LegalizeIntegerTypes.cpp revision e65177f965063c16321166c13d90a91aa57b5ee8
1//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements integer type expansion and promotion for LegalizeTypes.
11// Promotion is the act of changing a computation in an illegal type into a
12// computation in a larger type.  For example, implementing i8 arithmetic in an
13// i32 register (often needed on powerpc).
14// Expansion is the act of changing a computation in an illegal type into a
15// computation in two identical registers of a smaller type.  For example,
16// implementing i64 arithmetic in two i32 registers (often needed on 32-bit
17// targets).
18//
19//===----------------------------------------------------------------------===//
20
21#include "LegalizeTypes.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//  Integer Result Promotion
30//===----------------------------------------------------------------------===//
31
32/// PromoteIntegerResult - This method is called when a result of a node is
33/// found to be in need of promotion to a larger type.  At this point, the node
34/// may also have invalid operands or may have other results that need
35/// expansion, we just know that (at least) one result needs promotion.
36void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
37  DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n");
38  SDValue Res = SDValue();
39
40  // See if the target wants to custom expand this node.
41  if (CustomLowerNode(N, N->getValueType(ResNo), true))
42    return;
43
44  switch (N->getOpcode()) {
45  default:
46#ifndef NDEBUG
47    dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
48    N->dump(&DAG); dbgs() << "\n";
49#endif
50    llvm_unreachable("Do not know how to promote this operator!");
51  case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break;
52  case ISD::AssertSext:  Res = PromoteIntRes_AssertSext(N); break;
53  case ISD::AssertZext:  Res = PromoteIntRes_AssertZext(N); break;
54  case ISD::BITCAST:     Res = PromoteIntRes_BITCAST(N); break;
55  case ISD::BSWAP:       Res = PromoteIntRes_BSWAP(N); break;
56  case ISD::BUILD_PAIR:  Res = PromoteIntRes_BUILD_PAIR(N); break;
57  case ISD::Constant:    Res = PromoteIntRes_Constant(N); break;
58  case ISD::CONVERT_RNDSAT:
59                         Res = PromoteIntRes_CONVERT_RNDSAT(N); break;
60  case ISD::CTLZ:        Res = PromoteIntRes_CTLZ(N); break;
61  case ISD::CTPOP:       Res = PromoteIntRes_CTPOP(N); break;
62  case ISD::CTTZ:        Res = PromoteIntRes_CTTZ(N); break;
63  case ISD::EXTRACT_VECTOR_ELT:
64                         Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
65  case ISD::LOAD:        Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N));break;
66  case ISD::SELECT:      Res = PromoteIntRes_SELECT(N); break;
67  case ISD::VSELECT:     Res = PromoteIntRes_VSELECT(N); break;
68  case ISD::SELECT_CC:   Res = PromoteIntRes_SELECT_CC(N); break;
69  case ISD::SETCC:       Res = PromoteIntRes_SETCC(N); break;
70  case ISD::SHL:         Res = PromoteIntRes_SHL(N); break;
71  case ISD::SIGN_EXTEND_INREG:
72                         Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
73  case ISD::SRA:         Res = PromoteIntRes_SRA(N); break;
74  case ISD::SRL:         Res = PromoteIntRes_SRL(N); break;
75  case ISD::TRUNCATE:    Res = PromoteIntRes_TRUNCATE(N); break;
76  case ISD::UNDEF:       Res = PromoteIntRes_UNDEF(N); break;
77  case ISD::VAARG:       Res = PromoteIntRes_VAARG(N); break;
78
79  case ISD::EXTRACT_SUBVECTOR:
80                         Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
81  case ISD::VECTOR_SHUFFLE:
82                         Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
83  case ISD::INSERT_VECTOR_ELT:
84                         Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
85  case ISD::BUILD_VECTOR:
86                         Res = PromoteIntRes_BUILD_VECTOR(N); break;
87  case ISD::SCALAR_TO_VECTOR:
88                         Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
89  case ISD::CONCAT_VECTORS:
90                         Res = PromoteIntRes_CONCAT_VECTORS(N); break;
91
92  case ISD::SIGN_EXTEND:
93  case ISD::ZERO_EXTEND:
94  case ISD::ANY_EXTEND:  Res = PromoteIntRes_INT_EXTEND(N); break;
95
96  case ISD::FP_TO_SINT:
97  case ISD::FP_TO_UINT:  Res = PromoteIntRes_FP_TO_XINT(N); break;
98
99  case ISD::FP32_TO_FP16:Res = PromoteIntRes_FP32_TO_FP16(N); break;
100
101  case ISD::AND:
102  case ISD::OR:
103  case ISD::XOR:
104  case ISD::ADD:
105  case ISD::SUB:
106  case ISD::MUL:         Res = PromoteIntRes_SimpleIntBinOp(N); break;
107
108  case ISD::SDIV:
109  case ISD::SREM:        Res = PromoteIntRes_SDIV(N); break;
110
111  case ISD::UDIV:
112  case ISD::UREM:        Res = PromoteIntRes_UDIV(N); break;
113
114  case ISD::SADDO:
115  case ISD::SSUBO:       Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
116  case ISD::UADDO:
117  case ISD::USUBO:       Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
118  case ISD::SMULO:
119  case ISD::UMULO:       Res = PromoteIntRes_XMULO(N, ResNo); break;
120
121  case ISD::ATOMIC_LOAD:
122    Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break;
123
124  case ISD::ATOMIC_LOAD_ADD:
125  case ISD::ATOMIC_LOAD_SUB:
126  case ISD::ATOMIC_LOAD_AND:
127  case ISD::ATOMIC_LOAD_OR:
128  case ISD::ATOMIC_LOAD_XOR:
129  case ISD::ATOMIC_LOAD_NAND:
130  case ISD::ATOMIC_LOAD_MIN:
131  case ISD::ATOMIC_LOAD_MAX:
132  case ISD::ATOMIC_LOAD_UMIN:
133  case ISD::ATOMIC_LOAD_UMAX:
134  case ISD::ATOMIC_SWAP:
135    Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
136
137  case ISD::ATOMIC_CMP_SWAP:
138    Res = PromoteIntRes_Atomic2(cast<AtomicSDNode>(N)); break;
139  }
140
141  // If the result is null then the sub-method took care of registering it.
142  if (Res.getNode())
143    SetPromotedInteger(SDValue(N, ResNo), Res);
144}
145
146SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N,
147                                                     unsigned ResNo) {
148  SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
149  return GetPromotedInteger(Op);
150}
151
152SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
153  // Sign-extend the new bits, and continue the assertion.
154  SDValue Op = SExtPromotedInteger(N->getOperand(0));
155  return DAG.getNode(ISD::AssertSext, N->getDebugLoc(),
156                     Op.getValueType(), Op, N->getOperand(1));
157}
158
159SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
160  // Zero the new bits, and continue the assertion.
161  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
162  return DAG.getNode(ISD::AssertZext, N->getDebugLoc(),
163                     Op.getValueType(), Op, N->getOperand(1));
164}
165
166SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
167  EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
168  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
169                              N->getMemoryVT(), ResVT,
170                              N->getChain(), N->getBasePtr(),
171                              N->getMemOperand(), N->getOrdering(),
172                              N->getSynchScope());
173  // Legalized the chain result - switch anything that used the old chain to
174  // use the new one.
175  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
176  return Res;
177}
178
179SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
180  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
181  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
182                              N->getMemoryVT(),
183                              N->getChain(), N->getBasePtr(),
184                              Op2, N->getMemOperand(), N->getOrdering(),
185                              N->getSynchScope());
186  // Legalized the chain result - switch anything that used the old chain to
187  // use the new one.
188  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
189  return Res;
190}
191
192SDValue DAGTypeLegalizer::PromoteIntRes_Atomic2(AtomicSDNode *N) {
193  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
194  SDValue Op3 = GetPromotedInteger(N->getOperand(3));
195  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
196                              N->getMemoryVT(), N->getChain(), N->getBasePtr(),
197                              Op2, Op3, N->getMemOperand(), N->getOrdering(),
198                              N->getSynchScope());
199  // Legalized the chain result - switch anything that used the old chain to
200  // use the new one.
201  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
202  return Res;
203}
204
205SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
206  SDValue InOp = N->getOperand(0);
207  EVT InVT = InOp.getValueType();
208  EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
209  EVT OutVT = N->getValueType(0);
210  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
211  DebugLoc dl = N->getDebugLoc();
212
213  switch (getTypeAction(InVT)) {
214  default:
215    assert(false && "Unknown type action!");
216    break;
217  case TargetLowering::TypeLegal:
218    break;
219  case TargetLowering::TypePromoteInteger:
220    if (NOutVT.bitsEq(NInVT))
221      // The input promotes to the same size.  Convert the promoted value.
222      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
223    break;
224  case TargetLowering::TypeSoftenFloat:
225    // Promote the integer operand by hand.
226    return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
227  case TargetLowering::TypeExpandInteger:
228  case TargetLowering::TypeExpandFloat:
229    break;
230  case TargetLowering::TypeScalarizeVector:
231    // Convert the element to an integer and promote it by hand.
232    if (!NOutVT.isVector())
233      return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
234                         BitConvertToInteger(GetScalarizedVector(InOp)));
235    break;
236  case TargetLowering::TypeSplitVector: {
237    // For example, i32 = BITCAST v2i16 on alpha.  Convert the split
238    // pieces of the input into integers and reassemble in the final type.
239    SDValue Lo, Hi;
240    GetSplitVector(N->getOperand(0), Lo, Hi);
241    Lo = BitConvertToInteger(Lo);
242    Hi = BitConvertToInteger(Hi);
243
244    if (TLI.isBigEndian())
245      std::swap(Lo, Hi);
246
247    InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
248                       EVT::getIntegerVT(*DAG.getContext(),
249                                         NOutVT.getSizeInBits()),
250                       JoinIntegers(Lo, Hi));
251    return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
252  }
253  case TargetLowering::TypeWidenVector:
254    if (OutVT.bitsEq(NInVT))
255      // The input is widened to the same size.  Convert to the widened value.
256      return DAG.getNode(ISD::BITCAST, dl, OutVT, GetWidenedVector(InOp));
257  }
258
259  return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
260                     CreateStackStoreLoad(InOp, OutVT));
261}
262
263SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
264  SDValue Op = GetPromotedInteger(N->getOperand(0));
265  EVT OVT = N->getValueType(0);
266  EVT NVT = Op.getValueType();
267  DebugLoc dl = N->getDebugLoc();
268
269  unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
270  return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
271                     DAG.getConstant(DiffBits, TLI.getPointerTy()));
272}
273
274SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
275  // The pair element type may be legal, or may not promote to the same type as
276  // the result, for example i14 = BUILD_PAIR (i7, i7).  Handle all cases.
277  return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(),
278                     TLI.getTypeToTransformTo(*DAG.getContext(),
279                     N->getValueType(0)), JoinIntegers(N->getOperand(0),
280                     N->getOperand(1)));
281}
282
283SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
284  EVT VT = N->getValueType(0);
285  // FIXME there is no actual debug info here
286  DebugLoc dl = N->getDebugLoc();
287  // Zero extend things like i1, sign extend everything else.  It shouldn't
288  // matter in theory which one we pick, but this tends to give better code?
289  unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
290  SDValue Result = DAG.getNode(Opc, dl,
291                               TLI.getTypeToTransformTo(*DAG.getContext(), VT),
292                               SDValue(N, 0));
293  assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
294  return Result;
295}
296
297SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
298  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
299  assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
300           CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
301           CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
302          "can only promote integers");
303  EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
304  return DAG.getConvertRndSat(OutVT, N->getDebugLoc(), N->getOperand(0),
305                              N->getOperand(1), N->getOperand(2),
306                              N->getOperand(3), N->getOperand(4), CvtCode);
307}
308
309SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
310  // Zero extend to the promoted type and do the count there.
311  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
312  DebugLoc dl = N->getDebugLoc();
313  EVT OVT = N->getValueType(0);
314  EVT NVT = Op.getValueType();
315  Op = DAG.getNode(ISD::CTLZ, dl, NVT, Op);
316  // Subtract off the extra leading bits in the bigger type.
317  return DAG.getNode(ISD::SUB, dl, NVT, Op,
318                     DAG.getConstant(NVT.getSizeInBits() -
319                                     OVT.getSizeInBits(), NVT));
320}
321
322SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
323  // Zero extend to the promoted type and do the count there.
324  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
325  return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), Op.getValueType(), Op);
326}
327
328SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
329  SDValue Op = GetPromotedInteger(N->getOperand(0));
330  EVT OVT = N->getValueType(0);
331  EVT NVT = Op.getValueType();
332  DebugLoc dl = N->getDebugLoc();
333  // The count is the same in the promoted type except if the original
334  // value was zero.  This can be handled by setting the bit just off
335  // the top of the original type.
336  APInt TopBit(NVT.getSizeInBits(), 0);
337  TopBit.setBit(OVT.getSizeInBits());
338  Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, NVT));
339  return DAG.getNode(ISD::CTTZ, dl, NVT, Op);
340}
341
342SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
343  DebugLoc dl = N->getDebugLoc();
344  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
345  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0),
346                     N->getOperand(1));
347}
348
349SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
350  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
351  unsigned NewOpc = N->getOpcode();
352  DebugLoc dl = N->getDebugLoc();
353
354  // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
355  // not Legal, check to see if we can use FP_TO_SINT instead.  (If both UINT
356  // and SINT conversions are Custom, there is no way to tell which is
357  // preferable. We choose SINT because that's the right thing on PPC.)
358  if (N->getOpcode() == ISD::FP_TO_UINT &&
359      !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
360      TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
361    NewOpc = ISD::FP_TO_SINT;
362
363  SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
364
365  // Assert that the converted value fits in the original type.  If it doesn't
366  // (eg: because the value being converted is too big), then the result of the
367  // original operation was undefined anyway, so the assert is still correct.
