LegalizeIntegerTypes.cpp revision 4d6ccb5f68cd7c6418a209f1fa4dbade569e4493
1//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements integer type expansion and promotion for LegalizeTypes.
11// Promotion is the act of changing a computation in an illegal type into a
12// computation in a larger type.  For example, implementing i8 arithmetic in an
13// i32 register (often needed on powerpc).
14// Expansion is the act of changing a computation in an illegal type into a
15// computation in two identical registers of a smaller type.  For example,
16// implementing i64 arithmetic in two i32 registers (often needed on 32-bit
17// targets).
18//
19//===----------------------------------------------------------------------===//
20
21#include "LegalizeTypes.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25using namespace llvm;
26
27//===----------------------------------------------------------------------===//
28//  Integer Result Promotion
29//===----------------------------------------------------------------------===//
30
31/// PromoteIntegerResult - This method is called when a result of a node is
32/// found to be in need of promotion to a larger type.  At this point, the node
33/// may also have invalid operands or may have other results that need
34/// expansion, we just know that (at least) one result needs promotion.
35void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
36  DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n");
37  SDValue Res = SDValue();
38
39  // See if the target wants to custom expand this node.
40  if (CustomLowerNode(N, N->getValueType(ResNo), true))
41    return;
42
43  switch (N->getOpcode()) {
44  default:
45#ifndef NDEBUG
46    dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
47    N->dump(&DAG); dbgs() << "\n";
48#endif
49    llvm_unreachable("Do not know how to promote this operator!");
50  case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break;
51  case ISD::AssertSext:  Res = PromoteIntRes_AssertSext(N); break;
52  case ISD::AssertZext:  Res = PromoteIntRes_AssertZext(N); break;
53  case ISD::BITCAST:     Res = PromoteIntRes_BITCAST(N); break;
54  case ISD::BSWAP:       Res = PromoteIntRes_BSWAP(N); break;
55  case ISD::BUILD_PAIR:  Res = PromoteIntRes_BUILD_PAIR(N); break;
56  case ISD::Constant:    Res = PromoteIntRes_Constant(N); break;
57  case ISD::CONVERT_RNDSAT:
58                         Res = PromoteIntRes_CONVERT_RNDSAT(N); break;
59  case ISD::CTLZ_ZERO_UNDEF:
60  case ISD::CTLZ:        Res = PromoteIntRes_CTLZ(N); break;
61  case ISD::CTPOP:       Res = PromoteIntRes_CTPOP(N); break;
62  case ISD::CTTZ_ZERO_UNDEF:
63  case ISD::CTTZ:        Res = PromoteIntRes_CTTZ(N); break;
64  case ISD::EXTRACT_VECTOR_ELT:
65                         Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
66  case ISD::LOAD:        Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N));break;
67  case ISD::SELECT:      Res = PromoteIntRes_SELECT(N); break;
68  case ISD::VSELECT:     Res = PromoteIntRes_VSELECT(N); break;
69  case ISD::SELECT_CC:   Res = PromoteIntRes_SELECT_CC(N); break;
70  case ISD::SETCC:       Res = PromoteIntRes_SETCC(N); break;
71  case ISD::SHL:         Res = PromoteIntRes_SHL(N); break;
72  case ISD::SIGN_EXTEND_INREG:
73                         Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
74  case ISD::SRA:         Res = PromoteIntRes_SRA(N); break;
75  case ISD::SRL:         Res = PromoteIntRes_SRL(N); break;
76  case ISD::TRUNCATE:    Res = PromoteIntRes_TRUNCATE(N); break;
77  case ISD::UNDEF:       Res = PromoteIntRes_UNDEF(N); break;
78  case ISD::VAARG:       Res = PromoteIntRes_VAARG(N); break;
79
80  case ISD::EXTRACT_SUBVECTOR:
81                         Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
82  case ISD::VECTOR_SHUFFLE:
83                         Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
84  case ISD::INSERT_VECTOR_ELT:
85                         Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
86  case ISD::BUILD_VECTOR:
87                         Res = PromoteIntRes_BUILD_VECTOR(N); break;
88  case ISD::SCALAR_TO_VECTOR:
89                         Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
90  case ISD::CONCAT_VECTORS:
91                         Res = PromoteIntRes_CONCAT_VECTORS(N); break;
92
93  case ISD::SIGN_EXTEND:
94  case ISD::ZERO_EXTEND:
95  case ISD::ANY_EXTEND:  Res = PromoteIntRes_INT_EXTEND(N); break;
96
97  case ISD::FP_TO_SINT:
98  case ISD::FP_TO_UINT:  Res = PromoteIntRes_FP_TO_XINT(N); break;
99
100  case ISD::FP32_TO_FP16:Res = PromoteIntRes_FP32_TO_FP16(N); break;
101
102  case ISD::AND:
103  case ISD::OR:
104  case ISD::XOR:
105  case ISD::ADD:
106  case ISD::SUB:
107  case ISD::MUL:         Res = PromoteIntRes_SimpleIntBinOp(N); break;
108
109  case ISD::SDIV:
110  case ISD::SREM:        Res = PromoteIntRes_SDIV(N); break;
111
112  case ISD::UDIV:
113  case ISD::UREM:        Res = PromoteIntRes_UDIV(N); break;
114
115  case ISD::SADDO:
116  case ISD::SSUBO:       Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
117  case ISD::UADDO:
118  case ISD::USUBO:       Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
119  case ISD::SMULO:
120  case ISD::UMULO:       Res = PromoteIntRes_XMULO(N, ResNo); break;
121
122  case ISD::ATOMIC_LOAD:
123    Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break;
124
125  case ISD::ATOMIC_LOAD_ADD:
126  case ISD::ATOMIC_LOAD_SUB:
127  case ISD::ATOMIC_LOAD_AND:
128  case ISD::ATOMIC_LOAD_OR:
129  case ISD::ATOMIC_LOAD_XOR:
130  case ISD::ATOMIC_LOAD_NAND:
131  case ISD::ATOMIC_LOAD_MIN:
132  case ISD::ATOMIC_LOAD_MAX:
133  case ISD::ATOMIC_LOAD_UMIN:
134  case ISD::ATOMIC_LOAD_UMAX:
135  case ISD::ATOMIC_SWAP:
136    Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
137
138  case ISD::ATOMIC_CMP_SWAP:
139    Res = PromoteIntRes_Atomic2(cast<AtomicSDNode>(N)); break;
140  }
141
142  // If the result is null then the sub-method took care of registering it.
143  if (Res.getNode())
144    SetPromotedInteger(SDValue(N, ResNo), Res);
145}
146
147SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N,
148                                                     unsigned ResNo) {
149  SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
150  return GetPromotedInteger(Op);
151}
152
153SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
154  // Sign-extend the new bits, and continue the assertion.
155  SDValue Op = SExtPromotedInteger(N->getOperand(0));
156  return DAG.getNode(ISD::AssertSext, N->getDebugLoc(),
157                     Op.getValueType(), Op, N->getOperand(1));
158}
159
160SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
161  // Zero the new bits, and continue the assertion.
162  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
163  return DAG.getNode(ISD::AssertZext, N->getDebugLoc(),
164                     Op.getValueType(), Op, N->getOperand(1));
165}
166
167SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
168  EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
169  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
170                              N->getMemoryVT(), ResVT,
171                              N->getChain(), N->getBasePtr(),
172                              N->getMemOperand(), N->getOrdering(),
173                              N->getSynchScope());
174  // Legalized the chain result - switch anything that used the old chain to
175  // use the new one.
176  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
177  return Res;
178}
179
180SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
181  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
182  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
183                              N->getMemoryVT(),
184                              N->getChain(), N->getBasePtr(),
185                              Op2, N->getMemOperand(), N->getOrdering(),
186                              N->getSynchScope());
187  // Legalized the chain result - switch anything that used the old chain to
188  // use the new one.
189  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
190  return Res;
191}
192
193SDValue DAGTypeLegalizer::PromoteIntRes_Atomic2(AtomicSDNode *N) {
194  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
195  SDValue Op3 = GetPromotedInteger(N->getOperand(3));
196  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
197                              N->getMemoryVT(), N->getChain(), N->getBasePtr(),
198                              Op2, Op3, N->getMemOperand(), N->getOrdering(),
199                              N->getSynchScope());
200  // Legalized the chain result - switch anything that used the old chain to
201  // use the new one.
202  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
203  return Res;
204}
205
206SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
207  SDValue InOp = N->getOperand(0);
208  EVT InVT = InOp.getValueType();
209  EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
210  EVT OutVT = N->getValueType(0);
211  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
212  DebugLoc dl = N->getDebugLoc();
213
214  switch (getTypeAction(InVT)) {
215  case TargetLowering::TypeLegal:
216    break;
217  case TargetLowering::TypePromoteInteger:
218    if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector())
219      // The input promotes to the same size.  Convert the promoted value.
220      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
221    break;
222  case TargetLowering::TypeSoftenFloat:
223    // Promote the integer operand by hand.
224    return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
225  case TargetLowering::TypeExpandInteger:
226  case TargetLowering::TypeExpandFloat:
227    break;
228  case TargetLowering::TypeScalarizeVector:
229    // Convert the element to an integer and promote it by hand.
230    if (!NOutVT.isVector())
231      return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
232                         BitConvertToInteger(GetScalarizedVector(InOp)));
233    break;
234  case TargetLowering::TypeSplitVector: {
235    // For example, i32 = BITCAST v2i16 on alpha.  Convert the split
236    // pieces of the input into integers and reassemble in the final type.
237    SDValue Lo, Hi;
238    GetSplitVector(N->getOperand(0), Lo, Hi);
239    Lo = BitConvertToInteger(Lo);
240    Hi = BitConvertToInteger(Hi);
241
242    if (TLI.isBigEndian())
243      std::swap(Lo, Hi);
244
245    InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
246                       EVT::getIntegerVT(*DAG.getContext(),
247                                         NOutVT.getSizeInBits()),
248                       JoinIntegers(Lo, Hi));
249    return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
250  }
251  case TargetLowering::TypeWidenVector:
252    // The input is widened to the same size. Convert to the widened value.
253    // Make sure that the outgoing value is not a vector, because this would
254    // make us bitcast between two vectors which are legalized in different ways.
255    if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector())
256      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp));
257  }
258
259  return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
260                     CreateStackStoreLoad(InOp, OutVT));
261}
262
263SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
264  SDValue Op = GetPromotedInteger(N->getOperand(0));
265  EVT OVT = N->getValueType(0);
266  EVT NVT = Op.getValueType();
267  DebugLoc dl = N->getDebugLoc();
268
269  unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
270  return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
271                     DAG.getConstant(DiffBits, TLI.getPointerTy()));
272}
273
274SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
275  // The pair element type may be legal, or may not promote to the same type as
276  // the result, for example i14 = BUILD_PAIR (i7, i7).  Handle all cases.
277  return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(),
278                     TLI.getTypeToTransformTo(*DAG.getContext(),
279                     N->getValueType(0)), JoinIntegers(N->getOperand(0),
280                     N->getOperand(1)));
281}
282
283SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
284  EVT VT = N->getValueType(0);
285  // FIXME there is no actual debug info here
286  DebugLoc dl = N->getDebugLoc();
287  // Zero extend things like i1, sign extend everything else.  It shouldn't
288  // matter in theory which one we pick, but this tends to give better code?
289  unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
290  SDValue Result = DAG.getNode(Opc, dl,
291                               TLI.getTypeToTransformTo(*DAG.getContext(), VT),
292                               SDValue(N, 0));
293  assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
294  return Result;
295}
296
297SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
298  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
299  assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
300           CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
301           CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
302          "can only promote integers");
303  EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
304  return DAG.getConvertRndSat(OutVT, N->getDebugLoc(), N->getOperand(0),
305                              N->getOperand(1), N->getOperand(2),
306                              N->getOperand(3), N->getOperand(4), CvtCode);
307}
308
309SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
310  // Zero extend to the promoted type and do the count there.
311  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
312  DebugLoc dl = N->getDebugLoc();
313  EVT OVT = N->getValueType(0);
314  EVT NVT = Op.getValueType();
315  Op = DAG.getNode(N->getOpcode(), dl, NVT, Op);
316  // Subtract off the extra leading bits in the bigger type.
317  return DAG.getNode(ISD::SUB, dl, NVT, Op,
318                     DAG.getConstant(NVT.getSizeInBits() -
319                                     OVT.getSizeInBits(), NVT));
320}
321
322SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
323  // Zero extend to the promoted type and do the count there.
324  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
325  return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), Op.getValueType(), Op);
326}
327
328SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
329  SDValue Op = GetPromotedInteger(N->getOperand(0));
330  EVT OVT = N->getValueType(0);
331  EVT NVT = Op.getValueType();
332  DebugLoc dl = N->getDebugLoc();
333  if (N->getOpcode() == ISD::CTTZ) {
334    // The count is the same in the promoted type except if the original
335    // value was zero.  This can be handled by setting the bit just off
336    // the top of the original type.
337    APInt TopBit(NVT.getSizeInBits(), 0);
338    TopBit.setBit(OVT.getSizeInBits());
339    Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, NVT));
340  }
341  return DAG.getNode(N->getOpcode(), dl, NVT, Op);
342}
343
344SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
345  DebugLoc dl = N->getDebugLoc();
346  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
347  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0),
348                     N->getOperand(1));
349}
350
351SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
352  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
353  unsigned NewOpc = N->getOpcode();
354  DebugLoc dl = N->getDebugLoc();
355
356  // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
357  // not Legal, check to see if we can use FP_TO_SINT instead.  (If both UINT
358  // and SINT conversions are Custom, there is no way to tell which is
359  // preferable. We choose SINT because that's the right thing on PPC.)
