}
530
531SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
532  return DAG.getNode(ISD::SHL, N->getDebugLoc(),
533                TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)),
534                     GetPromotedInteger(N->getOperand(0)), N->getOperand(1));
535}
536
537SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
538  SDValue Op = GetPromotedInteger(N->getOperand(0));
539  return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(),
540                     Op.getValueType(), Op, N->getOperand(1));
541}
542
543SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
544  // The input may have strange things in the top bits of the registers, but
545  // these operations don't care.  They may have weird bits going out, but
546  // that too is okay if they are integer operations.
547  SDValue LHS = GetPromotedInteger(N->getOperand(0));
548  SDValue RHS = GetPromotedInteger(N->getOperand(1));
549  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
550                    LHS.getValueType(), LHS, RHS);
551}
552
553SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
554  // The input value must be properly sign extended.
555  SDValue Res = SExtPromotedInteger(N->getOperand(0));
556  return DAG.getNode(ISD::SRA, N->getDebugLoc(),
557                     Res.getValueType(), Res, N->getOperand(1));
558}
559
560SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
561  // The input value must be properly zero extended.
562  EVT VT = N->getValueType(0);
563  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
564  SDValue Res = ZExtPromotedInteger(N->getOperand(0));
565  return DAG.getNode(ISD::SRL, N->getDebugLoc(), NVT, Res, N->getOperand(1));
566}
567
568SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
569  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
570  SDValue Res;
571  SDValue InOp = N->getOperand(0);
572  DebugLoc dl = N->getDebugLoc();
573
574  switch (getTypeAction(InOp.getValueType())) {
575  default: llvm_unreachable("Unknown type action!");
576  case TargetLowering::TypeLegal:
577  case TargetLowering::TypeExpandInteger:
578    Res = InOp;
579    break;
580  case TargetLowering::TypePromoteInteger:
581    Res = GetPromotedInteger(InOp);
582    break;
583  case TargetLowering::TypeSplitVector:
584    EVT InVT = InOp.getValueType();
585    assert(InVT.isVector() && "Cannot split scalar types");
586    unsigned NumElts = InVT.getVectorNumElements();
587    assert(NumElts == NVT.getVectorNumElements() &&
588           "Dst and Src must have the same number of elements");
589    EVT EltVT = InVT.getScalarType();
590    assert(isPowerOf2_32(NumElts) &&
591           "Promoted vector type must be a power of two");
592
593    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts/2);
594    EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
595                                   NumElts/2);
596
597    SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfVT, InOp,
598                               DAG.getIntPtrConstant(0));
599    SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfVT, InOp,
600                               DAG.getIntPtrConstant(NumElts/2));
601    EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
602    EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
603
604    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
605  }
606
607  // Truncate to NVT instead of VT
608  return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
609}
610
611SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
612  if (ResNo == 1)
613    return PromoteIntRes_Overflow(N);
614
615  // The operation overflowed iff the result in the larger type is not the
616  // zero extension of its truncation to the original type.
617  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
618  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
619  EVT OVT = N->getOperand(0).getValueType();
620  EVT NVT = LHS.getValueType();
621  DebugLoc dl = N->getDebugLoc();
622
623  // Do the arithmetic in the larger type.
624  unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
625  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
626
627  // Calculate the overflow flag: zero extend the arithmetic result from
628  // the original type.
629  SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT);
630  // Overflowed if and only if this is not equal to Res.
631  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
632
633  // Use the calculated overflow everywhere.
634  ReplaceValueWith(SDValue(N, 1), Ofl);
635
636  return Res;
637}
638
639SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
640  // Promote the overflow bit trivially.
641  if (ResNo == 1)
642    return PromoteIntRes_Overflow(N);
643
644  SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
645  DebugLoc DL = N->getDebugLoc();
646  EVT SmallVT = LHS.getValueType();
647
648  // To determine if the result overflowed in a larger type, we extend the
649  // input to the larger type, do the multiply, then check the high bits of
650  // the result to see if the overflow happened.
651  if (N->getOpcode() == ISD::SMULO) {
652    LHS = SExtPromotedInteger(LHS);
653    RHS = SExtPromotedInteger(RHS);
654  } else {
655    LHS = ZExtPromotedInteger(LHS);
656    RHS = ZExtPromotedInteger(RHS);
657  }
658  SDValue Mul = DAG.getNode(ISD::MUL, DL, LHS.getValueType(), LHS, RHS);
659
660  // Overflow occurred iff the high part of the result does not
661  // zero/sign-extend the low part.
662  SDValue Overflow;
663  if (N->getOpcode() == ISD::UMULO) {
664    // Unsigned overflow occurred iff the high part is non-zero.
665    SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
666                             DAG.getIntPtrConstant(SmallVT.getSizeInBits()));
667    Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
668                            DAG.getConstant(0, Hi.getValueType()), ISD::SETNE);
669  } else {
670    // Signed overflow occurred iff the high part does not sign extend the low.
671    SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
672                               Mul, DAG.getValueType(SmallVT));
673    Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
674  }
675
676  // Use the calculated overflow everywhere.
677  ReplaceValueWith(SDValue(N, 1), Overflow);
678  return Mul;
679}
680
681SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) {
682  // Zero extend the input.
683  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
684  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
685  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
686                     LHS.getValueType(), LHS, RHS);
687}
688
689SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
690  return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
691                                               N->getValueType(0)));
692}
693
694SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
695  SDValue Chain = N->getOperand(0); // Get the chain.
696  SDValue Ptr = N->getOperand(1); // Get the pointer.
697  EVT VT = N->getValueType(0);
698  DebugLoc dl = N->getDebugLoc();
699
700  EVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
701  unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
702  // The argument is passed as NumRegs registers of type RegVT.
703
704  SmallVector<SDValue, 8> Parts(NumRegs);
705  for (unsigned i = 0; i < NumRegs; ++i) {
706    Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
707                            N->getConstantOperandVal(3));
708    Chain = Parts[i].getValue(1);
709  }
710
711  // Handle endianness of the load.
712  if (TLI.isBigEndian())
713    std::reverse(Parts.begin(), Parts.end());
714
715  // Assemble the parts in the promoted type.
716  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
717  SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
718  for (unsigned i = 1; i < NumRegs; ++i) {
719    SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
720    // Shift it to the right position and "or" it in.
721    Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
722                       DAG.getConstant(i * RegVT.getSizeInBits(),
723                                       TLI.getPointerTy()));
724    Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
725  }
726
727  // Modified the chain result - switch anything that used the old chain to
728  // use the new one.
729  ReplaceValueWith(SDValue(N, 1), Chain);
730
731  return Res;
732}
733
734//===----------------------------------------------------------------------===//
735//  Integer Operand Promotion
736//===----------------------------------------------------------------------===//
737
738/// PromoteIntegerOperand - This method is called when the specified operand of
739/// the specified node is found to need promotion.  At this point, all of the
740/// result types of the node are known to be legal, but other operands of the
741/// node may need promotion or expansion as well as the specified one.
742bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
743  DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n");
744  SDValue Res = SDValue();
745
746  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
747    return false;
748
749  switch (N->getOpcode()) {
750    default:
751  #ifndef NDEBUG
752    dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
753    N->dump(&DAG); dbgs() << "\n";
754  #endif
755    llvm_unreachable("Do not know how to promote this operator's operand!");
756
757  case ISD::ANY_EXTEND:   Res = PromoteIntOp_ANY_EXTEND(N); break;
758  case ISD::ATOMIC_STORE:
759    Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N));
760    break;
761  case ISD::BITCAST:      Res = PromoteIntOp_BITCAST(N); break;
762  case ISD::BR_CC:        Res = PromoteIntOp_BR_CC(N, OpNo); break;
763  case ISD::BRCOND:       Res = PromoteIntOp_BRCOND(N, OpNo); break;
764  case ISD::BUILD_PAIR:   Res = PromoteIntOp_BUILD_PAIR(N); break;
765  case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
766  case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
767  case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
768  case ISD::CONVERT_RNDSAT:
769                          Res = PromoteIntOp_CONVERT_RNDSAT(N); break;
770  case ISD::INSERT_VECTOR_ELT:
771                          Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
772  case ISD::MEMBARRIER:   Res = PromoteIntOp_MEMBARRIER(N); break;
773  case ISD::SCALAR_TO_VECTOR:
774                          Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
775  case ISD::VSELECT:
776  case ISD::SELECT:       Res = PromoteIntOp_SELECT(N, OpNo); break;
777  case ISD::SELECT_CC:    Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
778  case ISD::SETCC:        Res = PromoteIntOp_SETCC(N, OpNo); break;
779  case ISD::SIGN_EXTEND:  Res = PromoteIntOp_SIGN_EXTEND(N); break;
780  case ISD::SINT_TO_FP:   Res = PromoteIntOp_SINT_TO_FP(N); break;
781  case ISD::STORE:        Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
782                                                   OpNo); break;
783  case ISD::TRUNCATE:     Res = PromoteIntOp_TRUNCATE(N); break;
784  case ISD::FP16_TO_FP32:
785  case ISD::UINT_TO_FP:   Res = PromoteIntOp_UINT_TO_FP(N); break;
786  case ISD::ZERO_EXTEND:  Res = PromoteIntOp_ZERO_EXTEND(N); break;
787
788  case ISD::SHL:
789  case ISD::SRA:
790  case ISD::SRL:
791  case ISD::ROTL:
792  case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
793  }
794
795  // If the result is null, the sub-method took care of registering results etc.
796  if (!Res.getNode()) return false;
797
798  // If the result is N, the sub-method updated N in place.  Tell the legalizer
799  // core about this.
800  if (Res.getNode() == N)
801    return true;
802
803  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
804         "Invalid operand expansion");
805
806  ReplaceValueWith(SDValue(N, 0), Res);
807  return false;
808}
809
810/// PromoteSetCCOperands - Promote the operands of a comparison.  This code is
811/// shared among BR_CC, SELECT_CC, and SETCC handlers.
812void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
813                                            ISD::CondCode CCCode) {
814  // We have to insert explicit sign or zero extends.  Note that we could
815  // insert sign extends for ALL conditions, but zero extend is cheaper on
816  // many machines (an AND instead of two shifts), so prefer it.
817  switch (CCCode) {
818  default: llvm_unreachable("Unknown integer comparison!");
819  case ISD::SETEQ:
820  case ISD::SETNE:
821  case ISD::SETUGE:
822  case ISD::SETUGT:
823  case ISD::SETULE:
824  case ISD::SETULT:
825    // ALL of these operations will work if we either sign or zero extend
826    // the operands (including the unsigned comparisons!).  Zero extend is
827    // usually a simpler/cheaper operation, so prefer it.
828    NewLHS = ZExtPromotedInteger(NewLHS);
829    NewRHS = ZExtPromotedInteger(NewRHS);
830    break;
831  case ISD::SETGE:
832  case ISD::SETGT:
833  case ISD::SETLT:
834  case ISD::SETLE:
835    NewLHS = SExtPromotedInteger(NewLHS);
836    NewRHS = SExtPromotedInteger(NewRHS);
837    break;
838  }
839}
840
841SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
842  SDValue Op = GetPromotedInteger(N->getOperand(0));
843  return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), N->getValueType(0), Op);
844}
845
846SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
847  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
848  return DAG.getAtomic(N->getOpcode(), N->getDebugLoc(), N->getMemoryVT(),
849                       N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(),
850                       N->getOrdering(), N->getSynchScope());
851}
852
853SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
854  // This should only occur in unusual situations like bitcasting to an
855  // x86_fp80, so just turn it into a store+load
856  return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
857}
858
859SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
860  assert(OpNo == 2 && "Don't know how to promote this operand!");
861
862  SDValue LHS = N->getOperand(2);
863  SDValue RHS = N->getOperand(3);
864  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
865
866  // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
867  // legal types.