368  return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
369                     ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
370                     DAG.getValueType(N->getValueType(0).getScalarType()));
371}
372
373SDValue DAGTypeLegalizer::PromoteIntRes_FP32_TO_FP16(SDNode *N) {
374  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
375  DebugLoc dl = N->getDebugLoc();
376
377  SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
378
379  return DAG.getNode(ISD::AssertZext, dl,
380                     NVT, Res, DAG.getValueType(N->getValueType(0)));
381}
382
383SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
384  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
385  DebugLoc dl = N->getDebugLoc();
386
387  if (getTypeAction(N->getOperand(0).getValueType())
388      == TargetLowering::TypePromoteInteger) {
389    SDValue Res = GetPromotedInteger(N->getOperand(0));
390    assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
391
392    // If the result and operand types are the same after promotion, simplify
393    // to an in-register extension.
394    if (NVT == Res.getValueType()) {
395      // The high bits are not guaranteed to be anything.  Insert an extend.
396      if (N->getOpcode() == ISD::SIGN_EXTEND)
397        return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
398                           DAG.getValueType(N->getOperand(0).getValueType()));
399      if (N->getOpcode() == ISD::ZERO_EXTEND)
400        return DAG.getZeroExtendInReg(Res, dl,
401                      N->getOperand(0).getValueType().getScalarType());
402      assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
403      return Res;
404    }
405  }
406
407  // Otherwise, just extend the original operand all the way to the larger type.
408  return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
409}
410
411SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
412  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
413  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
414  ISD::LoadExtType ExtType =
415    ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
416  DebugLoc dl = N->getDebugLoc();
417  SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
418                               N->getPointerInfo(),
419                               N->getMemoryVT(), N->isVolatile(),
420                               N->isNonTemporal(), N->getAlignment());
421
422  // Legalized the chain result - switch anything that used the old chain to
423  // use the new one.
424  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
425  return Res;
426}
427
428/// Promote the overflow flag of an overflowing arithmetic node.
429SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
430  // Simply change the return type of the boolean result.
431  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
432  EVT ValueVTs[] = { N->getValueType(0), NVT };
433  SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
434  SDValue Res = DAG.getNode(N->getOpcode(), N->getDebugLoc(),
435                            DAG.getVTList(ValueVTs, 2), Ops, 2);
436
437  // Modified the sum result - switch anything that used the old sum to use
438  // the new one.
439  ReplaceValueWith(SDValue(N, 0), Res);
440
441  return SDValue(Res.getNode(), 1);
442}
443
444SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
445  if (ResNo == 1)
446    return PromoteIntRes_Overflow(N);
447
448  // The operation overflowed iff the result in the larger type is not the
449  // sign extension of its truncation to the original type.
450  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
451  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
452  EVT OVT = N->getOperand(0).getValueType();
453  EVT NVT = LHS.getValueType();
454  DebugLoc dl = N->getDebugLoc();
455
456  // Do the arithmetic in the larger type.
457  unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
458  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
459
460  // Calculate the overflow flag: sign extend the arithmetic result from
461  // the original type.
462  SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
463                            DAG.getValueType(OVT));
464  // Overflowed if and only if this is not equal to Res.
465  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
466
467  // Use the calculated overflow everywhere.
468  ReplaceValueWith(SDValue(N, 1), Ofl);
469
470  return Res;
471}
472
473SDValue DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) {
474  // Sign extend the input.
475  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
476  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
477  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
478                     LHS.getValueType(), LHS, RHS);
479}
480
481SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
482  SDValue LHS = GetPromotedInteger(N->getOperand(1));
483  SDValue RHS = GetPromotedInteger(N->getOperand(2));
484  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
485                     LHS.getValueType(), N->getOperand(0),LHS,RHS);
486}
487
488SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) {
489  SDValue Mask = GetPromotedInteger(N->getOperand(0));
490  SDValue LHS = GetPromotedInteger(N->getOperand(1));
491  SDValue RHS = GetPromotedInteger(N->getOperand(2));
492  return DAG.getNode(ISD::VSELECT, N->getDebugLoc(),
493                     LHS.getValueType(), Mask, LHS, RHS);
494}
495
496SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
497  SDValue LHS = GetPromotedInteger(N->getOperand(2));
498  SDValue RHS = GetPromotedInteger(N->getOperand(3));
499  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
500                     LHS.getValueType(), N->getOperand(0),
501                     N->getOperand(1), LHS, RHS, N->getOperand(4));
502}
503
504SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
505  EVT SVT = TLI.getSetCCResultType(N->getOperand(0).getValueType());
506
507  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
508
509  // Only use the result of getSetCCResultType if it is legal,
510  // otherwise just use the promoted result type (NVT).
511  if (!TLI.isTypeLegal(SVT))
512      SVT = NVT;
513
514  DebugLoc dl = N->getDebugLoc();
515  assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
516         "Vector compare must return a vector result!");
517
518  // Get the SETCC result using the canonical SETCC type.
519  SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, N->getOperand(0),
520                              N->getOperand(1), N->getOperand(2));
521
522  assert(NVT.bitsLE(SVT) && "Integer type overpromoted?");
523  // Convert to the expected type.
524  return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC);
525}
526
527SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
528  return DAG.getNode(ISD::SHL, N->getDebugLoc(),
529                TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)),
530                     GetPromotedInteger(N->getOperand(0)), N->getOperand(1));
531}
532
533SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
534  SDValue Op = GetPromotedInteger(N->getOperand(0));
535  return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(),
536                     Op.getValueType(), Op, N->getOperand(1));
537}
538
539SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
540  // The input may have strange things in the top bits of the registers, but
541  // these operations don't care.  They may have weird bits going out, but
542  // that too is okay if they are integer operations.
543  SDValue LHS = GetPromotedInteger(N->getOperand(0));
544  SDValue RHS = GetPromotedInteger(N->getOperand(1));
545  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
546                    LHS.getValueType(), LHS, RHS);
547}
548
549SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
550  // The input value must be properly sign extended.
551  SDValue Res = SExtPromotedInteger(N->getOperand(0));
552  return DAG.getNode(ISD::SRA, N->getDebugLoc(),
553                     Res.getValueType(), Res, N->getOperand(1));
554}
555
556SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
557  // The input value must be properly zero extended.
558  EVT VT = N->getValueType(0);
559  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
560  SDValue Res = ZExtPromotedInteger(N->getOperand(0));
561  return DAG.getNode(ISD::SRL, N->getDebugLoc(), NVT, Res, N->getOperand(1));
562}
563
564SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
565  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
566  SDValue Res;
567  SDValue InOp = N->getOperand(0);
568  DebugLoc dl = N->getDebugLoc();
569
570  switch (getTypeAction(InOp.getValueType())) {
571  default: llvm_unreachable("Unknown type action!");
572  case TargetLowering::TypeLegal:
573  case TargetLowering::TypeExpandInteger:
574    Res = InOp;
575    break;
576  case TargetLowering::TypePromoteInteger:
577    Res = GetPromotedInteger(InOp);
578    break;
579  case TargetLowering::TypeSplitVector:
580    EVT InVT = InOp.getValueType();
581    assert(InVT.isVector() && "Cannot split scalar types");
582    unsigned NumElts = InVT.getVectorNumElements();
583    assert(NumElts == NVT.getVectorNumElements() &&
584           "Dst and Src must have the same number of elements");
585    EVT EltVT = InVT.getScalarType();
586    assert(isPowerOf2_32(NumElts) &&
587           "Promoted vector type must be a power of two");
588
589    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts/2);
590    EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
591                                   NumElts/2);
592
593    SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfVT, InOp,
594                               DAG.getIntPtrConstant(0));
595    SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfVT, InOp,
596                               DAG.getIntPtrConstant(NumElts/2));
597    EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
598    EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
599
600    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
601  }
602
603  // Truncate to NVT instead of VT
604  return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
605}
606
607SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
608  if (ResNo == 1)
609    return PromoteIntRes_Overflow(N);
610
611  // The operation overflowed iff the result in the larger type is not the
612  // zero extension of its truncation to the original type.
613  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
614  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
615  EVT OVT = N->getOperand(0).getValueType();
616  EVT NVT = LHS.getValueType();
617  DebugLoc dl = N->getDebugLoc();
618
619  // Do the arithmetic in the larger type.
620  unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
621  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
622
623  // Calculate the overflow flag: zero extend the arithmetic result from
624  // the original type.
625  SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT);
626  // Overflowed if and only if this is not equal to Res.
627  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
628
629  // Use the calculated overflow everywhere.
630  ReplaceValueWith(SDValue(N, 1), Ofl);
631
632  return Res;
633}
634
635SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
636  // Promote the overflow bit trivially.
637  if (ResNo == 1)
638    return PromoteIntRes_Overflow(N);
639
640  SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
641  DebugLoc DL = N->getDebugLoc();
642  EVT SmallVT = LHS.getValueType();
643
644  // To determine if the result overflowed in a larger type, we extend the
645  // input to the larger type, do the multiply, then check the high bits of
646  // the result to see if the overflow happened.
647  if (N->getOpcode() == ISD::SMULO) {
648    LHS = SExtPromotedInteger(LHS);
649    RHS = SExtPromotedInteger(RHS);
650  } else {
651    LHS = ZExtPromotedInteger(LHS);
652    RHS = ZExtPromotedInteger(RHS);
653  }
654  SDValue Mul = DAG.getNode(ISD::MUL, DL, LHS.getValueType(), LHS, RHS);
655
656  // Overflow occurred iff the high part of the result does not
657  // zero/sign-extend the low part.
658  SDValue Overflow;
659  if (N->getOpcode() == ISD::UMULO) {
660    // Unsigned overflow occurred iff the high part is non-zero.
661    SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
662                             DAG.getIntPtrConstant(SmallVT.getSizeInBits()));
663    Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
664                            DAG.getConstant(0, Hi.getValueType()), ISD::SETNE);
665  } else {
666    // Signed overflow occurred iff the high part does not sign extend the low.
667    SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
668                               Mul, DAG.getValueType(SmallVT));
669    Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
670  }
671
672  // Use the calculated overflow everywhere.
673  ReplaceValueWith(SDValue(N, 1), Overflow);
674  return Mul;
675}
676
677SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) {
678  // Zero extend the input.
679  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
680  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
681  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
682                     LHS.getValueType(), LHS, RHS);
683}
684
685SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
686  return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
687                                               N->getValueType(0)));
688}
689
690SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
691  SDValue Chain = N->getOperand(0); // Get the chain.
692  SDValue Ptr = N->getOperand(1); // Get the pointer.
693  EVT VT = N->getValueType(0);
694  DebugLoc dl = N->getDebugLoc();
695
696  EVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
697  unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
698  // The argument is passed as NumRegs registers of type RegVT.
699
700  SmallVector<SDValue, 8> Parts(NumRegs);
701  for (unsigned i = 0; i < NumRegs; ++i) {
702    Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
703                            N->getConstantOperandVal(3));
704    Chain = Parts[i].getValue(1);
705  }
706
707  // Handle endianness of the load.
708  if (TLI.isBigEndian())
709    std::reverse(Parts.begin(), Parts.end());
710
711  // Assemble the parts in the promoted type.
712  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
713  SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
714  for (unsigned i = 1; i < NumRegs; ++i) {
715    SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
716    // Shift it to the right position and "or" it in.
717    Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
718                       DAG.getConstant(i * RegVT.getSizeInBits(),
719                                       TLI.getPointerTy()));
720    Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
721  }
722
723  // Modified the chain result - switch anything that used the old chain to
724  // use the new one.
725  ReplaceValueWith(SDValue(N, 1), Chain);
726
727  return Res;
728}
729
730//===----------------------------------------------------------------------===//
731//  Integer Operand Promotion
732//===----------------------------------------------------------------------===//
733
734/// PromoteIntegerOperand - This method is called when the specified operand of
735/// the specified node is found to need promotion.  At this point, all of the
736/// result types of the node are known to be legal, but other operands of the
737/// node may need promotion or expansion as well as the specified one.
738bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
739  DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n");
740  SDValue Res = SDValue();
741
742  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
743    return false;
744
745  switch (N->getOpcode()) {
746    default:
747  #ifndef NDEBUG
748    dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
749    N->dump(&DAG); dbgs() << "\n";
750  #endif
751    llvm_unreachable("Do not know how to promote this operator's operand!");
752
753  case ISD::ANY_EXTEND:   Res = PromoteIntOp_ANY_EXTEND(N); break;
754  case ISD::ATOMIC_STORE:
755    Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N));
756    break;
757  case ISD::BITCAST:      Res = PromoteIntOp_BITCAST(N); break;
758  case ISD::BR_CC:        Res = PromoteIntOp_BR_CC(N, OpNo); break;
759  case ISD::BRCOND:       Res = PromoteIntOp_BRCOND(N, OpNo); break;
760  case ISD::BUILD_PAIR:   Res = PromoteIntOp_BUILD_PAIR(N); break;
761  case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
762  case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
763  case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
764  case ISD::CONVERT_RNDSAT:
765                          Res = PromoteIntOp_CONVERT_RNDSAT(N); break;
766  case ISD::INSERT_VECTOR_ELT:
767                          Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
768  case ISD::MEMBARRIER:   Res = PromoteIntOp_MEMBARRIER(N); break;
769  case ISD::SCALAR_TO_VECTOR:
770                          Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
771  case ISD::VSELECT:
772  case ISD::SELECT:       Res = PromoteIntOp_SELECT(N, OpNo); break;
773  case ISD::SELECT_CC:    Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
774  case ISD::SETCC:        Res = PromoteIntOp_SETCC(N, OpNo); break;
775  case ISD::SIGN_EXTEND:  Res = PromoteIntOp_SIGN_EXTEND(N); break;
776  case ISD::SINT_TO_FP:   Res = PromoteIntOp_SINT_TO_FP(N); break;
777  case ISD::STORE:        Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
778                                                   OpNo); break;
779  case ISD::TRUNCATE:     Res = PromoteIntOp_TRUNCATE(N); break;
780  case ISD::FP16_TO_FP32:
781  case ISD::UINT_TO_FP:   Res = PromoteIntOp_UINT_TO_FP(N); break;
782  case ISD::ZERO_EXTEND:  Res = PromoteIntOp_ZERO_EXTEND(N); break;
783
784  case ISD::SHL:
785  case ISD::SRA:
786  case ISD::SRL:
787  case ISD::ROTL:
788  case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
789  }
790
791  // If the result is null, the sub-method took care of registering results etc.