360  if (N->getOpcode() == ISD::FP_TO_UINT &&
361      !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
362      TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
363    NewOpc = ISD::FP_TO_SINT;
364
365  SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
366
367  // Assert that the converted value fits in the original type.  If it doesn't
368  // (eg: because the value being converted is too big), then the result of the
369  // original operation was undefined anyway, so the assert is still correct.
370  return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
371                     ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
372                     DAG.getValueType(N->getValueType(0).getScalarType()));
373}
374
375SDValue DAGTypeLegalizer::PromoteIntRes_FP32_TO_FP16(SDNode *N) {
376  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
377  DebugLoc dl = N->getDebugLoc();
378
379  SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
380
381  return DAG.getNode(ISD::AssertZext, dl,
382                     NVT, Res, DAG.getValueType(N->getValueType(0)));
383}
384
385SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
386  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
387  DebugLoc dl = N->getDebugLoc();
388
389  if (getTypeAction(N->getOperand(0).getValueType())
390      == TargetLowering::TypePromoteInteger) {
391    SDValue Res = GetPromotedInteger(N->getOperand(0));
392    assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
393
394    // If the result and operand types are the same after promotion, simplify
395    // to an in-register extension.
396    if (NVT == Res.getValueType()) {
397      // The high bits are not guaranteed to be anything.  Insert an extend.
398      if (N->getOpcode() == ISD::SIGN_EXTEND)
399        return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
400                           DAG.getValueType(N->getOperand(0).getValueType()));
401      if (N->getOpcode() == ISD::ZERO_EXTEND)
402        return DAG.getZeroExtendInReg(Res, dl,
403                      N->getOperand(0).getValueType().getScalarType());
404      assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
405      return Res;
406    }
407  }
408
409  // Otherwise, just extend the original operand all the way to the larger type.
410  return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
411}
412
413SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
414  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
415  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
416  ISD::LoadExtType ExtType =
417    ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
418  DebugLoc dl = N->getDebugLoc();
419  SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
420                               N->getPointerInfo(),
421                               N->getMemoryVT(), N->isVolatile(),
422                               N->isNonTemporal(), N->getAlignment());
423
424  // Legalized the chain result - switch anything that used the old chain to
425  // use the new one.
426  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
427  return Res;
428}
429
430/// Promote the overflow flag of an overflowing arithmetic node.
431SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
432  // Simply change the return type of the boolean result.
433  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
434  EVT ValueVTs[] = { N->getValueType(0), NVT };
435  SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
436  SDValue Res = DAG.getNode(N->getOpcode(), N->getDebugLoc(),
437                            DAG.getVTList(ValueVTs, 2), Ops, 2);
438
439  // Modified the sum result - switch anything that used the old sum to use
440  // the new one.
441  ReplaceValueWith(SDValue(N, 0), Res);
442
443  return SDValue(Res.getNode(), 1);
444}
445
446SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
447  if (ResNo == 1)
448    return PromoteIntRes_Overflow(N);
449
450  // The operation overflowed iff the result in the larger type is not the
451  // sign extension of its truncation to the original type.
452  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
453  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
454  EVT OVT = N->getOperand(0).getValueType();
455  EVT NVT = LHS.getValueType();
456  DebugLoc dl = N->getDebugLoc();
457
458  // Do the arithmetic in the larger type.
459  unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
460  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
461
462  // Calculate the overflow flag: sign extend the arithmetic result from
463  // the original type.
464  SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
465                            DAG.getValueType(OVT));
466  // Overflowed if and only if this is not equal to Res.
467  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
468
469  // Use the calculated overflow everywhere.
470  ReplaceValueWith(SDValue(N, 1), Ofl);
471
472  return Res;
473}
474
475SDValue DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) {
476  // Sign extend the input.
477  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
478  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
479  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
480                     LHS.getValueType(), LHS, RHS);
481}
482
483SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
484  SDValue LHS = GetPromotedInteger(N->getOperand(1));
485  SDValue RHS = GetPromotedInteger(N->getOperand(2));
486  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
487                     LHS.getValueType(), N->getOperand(0),LHS,RHS);
488}
489
490SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) {
491  SDValue Mask = N->getOperand(0);
492  EVT OpTy = N->getOperand(1).getValueType();
493
494  // Promote all the way up to the canonical SetCC type.
495  Mask = PromoteTargetBoolean(Mask, TLI.getSetCCResultType(OpTy));
496  SDValue LHS = GetPromotedInteger(N->getOperand(1));
497  SDValue RHS = GetPromotedInteger(N->getOperand(2));
498  return DAG.getNode(ISD::VSELECT, N->getDebugLoc(),
499                     LHS.getValueType(), Mask, LHS, RHS);
500}
501
502SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
503  SDValue LHS = GetPromotedInteger(N->getOperand(2));
504  SDValue RHS = GetPromotedInteger(N->getOperand(3));
505  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
506                     LHS.getValueType(), N->getOperand(0),
507                     N->getOperand(1), LHS, RHS, N->getOperand(4));
508}
509
510SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
511  EVT SVT = TLI.getSetCCResultType(N->getOperand(0).getValueType());
512
513  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
514
515  // Only use the result of getSetCCResultType if it is legal,
516  // otherwise just use the promoted result type (NVT).
517  if (!TLI.isTypeLegal(SVT))
518      SVT = NVT;
519
520  DebugLoc dl = N->getDebugLoc();
521  assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
522         "Vector compare must return a vector result!");
523
524  // Get the SETCC result using the canonical SETCC type.
525  SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, N->getOperand(0),
526                              N->getOperand(1), N->getOperand(2));
527
528  assert(NVT.bitsLE(SVT) && "Integer type overpromoted?");
529  // Convert to the expected type.
530  return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC);
531}
532
533SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
534  return DAG.getNode(ISD::SHL, N->getDebugLoc(),
535                TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)),
536                     GetPromotedInteger(N->getOperand(0)), N->getOperand(1));
537}
538
539SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
540  SDValue Op = GetPromotedInteger(N->getOperand(0));
541  return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(),
542                     Op.getValueType(), Op, N->getOperand(1));
543}
544
545SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
546  // The input may have strange things in the top bits of the registers, but
547  // these operations don't care.  They may have weird bits going out, but
548  // that too is okay if they are integer operations.
549  SDValue LHS = GetPromotedInteger(N->getOperand(0));
550  SDValue RHS = GetPromotedInteger(N->getOperand(1));
551  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
552                    LHS.getValueType(), LHS, RHS);
553}
554
555SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
556  // The input value must be properly sign extended.
557  SDValue Res = SExtPromotedInteger(N->getOperand(0));
558  return DAG.getNode(ISD::SRA, N->getDebugLoc(),
559                     Res.getValueType(), Res, N->getOperand(1));
560}
561
562SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
563  // The input value must be properly zero extended.
564  EVT VT = N->getValueType(0);
565  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
566  SDValue Res = ZExtPromotedInteger(N->getOperand(0));
567  return DAG.getNode(ISD::SRL, N->getDebugLoc(), NVT, Res, N->getOperand(1));
568}
569
570SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
571  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
572  SDValue Res;
573  SDValue InOp = N->getOperand(0);
574  DebugLoc dl = N->getDebugLoc();
575
576  switch (getTypeAction(InOp.getValueType())) {
577  default: llvm_unreachable("Unknown type action!");
578  case TargetLowering::TypeLegal:
579  case TargetLowering::TypeExpandInteger:
580    Res = InOp;
581    break;
582  case TargetLowering::TypePromoteInteger:
583    Res = GetPromotedInteger(InOp);
584    break;
585  case TargetLowering::TypeSplitVector:
586    EVT InVT = InOp.getValueType();
587    assert(InVT.isVector() && "Cannot split scalar types");
588    unsigned NumElts = InVT.getVectorNumElements();
589    assert(NumElts == NVT.getVectorNumElements() &&
590           "Dst and Src must have the same number of elements");
591    EVT EltVT = InVT.getScalarType();
592    assert(isPowerOf2_32(NumElts) &&
593           "Promoted vector type must be a power of two");
594
595    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts/2);
596    EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
597                                   NumElts/2);
598
599    SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfVT, InOp,
600                               DAG.getIntPtrConstant(0));
601    SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfVT, InOp,
602                               DAG.getIntPtrConstant(NumElts/2));
603    EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
604    EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
605
606    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
607  }
608
609  // Truncate to NVT instead of VT
610  return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
611}
612
613SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
614  if (ResNo == 1)
615    return PromoteIntRes_Overflow(N);
616
617  // The operation overflowed iff the result in the larger type is not the
618  // zero extension of its truncation to the original type.
619  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
620  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
621  EVT OVT = N->getOperand(0).getValueType();
622  EVT NVT = LHS.getValueType();
623  DebugLoc dl = N->getDebugLoc();
624
625  // Do the arithmetic in the larger type.
626  unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
627  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
628
629  // Calculate the overflow flag: zero extend the arithmetic result from
630  // the original type.
631  SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT);
632  // Overflowed if and only if this is not equal to Res.
633  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
634
635  // Use the calculated overflow everywhere.
636  ReplaceValueWith(SDValue(N, 1), Ofl);
637
638  return Res;
639}
640
641SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
642  // Promote the overflow bit trivially.
643  if (ResNo == 1)
644    return PromoteIntRes_Overflow(N);
645
646  SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
647  DebugLoc DL = N->getDebugLoc();
648  EVT SmallVT = LHS.getValueType();
649
650  // To determine if the result overflowed in a larger type, we extend the
651  // input to the larger type, do the multiply, then check the high bits of
652  // the result to see if the overflow happened.
653  if (N->getOpcode() == ISD::SMULO) {
654    LHS = SExtPromotedInteger(LHS);
655    RHS = SExtPromotedInteger(RHS);
656  } else {
657    LHS = ZExtPromotedInteger(LHS);
658    RHS = ZExtPromotedInteger(RHS);
659  }
660  SDValue Mul = DAG.getNode(ISD::MUL, DL, LHS.getValueType(), LHS, RHS);
661
662  // Overflow occurred iff the high part of the result does not
663  // zero/sign-extend the low part.
664  SDValue Overflow;
665  if (N->getOpcode() == ISD::UMULO) {
666    // Unsigned overflow occurred iff the high part is non-zero.
667    SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
668                             DAG.getIntPtrConstant(SmallVT.getSizeInBits()));
669    Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
670                            DAG.getConstant(0, Hi.getValueType()), ISD::SETNE);
671  } else {
672    // Signed overflow occurred iff the high part does not sign extend the low.
673    SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
674                               Mul, DAG.getValueType(SmallVT));
675    Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
676  }
677
678  // Use the calculated overflow everywhere.
679  ReplaceValueWith(SDValue(N, 1), Overflow);
680  return Mul;
681}
682
683SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) {
684  // Zero extend the input.
685  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
686  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
687  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
688                     LHS.getValueType(), LHS, RHS);
689}
690
691SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
692  return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
693                                               N->getValueType(0)));
694}
695
696SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
697  SDValue Chain = N->getOperand(0); // Get the chain.
698  SDValue Ptr = N->getOperand(1); // Get the pointer.
699  EVT VT = N->getValueType(0);
700  DebugLoc dl = N->getDebugLoc();
701
702  EVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
703  unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
704  // The argument is passed as NumRegs registers of type RegVT.
705
706  SmallVector<SDValue, 8> Parts(NumRegs);
707  for (unsigned i = 0; i < NumRegs; ++i) {
708    Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
709                            N->getConstantOperandVal(3));
710    Chain = Parts[i].getValue(1);
711  }
712
713  // Handle endianness of the load.
714  if (TLI.isBigEndian())
715    std::reverse(Parts.begin(), Parts.end());
716
717  // Assemble the parts in the promoted type.
718  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
719  SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
720  for (unsigned i = 1; i < NumRegs; ++i) {
721    SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
722    // Shift it to the right position and "or" it in.
723    Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
724                       DAG.getConstant(i * RegVT.getSizeInBits(),
725                                       TLI.getPointerTy()));
726    Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
727  }
728
729  // Modified the chain result - switch anything that used the old chain to
730  // use the new one.
731  ReplaceValueWith(SDValue(N, 1), Chain);
732
733  return Res;
734}
735
736//===----------------------------------------------------------------------===//
737//  Integer Operand Promotion
738//===----------------------------------------------------------------------===//
739
740/// PromoteIntegerOperand - This method is called when the specified operand of
741/// the specified node is found to need promotion.  At this point, all of the
742/// result types of the node are known to be legal, but other operands of the
743/// node may need promotion or expansion as well as the specified one.
744bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
745  DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n");
746  SDValue Res = SDValue();
747
748  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
749    return false;
750
751  switch (N->getOpcode()) {
752    default:
753  #ifndef NDEBUG
754    dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
755    N->dump(&DAG); dbgs() << "\n";
756  #endif
757    llvm_unreachable("Do not know how to promote this operator's operand!");
758
759  case ISD::ANY_EXTEND:   Res = PromoteIntOp_ANY_EXTEND(N); break;
760  case ISD::ATOMIC_STORE:
761    Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N));
762    break;
763  case ISD::BITCAST:      Res = PromoteIntOp_BITCAST(N); break;
764  case ISD::BR_CC:        Res = PromoteIntOp_BR_CC(N, OpNo); break;
765  case ISD::BRCOND:       Res = PromoteIntOp_BRCOND(N, OpNo); break;
766  case ISD::BUILD_PAIR:   Res = PromoteIntOp_BUILD_PAIR(N); break;
767  case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
768  case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
769  case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
770  case ISD::CONVERT_RNDSAT:
771                          Res = PromoteIntOp_CONVERT_RNDSAT(N); break;
772  case ISD::INSERT_VECTOR_ELT:
773                          Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
774  case ISD::MEMBARRIER:   Res = PromoteIntOp_MEMBARRIER(N); break;
775  case ISD::SCALAR_TO_VECTOR:
776                          Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
777  case ISD::VSELECT:
778  case ISD::SELECT:       Res = PromoteIntOp_SELECT(N, OpNo); break;
779  case ISD::SELECT_CC:    Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
780  case ISD::SETCC:        Res = PromoteIntOp_SETCC(N, OpNo); break;
781  case ISD::SIGN_EXTEND:  Res = PromoteIntOp_SIGN_EXTEND(N); break;
782  case ISD::SINT_TO_FP:   Res = PromoteIntOp_SINT_TO_FP(N); break;
783  case ISD::STORE:        Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
784                                                   OpNo); break;
785  case ISD::TRUNCATE:     Res = PromoteIntOp_TRUNCATE(N); break;
786  case ISD::FP16_TO_FP32:
787  case ISD::UINT_TO_FP:   Res = PromoteIntOp_UINT_TO_FP(N); break;
788  case ISD::ZERO_EXTEND:  Res = PromoteIntOp_ZERO_EXTEND(N); break;
789
790  case ISD::SHL:
791  case ISD::SRA:
792  case ISD::SRL:
793  case ISD::ROTL:
794  case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
795  }
796
797  // If the result is null, the sub-method took care of registering results etc.