868  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
869                                N->getOperand(1), LHS, RHS, N->getOperand(4)),
870                 0);
871}
872
873SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
874  assert(OpNo == 1 && "only know how to promote condition");
875
876  // Promote all the way up to the canonical SetCC type.
877  EVT SVT = TLI.getSetCCResultType(MVT::Other);
878  SDValue Cond = PromoteTargetBoolean(N->getOperand(1), SVT);
879
880  // The chain (Op#0) and basic block destination (Op#2) are always legal types.
881  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
882                                        N->getOperand(2)), 0);
883}
884
885SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
886  // Since the result type is legal, the operands must promote to it.
887  EVT OVT = N->getOperand(0).getValueType();
888  SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
889  SDValue Hi = GetPromotedInteger(N->getOperand(1));
890  assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
891  DebugLoc dl = N->getDebugLoc();
892
893  Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
894                   DAG.getConstant(OVT.getSizeInBits(), TLI.getPointerTy()));
895  return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
896}
897
898SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
899  // The vector type is legal but the element type is not.  This implies
900  // that the vector is a power-of-two in length and that the element
901  // type does not have a strange size (eg: it is not i1).
902  EVT VecVT = N->getValueType(0);
903  unsigned NumElts = VecVT.getVectorNumElements();
904  assert(!(NumElts & 1) && "Legal vector of one illegal element?");
905
906  // Promote the inserted value.  The type does not need to match the
907  // vector element type.  Check that any extra bits introduced will be
908  // truncated away.
909  assert(N->getOperand(0).getValueType().getSizeInBits() >=
910         N->getValueType(0).getVectorElementType().getSizeInBits() &&
911         "Type of inserted value narrower than vector element type!");
912
913  SmallVector<SDValue, 16> NewOps;
914  for (unsigned i = 0; i < NumElts; ++i)
915    NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
916
917  return SDValue(DAG.UpdateNodeOperands(N, &NewOps[0], NumElts), 0);
918}
919
920SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) {
921  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
922  assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
923           CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
924           CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) &&
925           "can only promote integer arguments");
926  SDValue InOp = GetPromotedInteger(N->getOperand(0));
927  return DAG.getConvertRndSat(N->getValueType(0), N->getDebugLoc(), InOp,
928                              N->getOperand(1), N->getOperand(2),
929                              N->getOperand(3), N->getOperand(4), CvtCode);
930}
931
932SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
933                                                         unsigned OpNo) {
934  if (OpNo == 1) {
935    // Promote the inserted value.  This is valid because the type does not
936    // have to match the vector element type.
937
938    // Check that any extra bits introduced will be truncated away.
939    assert(N->getOperand(1).getValueType().getSizeInBits() >=
940           N->getValueType(0).getVectorElementType().getSizeInBits() &&
941           "Type of inserted value narrower than vector element type!");
942    return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
943                                  GetPromotedInteger(N->getOperand(1)),
944                                  N->getOperand(2)),
945                   0);
946  }
947
948  assert(OpNo == 2 && "Different operand and result vector types?");
949
950  // Promote the index.
951  SDValue Idx = ZExtPromotedInteger(N->getOperand(2));
952  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
953                                N->getOperand(1), Idx), 0);
954}
955
956SDValue DAGTypeLegalizer::PromoteIntOp_MEMBARRIER(SDNode *N) {
957  SDValue NewOps[6];
958  DebugLoc dl = N->getDebugLoc();
959  NewOps[0] = N->getOperand(0);
960  for (unsigned i = 1; i < array_lengthof(NewOps); ++i) {
961    SDValue Flag = GetPromotedInteger(N->getOperand(i));
962    NewOps[i] = DAG.getZeroExtendInReg(Flag, dl, MVT::i1);
963  }
964  return SDValue(DAG.UpdateNodeOperands(N, NewOps, array_lengthof(NewOps)), 0);
965}
966
967SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
968  // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
969  // the operand in place.
970  return SDValue(DAG.UpdateNodeOperands(N,
971                                GetPromotedInteger(N->getOperand(0))), 0);
972}
973
974SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
975  assert(OpNo == 0 && "Only know how to promote the condition!");
976  SDValue Cond = N->getOperand(0);
977  EVT OpTy = N->getOperand(1).getValueType();
978
979  // Promote all the way up to the canonical SetCC type.
980  EVT SVT = TLI.getSetCCResultType(N->getOpcode() == ISD::SELECT ?
981                                   OpTy.getScalarType() : OpTy);
982  Cond = PromoteTargetBoolean(Cond, SVT);
983
984  return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1),
985                                        N->getOperand(2)), 0);
986}
987
988SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
989  assert(OpNo == 0 && "Don't know how to promote this operand!");
990
991  SDValue LHS = N->getOperand(0);
992  SDValue RHS = N->getOperand(1);
993  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
994
995  // The CC (#4) and the possible return values (#2 and #3) have legal types.
996  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
997                                N->getOperand(3), N->getOperand(4)), 0);
998}
999
1000SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
1001  assert(OpNo == 0 && "Don't know how to promote this operand!");
1002
1003  SDValue LHS = N->getOperand(0);
1004  SDValue RHS = N->getOperand(1);
1005  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
1006
1007  // The CC (#2) is always legal.
1008  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
1009}
1010
1011SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
1012  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1013                                ZExtPromotedInteger(N->getOperand(1))), 0);
1014}
1015
1016SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
1017  SDValue Op = GetPromotedInteger(N->getOperand(0));
1018  DebugLoc dl = N->getDebugLoc();
1019  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1020  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
1021                     Op, DAG.getValueType(N->getOperand(0).getValueType()));
1022}
1023
1024SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
1025  return SDValue(DAG.UpdateNodeOperands(N,
1026                                SExtPromotedInteger(N->getOperand(0))), 0);
1027}
1028
1029SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
1030  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
1031  SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
1032  unsigned Alignment = N->getAlignment();
1033  bool isVolatile = N->isVolatile();
1034  bool isNonTemporal = N->isNonTemporal();
1035  DebugLoc dl = N->getDebugLoc();
1036
1037  SDValue Val = GetPromotedInteger(N->getValue());  // Get promoted value.
1038
1039  // Truncate the value and store the result.
1040  return DAG.getTruncStore(Ch, dl, Val, Ptr, N->getPointerInfo(),
1041                           N->getMemoryVT(),
1042                           isVolatile, isNonTemporal, Alignment);
1043}
1044
1045SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
1046  SDValue Op = GetPromotedInteger(N->getOperand(0));
1047  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), Op);
1048}
1049
1050SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
1051  return SDValue(DAG.UpdateNodeOperands(N,
1052                                ZExtPromotedInteger(N->getOperand(0))), 0);
1053}
1054
1055SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
1056  DebugLoc dl = N->getDebugLoc();
1057  SDValue Op = GetPromotedInteger(N->getOperand(0));
1058  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1059  return DAG.getZeroExtendInReg(Op, dl,
1060                                N->getOperand(0).getValueType().getScalarType());
1061}
1062
1063
1064//===----------------------------------------------------------------------===//
1065//  Integer Result Expansion
1066//===----------------------------------------------------------------------===//
1067
1068/// ExpandIntegerResult - This method is called when the specified result of the
1069/// specified node is found to need expansion.  At this point, the node may also
1070/// have invalid operands or may have other results that need promotion, we just
1071/// know that (at least) one result needs expansion.
1072void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
1073  DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n");
1074  SDValue Lo, Hi;
1075  Lo = Hi = SDValue();
1076
1077  // See if the target wants to custom expand this node.
1078  if (CustomLowerNode(N, N->getValueType(ResNo), true))
1079    return;
1080
1081  switch (N->getOpcode()) {
1082  default:
1083#ifndef NDEBUG
1084    dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
1085    N->dump(&DAG); dbgs() << "\n";
1086#endif
1087    llvm_unreachable("Do not know how to expand the result of this operator!");
1088
1089  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
1090  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
1091  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
1092  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
1093
1094  case ISD::BITCAST:            ExpandRes_BITCAST(N, Lo, Hi); break;
1095  case ISD::BUILD_PAIR:         ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
1096  case ISD::EXTRACT_ELEMENT:    ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
1097  case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
1098  case ISD::VAARG:              ExpandRes_VAARG(N, Lo, Hi); break;
1099
1100  case ISD::ANY_EXTEND:  ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
1101  case ISD::AssertSext:  ExpandIntRes_AssertSext(N, Lo, Hi); break;
1102  case ISD::AssertZext:  ExpandIntRes_AssertZext(N, Lo, Hi); break;
1103  case ISD::BSWAP:       ExpandIntRes_BSWAP(N, Lo, Hi); break;
1104  case ISD::Constant:    ExpandIntRes_Constant(N, Lo, Hi); break;
1105  case ISD::CTLZ_ZERO_UNDEF:
1106  case ISD::CTLZ:        ExpandIntRes_CTLZ(N, Lo, Hi); break;
1107  case ISD::CTPOP:       ExpandIntRes_CTPOP(N, Lo, Hi); break;
1108  case ISD::CTTZ_ZERO_UNDEF:
1109  case ISD::CTTZ:        ExpandIntRes_CTTZ(N, Lo, Hi); break;
1110  case ISD::FP_TO_SINT:  ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
1111  case ISD::FP_TO_UINT:  ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
1112  case ISD::LOAD:        ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
1113  case ISD::MUL:         ExpandIntRes_MUL(N, Lo, Hi); break;
1114  case ISD::SDIV:        ExpandIntRes_SDIV(N, Lo, Hi); break;
1115  case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
1116  case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
1117  case ISD::SREM:        ExpandIntRes_SREM(N, Lo, Hi); break;
1118  case ISD::TRUNCATE:    ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
1119  case ISD::UDIV:        ExpandIntRes_UDIV(N, Lo, Hi); break;
1120  case ISD::UREM:        ExpandIntRes_UREM(N, Lo, Hi); break;
1121  case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
1122  case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break;
1123
1124  case ISD::ATOMIC_LOAD_ADD:
1125  case ISD::ATOMIC_LOAD_SUB:
1126  case ISD::ATOMIC_LOAD_AND:
1127  case ISD::ATOMIC_LOAD_OR:
1128  case ISD::ATOMIC_LOAD_XOR:
1129  case ISD::ATOMIC_LOAD_NAND:
1130  case ISD::ATOMIC_LOAD_MIN:
1131  case ISD::ATOMIC_LOAD_MAX:
1132  case ISD::ATOMIC_LOAD_UMIN:
1133  case ISD::ATOMIC_LOAD_UMAX:
1134  case ISD::ATOMIC_SWAP: {
1135    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
1136    SplitInteger(Tmp.first, Lo, Hi);
1137    ReplaceValueWith(SDValue(N, 1), Tmp.second);
1138    break;
1139  }
1140
1141  case ISD::AND:
1142  case ISD::OR:
1143  case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
1144
1145  case ISD::ADD:
1146  case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
1147
1148  case ISD::ADDC:
1149  case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
1150
1151  case ISD::ADDE:
1152  case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
1153
1154  case ISD::SHL:
1155  case ISD::SRA:
1156  case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
1157
1158  case ISD::SADDO:
1159  case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
1160  case ISD::UADDO:
1161  case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
1162  case ISD::UMULO:
1163  case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
1164  }
1165
1166  // If Lo/Hi is null, the sub-method took care of registering results etc.