792  if (!Res.getNode()) return false;
793
794  // If the result is N, the sub-method updated N in place.  Tell the legalizer
795  // core about this.
796  if (Res.getNode() == N)
797    return true;
798
799  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
800         "Invalid operand expansion");
801
802  ReplaceValueWith(SDValue(N, 0), Res);
803  return false;
804}
805
806/// PromoteSetCCOperands - Promote the operands of a comparison.  This code is
807/// shared among BR_CC, SELECT_CC, and SETCC handlers.
808void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
809                                            ISD::CondCode CCCode) {
810  // We have to insert explicit sign or zero extends.  Note that we could
811  // insert sign extends for ALL conditions, but zero extend is cheaper on
812  // many machines (an AND instead of two shifts), so prefer it.
813  switch (CCCode) {
814  default: llvm_unreachable("Unknown integer comparison!");
815  case ISD::SETEQ:
816  case ISD::SETNE:
817  case ISD::SETUGE:
818  case ISD::SETUGT:
819  case ISD::SETULE:
820  case ISD::SETULT:
821    // ALL of these operations will work if we either sign or zero extend
822    // the operands (including the unsigned comparisons!).  Zero extend is
823    // usually a simpler/cheaper operation, so prefer it.
824    NewLHS = ZExtPromotedInteger(NewLHS);
825    NewRHS = ZExtPromotedInteger(NewRHS);
826    break;
827  case ISD::SETGE:
828  case ISD::SETGT:
829  case ISD::SETLT:
830  case ISD::SETLE:
831    NewLHS = SExtPromotedInteger(NewLHS);
832    NewRHS = SExtPromotedInteger(NewRHS);
833    break;
834  }
835}
836
837SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
838  SDValue Op = GetPromotedInteger(N->getOperand(0));
839  return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), N->getValueType(0), Op);
840}
841
842SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
843  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
844  return DAG.getAtomic(N->getOpcode(), N->getDebugLoc(), N->getMemoryVT(),
845                       N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(),
846                       N->getOrdering(), N->getSynchScope());
847}
848
849SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
850  // This should only occur in unusual situations like bitcasting to an
851  // x86_fp80, so just turn it into a store+load
852  return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
853}
854
855SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
856  assert(OpNo == 2 && "Don't know how to promote this operand!");
857
858  SDValue LHS = N->getOperand(2);
859  SDValue RHS = N->getOperand(3);
860  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
861
862  // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
863  // legal types.
864  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
865                                N->getOperand(1), LHS, RHS, N->getOperand(4)),
866                 0);
867}
868
869SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
870  assert(OpNo == 1 && "only know how to promote condition");
871
872  // Promote all the way up to the canonical SetCC type.
873  EVT SVT = TLI.getSetCCResultType(MVT::Other);
874  SDValue Cond = PromoteTargetBoolean(N->getOperand(1), SVT);
875
876  // The chain (Op#0) and basic block destination (Op#2) are always legal types.
877  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
878                                        N->getOperand(2)), 0);
879}
880
881SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
882  // Since the result type is legal, the operands must promote to it.
883  EVT OVT = N->getOperand(0).getValueType();
884  SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
885  SDValue Hi = GetPromotedInteger(N->getOperand(1));
886  assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
887  DebugLoc dl = N->getDebugLoc();
888
889  Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
890                   DAG.getConstant(OVT.getSizeInBits(), TLI.getPointerTy()));
891  return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
892}
893
894SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
895  // The vector type is legal but the element type is not.  This implies
896  // that the vector is a power-of-two in length and that the element
897  // type does not have a strange size (eg: it is not i1).
898  EVT VecVT = N->getValueType(0);
899  unsigned NumElts = VecVT.getVectorNumElements();
900  assert(!(NumElts & 1) && "Legal vector of one illegal element?");
901
902  // Promote the inserted value.  The type does not need to match the
903  // vector element type.  Check that any extra bits introduced will be
904  // truncated away.
905  assert(N->getOperand(0).getValueType().getSizeInBits() >=
906         N->getValueType(0).getVectorElementType().getSizeInBits() &&
907         "Type of inserted value narrower than vector element type!");
908
909  SmallVector<SDValue, 16> NewOps;
910  for (unsigned i = 0; i < NumElts; ++i)
911    NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
912
913  return SDValue(DAG.UpdateNodeOperands(N, &NewOps[0], NumElts), 0);
914}
915
916SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) {
917  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
918  assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
919           CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
920           CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) &&
921           "can only promote integer arguments");
922  SDValue InOp = GetPromotedInteger(N->getOperand(0));
923  return DAG.getConvertRndSat(N->getValueType(0), N->getDebugLoc(), InOp,
924                              N->getOperand(1), N->getOperand(2),
925                              N->getOperand(3), N->getOperand(4), CvtCode);
926}
927
928SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
929                                                         unsigned OpNo) {
930  if (OpNo == 1) {
931    // Promote the inserted value.  This is valid because the type does not
932    // have to match the vector element type.
933
934    // Check that any extra bits introduced will be truncated away.
935    assert(N->getOperand(1).getValueType().getSizeInBits() >=
936           N->getValueType(0).getVectorElementType().getSizeInBits() &&
937           "Type of inserted value narrower than vector element type!");
938    return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
939                                  GetPromotedInteger(N->getOperand(1)),
940                                  N->getOperand(2)),
941                   0);
942  }
943
944  assert(OpNo == 2 && "Different operand and result vector types?");
945
946  // Promote the index.
947  SDValue Idx = ZExtPromotedInteger(N->getOperand(2));
948  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
949                                N->getOperand(1), Idx), 0);
950}
951
952SDValue DAGTypeLegalizer::PromoteIntOp_MEMBARRIER(SDNode *N) {
953  SDValue NewOps[6];
954  DebugLoc dl = N->getDebugLoc();
955  NewOps[0] = N->getOperand(0);
956  for (unsigned i = 1; i < array_lengthof(NewOps); ++i) {
957    SDValue Flag = GetPromotedInteger(N->getOperand(i));
958    NewOps[i] = DAG.getZeroExtendInReg(Flag, dl, MVT::i1);
959  }
960  return SDValue(DAG.UpdateNodeOperands(N, NewOps, array_lengthof(NewOps)), 0);
961}
962
963SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
964  // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
965  // the operand in place.
966  return SDValue(DAG.UpdateNodeOperands(N,
967                                GetPromotedInteger(N->getOperand(0))), 0);
968}
969
970SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
971  assert(OpNo == 0 && "Only know how to promote the condition!");
972  SDValue Cond = N->getOperand(0);
973  EVT OpTy = N->getOperand(1).getValueType();
974
975  // Promote all the way up to the canonical SetCC type.
976  EVT SVT = TLI.getSetCCResultType(N->getOpcode() == ISD::SELECT ?
977                                   OpTy.getScalarType() : OpTy);
978  Cond = PromoteTargetBoolean(Cond, SVT);
979
980  return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1),
981                                        N->getOperand(2)), 0);
982}
983
984SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
985  assert(OpNo == 0 && "Don't know how to promote this operand!");
986
987  SDValue LHS = N->getOperand(0);
988  SDValue RHS = N->getOperand(1);
989  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
990
991  // The CC (#4) and the possible return values (#2 and #3) have legal types.
992  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
993                                N->getOperand(3), N->getOperand(4)), 0);
994}
995
996SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
997  assert(OpNo == 0 && "Don't know how to promote this operand!");
998
999  SDValue LHS = N->getOperand(0);
1000  SDValue RHS = N->getOperand(1);
1001  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
1002
1003  // The CC (#2) is always legal.
1004  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
1005}
1006
1007SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
1008  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1009                                ZExtPromotedInteger(N->getOperand(1))), 0);
1010}
1011
1012SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
1013  SDValue Op = GetPromotedInteger(N->getOperand(0));
1014  DebugLoc dl = N->getDebugLoc();
1015  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1016  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
1017                     Op, DAG.getValueType(N->getOperand(0).getValueType()));
1018}
1019
1020SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
1021  return SDValue(DAG.UpdateNodeOperands(N,
1022                                SExtPromotedInteger(N->getOperand(0))), 0);
1023}
1024
1025SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
1026  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
1027  SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
1028  unsigned Alignment = N->getAlignment();
1029  bool isVolatile = N->isVolatile();
1030  bool isNonTemporal = N->isNonTemporal();
1031  DebugLoc dl = N->getDebugLoc();
1032
1033  SDValue Val = GetPromotedInteger(N->getValue());  // Get promoted value.
1034
1035  // Truncate the value and store the result.
1036  return DAG.getTruncStore(Ch, dl, Val, Ptr, N->getPointerInfo(),
1037                           N->getMemoryVT(),
1038                           isVolatile, isNonTemporal, Alignment);
1039}
1040
1041SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
1042  SDValue Op = GetPromotedInteger(N->getOperand(0));
1043  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), Op);
1044}
1045
1046SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
1047  return SDValue(DAG.UpdateNodeOperands(N,
1048                                ZExtPromotedInteger(N->getOperand(0))), 0);
1049}
1050
1051SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
1052  DebugLoc dl = N->getDebugLoc();
1053  SDValue Op = GetPromotedInteger(N->getOperand(0));
1054  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1055  return DAG.getZeroExtendInReg(Op, dl,
1056                                N->getOperand(0).getValueType().getScalarType());
1057}
1058
1059
1060//===----------------------------------------------------------------------===//
1061//  Integer Result Expansion
1062//===----------------------------------------------------------------------===//
1063
1064/// ExpandIntegerResult - This method is called when the specified result of the
1065/// specified node is found to need expansion.  At this point, the node may also
1066/// have invalid operands or may have other results that need promotion, we just
1067/// know that (at least) one result needs expansion.
1068void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
1069  DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n");
1070  SDValue Lo, Hi;
1071  Lo = Hi = SDValue();
1072
1073  // See if the target wants to custom expand this node.
1074  if (CustomLowerNode(N, N->getValueType(ResNo), true))
1075    return;
1076
1077  switch (N->getOpcode()) {
1078  default:
1079#ifndef NDEBUG
1080    dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
1081    N->dump(&DAG); dbgs() << "\n";
1082#endif
1083    llvm_unreachable("Do not know how to expand the result of this operator!");
1084
1085  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
1086  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
1087  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
1088  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
1089
1090  case ISD::BITCAST:            ExpandRes_BITCAST(N, Lo, Hi); break;
1091  case ISD::BUILD_PAIR:         ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
1092  case ISD::EXTRACT_ELEMENT:    ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
1093  case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
1094  case ISD::VAARG:              ExpandRes_VAARG(N, Lo, Hi); break;
1095
1096  case ISD::ANY_EXTEND:  ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
1097  case ISD::AssertSext:  ExpandIntRes_AssertSext(N, Lo, Hi); break;
1098  case ISD::AssertZext:  ExpandIntRes_AssertZext(N, Lo, Hi); break;
1099  case ISD::BSWAP:       ExpandIntRes_BSWAP(N, Lo, Hi); break;
1100  case ISD::Constant:    ExpandIntRes_Constant(N, Lo, Hi); break;
1101  case ISD::CTLZ:        ExpandIntRes_CTLZ(N, Lo, Hi); break;
1102  case ISD::CTPOP:       ExpandIntRes_CTPOP(N, Lo, Hi); break;
1103  case ISD::CTTZ:        ExpandIntRes_CTTZ(N, Lo, Hi); break;
1104  case ISD::FP_TO_SINT:  ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
1105  case ISD::FP_TO_UINT:  ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
1106  case ISD::LOAD:        ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
1107  case ISD::MUL:         ExpandIntRes_MUL(N, Lo, Hi); break;
1108  case ISD::SDIV:        ExpandIntRes_SDIV(N, Lo, Hi); break;
1109  case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
1110  case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
1111  case ISD::SREM:        ExpandIntRes_SREM(N, Lo, Hi); break;
1112  case ISD::TRUNCATE:    ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
1113  case ISD::UDIV:        ExpandIntRes_UDIV(N, Lo, Hi); break;
1114  case ISD::UREM:        ExpandIntRes_UREM(N, Lo, Hi); break;
1115  case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
1116  case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break;
1117
1118  case ISD::ATOMIC_LOAD_ADD:
1119  case ISD::ATOMIC_LOAD_SUB:
1120  case ISD::ATOMIC_LOAD_AND:
1121  case ISD::ATOMIC_LOAD_OR:
1122  case ISD::ATOMIC_LOAD_XOR:
1123  case ISD::ATOMIC_LOAD_NAND:
1124  case ISD::ATOMIC_LOAD_MIN:
1125  case ISD::ATOMIC_LOAD_MAX:
1126  case ISD::ATOMIC_LOAD_UMIN:
1127  case ISD::ATOMIC_LOAD_UMAX:
1128  case ISD::ATOMIC_SWAP: {
1129    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
1130    SplitInteger(Tmp.first, Lo, Hi);
1131    ReplaceValueWith(SDValue(N, 1), Tmp.second);
1132    break;
1133  }
1134
1135  case ISD::AND:
1136  case ISD::OR:
1137  case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
1138
1139  case ISD::ADD:
1140  case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
1141
1142  case ISD::ADDC:
1143  case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
1144
1145  case ISD::ADDE:
1146  case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
1147
1148  case ISD::SHL:
1149  case ISD::SRA:
1150  case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
1151
1152  case ISD::SADDO:
1153  case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
1154  case ISD::UADDO:
1155  case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
1156  case ISD::UMULO:
1157  case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
1158  }
1159
1160  // If Lo/Hi is null, the sub-method took care of registering results etc.