798  if (!Res.getNode()) return false;
799
800  // If the result is N, the sub-method updated N in place.  Tell the legalizer
801  // core about this.
802  if (Res.getNode() == N)
803    return true;
804
805  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
806         "Invalid operand expansion");
807
808  ReplaceValueWith(SDValue(N, 0), Res);
809  return false;
810}
811
812/// PromoteSetCCOperands - Promote the operands of a comparison.  This code is
813/// shared among BR_CC, SELECT_CC, and SETCC handlers.
814void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
815                                            ISD::CondCode CCCode) {
816  // We have to insert explicit sign or zero extends.  Note that we could
817  // insert sign extends for ALL conditions, but zero extend is cheaper on
818  // many machines (an AND instead of two shifts), so prefer it.
819  switch (CCCode) {
820  default: llvm_unreachable("Unknown integer comparison!");
821  case ISD::SETEQ:
822  case ISD::SETNE:
823  case ISD::SETUGE:
824  case ISD::SETUGT:
825  case ISD::SETULE:
826  case ISD::SETULT:
827    // ALL of these operations will work if we either sign or zero extend
828    // the operands (including the unsigned comparisons!).  Zero extend is
829    // usually a simpler/cheaper operation, so prefer it.
830    NewLHS = ZExtPromotedInteger(NewLHS);
831    NewRHS = ZExtPromotedInteger(NewRHS);
832    break;
833  case ISD::SETGE:
834  case ISD::SETGT:
835  case ISD::SETLT:
836  case ISD::SETLE:
837    NewLHS = SExtPromotedInteger(NewLHS);
838    NewRHS = SExtPromotedInteger(NewRHS);
839    break;
840  }
841}
842
843SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
844  SDValue Op = GetPromotedInteger(N->getOperand(0));
845  return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), N->getValueType(0), Op);
846}
847
848SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
849  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
850  return DAG.getAtomic(N->getOpcode(), N->getDebugLoc(), N->getMemoryVT(),
851                       N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(),
852                       N->getOrdering(), N->getSynchScope());
853}
854
855SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
856  // This should only occur in unusual situations like bitcasting to an
857  // x86_fp80, so just turn it into a store+load
858  return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
859}
860
861SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
862  assert(OpNo == 2 && "Don't know how to promote this operand!");
863
864  SDValue LHS = N->getOperand(2);
865  SDValue RHS = N->getOperand(3);
866  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
867
868  // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
869  // legal types.
870  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
871                                N->getOperand(1), LHS, RHS, N->getOperand(4)),
872                 0);
873}
874
875SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
876  assert(OpNo == 1 && "only know how to promote condition");
877
878  // Promote all the way up to the canonical SetCC type.
879  EVT SVT = TLI.getSetCCResultType(MVT::Other);
880  SDValue Cond = PromoteTargetBoolean(N->getOperand(1), SVT);
881
882  // The chain (Op#0) and basic block destination (Op#2) are always legal types.
883  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
884                                        N->getOperand(2)), 0);
885}
886
887SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
888  // Since the result type is legal, the operands must promote to it.
889  EVT OVT = N->getOperand(0).getValueType();
890  SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
891  SDValue Hi = GetPromotedInteger(N->getOperand(1));
892  assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
893  DebugLoc dl = N->getDebugLoc();
894
895  Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
896                   DAG.getConstant(OVT.getSizeInBits(), TLI.getPointerTy()));
897  return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
898}
899
900SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
901  // The vector type is legal but the element type is not.  This implies
902  // that the vector is a power-of-two in length and that the element
903  // type does not have a strange size (eg: it is not i1).
904  EVT VecVT = N->getValueType(0);
905  unsigned NumElts = VecVT.getVectorNumElements();
906  assert(!(NumElts & 1) && "Legal vector of one illegal element?");
907
908  // Promote the inserted value.  The type does not need to match the
909  // vector element type.  Check that any extra bits introduced will be
910  // truncated away.
911  assert(N->getOperand(0).getValueType().getSizeInBits() >=
912         N->getValueType(0).getVectorElementType().getSizeInBits() &&
913         "Type of inserted value narrower than vector element type!");
914
915  SmallVector<SDValue, 16> NewOps;
916  for (unsigned i = 0; i < NumElts; ++i)
917    NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
918
919  return SDValue(DAG.UpdateNodeOperands(N, &NewOps[0], NumElts), 0);
920}
921
922SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) {
923  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
924  assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
925           CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
926           CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) &&
927           "can only promote integer arguments");
928  SDValue InOp = GetPromotedInteger(N->getOperand(0));
929  return DAG.getConvertRndSat(N->getValueType(0), N->getDebugLoc(), InOp,
930                              N->getOperand(1), N->getOperand(2),
931                              N->getOperand(3), N->getOperand(4), CvtCode);
932}
933
934SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
935                                                         unsigned OpNo) {
936  if (OpNo == 1) {
937    // Promote the inserted value.  This is valid because the type does not
938    // have to match the vector element type.
939
940    // Check that any extra bits introduced will be truncated away.
941    assert(N->getOperand(1).getValueType().getSizeInBits() >=
942           N->getValueType(0).getVectorElementType().getSizeInBits() &&
943           "Type of inserted value narrower than vector element type!");
944    return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
945                                  GetPromotedInteger(N->getOperand(1)),
946                                  N->getOperand(2)),
947                   0);
948  }
949
950  assert(OpNo == 2 && "Different operand and result vector types?");
951
952  // Promote the index.
953  SDValue Idx = ZExtPromotedInteger(N->getOperand(2));
954  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
955                                N->getOperand(1), Idx), 0);
956}
957
958SDValue DAGTypeLegalizer::PromoteIntOp_MEMBARRIER(SDNode *N) {
959  SDValue NewOps[6];
960  DebugLoc dl = N->getDebugLoc();
961  NewOps[0] = N->getOperand(0);
962  for (unsigned i = 1; i < array_lengthof(NewOps); ++i) {
963    SDValue Flag = GetPromotedInteger(N->getOperand(i));
964    NewOps[i] = DAG.getZeroExtendInReg(Flag, dl, MVT::i1);
965  }
966  return SDValue(DAG.UpdateNodeOperands(N, NewOps, array_lengthof(NewOps)), 0);
967}
968
969SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
970  // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
971  // the operand in place.
972  return SDValue(DAG.UpdateNodeOperands(N,
973                                GetPromotedInteger(N->getOperand(0))), 0);
974}
975
976SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
977  assert(OpNo == 0 && "Only know how to promote the condition!");
978  SDValue Cond = N->getOperand(0);
979  EVT OpTy = N->getOperand(1).getValueType();
980
981  // Promote all the way up to the canonical SetCC type.
982  EVT SVT = TLI.getSetCCResultType(N->getOpcode() == ISD::SELECT ?
983                                   OpTy.getScalarType() : OpTy);
984  Cond = PromoteTargetBoolean(Cond, SVT);
985
986  return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1),
987                                        N->getOperand(2)), 0);
988}
989
990SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
991  assert(OpNo == 0 && "Don't know how to promote this operand!");
992
993  SDValue LHS = N->getOperand(0);
994  SDValue RHS = N->getOperand(1);
995  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
996
997  // The CC (#4) and the possible return values (#2 and #3) have legal types.
998  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
999                                N->getOperand(3), N->getOperand(4)), 0);
1000}
1001
1002SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
1003  assert(OpNo == 0 && "Don't know how to promote this operand!");
1004
1005  SDValue LHS = N->getOperand(0);
1006  SDValue RHS = N->getOperand(1);
1007  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
1008
1009  // The CC (#2) is always legal.
1010  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
1011}
1012
1013SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
1014  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1015                                ZExtPromotedInteger(N->getOperand(1))), 0);
1016}
1017
1018SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
1019  SDValue Op = GetPromotedInteger(N->getOperand(0));
1020  DebugLoc dl = N->getDebugLoc();
1021  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1022  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
1023                     Op, DAG.getValueType(N->getOperand(0).getValueType()));
1024}
1025
1026SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
1027  return SDValue(DAG.UpdateNodeOperands(N,
1028                                SExtPromotedInteger(N->getOperand(0))), 0);
1029}
1030
1031SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
1032  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
1033  SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
1034  unsigned Alignment = N->getAlignment();
1035  bool isVolatile = N->isVolatile();
1036  bool isNonTemporal = N->isNonTemporal();
1037  DebugLoc dl = N->getDebugLoc();
1038
1039  SDValue Val = GetPromotedInteger(N->getValue());  // Get promoted value.
1040
1041  // Truncate the value and store the result.
1042  return DAG.getTruncStore(Ch, dl, Val, Ptr, N->getPointerInfo(),
1043                           N->getMemoryVT(),
1044                           isVolatile, isNonTemporal, Alignment);
1045}
1046
1047SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
1048  SDValue Op = GetPromotedInteger(N->getOperand(0));
1049  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), Op);
1050}
1051
1052SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
1053  return SDValue(DAG.UpdateNodeOperands(N,
1054                                ZExtPromotedInteger(N->getOperand(0))), 0);
1055}
1056
1057SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
1058  DebugLoc dl = N->getDebugLoc();
1059  SDValue Op = GetPromotedInteger(N->getOperand(0));
1060  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1061  return DAG.getZeroExtendInReg(Op, dl,
1062                                N->getOperand(0).getValueType().getScalarType());
1063}
1064
1065
1066//===----------------------------------------------------------------------===//
1067//  Integer Result Expansion
1068//===----------------------------------------------------------------------===//
1069
1070/// ExpandIntegerResult - This method is called when the specified result of the
1071/// specified node is found to need expansion.  At this point, the node may also
1072/// have invalid operands or may have other results that need promotion, we just
1073/// know that (at least) one result needs expansion.
1074void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
1075  DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n");
1076  SDValue Lo, Hi;
1077  Lo = Hi = SDValue();
1078
1079  // See if the target wants to custom expand this node.
1080  if (CustomLowerNode(N, N->getValueType(ResNo), true))
1081    return;
1082
1083  switch (N->getOpcode()) {
1084  default:
1085#ifndef NDEBUG
1086    dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
1087    N->dump(&DAG); dbgs() << "\n";
1088#endif
1089    llvm_unreachable("Do not know how to expand the result of this operator!");
1090
1091  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
1092  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
1093  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
1094  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
1095
1096  case ISD::BITCAST:            ExpandRes_BITCAST(N, Lo, Hi); break;
1097  case ISD::BUILD_PAIR:         ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
1098  case ISD::EXTRACT_ELEMENT:    ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
1099  case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
1100  case ISD::VAARG:              ExpandRes_VAARG(N, Lo, Hi); break;
1101
1102  case ISD::ANY_EXTEND:  ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
1103  case ISD::AssertSext:  ExpandIntRes_AssertSext(N, Lo, Hi); break;
1104  case ISD::AssertZext:  ExpandIntRes_AssertZext(N, Lo, Hi); break;
1105  case ISD::BSWAP:       ExpandIntRes_BSWAP(N, Lo, Hi); break;
1106  case ISD::Constant:    ExpandIntRes_Constant(N, Lo, Hi); break;
1107  case ISD::CTLZ_ZERO_UNDEF:
1108  case ISD::CTLZ:        ExpandIntRes_CTLZ(N, Lo, Hi); break;
1109  case ISD::CTPOP:       ExpandIntRes_CTPOP(N, Lo, Hi); break;
1110  case ISD::CTTZ_ZERO_UNDEF:
1111  case ISD::CTTZ:        ExpandIntRes_CTTZ(N, Lo, Hi); break;
1112  case ISD::FP_TO_SINT:  ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
1113  case ISD::FP_TO_UINT:  ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
1114  case ISD::LOAD:        ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
1115  case ISD::MUL:         ExpandIntRes_MUL(N, Lo, Hi); break;
1116  case ISD::SDIV:        ExpandIntRes_SDIV(N, Lo, Hi); break;
1117  case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
1118  case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
1119  case ISD::SREM:        ExpandIntRes_SREM(N, Lo, Hi); break;
1120  case ISD::TRUNCATE:    ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
1121  case ISD::UDIV:        ExpandIntRes_UDIV(N, Lo, Hi); break;
1122  case ISD::UREM:        ExpandIntRes_UREM(N, Lo, Hi); break;
1123  case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
1124  case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break;
1125
1126  case ISD::ATOMIC_LOAD_ADD:
1127  case ISD::ATOMIC_LOAD_SUB:
1128  case ISD::ATOMIC_LOAD_AND:
1129  case ISD::ATOMIC_LOAD_OR:
1130  case ISD::ATOMIC_LOAD_XOR:
1131  case ISD::ATOMIC_LOAD_NAND:
1132  case ISD::ATOMIC_LOAD_MIN:
1133  case ISD::ATOMIC_LOAD_MAX:
1134  case ISD::ATOMIC_LOAD_UMIN:
1135  case ISD::ATOMIC_LOAD_UMAX:
1136  case ISD::ATOMIC_SWAP: {
1137    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
1138    SplitInteger(Tmp.first, Lo, Hi);
1139    ReplaceValueWith(SDValue(N, 1), Tmp.second);
1140    break;
1141  }
1142
1143  case ISD::AND:
1144  case ISD::OR:
1145  case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
1146
1147  case ISD::ADD:
1148  case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
1149
1150  case ISD::ADDC:
1151  case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
1152
1153  case ISD::ADDE:
1154  case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
1155
1156  case ISD::SHL:
1157  case ISD::SRA:
1158  case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
1159
1160  case ISD::SADDO:
1161  case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
1162  case ISD::UADDO:
1163  case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
1164  case ISD::UMULO:
1165  case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
1166  }
1167
1168  // If Lo/Hi is null, the sub-method took care of registering results etc.