1167  if (Lo.getNode())
1168    SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
1169}
1170
1171/// Lower an atomic node to the appropriate builtin call.
1172std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
1173  unsigned Opc = Node->getOpcode();
1174  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
1175  RTLIB::Libcall LC;
1176
1177  switch (Opc) {
1178  default:
1179    llvm_unreachable("Unhandled atomic intrinsic Expand!");
1180    break;
1181  case ISD::ATOMIC_SWAP:
1182    switch (VT.SimpleTy) {
1183    default: llvm_unreachable("Unexpected value type for atomic!");
1184    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
1185    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
1186    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
1187    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
1188    }
1189    break;
1190  case ISD::ATOMIC_CMP_SWAP:
1191    switch (VT.SimpleTy) {
1192    default: llvm_unreachable("Unexpected value type for atomic!");
1193    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
1194    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
1195    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
1196    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
1197    }
1198    break;
1199  case ISD::ATOMIC_LOAD_ADD:
1200    switch (VT.SimpleTy) {
1201    default: llvm_unreachable("Unexpected value type for atomic!");
1202    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
1203    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
1204    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
1205    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
1206    }
1207    break;
1208  case ISD::ATOMIC_LOAD_SUB:
1209    switch (VT.SimpleTy) {
1210    default: llvm_unreachable("Unexpected value type for atomic!");
1211    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
1212    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
1213    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
1214    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
1215    }
1216    break;
1217  case ISD::ATOMIC_LOAD_AND:
1218    switch (VT.SimpleTy) {
1219    default: llvm_unreachable("Unexpected value type for atomic!");
1220    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
1221    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
1222    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
1223    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
1224    }
1225    break;
1226  case ISD::ATOMIC_LOAD_OR:
1227    switch (VT.SimpleTy) {
1228    default: llvm_unreachable("Unexpected value type for atomic!");
1229    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
1230    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
1231    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
1232    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
1233    }
1234    break;
1235  case ISD::ATOMIC_LOAD_XOR:
1236    switch (VT.SimpleTy) {
1237    default: llvm_unreachable("Unexpected value type for atomic!");
1238    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
1239    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
1240    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
1241    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
1242    }
1243    break;
1244  case ISD::ATOMIC_LOAD_NAND:
1245    switch (VT.SimpleTy) {
1246    default: llvm_unreachable("Unexpected value type for atomic!");
1247    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
1248    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
1249    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
1250    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
1251    }
1252    break;
1253  }
1254
1255  return ExpandChainLibCall(LC, Node, false);
1256}
1257
1258/// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
1259/// and the shift amount is a constant 'Amt'.  Expand the operation.
1260void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
1261                                             SDValue &Lo, SDValue &Hi) {
1262  DebugLoc DL = N->getDebugLoc();
1263  // Expand the incoming operand to be shifted, so that we have its parts
1264  SDValue InL, InH;
1265  GetExpandedInteger(N->getOperand(0), InL, InH);
1266
1267  EVT NVT = InL.getValueType();
1268  unsigned VTBits = N->getValueType(0).getSizeInBits();
1269  unsigned NVTBits = NVT.getSizeInBits();
1270  EVT ShTy = N->getOperand(1).getValueType();
1271
1272  if (N->getOpcode() == ISD::SHL) {
1273    if (Amt > VTBits) {
1274      Lo = Hi = DAG.getConstant(0, NVT);
1275    } else if (Amt > NVTBits) {
1276      Lo = DAG.getConstant(0, NVT);
1277      Hi = DAG.getNode(ISD::SHL, DL,
1278                       NVT, InL, DAG.getConstant(Amt-NVTBits, ShTy));
1279    } else if (Amt == NVTBits) {
1280      Lo = DAG.getConstant(0, NVT);
1281      Hi = InL;
1282    } else if (Amt == 1 &&
1283               TLI.isOperationLegalOrCustom(ISD::ADDC,
1284                              TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) {
1285      // Emit this X << 1 as X+X.
1286      SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1287      SDValue LoOps[2] = { InL, InL };
1288      Lo = DAG.getNode(ISD::ADDC, DL, VTList, LoOps, 2);
1289      SDValue HiOps[3] = { InH, InH, Lo.getValue(1) };
1290      Hi = DAG.getNode(ISD::ADDE, DL, VTList, HiOps, 3);
1291    } else {
1292      Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, ShTy));
1293      Hi = DAG.getNode(ISD::OR, DL, NVT,
1294                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1295                                   DAG.getConstant(Amt, ShTy)),
1296                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1297                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1298    }
1299    return;
1300  }
1301
1302  if (N->getOpcode() == ISD::SRL) {
1303    if (Amt > VTBits) {
1304      Lo = DAG.getConstant(0, NVT);
1305      Hi = DAG.getConstant(0, NVT);
1306    } else if (Amt > NVTBits) {
1307      Lo = DAG.getNode(ISD::SRL, DL,
1308                       NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
1309      Hi = DAG.getConstant(0, NVT);
1310    } else if (Amt == NVTBits) {
1311      Lo = InH;
1312      Hi = DAG.getConstant(0, NVT);
1313    } else {
1314      Lo = DAG.getNode(ISD::OR, DL, NVT,
1315                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1316                                   DAG.getConstant(Amt, ShTy)),
1317                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1318                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1319      Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1320    }
1321    return;
1322  }
1323
1324  assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1325  if (Amt > VTBits) {
1326    Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1327                          DAG.getConstant(NVTBits-1, ShTy));
1328  } else if (Amt > NVTBits) {
1329    Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1330                     DAG.getConstant(Amt-NVTBits, ShTy));
1331    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1332                     DAG.getConstant(NVTBits-1, ShTy));
1333  } else if (Amt == NVTBits) {
1334    Lo = InH;
1335    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1336                     DAG.getConstant(NVTBits-1, ShTy));
1337  } else {
1338    Lo = DAG.getNode(ISD::OR, DL, NVT,
1339                     DAG.getNode(ISD::SRL, DL, NVT, InL,
1340                                 DAG.getConstant(Amt, ShTy)),
1341                     DAG.getNode(ISD::SHL, DL, NVT, InH,
1342                                 DAG.getConstant(NVTBits-Amt, ShTy)));
1343    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1344  }
1345}
1346
1347/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1348/// this shift based on knowledge of the high bit of the shift amount.  If we
1349/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1350/// shift amount.
1351bool DAGTypeLegalizer::
1352ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1353  SDValue Amt = N->getOperand(1);
1354  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1355  EVT ShTy = Amt.getValueType();
1356  unsigned ShBits = ShTy.getScalarType().getSizeInBits();
1357  unsigned NVTBits = NVT.getScalarType().getSizeInBits();
1358  assert(isPowerOf2_32(NVTBits) &&
1359         "Expanded integer type size not a power of two!");
1360  DebugLoc dl = N->getDebugLoc();
1361
1362  APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
1363  APInt KnownZero, KnownOne;
1364  DAG.ComputeMaskedBits(N->getOperand(1), HighBitMask, KnownZero, KnownOne);
1365
1366  // If we don't know anything about the high bits, exit.
1367  if (((KnownZero|KnownOne) & HighBitMask) == 0)
1368    return false;
1369
1370  // Get the incoming operand to be shifted.
1371  SDValue InL, InH;
1372  GetExpandedInteger(N->getOperand(0), InL, InH);
1373
1374  // If we know that any of the high bits of the shift amount are one, then we
1375  // can do this as a couple of simple shifts.
1376  if (KnownOne.intersects(HighBitMask)) {
1377    // Mask out the high bit, which we know is set.
1378    Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
1379                      DAG.getConstant(~HighBitMask, ShTy));
1380
1381    switch (N->getOpcode()) {
1382    default: llvm_unreachable("Unknown shift");
1383    case ISD::SHL:
1384      Lo = DAG.getConstant(0, NVT);              // Low part is zero.
1385      Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
1386      return true;
1387    case ISD::SRL:
1388      Hi = DAG.getConstant(0, NVT);              // Hi part is zero.
1389      Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
1390      return true;
1391    case ISD::SRA:
1392      Hi = DAG.getNode(ISD::SRA, dl, NVT, InH,       // Sign extend high part.
1393                       DAG.getConstant(NVTBits-1, ShTy));
1394      Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
1395      return true;
1396    }
1397  }
1398
1399#if 0
1400  // FIXME: This code is broken for shifts with a zero amount!
1401  // If we know that all of the high bits of the shift amount are zero, then we
1402  // can do this as a couple of simple shifts.
1403  if ((KnownZero & HighBitMask) == HighBitMask) {
1404    // Compute 32-amt.
1405    SDValue Amt2 = DAG.getNode(ISD::SUB, ShTy,
1406                                 DAG.getConstant(NVTBits, ShTy),
1407                                 Amt);
1408    unsigned Op1, Op2;
1409    switch (N->getOpcode()) {
1410    default: llvm_unreachable("Unknown shift");
1411    case ISD::SHL:  Op1 = ISD::SHL; Op2 = ISD::SRL; break;
1412    case ISD::SRL:
1413    case ISD::SRA:  Op1 = ISD::SRL; Op2 = ISD::SHL; break;
1414    }
1415
1416    Lo = DAG.getNode(N->getOpcode(), NVT, InL, Amt);
1417    Hi = DAG.getNode(ISD::OR, NVT,
1418                     DAG.getNode(Op1, NVT, InH, Amt),
1419                     DAG.getNode(Op2, NVT, InL, Amt2));
1420    return true;
1421  }
1422#endif
1423
1424  return false;
1425}
1426
1427/// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
1428/// of any size.
1429bool DAGTypeLegalizer::
1430ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1431  SDValue Amt = N->getOperand(1);
1432  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1433  EVT ShTy = Amt.getValueType();
1434  unsigned NVTBits = NVT.getSizeInBits();
1435  assert(isPowerOf2_32(NVTBits) &&
1436         "Expanded integer type size not a power of two!");
1437  DebugLoc dl = N->getDebugLoc();
1438
1439  // Get the incoming operand to be shifted.
1440  SDValue InL, InH;
1441  GetExpandedInteger(N->getOperand(0), InL, InH);
1442
1443  SDValue NVBitsNode = DAG.getConstant(NVTBits, ShTy);
1444  SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
1445  SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
1446  SDValue isShort = DAG.getSetCC(dl, TLI.getSetCCResultType(ShTy),
1447                                 Amt, NVBitsNode, ISD::SETULT);
1448
1449  SDValue LoS, HiS, LoL, HiL;
1450  switch (N->getOpcode()) {
1451  default: llvm_unreachable("Unknown shift");
1452  case ISD::SHL:
1453    // Short: ShAmt < NVTBits
1454    LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
1455    HiS = DAG.getNode(ISD::OR, dl, NVT,
1456                      DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
1457    // FIXME: If Amt is zero, the following shift generates an undefined result
1458    // on some architectures.
1459                      DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
1460
1461    // Long: ShAmt >= NVTBits
1462    LoL = DAG.getConstant(0, NVT);                        // Lo part is zero.
1463    HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
1464
1465    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1466    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1467    return true;
1468  case ISD::SRL:
1469    // Short: ShAmt < NVTBits
1470    HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
1471    LoS = DAG.getNode(ISD::OR, dl, NVT,
1472                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1473    // FIXME: If Amt is zero, the following shift generates an undefined result
1474    // on some architectures.