1161  if (Lo.getNode())
1162    SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
1163}
1164
1165/// Lower an atomic node to the appropriate builtin call.
1166std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
1167  unsigned Opc = Node->getOpcode();
1168  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
1169  RTLIB::Libcall LC;
1170
1171  switch (Opc) {
1172  default:
1173    llvm_unreachable("Unhandled atomic intrinsic Expand!");
1174    break;
1175  case ISD::ATOMIC_SWAP:
1176    switch (VT.SimpleTy) {
1177    default: llvm_unreachable("Unexpected value type for atomic!");
1178    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
1179    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
1180    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
1181    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
1182    }
1183    break;
1184  case ISD::ATOMIC_CMP_SWAP:
1185    switch (VT.SimpleTy) {
1186    default: llvm_unreachable("Unexpected value type for atomic!");
1187    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
1188    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
1189    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
1190    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
1191    }
1192    break;
1193  case ISD::ATOMIC_LOAD_ADD:
1194    switch (VT.SimpleTy) {
1195    default: llvm_unreachable("Unexpected value type for atomic!");
1196    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
1197    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
1198    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
1199    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
1200    }
1201    break;
1202  case ISD::ATOMIC_LOAD_SUB:
1203    switch (VT.SimpleTy) {
1204    default: llvm_unreachable("Unexpected value type for atomic!");
1205    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
1206    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
1207    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
1208    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
1209    }
1210    break;
1211  case ISD::ATOMIC_LOAD_AND:
1212    switch (VT.SimpleTy) {
1213    default: llvm_unreachable("Unexpected value type for atomic!");
1214    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
1215    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
1216    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
1217    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
1218    }
1219    break;
1220  case ISD::ATOMIC_LOAD_OR:
1221    switch (VT.SimpleTy) {
1222    default: llvm_unreachable("Unexpected value type for atomic!");
1223    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
1224    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
1225    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
1226    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
1227    }
1228    break;
1229  case ISD::ATOMIC_LOAD_XOR:
1230    switch (VT.SimpleTy) {
1231    default: llvm_unreachable("Unexpected value type for atomic!");
1232    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
1233    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
1234    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
1235    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
1236    }
1237    break;
1238  case ISD::ATOMIC_LOAD_NAND:
1239    switch (VT.SimpleTy) {
1240    default: llvm_unreachable("Unexpected value type for atomic!");
1241    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
1242    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
1243    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
1244    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
1245    }
1246    break;
1247  }
1248
1249  return ExpandChainLibCall(LC, Node, false);
1250}
1251
1252/// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
1253/// and the shift amount is a constant 'Amt'.  Expand the operation.
1254void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
1255                                             SDValue &Lo, SDValue &Hi) {
1256  DebugLoc DL = N->getDebugLoc();
1257  // Expand the incoming operand to be shifted, so that we have its parts
1258  SDValue InL, InH;
1259  GetExpandedInteger(N->getOperand(0), InL, InH);
1260
1261  EVT NVT = InL.getValueType();
1262  unsigned VTBits = N->getValueType(0).getSizeInBits();
1263  unsigned NVTBits = NVT.getSizeInBits();
1264  EVT ShTy = N->getOperand(1).getValueType();
1265
1266  if (N->getOpcode() == ISD::SHL) {
1267    if (Amt > VTBits) {
1268      Lo = Hi = DAG.getConstant(0, NVT);
1269    } else if (Amt > NVTBits) {
1270      Lo = DAG.getConstant(0, NVT);
1271      Hi = DAG.getNode(ISD::SHL, DL,
1272                       NVT, InL, DAG.getConstant(Amt-NVTBits, ShTy));
1273    } else if (Amt == NVTBits) {
1274      Lo = DAG.getConstant(0, NVT);
1275      Hi = InL;
1276    } else if (Amt == 1 &&
1277               TLI.isOperationLegalOrCustom(ISD::ADDC,
1278                              TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) {
1279      // Emit this X << 1 as X+X.
1280      SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1281      SDValue LoOps[2] = { InL, InL };
1282      Lo = DAG.getNode(ISD::ADDC, DL, VTList, LoOps, 2);
1283      SDValue HiOps[3] = { InH, InH, Lo.getValue(1) };
1284      Hi = DAG.getNode(ISD::ADDE, DL, VTList, HiOps, 3);
1285    } else {
1286      Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, ShTy));
1287      Hi = DAG.getNode(ISD::OR, DL, NVT,
1288                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1289                                   DAG.getConstant(Amt, ShTy)),
1290                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1291                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1292    }
1293    return;
1294  }
1295
1296  if (N->getOpcode() == ISD::SRL) {
1297    if (Amt > VTBits) {
1298      Lo = DAG.getConstant(0, NVT);
1299      Hi = DAG.getConstant(0, NVT);
1300    } else if (Amt > NVTBits) {
1301      Lo = DAG.getNode(ISD::SRL, DL,
1302                       NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
1303      Hi = DAG.getConstant(0, NVT);
1304    } else if (Amt == NVTBits) {
1305      Lo = InH;
1306      Hi = DAG.getConstant(0, NVT);
1307    } else {
1308      Lo = DAG.getNode(ISD::OR, DL, NVT,
1309                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1310                                   DAG.getConstant(Amt, ShTy)),
1311                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1312                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1313      Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1314    }
1315    return;
1316  }
1317
1318  assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1319  if (Amt > VTBits) {
1320    Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1321                          DAG.getConstant(NVTBits-1, ShTy));
1322  } else if (Amt > NVTBits) {
1323    Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1324                     DAG.getConstant(Amt-NVTBits, ShTy));
1325    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1326                     DAG.getConstant(NVTBits-1, ShTy));
1327  } else if (Amt == NVTBits) {
1328    Lo = InH;
1329    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1330                     DAG.getConstant(NVTBits-1, ShTy));
1331  } else {
1332    Lo = DAG.getNode(ISD::OR, DL, NVT,
1333                     DAG.getNode(ISD::SRL, DL, NVT, InL,
1334                                 DAG.getConstant(Amt, ShTy)),
1335                     DAG.getNode(ISD::SHL, DL, NVT, InH,
1336                                 DAG.getConstant(NVTBits-Amt, ShTy)));
1337    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1338  }
1339}
1340
1341/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1342/// this shift based on knowledge of the high bit of the shift amount.  If we
1343/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1344/// shift amount.
1345bool DAGTypeLegalizer::
1346ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1347  SDValue Amt = N->getOperand(1);
1348  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1349  EVT ShTy = Amt.getValueType();
1350  unsigned ShBits = ShTy.getScalarType().getSizeInBits();
1351  unsigned NVTBits = NVT.getScalarType().getSizeInBits();
1352  assert(isPowerOf2_32(NVTBits) &&
1353         "Expanded integer type size not a power of two!");
1354  DebugLoc dl = N->getDebugLoc();
1355
1356  APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
1357  APInt KnownZero, KnownOne;
1358  DAG.ComputeMaskedBits(N->getOperand(1), HighBitMask, KnownZero, KnownOne);
1359
1360  // If we don't know anything about the high bits, exit.
1361  if (((KnownZero|KnownOne) & HighBitMask) == 0)
1362    return false;
1363
1364  // Get the incoming operand to be shifted.
1365  SDValue InL, InH;
1366  GetExpandedInteger(N->getOperand(0), InL, InH);
1367
1368  // If we know that any of the high bits of the shift amount are one, then we
1369  // can do this as a couple of simple shifts.
1370  if (KnownOne.intersects(HighBitMask)) {
1371    // Mask out the high bit, which we know is set.
1372    Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
1373                      DAG.getConstant(~HighBitMask, ShTy));
1374
1375    switch (N->getOpcode()) {
1376    default: llvm_unreachable("Unknown shift");
1377    case ISD::SHL:
1378      Lo = DAG.getConstant(0, NVT);              // Low part is zero.
1379      Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
1380      return true;
1381    case ISD::SRL:
1382      Hi = DAG.getConstant(0, NVT);              // Hi part is zero.
1383      Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
1384      return true;
1385    case ISD::SRA:
1386      Hi = DAG.getNode(ISD::SRA, dl, NVT, InH,       // Sign extend high part.
1387                       DAG.getConstant(NVTBits-1, ShTy));
1388      Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
1389      return true;
1390    }
1391  }
1392
1393#if 0
1394  // FIXME: This code is broken for shifts with a zero amount!
1395  // If we know that all of the high bits of the shift amount are zero, then we
1396  // can do this as a couple of simple shifts.
1397  if ((KnownZero & HighBitMask) == HighBitMask) {
1398    // Compute 32-amt.
1399    SDValue Amt2 = DAG.getNode(ISD::SUB, ShTy,
1400                                 DAG.getConstant(NVTBits, ShTy),
1401                                 Amt);
1402    unsigned Op1, Op2;
1403    switch (N->getOpcode()) {
1404    default: llvm_unreachable("Unknown shift");
1405    case ISD::SHL:  Op1 = ISD::SHL; Op2 = ISD::SRL; break;
1406    case ISD::SRL:
1407    case ISD::SRA:  Op1 = ISD::SRL; Op2 = ISD::SHL; break;
1408    }
1409
1410    Lo = DAG.getNode(N->getOpcode(), NVT, InL, Amt);
1411    Hi = DAG.getNode(ISD::OR, NVT,
1412                     DAG.getNode(Op1, NVT, InH, Amt),
1413                     DAG.getNode(Op2, NVT, InL, Amt2));
1414    return true;
1415  }
1416#endif
1417
1418  return false;
1419}
1420
1421/// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
1422/// of any size.
1423bool DAGTypeLegalizer::
1424ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1425  SDValue Amt = N->getOperand(1);
1426  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1427  EVT ShTy = Amt.getValueType();
1428  unsigned NVTBits = NVT.getSizeInBits();
1429  assert(isPowerOf2_32(NVTBits) &&
1430         "Expanded integer type size not a power of two!");
1431  DebugLoc dl = N->getDebugLoc();
1432
1433  // Get the incoming operand to be shifted.
1434  SDValue InL, InH;
1435  GetExpandedInteger(N->getOperand(0), InL, InH);
1436
1437  SDValue NVBitsNode = DAG.getConstant(NVTBits, ShTy);
1438  SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
1439  SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
1440  SDValue isShort = DAG.getSetCC(dl, TLI.getSetCCResultType(ShTy),
1441                                 Amt, NVBitsNode, ISD::SETULT);
1442
1443  SDValue LoS, HiS, LoL, HiL;
1444  switch (N->getOpcode()) {
1445  default: llvm_unreachable("Unknown shift");
1446  case ISD::SHL:
1447    // Short: ShAmt < NVTBits
1448    LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
1449    HiS = DAG.getNode(ISD::OR, dl, NVT,
1450                      DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
1451    // FIXME: If Amt is zero, the following shift generates an undefined result
1452    // on some architectures.
1453                      DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
1454
1455    // Long: ShAmt >= NVTBits
1456    LoL = DAG.getConstant(0, NVT);                        // Lo part is zero.
1457    HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
1458
1459    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1460    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1461    return true;
1462  case ISD::SRL:
1463    // Short: ShAmt < NVTBits
1464    HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
1465    LoS = DAG.getNode(ISD::OR, dl, NVT,
1466                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1467    // FIXME: If Amt is zero, the following shift generates an undefined result
1468    // on some architectures.
1469                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1470
1471    // Long: ShAmt >= NVTBits
1472    HiL = DAG.getConstant(0, NVT);                        // Hi part is zero.
1473    LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1474
1475    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1476    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1477    return true;
1478  case ISD::SRA:
1479    // Short: ShAmt < NVTBits
1480    HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
1481    LoS = DAG.getNode(ISD::OR, dl, NVT,
1482                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1483    // FIXME: If Amt is zero, the following shift generates an undefined result
1484    // on some architectures.
1485                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1486
1487    // Long: ShAmt >= NVTBits
1488    HiL = DAG.getNode(ISD::SRA, dl, NVT, InH,             // Sign of Hi part.
1489                      DAG.getConstant(NVTBits-1, ShTy));
1490    LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1491
1492    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1493    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1494    return true;
1495  }
1496
1497  return false;
1498}
1499
1500void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
1501                                           SDValue &Lo, SDValue &Hi) {
1502  DebugLoc dl = N->getDebugLoc();
1503  // Expand the subcomponents.
1504  SDValue LHSL, LHSH, RHSL, RHSH;
1505  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1506  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1507
1508  EVT NVT = LHSL.getValueType();
1509  SDValue LoOps[2] = { LHSL, RHSL };
1510  SDValue HiOps[3] = { LHSH, RHSH };
1511
1512  // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
1513  // them.  TODO: Teach operation legalization how to expand unsupported
1514  // ADDC/ADDE/SUBC/SUBE.  The problem is that these operations generate
1515  // a carry of type MVT::Glue, but there doesn't seem to be any way to
1516  // generate a value of this type in the expanded code sequence.