1169  if (Lo.getNode())
1170    SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
1171}
1172
1173/// Lower an atomic node to the appropriate builtin call.
1174std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
1175  unsigned Opc = Node->getOpcode();
1176  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
1177  RTLIB::Libcall LC;
1178
1179  switch (Opc) {
1180  default:
1181    llvm_unreachable("Unhandled atomic intrinsic Expand!");
1182  case ISD::ATOMIC_SWAP:
1183    switch (VT.SimpleTy) {
1184    default: llvm_unreachable("Unexpected value type for atomic!");
1185    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
1186    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
1187    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
1188    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
1189    }
1190    break;
1191  case ISD::ATOMIC_CMP_SWAP:
1192    switch (VT.SimpleTy) {
1193    default: llvm_unreachable("Unexpected value type for atomic!");
1194    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
1195    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
1196    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
1197    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
1198    }
1199    break;
1200  case ISD::ATOMIC_LOAD_ADD:
1201    switch (VT.SimpleTy) {
1202    default: llvm_unreachable("Unexpected value type for atomic!");
1203    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
1204    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
1205    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
1206    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
1207    }
1208    break;
1209  case ISD::ATOMIC_LOAD_SUB:
1210    switch (VT.SimpleTy) {
1211    default: llvm_unreachable("Unexpected value type for atomic!");
1212    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
1213    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
1214    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
1215    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
1216    }
1217    break;
1218  case ISD::ATOMIC_LOAD_AND:
1219    switch (VT.SimpleTy) {
1220    default: llvm_unreachable("Unexpected value type for atomic!");
1221    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
1222    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
1223    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
1224    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
1225    }
1226    break;
1227  case ISD::ATOMIC_LOAD_OR:
1228    switch (VT.SimpleTy) {
1229    default: llvm_unreachable("Unexpected value type for atomic!");
1230    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
1231    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
1232    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
1233    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
1234    }
1235    break;
1236  case ISD::ATOMIC_LOAD_XOR:
1237    switch (VT.SimpleTy) {
1238    default: llvm_unreachable("Unexpected value type for atomic!");
1239    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
1240    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
1241    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
1242    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
1243    }
1244    break;
1245  case ISD::ATOMIC_LOAD_NAND:
1246    switch (VT.SimpleTy) {
1247    default: llvm_unreachable("Unexpected value type for atomic!");
1248    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
1249    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
1250    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
1251    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
1252    }
1253    break;
1254  }
1255
1256  return ExpandChainLibCall(LC, Node, false);
1257}
1258
1259/// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
1260/// and the shift amount is a constant 'Amt'.  Expand the operation.
1261void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
1262                                             SDValue &Lo, SDValue &Hi) {
1263  DebugLoc DL = N->getDebugLoc();
1264  // Expand the incoming operand to be shifted, so that we have its parts
1265  SDValue InL, InH;
1266  GetExpandedInteger(N->getOperand(0), InL, InH);
1267
1268  EVT NVT = InL.getValueType();
1269  unsigned VTBits = N->getValueType(0).getSizeInBits();
1270  unsigned NVTBits = NVT.getSizeInBits();
1271  EVT ShTy = N->getOperand(1).getValueType();
1272
1273  if (N->getOpcode() == ISD::SHL) {
1274    if (Amt > VTBits) {
1275      Lo = Hi = DAG.getConstant(0, NVT);
1276    } else if (Amt > NVTBits) {
1277      Lo = DAG.getConstant(0, NVT);
1278      Hi = DAG.getNode(ISD::SHL, DL,
1279                       NVT, InL, DAG.getConstant(Amt-NVTBits, ShTy));
1280    } else if (Amt == NVTBits) {
1281      Lo = DAG.getConstant(0, NVT);
1282      Hi = InL;
1283    } else if (Amt == 1 &&
1284               TLI.isOperationLegalOrCustom(ISD::ADDC,
1285                              TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) {
1286      // Emit this X << 1 as X+X.
1287      SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1288      SDValue LoOps[2] = { InL, InL };
1289      Lo = DAG.getNode(ISD::ADDC, DL, VTList, LoOps, 2);
1290      SDValue HiOps[3] = { InH, InH, Lo.getValue(1) };
1291      Hi = DAG.getNode(ISD::ADDE, DL, VTList, HiOps, 3);
1292    } else {
1293      Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, ShTy));
1294      Hi = DAG.getNode(ISD::OR, DL, NVT,
1295                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1296                                   DAG.getConstant(Amt, ShTy)),
1297                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1298                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1299    }
1300    return;
1301  }
1302
1303  if (N->getOpcode() == ISD::SRL) {
1304    if (Amt > VTBits) {
1305      Lo = DAG.getConstant(0, NVT);
1306      Hi = DAG.getConstant(0, NVT);
1307    } else if (Amt > NVTBits) {
1308      Lo = DAG.getNode(ISD::SRL, DL,
1309                       NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
1310      Hi = DAG.getConstant(0, NVT);
1311    } else if (Amt == NVTBits) {
1312      Lo = InH;
1313      Hi = DAG.getConstant(0, NVT);
1314    } else {
1315      Lo = DAG.getNode(ISD::OR, DL, NVT,
1316                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1317                                   DAG.getConstant(Amt, ShTy)),
1318                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1319                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1320      Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1321    }
1322    return;
1323  }
1324
1325  assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1326  if (Amt > VTBits) {
1327    Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1328                          DAG.getConstant(NVTBits-1, ShTy));
1329  } else if (Amt > NVTBits) {
1330    Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1331                     DAG.getConstant(Amt-NVTBits, ShTy));
1332    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1333                     DAG.getConstant(NVTBits-1, ShTy));
1334  } else if (Amt == NVTBits) {
1335    Lo = InH;
1336    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1337                     DAG.getConstant(NVTBits-1, ShTy));
1338  } else {
1339    Lo = DAG.getNode(ISD::OR, DL, NVT,
1340                     DAG.getNode(ISD::SRL, DL, NVT, InL,
1341                                 DAG.getConstant(Amt, ShTy)),
1342                     DAG.getNode(ISD::SHL, DL, NVT, InH,
1343                                 DAG.getConstant(NVTBits-Amt, ShTy)));
1344    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1345  }
1346}
1347
1348/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1349/// this shift based on knowledge of the high bit of the shift amount.  If we
1350/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1351/// shift amount.
1352bool DAGTypeLegalizer::
1353ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1354  SDValue Amt = N->getOperand(1);
1355  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1356  EVT ShTy = Amt.getValueType();
1357  unsigned ShBits = ShTy.getScalarType().getSizeInBits();
1358  unsigned NVTBits = NVT.getScalarType().getSizeInBits();
1359  assert(isPowerOf2_32(NVTBits) &&
1360         "Expanded integer type size not a power of two!");
1361  DebugLoc dl = N->getDebugLoc();
1362
1363  APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
1364  APInt KnownZero, KnownOne;
1365  DAG.ComputeMaskedBits(N->getOperand(1), HighBitMask, KnownZero, KnownOne);
1366
1367  // If we don't know anything about the high bits, exit.
1368  if (((KnownZero|KnownOne) & HighBitMask) == 0)
1369    return false;
1370
1371  // Get the incoming operand to be shifted.
1372  SDValue InL, InH;
1373  GetExpandedInteger(N->getOperand(0), InL, InH);
1374
1375  // If we know that any of the high bits of the shift amount are one, then we
1376  // can do this as a couple of simple shifts.
1377  if (KnownOne.intersects(HighBitMask)) {
1378    // Mask out the high bit, which we know is set.
1379    Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
1380                      DAG.getConstant(~HighBitMask, ShTy));
1381
1382    switch (N->getOpcode()) {
1383    default: llvm_unreachable("Unknown shift");
1384    case ISD::SHL:
1385      Lo = DAG.getConstant(0, NVT);              // Low part is zero.
1386      Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
1387      return true;
1388    case ISD::SRL:
1389      Hi = DAG.getConstant(0, NVT);              // Hi part is zero.
1390      Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
1391      return true;
1392    case ISD::SRA:
1393      Hi = DAG.getNode(ISD::SRA, dl, NVT, InH,       // Sign extend high part.
1394                       DAG.getConstant(NVTBits-1, ShTy));
1395      Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
1396      return true;
1397    }
1398  }
1399
1400#if 0
1401  // FIXME: This code is broken for shifts with a zero amount!
1402  // If we know that all of the high bits of the shift amount are zero, then we
1403  // can do this as a couple of simple shifts.
1404  if ((KnownZero & HighBitMask) == HighBitMask) {
1405    // Compute 32-amt.
1406    SDValue Amt2 = DAG.getNode(ISD::SUB, ShTy,
1407                                 DAG.getConstant(NVTBits, ShTy),
1408                                 Amt);
1409    unsigned Op1, Op2;
1410    switch (N->getOpcode()) {
1411    default: llvm_unreachable("Unknown shift");
1412    case ISD::SHL:  Op1 = ISD::SHL; Op2 = ISD::SRL; break;
1413    case ISD::SRL:
1414    case ISD::SRA:  Op1 = ISD::SRL; Op2 = ISD::SHL; break;
1415    }
1416
1417    Lo = DAG.getNode(N->getOpcode(), NVT, InL, Amt);
1418    Hi = DAG.getNode(ISD::OR, NVT,
1419                     DAG.getNode(Op1, NVT, InH, Amt),
1420                     DAG.getNode(Op2, NVT, InL, Amt2));
1421    return true;
1422  }
1423#endif
1424
1425  return false;
1426}
1427
1428/// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
1429/// of any size.
1430bool DAGTypeLegalizer::
1431ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1432  SDValue Amt = N->getOperand(1);
1433  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1434  EVT ShTy = Amt.getValueType();
1435  unsigned NVTBits = NVT.getSizeInBits();
1436  assert(isPowerOf2_32(NVTBits) &&
1437         "Expanded integer type size not a power of two!");
1438  DebugLoc dl = N->getDebugLoc();
1439
1440  // Get the incoming operand to be shifted.
1441  SDValue InL, InH;
1442  GetExpandedInteger(N->getOperand(0), InL, InH);
1443
1444  SDValue NVBitsNode = DAG.getConstant(NVTBits, ShTy);
1445  SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
1446  SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
1447  SDValue isShort = DAG.getSetCC(dl, TLI.getSetCCResultType(ShTy),
1448                                 Amt, NVBitsNode, ISD::SETULT);
1449
1450  SDValue LoS, HiS, LoL, HiL;
1451  switch (N->getOpcode()) {
1452  default: llvm_unreachable("Unknown shift");
1453  case ISD::SHL:
1454    // Short: ShAmt < NVTBits
1455    LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
1456    HiS = DAG.getNode(ISD::OR, dl, NVT,
1457                      DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
1458    // FIXME: If Amt is zero, the following shift generates an undefined result
1459    // on some architectures.
1460                      DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
1461
1462    // Long: ShAmt >= NVTBits
1463    LoL = DAG.getConstant(0, NVT);                        // Lo part is zero.
1464    HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
1465
1466    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1467    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1468    return true;
1469  case ISD::SRL:
1470    // Short: ShAmt < NVTBits
1471    HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
1472    LoS = DAG.getNode(ISD::OR, dl, NVT,
1473                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1474    // FIXME: If Amt is zero, the following shift generates an undefined result
1475    // on some architectures.
1476                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1477
1478    // Long: ShAmt >= NVTBits
1479    HiL = DAG.getConstant(0, NVT);                        // Hi part is zero.
1480    LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1481
1482    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1483    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1484    return true;
1485  case ISD::SRA:
1486    // Short: ShAmt < NVTBits
1487    HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
1488    LoS = DAG.getNode(ISD::OR, dl, NVT,
1489                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1490    // FIXME: If Amt is zero, the following shift generates an undefined result
1491    // on some architectures.
1492                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1493
1494    // Long: ShAmt >= NVTBits
1495    HiL = DAG.getNode(ISD::SRA, dl, NVT, InH,             // Sign of Hi part.
1496                      DAG.getConstant(NVTBits-1, ShTy));
1497    LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1498
1499    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1500    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1501    return true;
1502  }
1503}
1504
1505void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
1506                                           SDValue &Lo, SDValue &Hi) {
1507  DebugLoc dl = N->getDebugLoc();
1508  // Expand the subcomponents.
1509  SDValue LHSL, LHSH, RHSL, RHSH;
1510  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1511  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1512
1513  EVT NVT = LHSL.getValueType();
1514  SDValue LoOps[2] = { LHSL, RHSL };
1515  SDValue HiOps[3] = { LHSH, RHSH };
1516
1517  // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
1518  // them.  TODO: Teach operation legalization how to expand unsupported
1519  // ADDC/ADDE/SUBC/SUBE.  The problem is that these operations generate
1520  // a carry of type MVT::Glue, but there doesn't seem to be any way to
1521  // generate a value of this type in the expanded code sequence.