1475                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1476
1477    // Long: ShAmt >= NVTBits
1478    HiL = DAG.getConstant(0, NVT);                        // Hi part is zero.
1479    LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1480
1481    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1482    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1483    return true;
1484  case ISD::SRA:
1485    // Short: ShAmt < NVTBits
1486    HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
1487    LoS = DAG.getNode(ISD::OR, dl, NVT,
1488                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1489    // FIXME: If Amt is zero, the following shift generates an undefined result
1490    // on some architectures.
1491                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1492
1493    // Long: ShAmt >= NVTBits
1494    HiL = DAG.getNode(ISD::SRA, dl, NVT, InH,             // Sign of Hi part.
1495                      DAG.getConstant(NVTBits-1, ShTy));
1496    LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1497
1498    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1499    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1500    return true;
1501  }
1502
1503  return false;
1504}
1505
1506void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
1507                                           SDValue &Lo, SDValue &Hi) {
1508  DebugLoc dl = N->getDebugLoc();
1509  // Expand the subcomponents.
1510  SDValue LHSL, LHSH, RHSL, RHSH;
1511  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1512  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1513
1514  EVT NVT = LHSL.getValueType();
1515  SDValue LoOps[2] = { LHSL, RHSL };
1516  SDValue HiOps[3] = { LHSH, RHSH };
1517
1518  // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
1519  // them.  TODO: Teach operation legalization how to expand unsupported
1520  // ADDC/ADDE/SUBC/SUBE.  The problem is that these operations generate
1521  // a carry of type MVT::Glue, but there doesn't seem to be any way to
1522  // generate a value of this type in the expanded code sequence.
1523  bool hasCarry =
1524    TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
1525                                   ISD::ADDC : ISD::SUBC,
1526                                 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
1527
1528  if (hasCarry) {
1529    SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1530    if (N->getOpcode() == ISD::ADD) {
1531      Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1532      HiOps[2] = Lo.getValue(1);
1533      Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1534    } else {
1535      Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1536      HiOps[2] = Lo.getValue(1);
1537      Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1538    }
1539    return;
1540  }
1541
1542  if (N->getOpcode() == ISD::ADD) {
1543    Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2);
1544    Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2);
1545    SDValue Cmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[0],
1546                                ISD::SETULT);
1547    SDValue Carry1 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp1,
1548                                 DAG.getConstant(1, NVT),
1549                                 DAG.getConstant(0, NVT));
1550    SDValue Cmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[1],
1551                                ISD::SETULT);
1552    SDValue Carry2 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp2,
1553                                 DAG.getConstant(1, NVT), Carry1);
1554    Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
1555  } else {
1556    Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2);
1557    Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2);
1558    SDValue Cmp =
1559      DAG.getSetCC(dl, TLI.getSetCCResultType(LoOps[0].getValueType()),
1560                   LoOps[0], LoOps[1], ISD::SETULT);
1561    SDValue Borrow = DAG.getNode(ISD::SELECT, dl, NVT, Cmp,
1562                                 DAG.getConstant(1, NVT),
1563                                 DAG.getConstant(0, NVT));
1564    Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
1565  }
1566}
1567
1568void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
1569                                            SDValue &Lo, SDValue &Hi) {
1570  // Expand the subcomponents.
1571  SDValue LHSL, LHSH, RHSL, RHSH;
1572  DebugLoc dl = N->getDebugLoc();
1573  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1574  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1575  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1576  SDValue LoOps[2] = { LHSL, RHSL };
1577  SDValue HiOps[3] = { LHSH, RHSH };
1578
1579  if (N->getOpcode() == ISD::ADDC) {
1580    Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1581    HiOps[2] = Lo.getValue(1);
1582    Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1583  } else {
1584    Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1585    HiOps[2] = Lo.getValue(1);
1586    Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1587  }
1588
1589  // Legalized the flag result - switch anything that used the old flag to
1590  // use the new one.
1591  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1592}
1593
1594void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
1595                                            SDValue &Lo, SDValue &Hi) {
1596  // Expand the subcomponents.
1597  SDValue LHSL, LHSH, RHSL, RHSH;
1598  DebugLoc dl = N->getDebugLoc();
1599  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1600  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1601  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1602  SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
1603  SDValue HiOps[3] = { LHSH, RHSH };
1604
1605  Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps, 3);
1606  HiOps[2] = Lo.getValue(1);
1607  Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps, 3);
1608
1609  // Legalized the flag result - switch anything that used the old flag to
1610  // use the new one.
1611  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1612}
1613
1614void DAGTypeLegalizer::ExpandIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1615                                                 SDValue &Lo, SDValue &Hi) {
1616  SDValue Res = DisintegrateMERGE_VALUES(N, ResNo);
1617  SplitInteger(Res, Lo, Hi);
1618}
1619
1620void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
1621                                               SDValue &Lo, SDValue &Hi) {
1622  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1623  DebugLoc dl = N->getDebugLoc();
1624  SDValue Op = N->getOperand(0);
1625  if (Op.getValueType().bitsLE(NVT)) {
1626    // The low part is any extension of the input (which degenerates to a copy).
1627    Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op);
1628    Hi = DAG.getUNDEF(NVT);   // The high part is undefined.
1629  } else {
1630    // For example, extension of an i48 to an i64.  The operand type necessarily
1631    // promotes to the result type, so will end up being expanded too.
1632    assert(getTypeAction(Op.getValueType()) ==
1633           TargetLowering::TypePromoteInteger &&
1634           "Only know how to promote this result!");
1635    SDValue Res = GetPromotedInteger(Op);
1636    assert(Res.getValueType() == N->getValueType(0) &&
1637           "Operand over promoted?");
1638    // Split the promoted operand.  This will simplify when it is expanded.
1639    SplitInteger(Res, Lo, Hi);
1640  }
1641}
1642
1643void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
1644                                               SDValue &Lo, SDValue &Hi) {
1645  DebugLoc dl = N->getDebugLoc();
1646  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1647  EVT NVT = Lo.getValueType();
1648  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1649  unsigned NVTBits = NVT.getSizeInBits();
1650  unsigned EVTBits = EVT.getSizeInBits();
1651
1652  if (NVTBits < EVTBits) {
1653    Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
1654                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1655                                                        EVTBits - NVTBits)));
1656  } else {
1657    Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
1658    // The high part replicates the sign bit of Lo, make it explicit.
1659    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1660                     DAG.getConstant(NVTBits-1, TLI.getPointerTy()));
1661  }
1662}
1663
1664void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
1665                                               SDValue &Lo, SDValue &Hi) {
1666  DebugLoc dl = N->getDebugLoc();
1667  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1668  EVT NVT = Lo.getValueType();
1669  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1670  unsigned NVTBits = NVT.getSizeInBits();
1671  unsigned EVTBits = EVT.getSizeInBits();
1672
1673  if (NVTBits < EVTBits) {
1674    Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
1675                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1676                                                        EVTBits - NVTBits)));
1677  } else {
1678    Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
1679    // The high part must be zero, make it explicit.
1680    Hi = DAG.getConstant(0, NVT);
1681  }
1682}
1683
1684void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
1685                                          SDValue &Lo, SDValue &Hi) {
1686  DebugLoc dl = N->getDebugLoc();
1687  GetExpandedInteger(N->getOperand(0), Hi, Lo);  // Note swapped operands.
1688  Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo);
1689  Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi);
1690}
1691
1692void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
1693                                             SDValue &Lo, SDValue &Hi) {
1694  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1695  unsigned NBitWidth = NVT.getSizeInBits();
1696  const APInt &Cst = cast<ConstantSDNode>(N)->getAPIntValue();
1697  Lo = DAG.getConstant(Cst.trunc(NBitWidth), NVT);
1698  Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT);
1699}
1700
1701void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
1702                                         SDValue &Lo, SDValue &Hi) {
1703  DebugLoc dl = N->getDebugLoc();
1704  // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
1705  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1706  EVT NVT = Lo.getValueType();
1707
1708  SDValue HiNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Hi,
1709                                   DAG.getConstant(0, NVT), ISD::SETNE);
1710
1711  SDValue LoLZ = DAG.getNode(N->getOpcode(), dl, NVT, Lo);
1712  SDValue HiLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, NVT, Hi);
1713
1714  Lo = DAG.getNode(ISD::SELECT, dl, NVT, HiNotZero, HiLZ,
1715                   DAG.getNode(ISD::ADD, dl, NVT, LoLZ,
1716                               DAG.getConstant(NVT.getSizeInBits(), NVT)));
1717  Hi = DAG.getConstant(0, NVT);
1718}
1719
1720void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
1721                                          SDValue &Lo, SDValue &Hi) {
1722  DebugLoc dl = N->getDebugLoc();
1723  // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
1724  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1725  EVT NVT = Lo.getValueType();
1726  Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
1727                   DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
1728  Hi = DAG.getConstant(0, NVT);
1729}
1730
1731void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
1732                                         SDValue &Lo, SDValue &Hi) {
1733  DebugLoc dl = N->getDebugLoc();
1734  // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
1735  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1736  EVT NVT = Lo.getValueType();
1737
1738  SDValue LoNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo,
1739                                   DAG.getConstant(0, NVT), ISD::SETNE);
1740
1741  SDValue LoLZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, NVT, Lo);
1742  SDValue HiLZ = DAG.getNode(N->getOpcode(), dl, NVT, Hi);
1743
1744  Lo = DAG.getNode(ISD::SELECT, dl, NVT, LoNotZero, LoLZ,
1745                   DAG.getNode(ISD::ADD, dl, NVT, HiLZ,
1746                               DAG.getConstant(NVT.getSizeInBits(), NVT)));
1747  Hi = DAG.getConstant(0, NVT);
1748}
1749
1750void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
1751                                               SDValue &Hi) {
1752  DebugLoc dl = N->getDebugLoc();
1753  EVT VT = N->getValueType(0);
1754  SDValue Op = N->getOperand(0);
1755  RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
1756  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
1757  SplitInteger(MakeLibCall(LC, VT, &Op, 1, true/*irrelevant*/, dl), Lo, Hi);
1758}
1759
1760void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
1761                                               SDValue &Hi) {
1762  DebugLoc dl = N->getDebugLoc();
1763  EVT VT = N->getValueType(0);
1764  SDValue Op = N->getOperand(0);
1765  RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
1766  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
1767  SplitInteger(MakeLibCall(LC, VT, &Op, 1, false/*irrelevant*/, dl), Lo, Hi);
1768}
1769
1770void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
1771                                         SDValue &Lo, SDValue &Hi) {
1772  if (ISD::isNormalLoad(N)) {
1773    ExpandRes_NormalLoad(N, Lo, Hi);
1774    return;
1775  }
1776
1777  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
1778
1779  EVT VT = N->getValueType(0);
1780  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1781  SDValue Ch  = N->getChain();
1782  SDValue Ptr = N->getBasePtr();
1783  ISD::LoadExtType ExtType = N->getExtensionType();
1784  unsigned Alignment = N->getAlignment();
1785  bool isVolatile = N->isVolatile();
1786  bool isNonTemporal = N->isNonTemporal();
1787  bool isInvariant = N->isInvariant();
1788  DebugLoc dl = N->getDebugLoc();
1789
1790  assert(NVT.isByteSized() && "Expanded type not byte sized!");
1791
1792  if (N->getMemoryVT().bitsLE(NVT)) {
1793    EVT MemVT = N->getMemoryVT();
1794
1795    Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1796                        MemVT, isVolatile, isNonTemporal, Alignment);
1797
1798    // Remember the chain.