1517  bool hasCarry =
1518    TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
1519                                   ISD::ADDC : ISD::SUBC,
1520                                 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
1521
1522  if (hasCarry) {
1523    SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1524    if (N->getOpcode() == ISD::ADD) {
1525      Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1526      HiOps[2] = Lo.getValue(1);
1527      Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1528    } else {
1529      Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1530      HiOps[2] = Lo.getValue(1);
1531      Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1532    }
1533    return;
1534  }
1535
1536  if (N->getOpcode() == ISD::ADD) {
1537    Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2);
1538    Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2);
1539    SDValue Cmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[0],
1540                                ISD::SETULT);
1541    SDValue Carry1 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp1,
1542                                 DAG.getConstant(1, NVT),
1543                                 DAG.getConstant(0, NVT));
1544    SDValue Cmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[1],
1545                                ISD::SETULT);
1546    SDValue Carry2 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp2,
1547                                 DAG.getConstant(1, NVT), Carry1);
1548    Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
1549  } else {
1550    Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2);
1551    Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2);
1552    SDValue Cmp =
1553      DAG.getSetCC(dl, TLI.getSetCCResultType(LoOps[0].getValueType()),
1554                   LoOps[0], LoOps[1], ISD::SETULT);
1555    SDValue Borrow = DAG.getNode(ISD::SELECT, dl, NVT, Cmp,
1556                                 DAG.getConstant(1, NVT),
1557                                 DAG.getConstant(0, NVT));
1558    Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
1559  }
1560}
1561
1562void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
1563                                            SDValue &Lo, SDValue &Hi) {
1564  // Expand the subcomponents.
1565  SDValue LHSL, LHSH, RHSL, RHSH;
1566  DebugLoc dl = N->getDebugLoc();
1567  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1568  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1569  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1570  SDValue LoOps[2] = { LHSL, RHSL };
1571  SDValue HiOps[3] = { LHSH, RHSH };
1572
1573  if (N->getOpcode() == ISD::ADDC) {
1574    Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1575    HiOps[2] = Lo.getValue(1);
1576    Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1577  } else {
1578    Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1579    HiOps[2] = Lo.getValue(1);
1580    Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1581  }
1582
1583  // Legalized the flag result - switch anything that used the old flag to
1584  // use the new one.
1585  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1586}
1587
1588void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
1589                                            SDValue &Lo, SDValue &Hi) {
1590  // Expand the subcomponents.
1591  SDValue LHSL, LHSH, RHSL, RHSH;
1592  DebugLoc dl = N->getDebugLoc();
1593  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1594  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1595  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1596  SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
1597  SDValue HiOps[3] = { LHSH, RHSH };
1598
1599  Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps, 3);
1600  HiOps[2] = Lo.getValue(1);
1601  Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps, 3);
1602
1603  // Legalized the flag result - switch anything that used the old flag to
1604  // use the new one.
1605  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1606}
1607
1608void DAGTypeLegalizer::ExpandIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1609                                                 SDValue &Lo, SDValue &Hi) {
1610  SDValue Res = DisintegrateMERGE_VALUES(N, ResNo);
1611  SplitInteger(Res, Lo, Hi);
1612}
1613
1614void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
1615                                               SDValue &Lo, SDValue &Hi) {
1616  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1617  DebugLoc dl = N->getDebugLoc();
1618  SDValue Op = N->getOperand(0);
1619  if (Op.getValueType().bitsLE(NVT)) {
1620    // The low part is any extension of the input (which degenerates to a copy).
1621    Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op);
1622    Hi = DAG.getUNDEF(NVT);   // The high part is undefined.
1623  } else {
1624    // For example, extension of an i48 to an i64.  The operand type necessarily
1625    // promotes to the result type, so will end up being expanded too.
1626    assert(getTypeAction(Op.getValueType()) ==
1627           TargetLowering::TypePromoteInteger &&
1628           "Only know how to promote this result!");
1629    SDValue Res = GetPromotedInteger(Op);
1630    assert(Res.getValueType() == N->getValueType(0) &&
1631           "Operand over promoted?");
1632    // Split the promoted operand.  This will simplify when it is expanded.
1633    SplitInteger(Res, Lo, Hi);
1634  }
1635}
1636
1637void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
1638                                               SDValue &Lo, SDValue &Hi) {
1639  DebugLoc dl = N->getDebugLoc();
1640  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1641  EVT NVT = Lo.getValueType();
1642  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1643  unsigned NVTBits = NVT.getSizeInBits();
1644  unsigned EVTBits = EVT.getSizeInBits();
1645
1646  if (NVTBits < EVTBits) {
1647    Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
1648                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1649                                                        EVTBits - NVTBits)));
1650  } else {
1651    Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
1652    // The high part replicates the sign bit of Lo, make it explicit.
1653    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1654                     DAG.getConstant(NVTBits-1, TLI.getPointerTy()));
1655  }
1656}
1657
1658void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
1659                                               SDValue &Lo, SDValue &Hi) {
1660  DebugLoc dl = N->getDebugLoc();
1661  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1662  EVT NVT = Lo.getValueType();
1663  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1664  unsigned NVTBits = NVT.getSizeInBits();
1665  unsigned EVTBits = EVT.getSizeInBits();
1666
1667  if (NVTBits < EVTBits) {
1668    Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
1669                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1670                                                        EVTBits - NVTBits)));
1671  } else {
1672    Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
1673    // The high part must be zero, make it explicit.
1674    Hi = DAG.getConstant(0, NVT);
1675  }
1676}
1677
1678void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
1679                                          SDValue &Lo, SDValue &Hi) {
1680  DebugLoc dl = N->getDebugLoc();
1681  GetExpandedInteger(N->getOperand(0), Hi, Lo);  // Note swapped operands.
1682  Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo);
1683  Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi);
1684}
1685
1686void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
1687                                             SDValue &Lo, SDValue &Hi) {
1688  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1689  unsigned NBitWidth = NVT.getSizeInBits();
1690  const APInt &Cst = cast<ConstantSDNode>(N)->getAPIntValue();
1691  Lo = DAG.getConstant(Cst.trunc(NBitWidth), NVT);
1692  Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT);
1693}
1694
1695void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
1696                                         SDValue &Lo, SDValue &Hi) {
1697  DebugLoc dl = N->getDebugLoc();
1698  // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
1699  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1700  EVT NVT = Lo.getValueType();
1701
1702  SDValue HiNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Hi,
1703                                   DAG.getConstant(0, NVT), ISD::SETNE);
1704
1705  SDValue LoLZ = DAG.getNode(ISD::CTLZ, dl, NVT, Lo);
1706  SDValue HiLZ = DAG.getNode(ISD::CTLZ, dl, NVT, Hi);
1707
1708  Lo = DAG.getNode(ISD::SELECT, dl, NVT, HiNotZero, HiLZ,
1709                   DAG.getNode(ISD::ADD, dl, NVT, LoLZ,
1710                               DAG.getConstant(NVT.getSizeInBits(), NVT)));
1711  Hi = DAG.getConstant(0, NVT);
1712}
1713
1714void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
1715                                          SDValue &Lo, SDValue &Hi) {
1716  DebugLoc dl = N->getDebugLoc();
1717  // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
1718  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1719  EVT NVT = Lo.getValueType();
1720  Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
1721                   DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
1722  Hi = DAG.getConstant(0, NVT);
1723}
1724
1725void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
1726                                         SDValue &Lo, SDValue &Hi) {
1727  DebugLoc dl = N->getDebugLoc();
1728  // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
1729  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1730  EVT NVT = Lo.getValueType();
1731
1732  SDValue LoNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo,
1733                                   DAG.getConstant(0, NVT), ISD::SETNE);
1734
1735  SDValue LoLZ = DAG.getNode(ISD::CTTZ, dl, NVT, Lo);
1736  SDValue HiLZ = DAG.getNode(ISD::CTTZ, dl, NVT, Hi);
1737
1738  Lo = DAG.getNode(ISD::SELECT, dl, NVT, LoNotZero, LoLZ,
1739                   DAG.getNode(ISD::ADD, dl, NVT, HiLZ,
1740                               DAG.getConstant(NVT.getSizeInBits(), NVT)));
1741  Hi = DAG.getConstant(0, NVT);
1742}
1743
1744void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
1745                                               SDValue &Hi) {
1746  DebugLoc dl = N->getDebugLoc();
1747  EVT VT = N->getValueType(0);
1748  SDValue Op = N->getOperand(0);
1749  RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
1750  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
1751  SplitInteger(MakeLibCall(LC, VT, &Op, 1, true/*irrelevant*/, dl), Lo, Hi);
1752}
1753
1754void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
1755                                               SDValue &Hi) {
1756  DebugLoc dl = N->getDebugLoc();
1757  EVT VT = N->getValueType(0);
1758  SDValue Op = N->getOperand(0);
1759  RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
1760  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
1761  SplitInteger(MakeLibCall(LC, VT, &Op, 1, false/*irrelevant*/, dl), Lo, Hi);
1762}
1763
1764void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
1765                                         SDValue &Lo, SDValue &Hi) {
1766  if (ISD::isNormalLoad(N)) {
1767    ExpandRes_NormalLoad(N, Lo, Hi);
1768    return;
1769  }
1770
1771  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
1772
1773  EVT VT = N->getValueType(0);
1774  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1775  SDValue Ch  = N->getChain();
1776  SDValue Ptr = N->getBasePtr();
1777  ISD::LoadExtType ExtType = N->getExtensionType();
1778  unsigned Alignment = N->getAlignment();
1779  bool isVolatile = N->isVolatile();
1780  bool isNonTemporal = N->isNonTemporal();
1781  DebugLoc dl = N->getDebugLoc();
1782
1783  assert(NVT.isByteSized() && "Expanded type not byte sized!");
1784
1785  if (N->getMemoryVT().bitsLE(NVT)) {
1786    EVT MemVT = N->getMemoryVT();
1787
1788    Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1789                        MemVT, isVolatile, isNonTemporal, Alignment);
1790
1791    // Remember the chain.
1792    Ch = Lo.getValue(1);
1793
1794    if (ExtType == ISD::SEXTLOAD) {
1795      // The high part is obtained by SRA'ing all but one of the bits of the
1796      // lo part.
1797      unsigned LoSize = Lo.getValueType().getSizeInBits();
1798      Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1799                       DAG.getConstant(LoSize-1, TLI.getPointerTy()));
1800    } else if (ExtType == ISD::ZEXTLOAD) {
1801      // The high part is just a zero.
1802      Hi = DAG.getConstant(0, NVT);
1803    } else {
1804      assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
1805      // The high part is undefined.
1806      Hi = DAG.getUNDEF(NVT);
1807    }
1808  } else if (TLI.isLittleEndian()) {
1809    // Little-endian - low bits are at low addresses.
1810    Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(),
1811                     isVolatile, isNonTemporal, Alignment);
1812
1813    unsigned ExcessBits =
1814      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
1815    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
1816
1817    // Increment the pointer to the other half.
1818    unsigned IncrementSize = NVT.getSizeInBits()/8;
1819    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1820                      DAG.getIntPtrConstant(IncrementSize));
1821    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
1822                        N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
1823                        isVolatile, isNonTemporal,
1824                        MinAlign(Alignment, IncrementSize));
1825
1826    // Build a factor node to remember that this load is independent of the
1827    // other one.
1828    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1829                     Hi.getValue(1));
1830  } else {
1831    // Big-endian - high bits are at low addresses.  Favor aligned loads at
1832    // the cost of some bit-fiddling.
1833    EVT MemVT = N->getMemoryVT();
1834    unsigned EBytes = MemVT.getStoreSize();
1835    unsigned IncrementSize = NVT.getSizeInBits()/8;
1836    unsigned ExcessBits = (EBytes - IncrementSize)*8;
1837
1838    // Load both the high bits and maybe some of the low bits.
1839    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1840                        EVT::getIntegerVT(*DAG.getContext(),
1841                                          MemVT.getSizeInBits() - ExcessBits),
1842                        isVolatile, isNonTemporal, Alignment);
1843
1844    // Increment the pointer to the other half.
1845    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1846                      DAG.getIntPtrConstant(IncrementSize));
1847    // Load the rest of the low bits.
1848    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
1849                        N->getPointerInfo().getWithOffset(IncrementSize),
1850                        EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
1851                        isVolatile, isNonTemporal,
1852                        MinAlign(Alignment, IncrementSize));
1853
1854    // Build a factor node to remember that this load is independent of the
1855    // other one.
1856    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1857                     Hi.getValue(1));
1858
1859    if (ExcessBits < NVT.getSizeInBits()) {
1860      // Transfer low bits from the bottom of Hi to the top of Lo.
1861      Lo = DAG.getNode(ISD::OR, dl, NVT, Lo,
1862                       DAG.getNode(ISD::SHL, dl, NVT, Hi,
1863                                   DAG.getConstant(ExcessBits,
1864                                                   TLI.getPointerTy())));
1865      // Move high bits to the right position in Hi.
1866      Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl,
1867                       NVT, Hi,
1868                       DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
1869                                       TLI.getPointerTy()));
1870    }
1871  }
1872
1873  // Legalized the chain result - switch anything that used the old chain to
1874  // use the new one.
1875  ReplaceValueWith(SDValue(N, 1), Ch);
1876}
1877
1878void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
1879                                            SDValue &Lo, SDValue &Hi) {
1880  DebugLoc dl = N->getDebugLoc();
1881  SDValue LL, LH, RL, RH;
1882  GetExpandedInteger(N->getOperand(0), LL, LH);
1883  GetExpandedInteger(N->getOperand(1), RL, RH);
1884  Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL);
1885  Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH);
1886}
1887
1888void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
1889                                        SDValue &Lo, SDValue &Hi) {
1890  EVT VT = N->getValueType(0);
1891  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1892  DebugLoc dl = N->getDebugLoc();
1893
1894  bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT);
1895  bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT);
1896  bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT);
1897  bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT);
1898  if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
1899    SDValue LL, LH, RL, RH;
1900    GetExpandedInteger(N->getOperand(0), LL, LH);
1901    GetExpandedInteger(N->getOperand(1), RL, RH);
1902    unsigned OuterBitSize = VT.getSizeInBits();
1903    unsigned InnerBitSize = NVT.getSizeInBits();
1904    unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
1905    unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
1906
1907    APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
1908    if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
1909        DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
1910      // The inputs are both zero-extended.