1522  bool hasCarry =
1523    TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
1524                                   ISD::ADDC : ISD::SUBC,
1525                                 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
1526
1527  if (hasCarry) {
1528    SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1529    if (N->getOpcode() == ISD::ADD) {
1530      Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1531      HiOps[2] = Lo.getValue(1);
1532      Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1533    } else {
1534      Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1535      HiOps[2] = Lo.getValue(1);
1536      Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1537    }
1538    return;
1539  }
1540
1541  if (N->getOpcode() == ISD::ADD) {
1542    Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2);
1543    Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2);
1544    SDValue Cmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[0],
1545                                ISD::SETULT);
1546    SDValue Carry1 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp1,
1547                                 DAG.getConstant(1, NVT),
1548                                 DAG.getConstant(0, NVT));
1549    SDValue Cmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[1],
1550                                ISD::SETULT);
1551    SDValue Carry2 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp2,
1552                                 DAG.getConstant(1, NVT), Carry1);
1553    Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
1554  } else {
1555    Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2);
1556    Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2);
1557    SDValue Cmp =
1558      DAG.getSetCC(dl, TLI.getSetCCResultType(LoOps[0].getValueType()),
1559                   LoOps[0], LoOps[1], ISD::SETULT);
1560    SDValue Borrow = DAG.getNode(ISD::SELECT, dl, NVT, Cmp,
1561                                 DAG.getConstant(1, NVT),
1562                                 DAG.getConstant(0, NVT));
1563    Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
1564  }
1565}
1566
1567void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
1568                                            SDValue &Lo, SDValue &Hi) {
1569  // Expand the subcomponents.
1570  SDValue LHSL, LHSH, RHSL, RHSH;
1571  DebugLoc dl = N->getDebugLoc();
1572  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1573  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1574  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1575  SDValue LoOps[2] = { LHSL, RHSL };
1576  SDValue HiOps[3] = { LHSH, RHSH };
1577
1578  if (N->getOpcode() == ISD::ADDC) {
1579    Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1580    HiOps[2] = Lo.getValue(1);
1581    Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1582  } else {
1583    Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1584    HiOps[2] = Lo.getValue(1);
1585    Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1586  }
1587
1588  // Legalized the flag result - switch anything that used the old flag to
1589  // use the new one.
1590  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1591}
1592
1593void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
1594                                            SDValue &Lo, SDValue &Hi) {
1595  // Expand the subcomponents.
1596  SDValue LHSL, LHSH, RHSL, RHSH;
1597  DebugLoc dl = N->getDebugLoc();
1598  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1599  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1600  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1601  SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
1602  SDValue HiOps[3] = { LHSH, RHSH };
1603
1604  Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps, 3);
1605  HiOps[2] = Lo.getValue(1);
1606  Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps, 3);
1607
1608  // Legalized the flag result - switch anything that used the old flag to
1609  // use the new one.
1610  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1611}
1612
1613void DAGTypeLegalizer::ExpandIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1614                                                 SDValue &Lo, SDValue &Hi) {
1615  SDValue Res = DisintegrateMERGE_VALUES(N, ResNo);
1616  SplitInteger(Res, Lo, Hi);
1617}
1618
1619void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
1620                                               SDValue &Lo, SDValue &Hi) {
1621  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1622  DebugLoc dl = N->getDebugLoc();
1623  SDValue Op = N->getOperand(0);
1624  if (Op.getValueType().bitsLE(NVT)) {
1625    // The low part is any extension of the input (which degenerates to a copy).
1626    Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op);
1627    Hi = DAG.getUNDEF(NVT);   // The high part is undefined.
1628  } else {
1629    // For example, extension of an i48 to an i64.  The operand type necessarily
1630    // promotes to the result type, so will end up being expanded too.
1631    assert(getTypeAction(Op.getValueType()) ==
1632           TargetLowering::TypePromoteInteger &&
1633           "Only know how to promote this result!");
1634    SDValue Res = GetPromotedInteger(Op);
1635    assert(Res.getValueType() == N->getValueType(0) &&
1636           "Operand over promoted?");
1637    // Split the promoted operand.  This will simplify when it is expanded.
1638    SplitInteger(Res, Lo, Hi);
1639  }
1640}
1641
1642void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
1643                                               SDValue &Lo, SDValue &Hi) {
1644  DebugLoc dl = N->getDebugLoc();
1645  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1646  EVT NVT = Lo.getValueType();
1647  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1648  unsigned NVTBits = NVT.getSizeInBits();
1649  unsigned EVTBits = EVT.getSizeInBits();
1650
1651  if (NVTBits < EVTBits) {
1652    Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
1653                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1654                                                        EVTBits - NVTBits)));
1655  } else {
1656    Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
1657    // The high part replicates the sign bit of Lo, make it explicit.
1658    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1659                     DAG.getConstant(NVTBits-1, TLI.getPointerTy()));
1660  }
1661}
1662
1663void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
1664                                               SDValue &Lo, SDValue &Hi) {
1665  DebugLoc dl = N->getDebugLoc();
1666  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1667  EVT NVT = Lo.getValueType();
1668  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1669  unsigned NVTBits = NVT.getSizeInBits();
1670  unsigned EVTBits = EVT.getSizeInBits();
1671
1672  if (NVTBits < EVTBits) {
1673    Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
1674                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1675                                                        EVTBits - NVTBits)));
1676  } else {
1677    Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
1678    // The high part must be zero, make it explicit.
1679    Hi = DAG.getConstant(0, NVT);
1680  }
1681}
1682
1683void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
1684                                          SDValue &Lo, SDValue &Hi) {
1685  DebugLoc dl = N->getDebugLoc();
1686  GetExpandedInteger(N->getOperand(0), Hi, Lo);  // Note swapped operands.
1687  Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo);
1688  Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi);
1689}
1690
1691void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
1692                                             SDValue &Lo, SDValue &Hi) {
1693  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1694  unsigned NBitWidth = NVT.getSizeInBits();
1695  const APInt &Cst = cast<ConstantSDNode>(N)->getAPIntValue();
1696  Lo = DAG.getConstant(Cst.trunc(NBitWidth), NVT);
1697  Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT);
1698}
1699
1700void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
1701                                         SDValue &Lo, SDValue &Hi) {
1702  DebugLoc dl = N->getDebugLoc();
1703  // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
1704  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1705  EVT NVT = Lo.getValueType();
1706
1707  SDValue HiNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Hi,
1708                                   DAG.getConstant(0, NVT), ISD::SETNE);
1709
1710  SDValue LoLZ = DAG.getNode(N->getOpcode(), dl, NVT, Lo);
1711  SDValue HiLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, NVT, Hi);
1712
1713  Lo = DAG.getNode(ISD::SELECT, dl, NVT, HiNotZero, HiLZ,
1714                   DAG.getNode(ISD::ADD, dl, NVT, LoLZ,
1715                               DAG.getConstant(NVT.getSizeInBits(), NVT)));
1716  Hi = DAG.getConstant(0, NVT);
1717}
1718
1719void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
1720                                          SDValue &Lo, SDValue &Hi) {
1721  DebugLoc dl = N->getDebugLoc();
1722  // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
1723  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1724  EVT NVT = Lo.getValueType();
1725  Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
1726                   DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
1727  Hi = DAG.getConstant(0, NVT);
1728}
1729
1730void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
1731                                         SDValue &Lo, SDValue &Hi) {
1732  DebugLoc dl = N->getDebugLoc();
1733  // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
1734  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1735  EVT NVT = Lo.getValueType();
1736
1737  SDValue LoNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo,
1738                                   DAG.getConstant(0, NVT), ISD::SETNE);
1739
1740  SDValue LoLZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, NVT, Lo);
1741  SDValue HiLZ = DAG.getNode(N->getOpcode(), dl, NVT, Hi);
1742
1743  Lo = DAG.getNode(ISD::SELECT, dl, NVT, LoNotZero, LoLZ,
1744                   DAG.getNode(ISD::ADD, dl, NVT, HiLZ,
1745                               DAG.getConstant(NVT.getSizeInBits(), NVT)));
1746  Hi = DAG.getConstant(0, NVT);
1747}
1748
1749void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
1750                                               SDValue &Hi) {
1751  DebugLoc dl = N->getDebugLoc();
1752  EVT VT = N->getValueType(0);
1753  SDValue Op = N->getOperand(0);
1754  RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
1755  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
1756  SplitInteger(MakeLibCall(LC, VT, &Op, 1, true/*irrelevant*/, dl), Lo, Hi);
1757}
1758
1759void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
1760                                               SDValue &Hi) {
1761  DebugLoc dl = N->getDebugLoc();
1762  EVT VT = N->getValueType(0);
1763  SDValue Op = N->getOperand(0);
1764  RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
1765  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
1766  SplitInteger(MakeLibCall(LC, VT, &Op, 1, false/*irrelevant*/, dl), Lo, Hi);
1767}
1768
1769void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
1770                                         SDValue &Lo, SDValue &Hi) {
1771  if (ISD::isNormalLoad(N)) {
1772    ExpandRes_NormalLoad(N, Lo, Hi);
1773    return;
1774  }
1775
1776  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
1777
1778  EVT VT = N->getValueType(0);
1779  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1780  SDValue Ch  = N->getChain();
1781  SDValue Ptr = N->getBasePtr();
1782  ISD::LoadExtType ExtType = N->getExtensionType();
1783  unsigned Alignment = N->getAlignment();
1784  bool isVolatile = N->isVolatile();
1785  bool isNonTemporal = N->isNonTemporal();
1786  bool isInvariant = N->isInvariant();
1787  DebugLoc dl = N->getDebugLoc();
1788
1789  assert(NVT.isByteSized() && "Expanded type not byte sized!");
1790
1791  if (N->getMemoryVT().bitsLE(NVT)) {
1792    EVT MemVT = N->getMemoryVT();
1793
1794    Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1795                        MemVT, isVolatile, isNonTemporal, Alignment);
1796
1797    // Remember the chain.
1798    Ch = Lo.getValue(1);
1799
1800    if (ExtType == ISD::SEXTLOAD) {
1801      // The high part is obtained by SRA'ing all but one of the bits of the
1802      // lo part.
1803      unsigned LoSize = Lo.getValueType().getSizeInBits();
1804      Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1805                       DAG.getConstant(LoSize-1, TLI.getPointerTy()));
1806    } else if (ExtType == ISD::ZEXTLOAD) {
1807      // The high part is just a zero.
1808      Hi = DAG.getConstant(0, NVT);
1809    } else {
1810      assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
1811      // The high part is undefined.
1812      Hi = DAG.getUNDEF(NVT);
1813    }
1814  } else if (TLI.isLittleEndian()) {
1815    // Little-endian - low bits are at low addresses.
1816    Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(),
1817                     isVolatile, isNonTemporal, isInvariant, Alignment);
1818
1819    unsigned ExcessBits =
1820      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
1821    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
1822
1823    // Increment the pointer to the other half.
1824    unsigned IncrementSize = NVT.getSizeInBits()/8;
1825    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1826                      DAG.getIntPtrConstant(IncrementSize));
1827    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
1828                        N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
1829                        isVolatile, isNonTemporal,
1830                        MinAlign(Alignment, IncrementSize));
1831
1832    // Build a factor node to remember that this load is independent of the
1833    // other one.
1834    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1835                     Hi.getValue(1));
1836  } else {
1837    // Big-endian - high bits are at low addresses.  Favor aligned loads at
1838    // the cost of some bit-fiddling.
1839    EVT MemVT = N->getMemoryVT();
1840    unsigned EBytes = MemVT.getStoreSize();
1841    unsigned IncrementSize = NVT.getSizeInBits()/8;
1842    unsigned ExcessBits = (EBytes - IncrementSize)*8;
1843
1844    // Load both the high bits and maybe some of the low bits.
1845    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1846                        EVT::getIntegerVT(*DAG.getContext(),
1847                                          MemVT.getSizeInBits() - ExcessBits),
1848                        isVolatile, isNonTemporal, Alignment);
1849
1850    // Increment the pointer to the other half.
1851    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1852                      DAG.getIntPtrConstant(IncrementSize));
1853    // Load the rest of the low bits.
1854    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
1855                        N->getPointerInfo().getWithOffset(IncrementSize),
1856                        EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
1857                        isVolatile, isNonTemporal,
1858                        MinAlign(Alignment, IncrementSize));
1859
1860    // Build a factor node to remember that this load is independent of the
1861    // other one.
1862    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1863                     Hi.getValue(1));
1864
1865    if (ExcessBits < NVT.getSizeInBits()) {
1866      // Transfer low bits from the bottom of Hi to the top of Lo.
1867      Lo = DAG.getNode(ISD::OR, dl, NVT, Lo,
1868                       DAG.getNode(ISD::SHL, dl, NVT, Hi,
1869                                   DAG.getConstant(ExcessBits,
1870                                                   TLI.getPointerTy())));
1871      // Move high bits to the right position in Hi.
1872      Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl,
1873                       NVT, Hi,
1874                       DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
1875                                       TLI.getPointerTy()));
1876    }
1877  }
1878
1879  // Legalized the chain result - switch anything that used the old chain to
1880  // use the new one.
1881  ReplaceValueWith(SDValue(N, 1), Ch);
1882}
1883
1884void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
1885                                            SDValue &Lo, SDValue &Hi) {
1886  DebugLoc dl = N->getDebugLoc();
1887  SDValue LL, LH, RL, RH;
1888  GetExpandedInteger(N->getOperand(0), LL, LH);
1889  GetExpandedInteger(N->getOperand(1), RL, RH);
1890  Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL);
1891  Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH);
1892}
1893
1894void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
1895                                        SDValue &Lo, SDValue &Hi) {
1896  EVT VT = N->getValueType(0);
1897  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1898  DebugLoc dl = N->getDebugLoc();
1899
1900  bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT);
1901  bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT);
1902  bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT);
1903  bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT);
1904  if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
1905    SDValue LL, LH, RL, RH;
1906    GetExpandedInteger(N->getOperand(0), LL, LH);
1907    GetExpandedInteger(N->getOperand(1), RL, RH);
1908    unsigned OuterBitSize = VT.getSizeInBits();
1909    unsigned InnerBitSize = NVT.getSizeInBits();
1910    unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
1911    unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
1912
1913    APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
1914    if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
1915        DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
1916      // The inputs are both zero-extended.