1799    Ch = Lo.getValue(1);
1800
1801    if (ExtType == ISD::SEXTLOAD) {
1802      // The high part is obtained by SRA'ing all but one of the bits of the
1803      // lo part.
1804      unsigned LoSize = Lo.getValueType().getSizeInBits();
1805      Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1806                       DAG.getConstant(LoSize-1, TLI.getPointerTy()));
1807    } else if (ExtType == ISD::ZEXTLOAD) {
1808      // The high part is just a zero.
1809      Hi = DAG.getConstant(0, NVT);
1810    } else {
1811      assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
1812      // The high part is undefined.
1813      Hi = DAG.getUNDEF(NVT);
1814    }
1815  } else if (TLI.isLittleEndian()) {
1816    // Little-endian - low bits are at low addresses.
1817    Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(),
1818                     isVolatile, isNonTemporal, isInvariant, Alignment);
1819
1820    unsigned ExcessBits =
1821      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
1822    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
1823
1824    // Increment the pointer to the other half.
1825    unsigned IncrementSize = NVT.getSizeInBits()/8;
1826    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1827                      DAG.getIntPtrConstant(IncrementSize));
1828    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
1829                        N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
1830                        isVolatile, isNonTemporal,
1831                        MinAlign(Alignment, IncrementSize));
1832
1833    // Build a factor node to remember that this load is independent of the
1834    // other one.
1835    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1836                     Hi.getValue(1));
1837  } else {
1838    // Big-endian - high bits are at low addresses.  Favor aligned loads at
1839    // the cost of some bit-fiddling.
1840    EVT MemVT = N->getMemoryVT();
1841    unsigned EBytes = MemVT.getStoreSize();
1842    unsigned IncrementSize = NVT.getSizeInBits()/8;
1843    unsigned ExcessBits = (EBytes - IncrementSize)*8;
1844
1845    // Load both the high bits and maybe some of the low bits.
1846    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1847                        EVT::getIntegerVT(*DAG.getContext(),
1848                                          MemVT.getSizeInBits() - ExcessBits),
1849                        isVolatile, isNonTemporal, Alignment);
1850
1851    // Increment the pointer to the other half.
1852    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1853                      DAG.getIntPtrConstant(IncrementSize));
1854    // Load the rest of the low bits.
1855    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
1856                        N->getPointerInfo().getWithOffset(IncrementSize),
1857                        EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
1858                        isVolatile, isNonTemporal,
1859                        MinAlign(Alignment, IncrementSize));
1860
1861    // Build a factor node to remember that this load is independent of the
1862    // other one.
1863    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1864                     Hi.getValue(1));
1865
1866    if (ExcessBits < NVT.getSizeInBits()) {
1867      // Transfer low bits from the bottom of Hi to the top of Lo.
1868      Lo = DAG.getNode(ISD::OR, dl, NVT, Lo,
1869                       DAG.getNode(ISD::SHL, dl, NVT, Hi,
1870                                   DAG.getConstant(ExcessBits,
1871                                                   TLI.getPointerTy())));
1872      // Move high bits to the right position in Hi.
1873      Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl,
1874                       NVT, Hi,
1875                       DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
1876                                       TLI.getPointerTy()));
1877    }
1878  }
1879
1880  // Legalized the chain result - switch anything that used the old chain to
1881  // use the new one.
1882  ReplaceValueWith(SDValue(N, 1), Ch);
1883}
1884
1885void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
1886                                            SDValue &Lo, SDValue &Hi) {
1887  DebugLoc dl = N->getDebugLoc();
1888  SDValue LL, LH, RL, RH;
1889  GetExpandedInteger(N->getOperand(0), LL, LH);
1890  GetExpandedInteger(N->getOperand(1), RL, RH);
1891  Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL);
1892  Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH);
1893}
1894
1895void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
1896                                        SDValue &Lo, SDValue &Hi) {
1897  EVT VT = N->getValueType(0);
1898  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1899  DebugLoc dl = N->getDebugLoc();
1900
1901  bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT);
1902  bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT);
1903  bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT);
1904  bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT);
1905  if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
1906    SDValue LL, LH, RL, RH;
1907    GetExpandedInteger(N->getOperand(0), LL, LH);
1908    GetExpandedInteger(N->getOperand(1), RL, RH);
1909    unsigned OuterBitSize = VT.getSizeInBits();
1910    unsigned InnerBitSize = NVT.getSizeInBits();
1911    unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
1912    unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
1913
1914    APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
1915    if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
1916        DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
1917      // The inputs are both zero-extended.
1918      if (HasUMUL_LOHI) {
1919        // We can emit a umul_lohi.
1920        Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1921        Hi = SDValue(Lo.getNode(), 1);
1922        return;
1923      }
1924      if (HasMULHU) {
1925        // We can emit a mulhu+mul.
1926        Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1927        Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1928        return;
1929      }
1930    }
1931    if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
1932      // The input values are both sign-extended.
1933      if (HasSMUL_LOHI) {
1934        // We can emit a smul_lohi.
1935        Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1936        Hi = SDValue(Lo.getNode(), 1);
1937        return;
1938      }
1939      if (HasMULHS) {
1940        // We can emit a mulhs+mul.
1941        Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1942        Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL);
1943        return;
1944      }
1945    }
1946    if (HasUMUL_LOHI) {
1947      // Lo,Hi = umul LHS, RHS.
1948      SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
1949                                       DAG.getVTList(NVT, NVT), LL, RL);
1950      Lo = UMulLOHI;
1951      Hi = UMulLOHI.getValue(1);
1952      RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1953      LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1954      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1955      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1956      return;
1957    }
1958    if (HasMULHU) {
1959      Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1960      Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1961      RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1962      LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1963      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1964      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1965      return;
1966    }
1967  }
1968
1969  // If nothing else, we can make a libcall.
1970  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1971  if (VT == MVT::i16)
1972    LC = RTLIB::MUL_I16;
1973  else if (VT == MVT::i32)
1974    LC = RTLIB::MUL_I32;
1975  else if (VT == MVT::i64)
1976    LC = RTLIB::MUL_I64;
1977  else if (VT == MVT::i128)
1978    LC = RTLIB::MUL_I128;
1979  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!");
1980
1981  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1982  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true/*irrelevant*/, dl), Lo, Hi);
1983}
1984
1985void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node,
1986                                             SDValue &Lo, SDValue &Hi) {
1987  SDValue LHS = Node->getOperand(0);
1988  SDValue RHS = Node->getOperand(1);
1989  DebugLoc dl = Node->getDebugLoc();
1990
1991  // Expand the result by simply replacing it with the equivalent
1992  // non-overflow-checking operation.
1993  SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
1994                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
1995                            LHS, RHS);
1996  SplitInteger(Sum, Lo, Hi);
1997
1998  // Compute the overflow.
1999  //
2000  //   LHSSign -> LHS >= 0
2001  //   RHSSign -> RHS >= 0
2002  //   SumSign -> Sum >= 0
2003  //
2004  //   Add:
2005  //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2006  //   Sub:
2007  //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2008  //
2009  EVT OType = Node->getValueType(1);
2010  SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2011
2012  SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2013  SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2014  SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2015                                    Node->getOpcode() == ISD::SADDO ?
2016                                    ISD::SETEQ : ISD::SETNE);
2017
2018  SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2019  SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2020
2021  SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2022
2023  // Use the calculated overflow everywhere.
2024  ReplaceValueWith(SDValue(Node, 1), Cmp);
2025}
2026
2027void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
2028                                         SDValue &Lo, SDValue &Hi) {
2029  EVT VT = N->getValueType(0);
2030  DebugLoc dl = N->getDebugLoc();
2031
2032  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2033  if (VT == MVT::i16)
2034    LC = RTLIB::SDIV_I16;
2035  else if (VT == MVT::i32)
2036    LC = RTLIB::SDIV_I32;
2037  else if (VT == MVT::i64)
2038    LC = RTLIB::SDIV_I64;
2039  else if (VT == MVT::i128)
2040    LC = RTLIB::SDIV_I128;
2041  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
2042
2043  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2044  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true, dl), Lo, Hi);
2045}
2046
2047void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
2048                                          SDValue &Lo, SDValue &Hi) {
2049  EVT VT = N->getValueType(0);
2050  DebugLoc dl = N->getDebugLoc();
2051
2052  // If we can emit an efficient shift operation, do so now.  Check to see if
2053  // the RHS is a constant.
2054  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2055    return ExpandShiftByConstant(N, CN->getZExtValue(), Lo, Hi);
2056
2057  // If we can determine that the high bit of the shift is zero or one, even if
2058  // the low bits are variable, emit this shift in an optimized form.
2059  if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
2060    return;
2061
2062  // If this target supports shift_PARTS, use it.  First, map to the _PARTS opc.
2063  unsigned PartsOpc;
2064  if (N->getOpcode() == ISD::SHL) {
2065    PartsOpc = ISD::SHL_PARTS;
2066  } else if (N->getOpcode() == ISD::SRL) {
2067    PartsOpc = ISD::SRL_PARTS;
2068  } else {
2069    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2070    PartsOpc = ISD::SRA_PARTS;
2071  }
2072
2073  // Next check to see if the target supports this SHL_PARTS operation or if it
2074  // will custom expand it.
2075  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2076  TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
2077  if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
2078      Action == TargetLowering::Custom) {
2079    // Expand the subcomponents.
2080    SDValue LHSL, LHSH;
2081    GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2082
2083    SDValue Ops[] = { LHSL, LHSH, N->getOperand(1) };
2084    EVT VT = LHSL.getValueType();
2085    Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops, 3);
2086    Hi = Lo.getValue(1);
2087    return;
2088  }
2089
2090  // Otherwise, emit a libcall.
2091  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2092  bool isSigned;
2093  if (N->getOpcode() == ISD::SHL) {
2094    isSigned = false; /*sign irrelevant*/
2095    if (VT == MVT::i16)
2096      LC = RTLIB::SHL_I16;
2097    else if (VT == MVT::i32)
2098      LC = RTLIB::SHL_I32;
2099    else if (VT == MVT::i64)
2100      LC = RTLIB::SHL_I64;
2101    else if (VT == MVT::i128)
2102      LC = RTLIB::SHL_I128;
2103  } else if (N->getOpcode() == ISD::SRL) {
2104    isSigned = false;
2105    if (VT == MVT::i16)
2106      LC = RTLIB::SRL_I16;
2107    else if (VT == MVT::i32)
2108      LC = RTLIB::SRL_I32;
2109    else if (VT == MVT::i64)
2110      LC = RTLIB::SRL_I64;
2111    else if (VT == MVT::i128)
2112      LC = RTLIB::SRL_I128;
2113  } else {
2114    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2115    isSigned = true;
2116    if (VT == MVT::i16)
2117      LC = RTLIB::SRA_I16;
2118    else if (VT == MVT::i32)
2119      LC = RTLIB::SRA_I32;
2120    else if (VT == MVT::i64)
2121      LC = RTLIB::SRA_I64;
2122    else if (VT == MVT::i128)
2123      LC = RTLIB::SRA_I128;
2124  }
2125
2126  if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
2127    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2128    SplitInteger(MakeLibCall(LC, VT, Ops, 2, isSigned, dl), Lo, Hi);
2129    return;
2130  }
2131
2132  if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
2133    llvm_unreachable("Unsupported shift!");
2134}
2135
2136void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
2137                                                SDValue &Lo, SDValue &Hi) {
2138  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2139  DebugLoc dl = N->getDebugLoc();
2140  SDValue Op = N->getOperand(0);
2141  if (Op.getValueType().bitsLE(NVT)) {
2142    // The low part is sign extension of the input (degenerates to a copy).