1911      if (HasUMUL_LOHI) {
1912        // We can emit a umul_lohi.
1913        Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1914        Hi = SDValue(Lo.getNode(), 1);
1915        return;
1916      }
1917      if (HasMULHU) {
1918        // We can emit a mulhu+mul.
1919        Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1920        Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1921        return;
1922      }
1923    }
1924    if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
1925      // The input values are both sign-extended.
1926      if (HasSMUL_LOHI) {
1927        // We can emit a smul_lohi.
1928        Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1929        Hi = SDValue(Lo.getNode(), 1);
1930        return;
1931      }
1932      if (HasMULHS) {
1933        // We can emit a mulhs+mul.
1934        Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1935        Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL);
1936        return;
1937      }
1938    }
1939    if (HasUMUL_LOHI) {
1940      // Lo,Hi = umul LHS, RHS.
1941      SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
1942                                       DAG.getVTList(NVT, NVT), LL, RL);
1943      Lo = UMulLOHI;
1944      Hi = UMulLOHI.getValue(1);
1945      RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1946      LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1947      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1948      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1949      return;
1950    }
1951    if (HasMULHU) {
1952      Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1953      Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1954      RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1955      LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1956      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1957      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1958      return;
1959    }
1960  }
1961
1962  // If nothing else, we can make a libcall.
1963  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1964  if (VT == MVT::i16)
1965    LC = RTLIB::MUL_I16;
1966  else if (VT == MVT::i32)
1967    LC = RTLIB::MUL_I32;
1968  else if (VT == MVT::i64)
1969    LC = RTLIB::MUL_I64;
1970  else if (VT == MVT::i128)
1971    LC = RTLIB::MUL_I128;
1972  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!");
1973
1974  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1975  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true/*irrelevant*/, dl), Lo, Hi);
1976}
1977
1978void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node,
1979                                             SDValue &Lo, SDValue &Hi) {
1980  SDValue LHS = Node->getOperand(0);
1981  SDValue RHS = Node->getOperand(1);
1982  DebugLoc dl = Node->getDebugLoc();
1983
1984  // Expand the result by simply replacing it with the equivalent
1985  // non-overflow-checking operation.
1986  SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
1987                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
1988                            LHS, RHS);
1989  SplitInteger(Sum, Lo, Hi);
1990
1991  // Compute the overflow.
1992  //
1993  //   LHSSign -> LHS >= 0
1994  //   RHSSign -> RHS >= 0
1995  //   SumSign -> Sum >= 0
1996  //
1997  //   Add:
1998  //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
1999  //   Sub:
2000  //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2001  //
2002  EVT OType = Node->getValueType(1);
2003  SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2004
2005  SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2006  SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2007  SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2008                                    Node->getOpcode() == ISD::SADDO ?
2009                                    ISD::SETEQ : ISD::SETNE);
2010
2011  SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2012  SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2013
2014  SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2015
2016  // Use the calculated overflow everywhere.
2017  ReplaceValueWith(SDValue(Node, 1), Cmp);
2018}
2019
2020void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
2021                                         SDValue &Lo, SDValue &Hi) {
2022  EVT VT = N->getValueType(0);
2023  DebugLoc dl = N->getDebugLoc();
2024
2025  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2026  if (VT == MVT::i16)
2027    LC = RTLIB::SDIV_I16;
2028  else if (VT == MVT::i32)
2029    LC = RTLIB::SDIV_I32;
2030  else if (VT == MVT::i64)
2031    LC = RTLIB::SDIV_I64;
2032  else if (VT == MVT::i128)
2033    LC = RTLIB::SDIV_I128;
2034  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
2035
2036  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2037  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true, dl), Lo, Hi);
2038}
2039
2040void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
2041                                          SDValue &Lo, SDValue &Hi) {
2042  EVT VT = N->getValueType(0);
2043  DebugLoc dl = N->getDebugLoc();
2044
2045  // If we can emit an efficient shift operation, do so now.  Check to see if
2046  // the RHS is a constant.
2047  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2048    return ExpandShiftByConstant(N, CN->getZExtValue(), Lo, Hi);
2049
2050  // If we can determine that the high bit of the shift is zero or one, even if
2051  // the low bits are variable, emit this shift in an optimized form.
2052  if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
2053    return;
2054
2055  // If this target supports shift_PARTS, use it.  First, map to the _PARTS opc.
2056  unsigned PartsOpc;
2057  if (N->getOpcode() == ISD::SHL) {
2058    PartsOpc = ISD::SHL_PARTS;
2059  } else if (N->getOpcode() == ISD::SRL) {
2060    PartsOpc = ISD::SRL_PARTS;
2061  } else {
2062    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2063    PartsOpc = ISD::SRA_PARTS;
2064  }
2065
2066  // Next check to see if the target supports this SHL_PARTS operation or if it
2067  // will custom expand it.
2068  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2069  TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
2070  if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
2071      Action == TargetLowering::Custom) {
2072    // Expand the subcomponents.
2073    SDValue LHSL, LHSH;
2074    GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2075
2076    SDValue Ops[] = { LHSL, LHSH, N->getOperand(1) };
2077    EVT VT = LHSL.getValueType();
2078    Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops, 3);
2079    Hi = Lo.getValue(1);
2080    return;
2081  }
2082
2083  // Otherwise, emit a libcall.
2084  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2085  bool isSigned;
2086  if (N->getOpcode() == ISD::SHL) {
2087    isSigned = false; /*sign irrelevant*/
2088    if (VT == MVT::i16)
2089      LC = RTLIB::SHL_I16;
2090    else if (VT == MVT::i32)
2091      LC = RTLIB::SHL_I32;
2092    else if (VT == MVT::i64)
2093      LC = RTLIB::SHL_I64;
2094    else if (VT == MVT::i128)
2095      LC = RTLIB::SHL_I128;
2096  } else if (N->getOpcode() == ISD::SRL) {
2097    isSigned = false;
2098    if (VT == MVT::i16)
2099      LC = RTLIB::SRL_I16;
2100    else if (VT == MVT::i32)
2101      LC = RTLIB::SRL_I32;
2102    else if (VT == MVT::i64)
2103      LC = RTLIB::SRL_I64;
2104    else if (VT == MVT::i128)
2105      LC = RTLIB::SRL_I128;
2106  } else {
2107    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2108    isSigned = true;
2109    if (VT == MVT::i16)
2110      LC = RTLIB::SRA_I16;
2111    else if (VT == MVT::i32)
2112      LC = RTLIB::SRA_I32;
2113    else if (VT == MVT::i64)
2114      LC = RTLIB::SRA_I64;
2115    else if (VT == MVT::i128)
2116      LC = RTLIB::SRA_I128;
2117  }
2118
2119  if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
2120    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2121    SplitInteger(MakeLibCall(LC, VT, Ops, 2, isSigned, dl), Lo, Hi);
2122    return;
2123  }
2124
2125  if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
2126    llvm_unreachable("Unsupported shift!");
2127}
2128
2129void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
2130                                                SDValue &Lo, SDValue &Hi) {
2131  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2132  DebugLoc dl = N->getDebugLoc();
2133  SDValue Op = N->getOperand(0);
2134  if (Op.getValueType().bitsLE(NVT)) {
2135    // The low part is sign extension of the input (degenerates to a copy).
2136    Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0));
2137    // The high part is obtained by SRA'ing all but one of the bits of low part.
2138    unsigned LoSize = NVT.getSizeInBits();
2139    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2140                     DAG.getConstant(LoSize-1, TLI.getPointerTy()));
2141  } else {
2142    // For example, extension of an i48 to an i64.  The operand type necessarily
2143    // promotes to the result type, so will end up being expanded too.
2144    assert(getTypeAction(Op.getValueType()) ==
2145           TargetLowering::TypePromoteInteger &&
2146           "Only know how to promote this result!");
2147    SDValue Res = GetPromotedInteger(Op);
2148    assert(Res.getValueType() == N->getValueType(0) &&
2149           "Operand over promoted?");
2150    // Split the promoted operand.  This will simplify when it is expanded.
2151    SplitInteger(Res, Lo, Hi);
2152    unsigned ExcessBits =
2153      Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2154    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2155                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2156                                                        ExcessBits)));
2157  }
2158}
2159
2160void DAGTypeLegalizer::
2161ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
2162  DebugLoc dl = N->getDebugLoc();
2163  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2164  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2165
2166  if (EVT.bitsLE(Lo.getValueType())) {
2167    // sext_inreg the low part if needed.
2168    Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo,
2169                     N->getOperand(1));
2170
2171    // The high part gets the sign extension from the lo-part.  This handles
2172    // things like sextinreg V:i64 from i8.
2173    Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
2174                     DAG.getConstant(Hi.getValueType().getSizeInBits()-1,
2175                                     TLI.getPointerTy()));
2176  } else {
2177    // For example, extension of an i48 to an i64.  Leave the low part alone,
2178    // sext_inreg the high part.
2179    unsigned ExcessBits =
2180      EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
2181    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2182                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2183                                                        ExcessBits)));
2184  }
2185}
2186
2187void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
2188                                         SDValue &Lo, SDValue &Hi) {
2189  EVT VT = N->getValueType(0);
2190  DebugLoc dl = N->getDebugLoc();
2191
2192  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2193  if (VT == MVT::i16)
2194    LC = RTLIB::SREM_I16;
2195  else if (VT == MVT::i32)
2196    LC = RTLIB::SREM_I32;
2197  else if (VT == MVT::i64)
2198    LC = RTLIB::SREM_I64;
2199  else if (VT == MVT::i128)
2200    LC = RTLIB::SREM_I128;
2201  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
2202
2203  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2204  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true, dl), Lo, Hi);
2205}
2206
2207void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
2208                                             SDValue &Lo, SDValue &Hi) {
2209  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2210  DebugLoc dl = N->getDebugLoc();
2211  Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
2212  Hi = DAG.getNode(ISD::SRL, dl,
2213                   N->getOperand(0).getValueType(), N->getOperand(0),
2214                   DAG.getConstant(NVT.getSizeInBits(), TLI.getPointerTy()));
2215  Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi);
2216}
2217
2218void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N,
2219                                             SDValue &Lo, SDValue &Hi) {
2220  SDValue LHS = N->getOperand(0);
2221  SDValue RHS = N->getOperand(1);
2222  DebugLoc dl = N->getDebugLoc();
2223
2224  // Expand the result by simply replacing it with the equivalent
2225  // non-overflow-checking operation.
2226  SDValue Sum = DAG.getNode(N->getOpcode() == ISD::UADDO ?
2227                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2228                            LHS, RHS);
2229  SplitInteger(Sum, Lo, Hi);
2230
2231  // Calculate the overflow: addition overflows iff a + b < a, and subtraction
2232  // overflows iff a - b > a.
2233  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS,
2234                             N->getOpcode () == ISD::UADDO ?
2235                             ISD::SETULT : ISD::SETUGT);
2236
2237  // Use the calculated overflow everywhere.
2238  ReplaceValueWith(SDValue(N, 1), Ofl);
2239}
2240
2241void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N,
2242                                          SDValue &Lo, SDValue &Hi) {
2243  EVT VT = N->getValueType(0);
2244  Type *RetTy = VT.getTypeForEVT(*DAG.getContext());
2245  EVT PtrVT = TLI.getPointerTy();
2246  Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext());
2247  DebugLoc dl = N->getDebugLoc();
2248
2249  // A divide for UMULO should be faster than a function call.
2250  if (N->getOpcode() == ISD::UMULO) {
2251    SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
2252    DebugLoc DL = N->getDebugLoc();
2253
2254    SDValue MUL = DAG.getNode(ISD::MUL, DL, LHS.getValueType(), LHS, RHS);
2255    SplitInteger(MUL, Lo, Hi);
2256
2257    // A divide for UMULO will be faster than a function call. Select to
2258    // make sure we aren't using 0.
2259    SDValue isZero = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2260				  RHS, DAG.getConstant(0, VT), ISD::SETNE);
2261    SDValue NotZero = DAG.getNode(ISD::SELECT, dl, VT, isZero,
2262				  DAG.getConstant(1, VT), RHS);
2263    SDValue DIV = DAG.getNode(ISD::UDIV, DL, LHS.getValueType(), MUL, NotZero);
2264    SDValue Overflow;
2265    Overflow = DAG.getSetCC(DL, N->getValueType(1), DIV, LHS, ISD::SETNE);
2266    ReplaceValueWith(SDValue(N, 1), Overflow);
2267    return;
2268  }
2269
2270  // Replace this with a libcall that will check overflow.
2271  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2272  if (VT == MVT::i32)
2273    LC = RTLIB::MULO_I32;
2274  else if (VT == MVT::i64)
2275    LC = RTLIB::MULO_I64;
2276  else if (VT == MVT::i128)
2277    LC = RTLIB::MULO_I128;
2278  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!");
2279
2280  SDValue Temp = DAG.CreateStackTemporary(PtrVT);
2281  // Temporary for the overflow value, default it to zero.
2282  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl,
2283			       DAG.getConstant(0, PtrVT), Temp,
2284			       MachinePointerInfo(), false, false, 0);
2285
2286  TargetLowering::ArgListTy Args;
2287  TargetLowering::ArgListEntry Entry;
2288  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2289    EVT ArgVT = N->getOperand(i).getValueType();
2290    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2291    Entry.Node = N->getOperand(i);
2292    Entry.Ty = ArgTy;
2293    Entry.isSExt = true;
2294    Entry.isZExt = false;
2295    Args.push_back(Entry);
2296  }
2297
2298  // Also pass the address of the overflow check.