1917      if (HasUMUL_LOHI) {
1918        // We can emit a umul_lohi.
1919        Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1920        Hi = SDValue(Lo.getNode(), 1);
1921        return;
1922      }
1923      if (HasMULHU) {
1924        // We can emit a mulhu+mul.
1925        Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1926        Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1927        return;
1928      }
1929    }
1930    if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
1931      // The input values are both sign-extended.
1932      if (HasSMUL_LOHI) {
1933        // We can emit a smul_lohi.
1934        Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1935        Hi = SDValue(Lo.getNode(), 1);
1936        return;
1937      }
1938      if (HasMULHS) {
1939        // We can emit a mulhs+mul.
1940        Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1941        Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL);
1942        return;
1943      }
1944    }
1945    if (HasUMUL_LOHI) {
1946      // Lo,Hi = umul LHS, RHS.
1947      SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
1948                                       DAG.getVTList(NVT, NVT), LL, RL);
1949      Lo = UMulLOHI;
1950      Hi = UMulLOHI.getValue(1);
1951      RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1952      LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1953      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1954      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1955      return;
1956    }
1957    if (HasMULHU) {
1958      Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1959      Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1960      RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1961      LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1962      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1963      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1964      return;
1965    }
1966  }
1967
1968  // If nothing else, we can make a libcall.
1969  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1970  if (VT == MVT::i16)
1971    LC = RTLIB::MUL_I16;
1972  else if (VT == MVT::i32)
1973    LC = RTLIB::MUL_I32;
1974  else if (VT == MVT::i64)
1975    LC = RTLIB::MUL_I64;
1976  else if (VT == MVT::i128)
1977    LC = RTLIB::MUL_I128;
1978  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!");
1979
1980  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1981  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true/*irrelevant*/, dl), Lo, Hi);
1982}
1983
1984void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node,
1985                                             SDValue &Lo, SDValue &Hi) {
1986  SDValue LHS = Node->getOperand(0);
1987  SDValue RHS = Node->getOperand(1);
1988  DebugLoc dl = Node->getDebugLoc();
1989
1990  // Expand the result by simply replacing it with the equivalent
1991  // non-overflow-checking operation.
1992  SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
1993                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
1994                            LHS, RHS);
1995  SplitInteger(Sum, Lo, Hi);
1996
1997  // Compute the overflow.
1998  //
1999  //   LHSSign -> LHS >= 0
2000  //   RHSSign -> RHS >= 0
2001  //   SumSign -> Sum >= 0
2002  //
2003  //   Add:
2004  //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2005  //   Sub:
2006  //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2007  //
2008  EVT OType = Node->getValueType(1);
2009  SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2010
2011  SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2012  SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2013  SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2014                                    Node->getOpcode() == ISD::SADDO ?
2015                                    ISD::SETEQ : ISD::SETNE);
2016
2017  SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2018  SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2019
2020  SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2021
2022  // Use the calculated overflow everywhere.
2023  ReplaceValueWith(SDValue(Node, 1), Cmp);
2024}
2025
2026void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
2027                                         SDValue &Lo, SDValue &Hi) {
2028  EVT VT = N->getValueType(0);
2029  DebugLoc dl = N->getDebugLoc();
2030
2031  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2032  if (VT == MVT::i16)
2033    LC = RTLIB::SDIV_I16;
2034  else if (VT == MVT::i32)
2035    LC = RTLIB::SDIV_I32;
2036  else if (VT == MVT::i64)
2037    LC = RTLIB::SDIV_I64;
2038  else if (VT == MVT::i128)
2039    LC = RTLIB::SDIV_I128;
2040  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
2041
2042  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2043  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true, dl), Lo, Hi);
2044}
2045
2046void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
2047                                          SDValue &Lo, SDValue &Hi) {
2048  EVT VT = N->getValueType(0);
2049  DebugLoc dl = N->getDebugLoc();
2050
2051  // If we can emit an efficient shift operation, do so now.  Check to see if
2052  // the RHS is a constant.
2053  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2054    return ExpandShiftByConstant(N, CN->getZExtValue(), Lo, Hi);
2055
2056  // If we can determine that the high bit of the shift is zero or one, even if
2057  // the low bits are variable, emit this shift in an optimized form.
2058  if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
2059    return;
2060
2061  // If this target supports shift_PARTS, use it.  First, map to the _PARTS opc.
2062  unsigned PartsOpc;
2063  if (N->getOpcode() == ISD::SHL) {
2064    PartsOpc = ISD::SHL_PARTS;
2065  } else if (N->getOpcode() == ISD::SRL) {
2066    PartsOpc = ISD::SRL_PARTS;
2067  } else {
2068    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2069    PartsOpc = ISD::SRA_PARTS;
2070  }
2071
2072  // Next check to see if the target supports this SHL_PARTS operation or if it
2073  // will custom expand it.
2074  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2075  TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
2076  if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
2077      Action == TargetLowering::Custom) {
2078    // Expand the subcomponents.
2079    SDValue LHSL, LHSH;
2080    GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2081
2082    SDValue Ops[] = { LHSL, LHSH, N->getOperand(1) };
2083    EVT VT = LHSL.getValueType();
2084    Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops, 3);
2085    Hi = Lo.getValue(1);
2086    return;
2087  }
2088
2089  // Otherwise, emit a libcall.
2090  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2091  bool isSigned;
2092  if (N->getOpcode() == ISD::SHL) {
2093    isSigned = false; /*sign irrelevant*/
2094    if (VT == MVT::i16)
2095      LC = RTLIB::SHL_I16;
2096    else if (VT == MVT::i32)
2097      LC = RTLIB::SHL_I32;
2098    else if (VT == MVT::i64)
2099      LC = RTLIB::SHL_I64;
2100    else if (VT == MVT::i128)
2101      LC = RTLIB::SHL_I128;
2102  } else if (N->getOpcode() == ISD::SRL) {
2103    isSigned = false;
2104    if (VT == MVT::i16)
2105      LC = RTLIB::SRL_I16;
2106    else if (VT == MVT::i32)
2107      LC = RTLIB::SRL_I32;
2108    else if (VT == MVT::i64)
2109      LC = RTLIB::SRL_I64;
2110    else if (VT == MVT::i128)
2111      LC = RTLIB::SRL_I128;
2112  } else {
2113    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2114    isSigned = true;
2115    if (VT == MVT::i16)
2116      LC = RTLIB::SRA_I16;
2117    else if (VT == MVT::i32)
2118      LC = RTLIB::SRA_I32;
2119    else if (VT == MVT::i64)
2120      LC = RTLIB::SRA_I64;
2121    else if (VT == MVT::i128)
2122      LC = RTLIB::SRA_I128;
2123  }
2124
2125  if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
2126    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2127    SplitInteger(MakeLibCall(LC, VT, Ops, 2, isSigned, dl), Lo, Hi);
2128    return;
2129  }
2130
2131  if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
2132    llvm_unreachable("Unsupported shift!");
2133}
2134
2135void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
2136                                                SDValue &Lo, SDValue &Hi) {
2137  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2138  DebugLoc dl = N->getDebugLoc();
2139  SDValue Op = N->getOperand(0);
2140  if (Op.getValueType().bitsLE(NVT)) {
2141    // The low part is sign extension of the input (degenerates to a copy).
2142    Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0));
2143    // The high part is obtained by SRA'ing all but one of the bits of low part.
2144    unsigned LoSize = NVT.getSizeInBits();
2145    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2146                     DAG.getConstant(LoSize-1, TLI.getPointerTy()));
2147  } else {
2148    // For example, extension of an i48 to an i64.  The operand type necessarily
2149    // promotes to the result type, so will end up being expanded too.
2150    assert(getTypeAction(Op.getValueType()) ==
2151           TargetLowering::TypePromoteInteger &&
2152           "Only know how to promote this result!");
2153    SDValue Res = GetPromotedInteger(Op);
2154    assert(Res.getValueType() == N->getValueType(0) &&
2155           "Operand over promoted?");
2156    // Split the promoted operand.  This will simplify when it is expanded.
2157    SplitInteger(Res, Lo, Hi);
2158    unsigned ExcessBits =
2159      Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2160    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2161                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2162                                                        ExcessBits)));
2163  }
2164}
2165
2166void DAGTypeLegalizer::
2167ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
2168  DebugLoc dl = N->getDebugLoc();
2169  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2170  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2171
2172  if (EVT.bitsLE(Lo.getValueType())) {
2173    // sext_inreg the low part if needed.
2174    Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo,
2175                     N->getOperand(1));
2176
2177    // The high part gets the sign extension from the lo-part.  This handles
2178    // things like sextinreg V:i64 from i8.
2179    Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
2180                     DAG.getConstant(Hi.getValueType().getSizeInBits()-1,
2181                                     TLI.getPointerTy()));
2182  } else {
2183    // For example, extension of an i48 to an i64.  Leave the low part alone,
2184    // sext_inreg the high part.
2185    unsigned ExcessBits =
2186      EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
2187    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2188                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2189                                                        ExcessBits)));
2190  }
2191}
2192
2193void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
2194                                         SDValue &Lo, SDValue &Hi) {
2195  EVT VT = N->getValueType(0);
2196  DebugLoc dl = N->getDebugLoc();
2197
2198  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2199  if (VT == MVT::i16)
2200    LC = RTLIB::SREM_I16;
2201  else if (VT == MVT::i32)
2202    LC = RTLIB::SREM_I32;
2203  else if (VT == MVT::i64)
2204    LC = RTLIB::SREM_I64;
2205  else if (VT == MVT::i128)
2206    LC = RTLIB::SREM_I128;
2207  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
2208
2209  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2210  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true, dl), Lo, Hi);
2211}
2212
2213void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
2214                                             SDValue &Lo, SDValue &Hi) {
2215  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2216  DebugLoc dl = N->getDebugLoc();
2217  Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
2218  Hi = DAG.getNode(ISD::SRL, dl,
2219                   N->getOperand(0).getValueType(), N->getOperand(0),
2220                   DAG.getConstant(NVT.getSizeInBits(), TLI.getPointerTy()));
2221  Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi);
2222}
2223
2224void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N,
2225                                             SDValue &Lo, SDValue &Hi) {
2226  SDValue LHS = N->getOperand(0);
2227  SDValue RHS = N->getOperand(1);
2228  DebugLoc dl = N->getDebugLoc();
2229
2230  // Expand the result by simply replacing it with the equivalent
2231  // non-overflow-checking operation.
2232  SDValue Sum = DAG.getNode(N->getOpcode() == ISD::UADDO ?
2233                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2234                            LHS, RHS);
2235  SplitInteger(Sum, Lo, Hi);
2236
2237  // Calculate the overflow: addition overflows iff a + b < a, and subtraction
2238  // overflows iff a - b > a.
2239  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS,
2240                             N->getOpcode () == ISD::UADDO ?
2241                             ISD::SETULT : ISD::SETUGT);
2242
2243  // Use the calculated overflow everywhere.
2244  ReplaceValueWith(SDValue(N, 1), Ofl);
2245}
2246
2247void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N,
2248                                          SDValue &Lo, SDValue &Hi) {
2249  EVT VT = N->getValueType(0);
2250  Type *RetTy = VT.getTypeForEVT(*DAG.getContext());
2251  EVT PtrVT = TLI.getPointerTy();
2252  Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext());
2253  DebugLoc dl = N->getDebugLoc();
2254
2255  // A divide for UMULO should be faster than a function call.
2256  if (N->getOpcode() == ISD::UMULO) {
2257    SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
2258    DebugLoc DL = N->getDebugLoc();
2259
2260    SDValue MUL = DAG.getNode(ISD::MUL, DL, LHS.getValueType(), LHS, RHS);
2261    SplitInteger(MUL, Lo, Hi);
2262
2263    // A divide for UMULO will be faster than a function call. Select to
2264    // make sure we aren't using 0.
2265    SDValue isZero = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2266				  RHS, DAG.getConstant(0, VT), ISD::SETNE);
2267    SDValue NotZero = DAG.getNode(ISD::SELECT, dl, VT, isZero,
2268				  DAG.getConstant(1, VT), RHS);
2269    SDValue DIV = DAG.getNode(ISD::UDIV, DL, LHS.getValueType(), MUL, NotZero);
2270    SDValue Overflow;
2271    Overflow = DAG.getSetCC(DL, N->getValueType(1), DIV, LHS, ISD::SETNE);
2272    ReplaceValueWith(SDValue(N, 1), Overflow);
2273    return;
2274  }
2275
2276  // Replace this with a libcall that will check overflow.
2277  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2278  if (VT == MVT::i32)
2279    LC = RTLIB::MULO_I32;
2280  else if (VT == MVT::i64)
2281    LC = RTLIB::MULO_I64;
2282  else if (VT == MVT::i128)
2283    LC = RTLIB::MULO_I128;
2284  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!");
2285
2286  SDValue Temp = DAG.CreateStackTemporary(PtrVT);
2287  // Temporary for the overflow value, default it to zero.
2288  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl,
2289			       DAG.getConstant(0, PtrVT), Temp,
2290			       MachinePointerInfo(), false, false, 0);
2291
2292  TargetLowering::ArgListTy Args;
2293  TargetLowering::ArgListEntry Entry;
2294  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2295    EVT ArgVT = N->getOperand(i).getValueType();
2296    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2297    Entry.Node = N->getOperand(i);
2298    Entry.Ty = ArgTy;
2299    Entry.isSExt = true;
2300    Entry.isZExt = false;
2301    Args.push_back(Entry);
2302  }
2303
2304  // Also pass the address of the overflow check.