2143    Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0));
2144    // The high part is obtained by SRA'ing all but one of the bits of low part.
2145    unsigned LoSize = NVT.getSizeInBits();
2146    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2147                     DAG.getConstant(LoSize-1, TLI.getPointerTy()));
2148  } else {
2149    // For example, extension of an i48 to an i64.  The operand type necessarily
2150    // promotes to the result type, so will end up being expanded too.
2151    assert(getTypeAction(Op.getValueType()) ==
2152           TargetLowering::TypePromoteInteger &&
2153           "Only know how to promote this result!");
2154    SDValue Res = GetPromotedInteger(Op);
2155    assert(Res.getValueType() == N->getValueType(0) &&
2156           "Operand over promoted?");
2157    // Split the promoted operand.  This will simplify when it is expanded.
2158    SplitInteger(Res, Lo, Hi);
2159    unsigned ExcessBits =
2160      Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2161    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2162                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2163                                                        ExcessBits)));
2164  }
2165}
2166
2167void DAGTypeLegalizer::
2168ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
2169  DebugLoc dl = N->getDebugLoc();
2170  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2171  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2172
2173  if (EVT.bitsLE(Lo.getValueType())) {
2174    // sext_inreg the low part if needed.
2175    Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo,
2176                     N->getOperand(1));
2177
2178    // The high part gets the sign extension from the lo-part.  This handles
2179    // things like sextinreg V:i64 from i8.
2180    Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
2181                     DAG.getConstant(Hi.getValueType().getSizeInBits()-1,
2182                                     TLI.getPointerTy()));
2183  } else {
2184    // For example, extension of an i48 to an i64.  Leave the low part alone,
2185    // sext_inreg the high part.
2186    unsigned ExcessBits =
2187      EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
2188    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2189                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2190                                                        ExcessBits)));
2191  }
2192}
2193
2194void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
2195                                         SDValue &Lo, SDValue &Hi) {
2196  EVT VT = N->getValueType(0);
2197  DebugLoc dl = N->getDebugLoc();
2198
2199  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2200  if (VT == MVT::i16)
2201    LC = RTLIB::SREM_I16;
2202  else if (VT == MVT::i32)
2203    LC = RTLIB::SREM_I32;
2204  else if (VT == MVT::i64)
2205    LC = RTLIB::SREM_I64;
2206  else if (VT == MVT::i128)
2207    LC = RTLIB::SREM_I128;
2208  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
2209
2210  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2211  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true, dl), Lo, Hi);
2212}
2213
2214void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
2215                                             SDValue &Lo, SDValue &Hi) {
2216  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2217  DebugLoc dl = N->getDebugLoc();
2218  Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
2219  Hi = DAG.getNode(ISD::SRL, dl,
2220                   N->getOperand(0).getValueType(), N->getOperand(0),
2221                   DAG.getConstant(NVT.getSizeInBits(), TLI.getPointerTy()));
2222  Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi);
2223}
2224
2225void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N,
2226                                             SDValue &Lo, SDValue &Hi) {
2227  SDValue LHS = N->getOperand(0);
2228  SDValue RHS = N->getOperand(1);
2229  DebugLoc dl = N->getDebugLoc();
2230
2231  // Expand the result by simply replacing it with the equivalent
2232  // non-overflow-checking operation.
2233  SDValue Sum = DAG.getNode(N->getOpcode() == ISD::UADDO ?
2234                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2235                            LHS, RHS);
2236  SplitInteger(Sum, Lo, Hi);
2237
2238  // Calculate the overflow: addition overflows iff a + b < a, and subtraction
2239  // overflows iff a - b > a.
2240  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS,
2241                             N->getOpcode () == ISD::UADDO ?
2242                             ISD::SETULT : ISD::SETUGT);
2243
2244  // Use the calculated overflow everywhere.
2245  ReplaceValueWith(SDValue(N, 1), Ofl);
2246}
2247
2248void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N,
2249                                          SDValue &Lo, SDValue &Hi) {
2250  EVT VT = N->getValueType(0);
2251  Type *RetTy = VT.getTypeForEVT(*DAG.getContext());
2252  EVT PtrVT = TLI.getPointerTy();
2253  Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext());
2254  DebugLoc dl = N->getDebugLoc();
2255
2256  // A divide for UMULO should be faster than a function call.
2257  if (N->getOpcode() == ISD::UMULO) {
2258    SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
2259    DebugLoc DL = N->getDebugLoc();
2260
2261    SDValue MUL = DAG.getNode(ISD::MUL, DL, LHS.getValueType(), LHS, RHS);
2262    SplitInteger(MUL, Lo, Hi);
2263
2264    // A divide for UMULO will be faster than a function call. Select to
2265    // make sure we aren't using 0.
2266    SDValue isZero = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2267				  RHS, DAG.getConstant(0, VT), ISD::SETNE);
2268    SDValue NotZero = DAG.getNode(ISD::SELECT, dl, VT, isZero,
2269				  DAG.getConstant(1, VT), RHS);
2270    SDValue DIV = DAG.getNode(ISD::UDIV, DL, LHS.getValueType(), MUL, NotZero);
2271    SDValue Overflow;
2272    Overflow = DAG.getSetCC(DL, N->getValueType(1), DIV, LHS, ISD::SETNE);
2273    ReplaceValueWith(SDValue(N, 1), Overflow);
2274    return;
2275  }
2276
2277  // Replace this with a libcall that will check overflow.
2278  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2279  if (VT == MVT::i32)
2280    LC = RTLIB::MULO_I32;
2281  else if (VT == MVT::i64)
2282    LC = RTLIB::MULO_I64;
2283  else if (VT == MVT::i128)
2284    LC = RTLIB::MULO_I128;
2285  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!");
2286
2287  SDValue Temp = DAG.CreateStackTemporary(PtrVT);
2288  // Temporary for the overflow value, default it to zero.
2289  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl,
2290			       DAG.getConstant(0, PtrVT), Temp,
2291			       MachinePointerInfo(), false, false, 0);
2292
2293  TargetLowering::ArgListTy Args;
2294  TargetLowering::ArgListEntry Entry;
2295  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2296    EVT ArgVT = N->getOperand(i).getValueType();
2297    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2298    Entry.Node = N->getOperand(i);
2299    Entry.Ty = ArgTy;
2300    Entry.isSExt = true;
2301    Entry.isZExt = false;
2302    Args.push_back(Entry);
2303  }
2304
2305  // Also pass the address of the overflow check.
2306  Entry.Node = Temp;
2307  Entry.Ty = PtrTy->getPointerTo();
2308  Entry.isSExt = true;
2309  Entry.isZExt = false;
2310  Args.push_back(Entry);
2311
2312  SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT);
2313  std::pair<SDValue, SDValue> CallInfo =
2314    TLI.LowerCallTo(Chain, RetTy, true, false, false, false,
2315		    0, TLI.getLibcallCallingConv(LC), false,
2316		    true, Func, Args, DAG, dl);
2317
2318  SplitInteger(CallInfo.first, Lo, Hi);
2319  SDValue Temp2 = DAG.getLoad(PtrVT, dl, CallInfo.second, Temp,
2320			      MachinePointerInfo(), false, false, false, 0);
2321  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2,
2322                             DAG.getConstant(0, PtrVT),
2323                             ISD::SETNE);
2324  // Use the overflow from the libcall everywhere.
2325  ReplaceValueWith(SDValue(N, 1), Ofl);
2326}
2327
2328void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
2329                                         SDValue &Lo, SDValue &Hi) {
2330  EVT VT = N->getValueType(0);
2331  DebugLoc dl = N->getDebugLoc();
2332
2333  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2334  if (VT == MVT::i16)
2335    LC = RTLIB::UDIV_I16;
2336  else if (VT == MVT::i32)
2337    LC = RTLIB::UDIV_I32;
2338  else if (VT == MVT::i64)
2339    LC = RTLIB::UDIV_I64;
2340  else if (VT == MVT::i128)
2341    LC = RTLIB::UDIV_I128;
2342  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
2343
2344  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2345  SplitInteger(MakeLibCall(LC, VT, Ops, 2, false, dl), Lo, Hi);
2346}
2347
2348void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
2349                                         SDValue &Lo, SDValue &Hi) {
2350  EVT VT = N->getValueType(0);
2351  DebugLoc dl = N->getDebugLoc();
2352
2353  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2354  if (VT == MVT::i16)
2355    LC = RTLIB::UREM_I16;
2356  else if (VT == MVT::i32)
2357    LC = RTLIB::UREM_I32;
2358  else if (VT == MVT::i64)
2359    LC = RTLIB::UREM_I64;
2360  else if (VT == MVT::i128)
2361    LC = RTLIB::UREM_I128;
2362  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
2363
2364  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2365  SplitInteger(MakeLibCall(LC, VT, Ops, 2, false, dl), Lo, Hi);
2366}
2367
2368void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
2369                                                SDValue &Lo, SDValue &Hi) {
2370  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2371  DebugLoc dl = N->getDebugLoc();
2372  SDValue Op = N->getOperand(0);
2373  if (Op.getValueType().bitsLE(NVT)) {
2374    // The low part is zero extension of the input (degenerates to a copy).
2375    Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0));
2376    Hi = DAG.getConstant(0, NVT);   // The high part is just a zero.
2377  } else {
2378    // For example, extension of an i48 to an i64.  The operand type necessarily
2379    // promotes to the result type, so will end up being expanded too.
2380    assert(getTypeAction(Op.getValueType()) ==
2381           TargetLowering::TypePromoteInteger &&
2382           "Only know how to promote this result!");
2383    SDValue Res = GetPromotedInteger(Op);
2384    assert(Res.getValueType() == N->getValueType(0) &&
2385           "Operand over promoted?");
2386    // Split the promoted operand.  This will simplify when it is expanded.
2387    SplitInteger(Res, Lo, Hi);
2388    unsigned ExcessBits =
2389      Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2390    Hi = DAG.getZeroExtendInReg(Hi, dl,
2391                                EVT::getIntegerVT(*DAG.getContext(),
2392                                                  ExcessBits));
2393  }
2394}
2395
2396void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N,
2397                                                SDValue &Lo, SDValue &Hi) {
2398  DebugLoc dl = N->getDebugLoc();
2399  EVT VT = cast<AtomicSDNode>(N)->getMemoryVT();
2400  SDValue Zero = DAG.getConstant(0, VT);
2401  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
2402                               N->getOperand(0),
2403                               N->getOperand(1), Zero, Zero,
2404                               cast<AtomicSDNode>(N)->getMemOperand(),
2405                               cast<AtomicSDNode>(N)->getOrdering(),
2406                               cast<AtomicSDNode>(N)->getSynchScope());
2407  ReplaceValueWith(SDValue(N, 0), Swap.getValue(0));
2408  ReplaceValueWith(SDValue(N, 1), Swap.getValue(1));
2409}
2410
2411//===----------------------------------------------------------------------===//
2412//  Integer Operand Expansion
2413//===----------------------------------------------------------------------===//
2414
2415/// ExpandIntegerOperand - This method is called when the specified operand of
2416/// the specified node is found to need expansion.  At this point, all of the
2417/// result types of the node are known to be legal, but other operands of the
2418/// node may need promotion or expansion as well as the specified one.