2299  Entry.Node = Temp;
2300  Entry.Ty = PtrTy->getPointerTo();
2301  Entry.isSExt = true;
2302  Entry.isZExt = false;
2303  Args.push_back(Entry);
2304
2305  SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT);
2306  std::pair<SDValue, SDValue> CallInfo =
2307    TLI.LowerCallTo(Chain, RetTy, true, false, false, false,
2308		    0, TLI.getLibcallCallingConv(LC), false,
2309		    true, Func, Args, DAG, dl);
2310
2311  SplitInteger(CallInfo.first, Lo, Hi);
2312  SDValue Temp2 = DAG.getLoad(PtrVT, dl, CallInfo.second, Temp,
2313			      MachinePointerInfo(), false, false, 0);
2314  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2,
2315                             DAG.getConstant(0, PtrVT),
2316                             ISD::SETNE);
2317  // Use the overflow from the libcall everywhere.
2318  ReplaceValueWith(SDValue(N, 1), Ofl);
2319}
2320
2321void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
2322                                         SDValue &Lo, SDValue &Hi) {
2323  EVT VT = N->getValueType(0);
2324  DebugLoc dl = N->getDebugLoc();
2325
2326  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2327  if (VT == MVT::i16)
2328    LC = RTLIB::UDIV_I16;
2329  else if (VT == MVT::i32)
2330    LC = RTLIB::UDIV_I32;
2331  else if (VT == MVT::i64)
2332    LC = RTLIB::UDIV_I64;
2333  else if (VT == MVT::i128)
2334    LC = RTLIB::UDIV_I128;
2335  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
2336
2337  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2338  SplitInteger(MakeLibCall(LC, VT, Ops, 2, false, dl), Lo, Hi);
2339}
2340
2341void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
2342                                         SDValue &Lo, SDValue &Hi) {
2343  EVT VT = N->getValueType(0);
2344  DebugLoc dl = N->getDebugLoc();
2345
2346  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2347  if (VT == MVT::i16)
2348    LC = RTLIB::UREM_I16;
2349  else if (VT == MVT::i32)
2350    LC = RTLIB::UREM_I32;
2351  else if (VT == MVT::i64)
2352    LC = RTLIB::UREM_I64;
2353  else if (VT == MVT::i128)
2354    LC = RTLIB::UREM_I128;
2355  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
2356
2357  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2358  SplitInteger(MakeLibCall(LC, VT, Ops, 2, false, dl), Lo, Hi);
2359}
2360
2361void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
2362                                                SDValue &Lo, SDValue &Hi) {
2363  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2364  DebugLoc dl = N->getDebugLoc();
2365  SDValue Op = N->getOperand(0);
2366  if (Op.getValueType().bitsLE(NVT)) {
2367    // The low part is zero extension of the input (degenerates to a copy).
2368    Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0));
2369    Hi = DAG.getConstant(0, NVT);   // The high part is just a zero.
2370  } else {
2371    // For example, extension of an i48 to an i64.  The operand type necessarily
2372    // promotes to the result type, so will end up being expanded too.
2373    assert(getTypeAction(Op.getValueType()) ==
2374           TargetLowering::TypePromoteInteger &&
2375           "Only know how to promote this result!");
2376    SDValue Res = GetPromotedInteger(Op);
2377    assert(Res.getValueType() == N->getValueType(0) &&
2378           "Operand over promoted?");
2379    // Split the promoted operand.  This will simplify when it is expanded.
2380    SplitInteger(Res, Lo, Hi);
2381    unsigned ExcessBits =
2382      Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2383    Hi = DAG.getZeroExtendInReg(Hi, dl,
2384                                EVT::getIntegerVT(*DAG.getContext(),
2385                                                  ExcessBits));
2386  }
2387}
2388
2389void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N,
2390                                                SDValue &Lo, SDValue &Hi) {
2391  DebugLoc dl = N->getDebugLoc();
2392  EVT VT = cast<AtomicSDNode>(N)->getMemoryVT();
2393  SDValue Zero = DAG.getConstant(0, VT);
2394  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
2395                               N->getOperand(0),
2396                               N->getOperand(1), Zero, Zero,
2397                               cast<AtomicSDNode>(N)->getMemOperand(),
2398                               cast<AtomicSDNode>(N)->getOrdering(),
2399                               cast<AtomicSDNode>(N)->getSynchScope());
2400  ReplaceValueWith(SDValue(N, 0), Swap.getValue(0));
2401  ReplaceValueWith(SDValue(N, 1), Swap.getValue(1));
2402}
2403
2404//===----------------------------------------------------------------------===//
2405//  Integer Operand Expansion
2406//===----------------------------------------------------------------------===//
2407
2408/// ExpandIntegerOperand - This method is called when the specified operand of
2409/// the specified node is found to need expansion.  At this point, all of the
2410/// result types of the node are known to be legal, but other operands of the
2411/// node may need promotion or expansion as well as the specified one.
2412bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
2413  DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n");
2414  SDValue Res = SDValue();
2415
2416  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2417    return false;
2418
2419  switch (N->getOpcode()) {
2420  default:
2421  #ifndef NDEBUG
2422    dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
2423    N->dump(&DAG); dbgs() << "\n";
2424  #endif
2425    llvm_unreachable("Do not know how to expand this operator's operand!");
2426
2427  case ISD::BITCAST:           Res = ExpandOp_BITCAST(N); break;
2428  case ISD::BR_CC:             Res = ExpandIntOp_BR_CC(N); break;
2429  case ISD::BUILD_VECTOR:      Res = ExpandOp_BUILD_VECTOR(N); break;
2430  case ISD::EXTRACT_ELEMENT:   Res = ExpandOp_EXTRACT_ELEMENT(N); break;
2431  case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break;
2432  case ISD::SCALAR_TO_VECTOR:  Res = ExpandOp_SCALAR_TO_VECTOR(N); break;
2433  case ISD::SELECT_CC:         Res = ExpandIntOp_SELECT_CC(N); break;
2434  case ISD::SETCC:             Res = ExpandIntOp_SETCC(N); break;
2435  case ISD::SINT_TO_FP:        Res = ExpandIntOp_SINT_TO_FP(N); break;
2436  case ISD::STORE:   Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break;
2437  case ISD::TRUNCATE:          Res = ExpandIntOp_TRUNCATE(N); break;
2438  case ISD::UINT_TO_FP:        Res = ExpandIntOp_UINT_TO_FP(N); break;
2439
2440  case ISD::SHL:
2441  case ISD::SRA:
2442  case ISD::SRL:
2443  case ISD::ROTL:
2444  case ISD::ROTR:              Res = ExpandIntOp_Shift(N); break;
2445  case ISD::RETURNADDR:
2446  case ISD::FRAMEADDR:         Res = ExpandIntOp_RETURNADDR(N); break;
2447
2448  case ISD::ATOMIC_STORE:      Res = ExpandIntOp_ATOMIC_STORE(N); break;
2449  }
2450
2451  // If the result is null, the sub-method took care of registering results etc.
2452  if (!Res.getNode()) return false;
2453
2454  // If the result is N, the sub-method updated N in place.  Tell the legalizer
2455  // core about this.
2456  if (Res.getNode() == N)
2457    return true;
2458
2459  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2460         "Invalid operand expansion");
2461
2462  ReplaceValueWith(SDValue(N, 0), Res);
2463  return false;
2464}
2465
2466/// IntegerExpandSetCCOperands - Expand the operands of a comparison.  This code
2467/// is shared among BR_CC, SELECT_CC, and SETCC handlers.
2468void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
2469                                                  SDValue &NewRHS,
2470                                                  ISD::CondCode &CCCode,
2471                                                  DebugLoc dl) {
2472  SDValue LHSLo, LHSHi, RHSLo, RHSHi;
2473  GetExpandedInteger(NewLHS, LHSLo, LHSHi);
2474  GetExpandedInteger(NewRHS, RHSLo, RHSHi);
2475
2476  if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
2477    if (RHSLo == RHSHi) {
2478      if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) {
2479        if (RHSCST->isAllOnesValue()) {
2480          // Equality comparison to -1.
2481          NewLHS = DAG.getNode(ISD::AND, dl,
2482                               LHSLo.getValueType(), LHSLo, LHSHi);
2483          NewRHS = RHSLo;
2484          return;
2485        }
2486      }
2487    }
2488
2489    NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
2490    NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
2491    NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS);
2492    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2493    return;
2494  }
2495
2496  // If this is a comparison of the sign bit, just look at the top part.
2497  // X > -1,  x < 0
2498  if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
2499    if ((CCCode == ISD::SETLT && CST->isNullValue()) ||     // X < 0
2500        (CCCode == ISD::SETGT && CST->isAllOnesValue())) {  // X > -1
2501      NewLHS = LHSHi;
2502      NewRHS = RHSHi;
2503      return;
2504    }
2505
2506  // FIXME: This generated code sucks.
2507  ISD::CondCode LowCC;
2508  switch (CCCode) {
2509  default: llvm_unreachable("Unknown integer setcc!");
2510  case ISD::SETLT:
2511  case ISD::SETULT: LowCC = ISD::SETULT; break;
2512  case ISD::SETGT:
2513  case ISD::SETUGT: LowCC = ISD::SETUGT; break;
2514  case ISD::SETLE:
2515  case ISD::SETULE: LowCC = ISD::SETULE; break;
2516  case ISD::SETGE:
2517  case ISD::SETUGE: LowCC = ISD::SETUGE; break;
2518  }
2519
2520  // Tmp1 = lo(op1) < lo(op2)   // Always unsigned comparison
2521  // Tmp2 = hi(op1) < hi(op2)   // Signedness depends on operands
2522  // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
2523
2524  // NOTE: on targets without efficient SELECT of bools, we can always use
2525  // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
2526  TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, true, NULL);
2527  SDValue Tmp1, Tmp2;
2528  Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()),
2529                           LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
2530  if (!Tmp1.getNode())
2531    Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()),
2532                        LHSLo, RHSLo, LowCC);
2533  Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2534                           LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl);
2535  if (!Tmp2.getNode())
2536    Tmp2 = DAG.getNode(ISD::SETCC, dl,
2537                       TLI.getSetCCResultType(LHSHi.getValueType()),
2538                       LHSHi, RHSHi, DAG.getCondCode(CCCode));
2539
2540  ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
2541  ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
2542  if ((Tmp1C && Tmp1C->isNullValue()) ||
2543      (Tmp2C && Tmp2C->isNullValue() &&
2544       (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
2545        CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
2546      (Tmp2C && Tmp2C->getAPIntValue() == 1 &&
2547       (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
2548        CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
2549    // low part is known false, returns high part.
2550    // For LE / GE, if high part is known false, ignore the low part.
2551    // For LT / GT, if high part is known true, ignore the low part.
2552    NewLHS = Tmp2;
2553    NewRHS = SDValue();
2554    return;
2555  }
2556
2557  NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2558                             LHSHi, RHSHi, ISD::SETEQ, false,
2559                             DagCombineInfo, dl);
2560  if (!NewLHS.getNode())
2561    NewLHS = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()),
2562                          LHSHi, RHSHi, ISD::SETEQ);
2563  NewLHS = DAG.getNode(ISD::SELECT, dl, Tmp1.getValueType(),
2564                       NewLHS, Tmp1, Tmp2);
2565  NewRHS = SDValue();
2566}
2567
2568SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
2569  SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
2570  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
2571  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2572
2573  // If ExpandSetCCOperands returned a scalar, we need to compare the result
2574  // against zero to select between true and false values.
2575  if (NewRHS.getNode() == 0) {
2576    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2577    CCCode = ISD::SETNE;
2578  }
2579
2580  // Update N to have the operands specified.
2581  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
2582                                DAG.getCondCode(CCCode), NewLHS, NewRHS,
2583                                N->getOperand(4)), 0);
2584}
2585
2586SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) {
2587  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2588  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
2589  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2590
2591  // If ExpandSetCCOperands returned a scalar, we need to compare the result
2592  // against zero to select between true and false values.
2593  if (NewRHS.getNode() == 0) {
2594    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2595    CCCode = ISD::SETNE;
2596  }
2597
2598  // Update N to have the operands specified.
2599  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2600                                N->getOperand(2), N->getOperand(3),
2601                                DAG.getCondCode(CCCode)), 0);
2602}
2603
2604SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
2605  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2606  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
2607  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2608
2609  // If ExpandSetCCOperands returned a scalar, use it.
2610  if (NewRHS.getNode() == 0) {
2611    assert(NewLHS.getValueType() == N->getValueType(0) &&
2612           "Unexpected setcc expansion!");
2613    return NewLHS;
2614  }
2615
2616  // Otherwise, update N to have the operands specified.
2617  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2618                                DAG.getCondCode(CCCode)), 0);
2619}
2620
2621SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
2622  // The value being shifted is legal, but the shift amount is too big.
2623  // It follows that either the result of the shift is undefined, or the
2624  // upper half of the shift amount is zero.  Just use the lower half.
2625  SDValue Lo, Hi;
2626  GetExpandedInteger(N->getOperand(1), Lo, Hi);
2627  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0);
2628}
2629
2630SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) {
2631  // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant.  This
2632  // surely makes pretty nice problems on 8/16 bit targets. Just truncate this
2633  // constant to valid type.