2305  Entry.Node = Temp;
2306  Entry.Ty = PtrTy->getPointerTo();
2307  Entry.isSExt = true;
2308  Entry.isZExt = false;
2309  Args.push_back(Entry);
2310
2311  SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT);
2312  std::pair<SDValue, SDValue> CallInfo =
2313    TLI.LowerCallTo(Chain, RetTy, true, false, false, false,
2314		    0, TLI.getLibcallCallingConv(LC), false,
2315		    true, Func, Args, DAG, dl);
2316
2317  SplitInteger(CallInfo.first, Lo, Hi);
2318  SDValue Temp2 = DAG.getLoad(PtrVT, dl, CallInfo.second, Temp,
2319			      MachinePointerInfo(), false, false, false, 0);
2320  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2,
2321                             DAG.getConstant(0, PtrVT),
2322                             ISD::SETNE);
2323  // Use the overflow from the libcall everywhere.
2324  ReplaceValueWith(SDValue(N, 1), Ofl);
2325}
2326
2327void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
2328                                         SDValue &Lo, SDValue &Hi) {
2329  EVT VT = N->getValueType(0);
2330  DebugLoc dl = N->getDebugLoc();
2331
2332  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2333  if (VT == MVT::i16)
2334    LC = RTLIB::UDIV_I16;
2335  else if (VT == MVT::i32)
2336    LC = RTLIB::UDIV_I32;
2337  else if (VT == MVT::i64)
2338    LC = RTLIB::UDIV_I64;
2339  else if (VT == MVT::i128)
2340    LC = RTLIB::UDIV_I128;
2341  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
2342
2343  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2344  SplitInteger(MakeLibCall(LC, VT, Ops, 2, false, dl), Lo, Hi);
2345}
2346
2347void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
2348                                         SDValue &Lo, SDValue &Hi) {
2349  EVT VT = N->getValueType(0);
2350  DebugLoc dl = N->getDebugLoc();
2351
2352  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2353  if (VT == MVT::i16)
2354    LC = RTLIB::UREM_I16;
2355  else if (VT == MVT::i32)
2356    LC = RTLIB::UREM_I32;
2357  else if (VT == MVT::i64)
2358    LC = RTLIB::UREM_I64;
2359  else if (VT == MVT::i128)
2360    LC = RTLIB::UREM_I128;
2361  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
2362
2363  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2364  SplitInteger(MakeLibCall(LC, VT, Ops, 2, false, dl), Lo, Hi);
2365}
2366
2367void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
2368                                                SDValue &Lo, SDValue &Hi) {
2369  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2370  DebugLoc dl = N->getDebugLoc();
2371  SDValue Op = N->getOperand(0);
2372  if (Op.getValueType().bitsLE(NVT)) {
2373    // The low part is zero extension of the input (degenerates to a copy).
2374    Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0));
2375    Hi = DAG.getConstant(0, NVT);   // The high part is just a zero.
2376  } else {
2377    // For example, extension of an i48 to an i64.  The operand type necessarily
2378    // promotes to the result type, so will end up being expanded too.
2379    assert(getTypeAction(Op.getValueType()) ==
2380           TargetLowering::TypePromoteInteger &&
2381           "Only know how to promote this result!");
2382    SDValue Res = GetPromotedInteger(Op);
2383    assert(Res.getValueType() == N->getValueType(0) &&
2384           "Operand over promoted?");
2385    // Split the promoted operand.  This will simplify when it is expanded.
2386    SplitInteger(Res, Lo, Hi);
2387    unsigned ExcessBits =
2388      Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2389    Hi = DAG.getZeroExtendInReg(Hi, dl,
2390                                EVT::getIntegerVT(*DAG.getContext(),
2391                                                  ExcessBits));
2392  }
2393}
2394
2395void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N,
2396                                                SDValue &Lo, SDValue &Hi) {
2397  DebugLoc dl = N->getDebugLoc();
2398  EVT VT = cast<AtomicSDNode>(N)->getMemoryVT();
2399  SDValue Zero = DAG.getConstant(0, VT);
2400  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
2401                               N->getOperand(0),
2402                               N->getOperand(1), Zero, Zero,
2403                               cast<AtomicSDNode>(N)->getMemOperand(),
2404                               cast<AtomicSDNode>(N)->getOrdering(),
2405                               cast<AtomicSDNode>(N)->getSynchScope());
2406  ReplaceValueWith(SDValue(N, 0), Swap.getValue(0));
2407  ReplaceValueWith(SDValue(N, 1), Swap.getValue(1));
2408}
2409
2410//===----------------------------------------------------------------------===//
2411//  Integer Operand Expansion
2412//===----------------------------------------------------------------------===//
2413
2414/// ExpandIntegerOperand - This method is called when the specified operand of
2415/// the specified node is found to need expansion.  At this point, all of the
2416/// result types of the node are known to be legal, but other operands of the
2417/// node may need promotion or expansion as well as the specified one.
2418bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
2419  DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n");
2420  SDValue Res = SDValue();
2421
2422  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2423    return false;
2424
2425  switch (N->getOpcode()) {
2426  default:
2427  #ifndef NDEBUG
2428    dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
2429    N->dump(&DAG); dbgs() << "\n";
2430  #endif
2431    llvm_unreachable("Do not know how to expand this operator's operand!");
2432
2433  case ISD::BITCAST:           Res = ExpandOp_BITCAST(N); break;
2434  case ISD::BR_CC:             Res = ExpandIntOp_BR_CC(N); break;
2435  case ISD::BUILD_VECTOR:      Res = ExpandOp_BUILD_VECTOR(N); break;
2436  case ISD::EXTRACT_ELEMENT:   Res = ExpandOp_EXTRACT_ELEMENT(N); break;
2437  case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break;
2438  case ISD::SCALAR_TO_VECTOR:  Res = ExpandOp_SCALAR_TO_VECTOR(N); break;
2439  case ISD::SELECT_CC:         Res = ExpandIntOp_SELECT_CC(N); break;
2440  case ISD::SETCC:             Res = ExpandIntOp_SETCC(N); break;
2441  case ISD::SINT_TO_FP:        Res = ExpandIntOp_SINT_TO_FP(N); break;
2442  case ISD::STORE:   Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break;
2443  case ISD::TRUNCATE:          Res = ExpandIntOp_TRUNCATE(N); break;
2444  case ISD::UINT_TO_FP:        Res = ExpandIntOp_UINT_TO_FP(N); break;
2445
2446  case ISD::SHL:
2447  case ISD::SRA:
2448  case ISD::SRL:
2449  case ISD::ROTL:
2450  case ISD::ROTR:              Res = ExpandIntOp_Shift(N); break;
2451  case ISD::RETURNADDR:
2452  case ISD::FRAMEADDR:         Res = ExpandIntOp_RETURNADDR(N); break;
2453
2454  case ISD::ATOMIC_STORE:      Res = ExpandIntOp_ATOMIC_STORE(N); break;
2455  }
2456
2457  // If the result is null, the sub-method took care of registering results etc.
2458  if (!Res.getNode()) return false;
2459
2460  // If the result is N, the sub-method updated N in place.  Tell the legalizer
2461  // core about this.
2462  if (Res.getNode() == N)
2463    return true;
2464
2465  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2466         "Invalid operand expansion");
2467
2468  ReplaceValueWith(SDValue(N, 0), Res);
2469  return false;
2470}
2471
2472/// IntegerExpandSetCCOperands - Expand the operands of a comparison.  This code
2473/// is shared among BR_CC, SELECT_CC, and SETCC handlers.
2474void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
2475                                                  SDValue &NewRHS,
2476                                                  ISD::CondCode &CCCode,
2477                                                  DebugLoc dl) {
2478  SDValue LHSLo, LHSHi, RHSLo, RHSHi;
2479  GetExpandedInteger(NewLHS, LHSLo, LHSHi);
2480  GetExpandedInteger(NewRHS, RHSLo, RHSHi);
2481
2482  if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
2483    if (RHSLo == RHSHi) {
2484      if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) {
2485        if (RHSCST->isAllOnesValue()) {
2486          // Equality comparison to -1.
2487          NewLHS = DAG.getNode(ISD::AND, dl,
2488                               LHSLo.getValueType(), LHSLo, LHSHi);
2489          NewRHS = RHSLo;
2490          return;
2491        }
2492      }
2493    }
2494
2495    NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
2496    NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
2497    NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS);
2498    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2499    return;
2500  }
2501
2502  // If this is a comparison of the sign bit, just look at the top part.
2503  // X > -1,  x < 0
2504  if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
2505    if ((CCCode == ISD::SETLT && CST->isNullValue()) ||     // X < 0
2506        (CCCode == ISD::SETGT && CST->isAllOnesValue())) {  // X > -1
2507      NewLHS = LHSHi;
2508      NewRHS = RHSHi;
2509      return;
2510    }
2511
2512  // FIXME: This generated code sucks.
2513  ISD::CondCode LowCC;
2514  switch (CCCode) {
2515  default: llvm_unreachable("Unknown integer setcc!");
2516  case ISD::SETLT:
2517  case ISD::SETULT: LowCC = ISD::SETULT; break;
2518  case ISD::SETGT:
2519  case ISD::SETUGT: LowCC = ISD::SETUGT; break;
2520  case ISD::SETLE:
2521  case ISD::SETULE: LowCC = ISD::SETULE; break;
2522  case ISD::SETGE:
2523  case ISD::SETUGE: LowCC = ISD::SETUGE; break;
2524  }
2525
2526  // Tmp1 = lo(op1) < lo(op2)   // Always unsigned comparison
2527  // Tmp2 = hi(op1) < hi(op2)   // Signedness depends on operands
2528  // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
2529
2530  // NOTE: on targets without efficient SELECT of bools, we can always use
2531  // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
2532  TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, true, NULL);
2533  SDValue Tmp1, Tmp2;
2534  Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()),
2535                           LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
2536  if (!Tmp1.getNode())
2537    Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()),
2538                        LHSLo, RHSLo, LowCC);
2539  Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2540                           LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl);
2541  if (!Tmp2.getNode())
2542    Tmp2 = DAG.getNode(ISD::SETCC, dl,
2543                       TLI.getSetCCResultType(LHSHi.getValueType()),
2544                       LHSHi, RHSHi, DAG.getCondCode(CCCode));
2545
2546  ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
2547  ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
2548  if ((Tmp1C && Tmp1C->isNullValue()) ||
2549      (Tmp2C && Tmp2C->isNullValue() &&
2550       (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
2551        CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
2552      (Tmp2C && Tmp2C->getAPIntValue() == 1 &&
2553       (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
2554        CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
2555    // low part is known false, returns high part.
2556    // For LE / GE, if high part is known false, ignore the low part.
2557    // For LT / GT, if high part is known true, ignore the low part.
2558    NewLHS = Tmp2;
2559    NewRHS = SDValue();
2560    return;
2561  }
2562
2563  NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2564                             LHSHi, RHSHi, ISD::SETEQ, false,
2565                             DagCombineInfo, dl);
2566  if (!NewLHS.getNode())
2567    NewLHS = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()),
2568                          LHSHi, RHSHi, ISD::SETEQ);
2569  NewLHS = DAG.getNode(ISD::SELECT, dl, Tmp1.getValueType(),
2570                       NewLHS, Tmp1, Tmp2);
2571  NewRHS = SDValue();
2572}
2573
2574SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
2575  SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
2576  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
2577  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2578
2579  // If ExpandSetCCOperands returned a scalar, we need to compare the result
2580  // against zero to select between true and false values.
2581  if (NewRHS.getNode() == 0) {
2582    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2583    CCCode = ISD::SETNE;
2584  }
2585
2586  // Update N to have the operands specified.
2587  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
2588                                DAG.getCondCode(CCCode), NewLHS, NewRHS,
2589                                N->getOperand(4)), 0);
2590}
2591
2592SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) {
2593  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2594  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
2595  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2596
2597  // If ExpandSetCCOperands returned a scalar, we need to compare the result
2598  // against zero to select between true and false values.
2599  if (NewRHS.getNode() == 0) {
2600    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2601    CCCode = ISD::SETNE;
2602  }
2603
2604  // Update N to have the operands specified.
2605  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2606                                N->getOperand(2), N->getOperand(3),
2607                                DAG.getCondCode(CCCode)), 0);
2608}
2609
2610SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
2611  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2612  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
2613  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2614
2615  // If ExpandSetCCOperands returned a scalar, use it.
2616  if (NewRHS.getNode() == 0) {
2617    assert(NewLHS.getValueType() == N->getValueType(0) &&
2618           "Unexpected setcc expansion!");
2619    return NewLHS;
2620  }
2621
2622  // Otherwise, update N to have the operands specified.
2623  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2624                                DAG.getCondCode(CCCode)), 0);
2625}
2626
2627SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
2628  // The value being shifted is legal, but the shift amount is too big.
2629  // It follows that either the result of the shift is undefined, or the
2630  // upper half of the shift amount is zero.  Just use the lower half.
2631  SDValue Lo, Hi;
2632  GetExpandedInteger(N->getOperand(1), Lo, Hi);
2633  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0);
2634}
2635
2636SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) {
2637  // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant.  This
2638  // surely makes pretty nice problems on 8/16 bit targets. Just truncate this
2639  // constant to valid type.