2419bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
2420  DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n");
2421  SDValue Res = SDValue();
2422
2423  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2424    return false;
2425
2426  switch (N->getOpcode()) {
2427  default:
2428  #ifndef NDEBUG
2429    dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
2430    N->dump(&DAG); dbgs() << "\n";
2431  #endif
2432    llvm_unreachable("Do not know how to expand this operator's operand!");
2433
2434  case ISD::BITCAST:           Res = ExpandOp_BITCAST(N); break;
2435  case ISD::BR_CC:             Res = ExpandIntOp_BR_CC(N); break;
2436  case ISD::BUILD_VECTOR:      Res = ExpandOp_BUILD_VECTOR(N); break;
2437  case ISD::EXTRACT_ELEMENT:   Res = ExpandOp_EXTRACT_ELEMENT(N); break;
2438  case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break;
2439  case ISD::SCALAR_TO_VECTOR:  Res = ExpandOp_SCALAR_TO_VECTOR(N); break;
2440  case ISD::SELECT_CC:         Res = ExpandIntOp_SELECT_CC(N); break;
2441  case ISD::SETCC:             Res = ExpandIntOp_SETCC(N); break;
2442  case ISD::SINT_TO_FP:        Res = ExpandIntOp_SINT_TO_FP(N); break;
2443  case ISD::STORE:   Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break;
2444  case ISD::TRUNCATE:          Res = ExpandIntOp_TRUNCATE(N); break;
2445  case ISD::UINT_TO_FP:        Res = ExpandIntOp_UINT_TO_FP(N); break;
2446
2447  case ISD::SHL:
2448  case ISD::SRA:
2449  case ISD::SRL:
2450  case ISD::ROTL:
2451  case ISD::ROTR:              Res = ExpandIntOp_Shift(N); break;
2452  case ISD::RETURNADDR:
2453  case ISD::FRAMEADDR:         Res = ExpandIntOp_RETURNADDR(N); break;
2454
2455  case ISD::ATOMIC_STORE:      Res = ExpandIntOp_ATOMIC_STORE(N); break;
2456  }
2457
2458  // If the result is null, the sub-method took care of registering results etc.
2459  if (!Res.getNode()) return false;
2460
2461  // If the result is N, the sub-method updated N in place.  Tell the legalizer
2462  // core about this.
2463  if (Res.getNode() == N)
2464    return true;
2465
2466  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2467         "Invalid operand expansion");
2468
2469  ReplaceValueWith(SDValue(N, 0), Res);
2470  return false;
2471}
2472
2473/// IntegerExpandSetCCOperands - Expand the operands of a comparison.  This code
2474/// is shared among BR_CC, SELECT_CC, and SETCC handlers.
2475void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
2476                                                  SDValue &NewRHS,
2477                                                  ISD::CondCode &CCCode,
2478                                                  DebugLoc dl) {
2479  SDValue LHSLo, LHSHi, RHSLo, RHSHi;
2480  GetExpandedInteger(NewLHS, LHSLo, LHSHi);
2481  GetExpandedInteger(NewRHS, RHSLo, RHSHi);
2482
2483  if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
2484    if (RHSLo == RHSHi) {
2485      if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) {
2486        if (RHSCST->isAllOnesValue()) {
2487          // Equality comparison to -1.
2488          NewLHS = DAG.getNode(ISD::AND, dl,
2489                               LHSLo.getValueType(), LHSLo, LHSHi);
2490          NewRHS = RHSLo;
2491          return;
2492        }
2493      }
2494    }
2495
2496    NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
2497    NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
2498    NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS);
2499    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2500    return;
2501  }
2502
2503  // If this is a comparison of the sign bit, just look at the top part.
2504  // X > -1,  x < 0
2505  if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
2506    if ((CCCode == ISD::SETLT && CST->isNullValue()) ||     // X < 0
2507        (CCCode == ISD::SETGT && CST->isAllOnesValue())) {  // X > -1
2508      NewLHS = LHSHi;
2509      NewRHS = RHSHi;
2510      return;
2511    }
2512
2513  // FIXME: This generated code sucks.
2514  ISD::CondCode LowCC;
2515  switch (CCCode) {
2516  default: llvm_unreachable("Unknown integer setcc!");
2517  case ISD::SETLT:
2518  case ISD::SETULT: LowCC = ISD::SETULT; break;
2519  case ISD::SETGT:
2520  case ISD::SETUGT: LowCC = ISD::SETUGT; break;
2521  case ISD::SETLE:
2522  case ISD::SETULE: LowCC = ISD::SETULE; break;
2523  case ISD::SETGE:
2524  case ISD::SETUGE: LowCC = ISD::SETUGE; break;
2525  }
2526
2527  // Tmp1 = lo(op1) < lo(op2)   // Always unsigned comparison
2528  // Tmp2 = hi(op1) < hi(op2)   // Signedness depends on operands
2529  // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
2530
2531  // NOTE: on targets without efficient SELECT of bools, we can always use
2532  // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
2533  TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, true, NULL);
2534  SDValue Tmp1, Tmp2;
2535  Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()),
2536                           LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
2537  if (!Tmp1.getNode())
2538    Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()),
2539                        LHSLo, RHSLo, LowCC);
2540  Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2541                           LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl);
2542  if (!Tmp2.getNode())
2543    Tmp2 = DAG.getNode(ISD::SETCC, dl,
2544                       TLI.getSetCCResultType(LHSHi.getValueType()),
2545                       LHSHi, RHSHi, DAG.getCondCode(CCCode));
2546
2547  ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
2548  ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
2549  if ((Tmp1C && Tmp1C->isNullValue()) ||
2550      (Tmp2C && Tmp2C->isNullValue() &&
2551       (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
2552        CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
2553      (Tmp2C && Tmp2C->getAPIntValue() == 1 &&
2554       (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
2555        CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
2556    // low part is known false, returns high part.
2557    // For LE / GE, if high part is known false, ignore the low part.
2558    // For LT / GT, if high part is known true, ignore the low part.
2559    NewLHS = Tmp2;
2560    NewRHS = SDValue();
2561    return;
2562  }
2563
2564  NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2565                             LHSHi, RHSHi, ISD::SETEQ, false,
2566                             DagCombineInfo, dl);
2567  if (!NewLHS.getNode())
2568    NewLHS = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()),
2569                          LHSHi, RHSHi, ISD::SETEQ);
2570  NewLHS = DAG.getNode(ISD::SELECT, dl, Tmp1.getValueType(),
2571                       NewLHS, Tmp1, Tmp2);
2572  NewRHS = SDValue();
2573}
2574
2575SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
2576  SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
2577  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
2578  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2579
2580  // If ExpandSetCCOperands returned a scalar, we need to compare the result
2581  // against zero to select between true and false values.
2582  if (NewRHS.getNode() == 0) {
2583    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2584    CCCode = ISD::SETNE;
2585  }
2586
2587  // Update N to have the operands specified.
2588  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
2589                                DAG.getCondCode(CCCode), NewLHS, NewRHS,
2590                                N->getOperand(4)), 0);
2591}
2592
2593SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) {
2594  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2595  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
2596  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2597
2598  // If ExpandSetCCOperands returned a scalar, we need to compare the result
2599  // against zero to select between true and false values.
2600  if (NewRHS.getNode() == 0) {
2601    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2602    CCCode = ISD::SETNE;
2603  }
2604
2605  // Update N to have the operands specified.
2606  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2607                                N->getOperand(2), N->getOperand(3),
2608                                DAG.getCondCode(CCCode)), 0);
2609}
2610
2611SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
2612  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2613  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
2614  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2615
2616  // If ExpandSetCCOperands returned a scalar, use it.
2617  if (NewRHS.getNode() == 0) {
2618    assert(NewLHS.getValueType() == N->getValueType(0) &&
2619           "Unexpected setcc expansion!");
2620    return NewLHS;
2621  }
2622
2623  // Otherwise, update N to have the operands specified.
2624  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2625                                DAG.getCondCode(CCCode)), 0);
2626}
2627
2628SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
2629  // The value being shifted is legal, but the shift amount is too big.
2630  // It follows that either the result of the shift is undefined, or the
2631  // upper half of the shift amount is zero.  Just use the lower half.
2632  SDValue Lo, Hi;
2633  GetExpandedInteger(N->getOperand(1), Lo, Hi);
2634  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0);
2635}
2636
2637SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) {
2638  // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant.  This
2639  // surely makes pretty nice problems on 8/16 bit targets. Just truncate this
2640  // constant to valid type.
2641  SDValue Lo, Hi;
2642  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2643  return SDValue(DAG.UpdateNodeOperands(N, Lo), 0);
2644}
2645
2646SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
2647  SDValue Op = N->getOperand(0);
2648  EVT DstVT = N->getValueType(0);
2649  RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
2650  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2651         "Don't know how to expand this SINT_TO_FP!");
2652  return MakeLibCall(LC, DstVT, &Op, 1, true, N->getDebugLoc());
2653}
2654
2655SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
2656  if (ISD::isNormalStore(N))
2657    return ExpandOp_NormalStore(N, OpNo);
2658
2659  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
2660  assert(OpNo == 1 && "Can only expand the stored value so far");
2661
2662  EVT VT = N->getOperand(1).getValueType();
2663  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2664  SDValue Ch  = N->getChain();
2665  SDValue Ptr = N->getBasePtr();
2666  unsigned Alignment = N->getAlignment();
2667  bool isVolatile = N->isVolatile();
2668  bool isNonTemporal = N->isNonTemporal();
2669  DebugLoc dl = N->getDebugLoc();
2670  SDValue Lo, Hi;
2671
2672  assert(NVT.isByteSized() && "Expanded type not byte sized!");
2673
2674  if (N->getMemoryVT().bitsLE(NVT)) {
2675    GetExpandedInteger(N->getValue(), Lo, Hi);
2676    return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2677                             N->getMemoryVT(), isVolatile, isNonTemporal,
2678                             Alignment);
2679  }
2680
2681  if (TLI.isLittleEndian()) {
2682    // Little-endian - low bits are at low addresses.
2683    GetExpandedInteger(N->getValue(), Lo, Hi);
2684
2685    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2686                      isVolatile, isNonTemporal, Alignment);
2687
2688    unsigned ExcessBits =
2689      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
2690    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
2691
2692    // Increment the pointer to the other half.
2693    unsigned IncrementSize = NVT.getSizeInBits()/8;
2694    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2695                      DAG.getIntPtrConstant(IncrementSize));
2696    Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
2697                           N->getPointerInfo().getWithOffset(IncrementSize),
2698                           NEVT, isVolatile, isNonTemporal,
2699                           MinAlign(Alignment, IncrementSize));
2700    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2701  }
2702
2703  // Big-endian - high bits are at low addresses.  Favor aligned stores at
2704  // the cost of some bit-fiddling.
2705  GetExpandedInteger(N->getValue(), Lo, Hi);
2706
2707  EVT ExtVT = N->getMemoryVT();
2708  unsigned EBytes = ExtVT.getStoreSize();
2709  unsigned IncrementSize = NVT.getSizeInBits()/8;
2710  unsigned ExcessBits = (EBytes - IncrementSize)*8;
2711  EVT HiVT = EVT::getIntegerVT(*DAG.getContext(),
2712                               ExtVT.getSizeInBits() - ExcessBits);
2713
2714  if (ExcessBits < NVT.getSizeInBits()) {
2715    // Transfer high bits from the top of Lo to the bottom of Hi.
2716    Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi,
2717                     DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
2718                                     TLI.getPointerTy()));
2719    Hi = DAG.getNode(ISD::OR, dl, NVT, Hi,
2720                     DAG.getNode(ISD::SRL, dl, NVT, Lo,
2721                                 DAG.getConstant(ExcessBits,
2722                                                 TLI.getPointerTy())));
2723  }
2724
2725  // Store both the high bits and maybe some of the low bits.
2726  Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(),
2727                         HiVT, isVolatile, isNonTemporal, Alignment);
2728
2729  // Increment the pointer to the other half.
2730  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2731                    DAG.getIntPtrConstant(IncrementSize));
2732  // Store the lowest ExcessBits bits in the second half.
2733  Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
2734                         N->getPointerInfo().getWithOffset(IncrementSize),
2735                         EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
2736                         isVolatile, isNonTemporal,
2737                         MinAlign(Alignment, IncrementSize));
2738  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2739}
2740
2741SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
2742  SDValue InL, InH;
2743  GetExpandedInteger(N->getOperand(0), InL, InH);
2744  // Just truncate the low part of the source.
2745  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), InL);
2746}
2747
2748static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
2749  switch (VT.getSimpleVT().SimpleTy) {
2750  default: llvm_unreachable("Unknown FP format");
2751  case MVT::f32:     return &APFloat::IEEEsingle;
2752  case MVT::f64:     return &APFloat::IEEEdouble;
2753  case MVT::f80:     return &APFloat::x87DoubleExtended;
2754  case MVT::f128:    return &APFloat::IEEEquad;
2755  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
2756  }
2757}
2758
2759SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
2760  SDValue Op = N->getOperand(0);
2761  EVT SrcVT = Op.getValueType();
2762  EVT DstVT = N->getValueType(0);
2763  DebugLoc dl = N->getDebugLoc();
2764
2765  // The following optimization is valid only if every value in SrcVT (when
2766  // treated as signed) is representable in DstVT.  Check that the mantissa
2767  // size of DstVT is >= than the number of bits in SrcVT -1.
2768  const fltSemantics *sem = EVTToAPFloatSemantics(DstVT);
2769  if (APFloat::semanticsPrecision(*sem) >= SrcVT.getSizeInBits()-1 &&
2770      TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
2771    // Do a signed conversion then adjust the result.
2772    SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
2773    SignedConv = TLI.LowerOperation(SignedConv, DAG);
2774
2775    // The result of the signed conversion needs adjusting if the 'sign bit' of
2776    // the incoming integer was set.  To handle this, we dynamically test to see
2777    // if it is set, and, if so, add a fudge factor.
2778
2779    const uint64_t F32TwoE32  = 0x4F800000ULL;
2780    const uint64_t F32TwoE64  = 0x5F800000ULL;
2781    const uint64_t F32TwoE128 = 0x7F800000ULL;
2782
2783    APInt FF(32, 0);
2784    if (SrcVT == MVT::i32)
2785      FF = APInt(32, F32TwoE32);
2786    else if (SrcVT == MVT::i64)
2787      FF = APInt(32, F32TwoE64);
2788    else if (SrcVT == MVT::i128)
2789      FF = APInt(32, F32TwoE128);
2790    else
2791      assert(false && "Unsupported UINT_TO_FP!");
2792
2793    // Check whether the sign bit is set.
2794    SDValue Lo, Hi;
2795    GetExpandedInteger(Op, Lo, Hi);
2796    SDValue SignSet = DAG.getSetCC(dl,
2797                                   TLI.getSetCCResultType(Hi.getValueType()),
2798                                   Hi, DAG.getConstant(0, Hi.getValueType()),
2799                                   ISD::SETLT);
2800
2801    // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
2802    SDValue FudgePtr = DAG.getConstantPool(
2803                               ConstantInt::get(*DAG.getContext(), FF.zext(64)),
2804                                           TLI.getPointerTy());
2805
2806    // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
2807    SDValue Zero = DAG.getIntPtrConstant(0);
2808    SDValue Four = DAG.getIntPtrConstant(4);
2809    if (TLI.isBigEndian()) std::swap(Zero, Four);
2810    SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
2811                                 Zero, Four);
2812    unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
2813    FudgePtr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), FudgePtr, Offset);
2814    Alignment = std::min(Alignment, 4u);
2815
2816    // Load the value out, extending it from f32 to the destination float type.
2817    // FIXME: Avoid the extend by constructing the right constant pool?
2818    SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(),
2819                                   FudgePtr,
2820                                   MachinePointerInfo::getConstantPool(),
2821                                   MVT::f32,
2822                                   false, false, Alignment);
2823    return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
2824  }
2825
2826  // Otherwise, use a libcall.
2827  RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
2828  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2829         "Don't know how to expand this UINT_TO_FP!");
2830  return MakeLibCall(LC, DstVT, &Op, 1, true, dl);
2831}
2832
2833SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) {
2834  DebugLoc dl = N->getDebugLoc();
2835  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2836                               cast<AtomicSDNode>(N)->getMemoryVT(),
2837                               N->getOperand(0),
2838                               N->getOperand(1), N->getOperand(2),
2839                               cast<AtomicSDNode>(N)->getMemOperand(),
2840                               cast<AtomicSDNode>(N)->getOrdering(),
2841                               cast<AtomicSDNode>(N)->getSynchScope());
2842  return Swap.getValue(1);
2843}
2844
2845
2846SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) {
2847  SDValue InOp0 = N->getOperand(0);
2848  EVT InVT = InOp0.getValueType();
2849
2850  EVT OutVT = N->getValueType(0);
2851  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2852  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2853  unsigned OutNumElems = OutVT.getVectorNumElements();
2854  EVT NOutVTElem = NOutVT.getVectorElementType();
2855
2856  DebugLoc dl = N->getDebugLoc();
2857  SDValue BaseIdx = N->getOperand(1);
2858
2859  SmallVector<SDValue, 8> Ops;
2860  Ops.reserve(OutNumElems);
2861  for (unsigned i = 0; i != OutNumElems; ++i) {
2862
2863    // Extract the element from the original vector.
2864    SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(),
2865      BaseIdx, DAG.getIntPtrConstant(i));
2866    SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2867      InVT.getVectorElementType(), N->getOperand(0), Index);
2868
2869    SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, Ext);
2870    // Insert the converted element to the new vector.
2871    Ops.push_back(Op);
2872  }
2873
2874  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2875}
2876
2877
2878SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) {
2879  ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
2880  EVT VT = N->getValueType(0);
2881  DebugLoc dl = N->getDebugLoc();
2882
2883  unsigned NumElts = VT.getVectorNumElements();
2884  SmallVector<int, 8> NewMask;
2885  for (unsigned i = 0; i != NumElts; ++i) {
2886    NewMask.push_back(SV->getMaskElt(i));
2887  }
2888
2889  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2890  SDValue V1 = GetPromotedInteger(N->getOperand(1));
2891  EVT OutVT = V0.getValueType();
2892
2893  return DAG.getVectorShuffle(OutVT, dl, V0, V1, &NewMask[0]);
2894}
2895
2896
2897SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) {
2898  EVT OutVT = N->getValueType(0);
2899  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2900  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2901  unsigned NumElems = N->getNumOperands();
2902  EVT NOutVTElem = NOutVT.getVectorElementType();
2903
2904  DebugLoc dl = N->getDebugLoc();
2905
2906  SmallVector<SDValue, 8> Ops;
2907  Ops.reserve(NumElems);
2908  for (unsigned i = 0; i != NumElems; ++i) {
2909    SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i));
2910    Ops.push_back(Op);
2911  }
2912
2913  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2914}
2915
2916SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) {
2917
2918  DebugLoc dl = N->getDebugLoc();
2919
2920  assert(!N->getOperand(0).getValueType().isVector() &&
2921         "Input must be a scalar");
2922
2923  EVT OutVT = N->getValueType(0);
2924  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2925  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2926  EVT NOutVTElem = NOutVT.getVectorElementType();
2927
2928  SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0));
2929
2930  return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op);
2931}
2932
2933SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) {
2934  DebugLoc dl = N->getDebugLoc();
2935
2936  EVT OutVT = N->getValueType(0);
2937  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2938  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2939
2940  EVT InElemTy = OutVT.getVectorElementType();
2941  EVT OutElemTy = NOutVT.getVectorElementType();
2942
2943  unsigned NumElem = N->getOperand(0).getValueType().getVectorNumElements();
2944  unsigned NumOutElem = NOutVT.getVectorNumElements();
2945  unsigned NumOperands = N->getNumOperands();
2946  assert(NumElem * NumOperands == NumOutElem &&
2947         "Unexpected number of elements");
2948
2949  // Take the elements from the first vector.
2950  SmallVector<SDValue, 8> Ops(NumOutElem);
2951  for (unsigned i = 0; i < NumOperands; ++i) {
2952    SDValue Op = N->getOperand(i);
2953    for (unsigned j = 0; j < NumElem; ++j) {
2954      SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2955                                InElemTy, Op, DAG.getIntPtrConstant(j));
2956      Ops[i * NumElem + j] = DAG.getNode(ISD::ANY_EXTEND, dl, OutElemTy, Ext);
2957    }
2958  }
2959
2960  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2961}
2962
2963SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
2964  EVT OutVT = N->getValueType(0);
2965  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2966  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2967
2968  EVT NOutVTElem = NOutVT.getVectorElementType();
2969
2970  DebugLoc dl = N->getDebugLoc();
2971  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2972
2973  SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl,
2974    NOutVTElem, N->getOperand(1));
2975  return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NOutVT,
2976    V0, ConvElem, N->getOperand(2));
2977}
2978
2979SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) {
2980  DebugLoc dl = N->getDebugLoc();
2981  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2982  SDValue V1 = N->getOperand(1);
2983  SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2984    V0->getValueType(0).getScalarType(), V0, V1);
2985
2986  // EXTRACT_VECTOR_ELT can return types which are wider than the incoming
2987  // element types. If this is the case then we need to expand the outgoing
2988  // value and not truncate it.
2989  return DAG.getAnyExtOrTrunc(Ext, dl, N->getValueType(0));
2990}
2991
2992SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) {
2993  DebugLoc dl = N->getDebugLoc();
2994  unsigned NumElems = N->getNumOperands();
2995
2996  EVT RetSclrTy = N->getValueType(0).getVectorElementType();
2997
2998  SmallVector<SDValue, 8> NewOps;
2999  NewOps.reserve(NumElems);
3000
3001  // For each incoming vector
3002  for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) {
3003    SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx));
3004    EVT SclrTy = Incoming->getValueType(0).getVectorElementType();
3005    unsigned NumElem = Incoming->getValueType(0).getVectorNumElements();
3006
3007    for (unsigned i=0; i<NumElem; ++i) {
3008      // Extract element from incoming vector
3009      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SclrTy,
3010      Incoming, DAG.getIntPtrConstant(i));
3011      SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex);
3012      NewOps.push_back(Tr);
3013    }
3014  }
3015
3016  return DAG.getNode(ISD::BUILD_VECTOR, dl,  N->getValueType(0),
3017    &NewOps[0], NewOps.size());
3018  }
3019