2640  SDValue Lo, Hi;
2641  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2642  return SDValue(DAG.UpdateNodeOperands(N, Lo), 0);
2643}
2644
2645SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
2646  SDValue Op = N->getOperand(0);
2647  EVT DstVT = N->getValueType(0);
2648  RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
2649  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2650         "Don't know how to expand this SINT_TO_FP!");
2651  return MakeLibCall(LC, DstVT, &Op, 1, true, N->getDebugLoc());
2652}
2653
2654SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
2655  if (ISD::isNormalStore(N))
2656    return ExpandOp_NormalStore(N, OpNo);
2657
2658  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
2659  assert(OpNo == 1 && "Can only expand the stored value so far");
2660
2661  EVT VT = N->getOperand(1).getValueType();
2662  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2663  SDValue Ch  = N->getChain();
2664  SDValue Ptr = N->getBasePtr();
2665  unsigned Alignment = N->getAlignment();
2666  bool isVolatile = N->isVolatile();
2667  bool isNonTemporal = N->isNonTemporal();
2668  DebugLoc dl = N->getDebugLoc();
2669  SDValue Lo, Hi;
2670
2671  assert(NVT.isByteSized() && "Expanded type not byte sized!");
2672
2673  if (N->getMemoryVT().bitsLE(NVT)) {
2674    GetExpandedInteger(N->getValue(), Lo, Hi);
2675    return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2676                             N->getMemoryVT(), isVolatile, isNonTemporal,
2677                             Alignment);
2678  }
2679
2680  if (TLI.isLittleEndian()) {
2681    // Little-endian - low bits are at low addresses.
2682    GetExpandedInteger(N->getValue(), Lo, Hi);
2683
2684    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2685                      isVolatile, isNonTemporal, Alignment);
2686
2687    unsigned ExcessBits =
2688      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
2689    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
2690
2691    // Increment the pointer to the other half.
2692    unsigned IncrementSize = NVT.getSizeInBits()/8;
2693    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2694                      DAG.getIntPtrConstant(IncrementSize));
2695    Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
2696                           N->getPointerInfo().getWithOffset(IncrementSize),
2697                           NEVT, isVolatile, isNonTemporal,
2698                           MinAlign(Alignment, IncrementSize));
2699    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2700  }
2701
2702  // Big-endian - high bits are at low addresses.  Favor aligned stores at
2703  // the cost of some bit-fiddling.
2704  GetExpandedInteger(N->getValue(), Lo, Hi);
2705
2706  EVT ExtVT = N->getMemoryVT();
2707  unsigned EBytes = ExtVT.getStoreSize();
2708  unsigned IncrementSize = NVT.getSizeInBits()/8;
2709  unsigned ExcessBits = (EBytes - IncrementSize)*8;
2710  EVT HiVT = EVT::getIntegerVT(*DAG.getContext(),
2711                               ExtVT.getSizeInBits() - ExcessBits);
2712
2713  if (ExcessBits < NVT.getSizeInBits()) {
2714    // Transfer high bits from the top of Lo to the bottom of Hi.
2715    Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi,
2716                     DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
2717                                     TLI.getPointerTy()));
2718    Hi = DAG.getNode(ISD::OR, dl, NVT, Hi,
2719                     DAG.getNode(ISD::SRL, dl, NVT, Lo,
2720                                 DAG.getConstant(ExcessBits,
2721                                                 TLI.getPointerTy())));
2722  }
2723
2724  // Store both the high bits and maybe some of the low bits.
2725  Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(),
2726                         HiVT, isVolatile, isNonTemporal, Alignment);
2727
2728  // Increment the pointer to the other half.
2729  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2730                    DAG.getIntPtrConstant(IncrementSize));
2731  // Store the lowest ExcessBits bits in the second half.
2732  Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
2733                         N->getPointerInfo().getWithOffset(IncrementSize),
2734                         EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
2735                         isVolatile, isNonTemporal,
2736                         MinAlign(Alignment, IncrementSize));
2737  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2738}
2739
2740SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
2741  SDValue InL, InH;
2742  GetExpandedInteger(N->getOperand(0), InL, InH);
2743  // Just truncate the low part of the source.
2744  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), InL);
2745}
2746
2747static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
2748  switch (VT.getSimpleVT().SimpleTy) {
2749  default: llvm_unreachable("Unknown FP format");
2750  case MVT::f32:     return &APFloat::IEEEsingle;
2751  case MVT::f64:     return &APFloat::IEEEdouble;
2752  case MVT::f80:     return &APFloat::x87DoubleExtended;
2753  case MVT::f128:    return &APFloat::IEEEquad;
2754  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
2755  }
2756}
2757
2758SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
2759  SDValue Op = N->getOperand(0);
2760  EVT SrcVT = Op.getValueType();
2761  EVT DstVT = N->getValueType(0);
2762  DebugLoc dl = N->getDebugLoc();
2763
2764  // The following optimization is valid only if every value in SrcVT (when
2765  // treated as signed) is representable in DstVT.  Check that the mantissa
2766  // size of DstVT is >= than the number of bits in SrcVT -1.
2767  const fltSemantics *sem = EVTToAPFloatSemantics(DstVT);
2768  if (APFloat::semanticsPrecision(*sem) >= SrcVT.getSizeInBits()-1 &&
2769      TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
2770    // Do a signed conversion then adjust the result.
2771    SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
2772    SignedConv = TLI.LowerOperation(SignedConv, DAG);
2773
2774    // The result of the signed conversion needs adjusting if the 'sign bit' of
2775    // the incoming integer was set.  To handle this, we dynamically test to see
2776    // if it is set, and, if so, add a fudge factor.
2777
2778    const uint64_t F32TwoE32  = 0x4F800000ULL;
2779    const uint64_t F32TwoE64  = 0x5F800000ULL;
2780    const uint64_t F32TwoE128 = 0x7F800000ULL;
2781
2782    APInt FF(32, 0);
2783    if (SrcVT == MVT::i32)
2784      FF = APInt(32, F32TwoE32);
2785    else if (SrcVT == MVT::i64)
2786      FF = APInt(32, F32TwoE64);
2787    else if (SrcVT == MVT::i128)
2788      FF = APInt(32, F32TwoE128);
2789    else
2790      assert(false && "Unsupported UINT_TO_FP!");
2791
2792    // Check whether the sign bit is set.
2793    SDValue Lo, Hi;
2794    GetExpandedInteger(Op, Lo, Hi);
2795    SDValue SignSet = DAG.getSetCC(dl,
2796                                   TLI.getSetCCResultType(Hi.getValueType()),
2797                                   Hi, DAG.getConstant(0, Hi.getValueType()),
2798                                   ISD::SETLT);
2799
2800    // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
2801    SDValue FudgePtr = DAG.getConstantPool(
2802                               ConstantInt::get(*DAG.getContext(), FF.zext(64)),
2803                                           TLI.getPointerTy());
2804
2805    // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
2806    SDValue Zero = DAG.getIntPtrConstant(0);
2807    SDValue Four = DAG.getIntPtrConstant(4);
2808    if (TLI.isBigEndian()) std::swap(Zero, Four);
2809    SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
2810                                 Zero, Four);
2811    unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
2812    FudgePtr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), FudgePtr, Offset);
2813    Alignment = std::min(Alignment, 4u);
2814
2815    // Load the value out, extending it from f32 to the destination float type.
2816    // FIXME: Avoid the extend by constructing the right constant pool?
2817    SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(),
2818                                   FudgePtr,
2819                                   MachinePointerInfo::getConstantPool(),
2820                                   MVT::f32,
2821                                   false, false, Alignment);
2822    return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
2823  }
2824
2825  // Otherwise, use a libcall.
2826  RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
2827  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2828         "Don't know how to expand this UINT_TO_FP!");
2829  return MakeLibCall(LC, DstVT, &Op, 1, true, dl);
2830}
2831
2832SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) {
2833  DebugLoc dl = N->getDebugLoc();
2834  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2835                               cast<AtomicSDNode>(N)->getMemoryVT(),
2836                               N->getOperand(0),
2837                               N->getOperand(1), N->getOperand(2),
2838                               cast<AtomicSDNode>(N)->getMemOperand(),
2839                               cast<AtomicSDNode>(N)->getOrdering(),
2840                               cast<AtomicSDNode>(N)->getSynchScope());
2841  return Swap.getValue(1);
2842}
2843
2844
2845SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) {
2846  SDValue InOp0 = N->getOperand(0);
2847  EVT InVT = InOp0.getValueType();
2848
2849  EVT OutVT = N->getValueType(0);
2850  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2851  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2852  unsigned OutNumElems = OutVT.getVectorNumElements();
2853  EVT NOutVTElem = NOutVT.getVectorElementType();
2854
2855  DebugLoc dl = N->getDebugLoc();
2856  SDValue BaseIdx = N->getOperand(1);
2857
2858  SmallVector<SDValue, 8> Ops;
2859  Ops.reserve(OutNumElems);
2860  for (unsigned i = 0; i != OutNumElems; ++i) {
2861
2862    // Extract the element from the original vector.
2863    SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(),
2864      BaseIdx, DAG.getIntPtrConstant(i));
2865    SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2866      InVT.getVectorElementType(), N->getOperand(0), Index);
2867
2868    SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, Ext);
2869    // Insert the converted element to the new vector.
2870    Ops.push_back(Op);
2871  }
2872
2873  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2874}
2875
2876
2877SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) {
2878  ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
2879  EVT VT = N->getValueType(0);
2880  DebugLoc dl = N->getDebugLoc();
2881
2882  unsigned NumElts = VT.getVectorNumElements();
2883  SmallVector<int, 8> NewMask;
2884  for (unsigned i = 0; i != NumElts; ++i) {
2885    NewMask.push_back(SV->getMaskElt(i));
2886  }
2887
2888  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2889  SDValue V1 = GetPromotedInteger(N->getOperand(1));
2890  EVT OutVT = V0.getValueType();
2891
2892  return DAG.getVectorShuffle(OutVT, dl, V0, V1, &NewMask[0]);
2893}
2894
2895
2896SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) {
2897  EVT OutVT = N->getValueType(0);
2898  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2899  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2900  unsigned NumElems = N->getNumOperands();
2901  EVT NOutVTElem = NOutVT.getVectorElementType();
2902
2903  DebugLoc dl = N->getDebugLoc();
2904
2905  SmallVector<SDValue, 8> Ops;
2906  Ops.reserve(NumElems);
2907  for (unsigned i = 0; i != NumElems; ++i) {
2908    SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i));
2909    Ops.push_back(Op);
2910  }
2911
2912  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2913}
2914
2915SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) {
2916
2917  DebugLoc dl = N->getDebugLoc();
2918
2919  assert(!N->getOperand(0).getValueType().isVector() &&
2920         "Input must be a scalar");
2921
2922  EVT OutVT = N->getValueType(0);
2923  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2924  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2925  EVT NOutVTElem = NOutVT.getVectorElementType();
2926
2927  SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0));
2928
2929  return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op);
2930}
2931
2932SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) {
2933  DebugLoc dl = N->getDebugLoc();
2934
2935  EVT OutVT = N->getValueType(0);
2936  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2937  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2938
2939  EVT InElemTy = OutVT.getVectorElementType();
2940  EVT OutElemTy = NOutVT.getVectorElementType();
2941
2942  unsigned NumElem = N->getOperand(0).getValueType().getVectorNumElements();
2943  unsigned NumOutElem = NOutVT.getVectorNumElements();
2944  unsigned NumOperands = N->getNumOperands();
2945  assert(NumElem * NumOperands == NumOutElem &&
2946         "Unexpected number of elements");
2947
2948  // Take the elements from the first vector.
2949  SmallVector<SDValue, 8> Ops(NumOutElem);
2950  for (unsigned i = 0; i < NumOperands; ++i) {
2951    SDValue Op = N->getOperand(i);
2952    for (unsigned j = 0; j < NumElem; ++j) {
2953      SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2954                                InElemTy, Op, DAG.getIntPtrConstant(j));
2955      Ops[i * NumElem + j] = DAG.getNode(ISD::ANY_EXTEND, dl, OutElemTy, Ext);
2956    }
2957  }
2958
2959  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2960}
2961
2962SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
2963  EVT OutVT = N->getValueType(0);
2964  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2965  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2966
2967  EVT NOutVTElem = NOutVT.getVectorElementType();
2968
2969  DebugLoc dl = N->getDebugLoc();
2970  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2971
2972  SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl,
2973    NOutVTElem, N->getOperand(1));
2974  return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NOutVT,
2975    V0, ConvElem, N->getOperand(2));
2976}
2977
2978SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) {
2979  DebugLoc dl = N->getDebugLoc();
2980  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2981  SDValue V1 = N->getOperand(1);
2982  SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2983    V0->getValueType(0).getScalarType(), V0, V1);
2984
2985  // EXTRACT_VECTOR_ELT can return types which are wider than the incoming
2986  // element types. If this is the case then we need to expand the outgoing
2987  // value and not truncate it.
2988  return DAG.getAnyExtOrTrunc(Ext, dl, N->getValueType(0));
2989}
2990
2991SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) {
2992  DebugLoc dl = N->getDebugLoc();
2993  unsigned NumElems = N->getNumOperands();
2994
2995  EVT RetSclrTy = N->getValueType(0).getVectorElementType();
2996
2997  SmallVector<SDValue, 8> NewOps;
2998  NewOps.reserve(NumElems);
2999
3000  // For each incoming vector
3001  for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) {
3002    SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx));
3003    EVT SclrTy = Incoming->getValueType(0).getVectorElementType();
3004    unsigned NumElem = Incoming->getValueType(0).getVectorNumElements();
3005
3006    for (unsigned i=0; i<NumElem; ++i) {
3007      // Extract element from incoming vector
3008      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SclrTy,
3009      Incoming, DAG.getIntPtrConstant(i));
3010      SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex);
3011      NewOps.push_back(Tr);
3012    }
3013  }
3014
3015  return DAG.getNode(ISD::BUILD_VECTOR, dl,  N->getValueType(0),
3016    &NewOps[0], NewOps.size());
3017  }
3018