2634  SDValue Lo, Hi;
2635  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2636  return SDValue(DAG.UpdateNodeOperands(N, Lo), 0);
2637}
2638
2639SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
2640  SDValue Op = N->getOperand(0);
2641  EVT DstVT = N->getValueType(0);
2642  RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
2643  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2644         "Don't know how to expand this SINT_TO_FP!");
2645  return MakeLibCall(LC, DstVT, &Op, 1, true, N->getDebugLoc());
2646}
2647
2648SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
2649  if (ISD::isNormalStore(N))
2650    return ExpandOp_NormalStore(N, OpNo);
2651
2652  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
2653  assert(OpNo == 1 && "Can only expand the stored value so far");
2654
2655  EVT VT = N->getOperand(1).getValueType();
2656  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2657  SDValue Ch  = N->getChain();
2658  SDValue Ptr = N->getBasePtr();
2659  unsigned Alignment = N->getAlignment();
2660  bool isVolatile = N->isVolatile();
2661  bool isNonTemporal = N->isNonTemporal();
2662  DebugLoc dl = N->getDebugLoc();
2663  SDValue Lo, Hi;
2664
2665  assert(NVT.isByteSized() && "Expanded type not byte sized!");
2666
2667  if (N->getMemoryVT().bitsLE(NVT)) {
2668    GetExpandedInteger(N->getValue(), Lo, Hi);
2669    return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2670                             N->getMemoryVT(), isVolatile, isNonTemporal,
2671                             Alignment);
2672  }
2673
2674  if (TLI.isLittleEndian()) {
2675    // Little-endian - low bits are at low addresses.
2676    GetExpandedInteger(N->getValue(), Lo, Hi);
2677
2678    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2679                      isVolatile, isNonTemporal, Alignment);
2680
2681    unsigned ExcessBits =
2682      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
2683    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
2684
2685    // Increment the pointer to the other half.
2686    unsigned IncrementSize = NVT.getSizeInBits()/8;
2687    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2688                      DAG.getIntPtrConstant(IncrementSize));
2689    Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
2690                           N->getPointerInfo().getWithOffset(IncrementSize),
2691                           NEVT, isVolatile, isNonTemporal,
2692                           MinAlign(Alignment, IncrementSize));
2693    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2694  }
2695
2696  // Big-endian - high bits are at low addresses.  Favor aligned stores at
2697  // the cost of some bit-fiddling.
2698  GetExpandedInteger(N->getValue(), Lo, Hi);
2699
2700  EVT ExtVT = N->getMemoryVT();
2701  unsigned EBytes = ExtVT.getStoreSize();
2702  unsigned IncrementSize = NVT.getSizeInBits()/8;
2703  unsigned ExcessBits = (EBytes - IncrementSize)*8;
2704  EVT HiVT = EVT::getIntegerVT(*DAG.getContext(),
2705                               ExtVT.getSizeInBits() - ExcessBits);
2706
2707  if (ExcessBits < NVT.getSizeInBits()) {
2708    // Transfer high bits from the top of Lo to the bottom of Hi.
2709    Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi,
2710                     DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
2711                                     TLI.getPointerTy()));
2712    Hi = DAG.getNode(ISD::OR, dl, NVT, Hi,
2713                     DAG.getNode(ISD::SRL, dl, NVT, Lo,
2714                                 DAG.getConstant(ExcessBits,
2715                                                 TLI.getPointerTy())));
2716  }
2717
2718  // Store both the high bits and maybe some of the low bits.
2719  Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(),
2720                         HiVT, isVolatile, isNonTemporal, Alignment);
2721
2722  // Increment the pointer to the other half.
2723  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2724                    DAG.getIntPtrConstant(IncrementSize));
2725  // Store the lowest ExcessBits bits in the second half.
2726  Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
2727                         N->getPointerInfo().getWithOffset(IncrementSize),
2728                         EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
2729                         isVolatile, isNonTemporal,
2730                         MinAlign(Alignment, IncrementSize));
2731  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2732}
2733
2734SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
2735  SDValue InL, InH;
2736  GetExpandedInteger(N->getOperand(0), InL, InH);
2737  // Just truncate the low part of the source.
2738  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), InL);
2739}
2740
2741static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
2742  switch (VT.getSimpleVT().SimpleTy) {
2743  default: llvm_unreachable("Unknown FP format");
2744  case MVT::f32:     return &APFloat::IEEEsingle;
2745  case MVT::f64:     return &APFloat::IEEEdouble;
2746  case MVT::f80:     return &APFloat::x87DoubleExtended;
2747  case MVT::f128:    return &APFloat::IEEEquad;
2748  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
2749  }
2750}
2751
2752SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
2753  SDValue Op = N->getOperand(0);
2754  EVT SrcVT = Op.getValueType();
2755  EVT DstVT = N->getValueType(0);
2756  DebugLoc dl = N->getDebugLoc();
2757
2758  // The following optimization is valid only if every value in SrcVT (when
2759  // treated as signed) is representable in DstVT.  Check that the mantissa
2760  // size of DstVT is >= than the number of bits in SrcVT -1.
2761  const fltSemantics *sem = EVTToAPFloatSemantics(DstVT);
2762  if (APFloat::semanticsPrecision(*sem) >= SrcVT.getSizeInBits()-1 &&
2763      TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
2764    // Do a signed conversion then adjust the result.
2765    SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
2766    SignedConv = TLI.LowerOperation(SignedConv, DAG);
2767
2768    // The result of the signed conversion needs adjusting if the 'sign bit' of
2769    // the incoming integer was set.  To handle this, we dynamically test to see
2770    // if it is set, and, if so, add a fudge factor.
2771
2772    const uint64_t F32TwoE32  = 0x4F800000ULL;
2773    const uint64_t F32TwoE64  = 0x5F800000ULL;
2774    const uint64_t F32TwoE128 = 0x7F800000ULL;
2775
2776    APInt FF(32, 0);
2777    if (SrcVT == MVT::i32)
2778      FF = APInt(32, F32TwoE32);
2779    else if (SrcVT == MVT::i64)
2780      FF = APInt(32, F32TwoE64);
2781    else if (SrcVT == MVT::i128)
2782      FF = APInt(32, F32TwoE128);
2783    else
2784      assert(false && "Unsupported UINT_TO_FP!");
2785
2786    // Check whether the sign bit is set.
2787    SDValue Lo, Hi;
2788    GetExpandedInteger(Op, Lo, Hi);
2789    SDValue SignSet = DAG.getSetCC(dl,
2790                                   TLI.getSetCCResultType(Hi.getValueType()),
2791                                   Hi, DAG.getConstant(0, Hi.getValueType()),
2792                                   ISD::SETLT);
2793
2794    // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
2795    SDValue FudgePtr = DAG.getConstantPool(
2796                               ConstantInt::get(*DAG.getContext(), FF.zext(64)),
2797                                           TLI.getPointerTy());
2798
2799    // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
2800    SDValue Zero = DAG.getIntPtrConstant(0);
2801    SDValue Four = DAG.getIntPtrConstant(4);
2802    if (TLI.isBigEndian()) std::swap(Zero, Four);
2803    SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
2804                                 Zero, Four);
2805    unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
2806    FudgePtr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), FudgePtr, Offset);
2807    Alignment = std::min(Alignment, 4u);
2808
2809    // Load the value out, extending it from f32 to the destination float type.
2810    // FIXME: Avoid the extend by constructing the right constant pool?
2811    SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(),
2812                                   FudgePtr,
2813                                   MachinePointerInfo::getConstantPool(),
2814                                   MVT::f32,
2815                                   false, false, Alignment);
2816    return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
2817  }
2818
2819  // Otherwise, use a libcall.
2820  RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
2821  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2822         "Don't know how to expand this UINT_TO_FP!");
2823  return MakeLibCall(LC, DstVT, &Op, 1, true, dl);
2824}
2825
2826SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) {
2827  DebugLoc dl = N->getDebugLoc();
2828  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2829                               cast<AtomicSDNode>(N)->getMemoryVT(),
2830                               N->getOperand(0),
2831                               N->getOperand(1), N->getOperand(2),
2832                               cast<AtomicSDNode>(N)->getMemOperand(),
2833                               cast<AtomicSDNode>(N)->getOrdering(),
2834                               cast<AtomicSDNode>(N)->getSynchScope());
2835  return Swap.getValue(1);
2836}
2837
2838
2839SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) {
2840  SDValue InOp0 = N->getOperand(0);
2841  EVT InVT = InOp0.getValueType();
2842
2843  EVT OutVT = N->getValueType(0);
2844  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2845  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2846  unsigned OutNumElems = OutVT.getVectorNumElements();
2847  EVT NOutVTElem = NOutVT.getVectorElementType();
2848
2849  DebugLoc dl = N->getDebugLoc();
2850  SDValue BaseIdx = N->getOperand(1);
2851
2852  SmallVector<SDValue, 8> Ops;
2853  Ops.reserve(OutNumElems);
2854  for (unsigned i = 0; i != OutNumElems; ++i) {
2855
2856    // Extract the element from the original vector.
2857    SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(),
2858      BaseIdx, DAG.getIntPtrConstant(i));
2859    SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2860      InVT.getVectorElementType(), N->getOperand(0), Index);
2861
2862    SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, Ext);
2863    // Insert the converted element to the new vector.
2864    Ops.push_back(Op);
2865  }
2866
2867  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2868}
2869
2870
2871SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) {
2872  ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
2873  EVT VT = N->getValueType(0);
2874  DebugLoc dl = N->getDebugLoc();
2875
2876  unsigned NumElts = VT.getVectorNumElements();
2877  SmallVector<int, 8> NewMask;
2878  for (unsigned i = 0; i != NumElts; ++i) {
2879    NewMask.push_back(SV->getMaskElt(i));
2880  }
2881
2882  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2883  SDValue V1 = GetPromotedInteger(N->getOperand(1));
2884  EVT OutVT = V0.getValueType();
2885
2886  return DAG.getVectorShuffle(OutVT, dl, V0, V1, &NewMask[0]);
2887}
2888
2889
2890SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) {
2891  EVT OutVT = N->getValueType(0);
2892  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2893  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2894  unsigned NumElems = N->getNumOperands();
2895  EVT NOutVTElem = NOutVT.getVectorElementType();
2896
2897  DebugLoc dl = N->getDebugLoc();
2898
2899  SmallVector<SDValue, 8> Ops;
2900  Ops.reserve(NumElems);
2901  for (unsigned i = 0; i != NumElems; ++i) {
2902    SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i));
2903    Ops.push_back(Op);
2904  }
2905
2906  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2907}
2908
2909SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) {
2910
2911  DebugLoc dl = N->getDebugLoc();
2912
2913  assert(!N->getOperand(0).getValueType().isVector() &&
2914         "Input must be a scalar");
2915
2916  EVT OutVT = N->getValueType(0);
2917  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2918  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2919  EVT NOutVTElem = NOutVT.getVectorElementType();
2920
2921  SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0));
2922
2923  return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op);
2924}
2925
2926SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) {
2927  DebugLoc dl = N->getDebugLoc();
2928
2929  SDValue Op0 = N->getOperand(1);
2930  SDValue Op1 = N->getOperand(1);
2931  assert(Op0.getValueType() == Op1.getValueType() &&
2932         "Invalid input vector types");
2933
2934  EVT OutVT = N->getValueType(0);
2935  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2936  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2937
2938  EVT OutElemTy = NOutVT.getVectorElementType();
2939
2940  unsigned NumElem0 = Op0.getValueType().getVectorNumElements();
2941  unsigned NumElem1 = Op1.getValueType().getVectorNumElements();
2942  unsigned NumOutElem = NOutVT.getVectorNumElements();
2943  assert(NumElem0 + NumElem1 == NumOutElem &&
2944         "Invalid number of incoming elements");
2945
2946  // Take the elements from the first vector.
2947  SmallVector<SDValue, 8> Ops(NumOutElem);
2948  for (unsigned i = 0; i < NumElem0; ++i) {
2949    SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2950                              Op0.getValueType().getScalarType(), Op0,
2951                              DAG.getIntPtrConstant(i));
2952    Ops[i] = DAG.getNode(ISD::ANY_EXTEND, dl, OutElemTy, Ext);
2953  }
2954
2955  // Take the elements from the second vector
2956  for (unsigned i = 0; i < NumElem1; ++i) {
2957    SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2958                              Op1.getValueType().getScalarType(), Op1,
2959                              DAG.getIntPtrConstant(i));
2960    Ops[i + NumElem0] = DAG.getNode(ISD::ANY_EXTEND, dl, OutElemTy, Ext);
2961  }
2962
2963  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2964}
2965
2966SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
2967  EVT OutVT = N->getValueType(0);
2968  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2969  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2970
2971  EVT NOutVTElem = NOutVT.getVectorElementType();
2972
2973  DebugLoc dl = N->getDebugLoc();
2974  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2975
2976  SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl,
2977    NOutVTElem, N->getOperand(1));
2978  return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NOutVT,
2979    V0, ConvElem, N->getOperand(2));
2980}
2981
2982SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) {
2983  DebugLoc dl = N->getDebugLoc();
2984  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2985  SDValue V1 = N->getOperand(1);
2986  SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2987    V0->getValueType(0).getScalarType(), V0, V1);
2988
2989  // EXTRACT_VECTOR_ELT can return types which are wider than the incoming
2990  // element types. If this is the case then we need to expand the outgoing
2991  // value and not truncate it.
2992  return DAG.getAnyExtOrTrunc(Ext, dl, N->getValueType(0));
2993}
2994
2995SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) {
2996  DebugLoc dl = N->getDebugLoc();
2997  unsigned NumElems = N->getNumOperands();
2998
2999  EVT RetSclrTy = N->getValueType(0).getVectorElementType();
3000
3001  SmallVector<SDValue, 8> NewOps;
3002  NewOps.reserve(NumElems);
3003
3004  // For each incoming vector
3005  for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) {
3006    SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx));
3007    EVT SclrTy = Incoming->getValueType(0).getVectorElementType();
3008    unsigned NumElem = Incoming->getValueType(0).getVectorNumElements();
3009
3010    for (unsigned i=0; i<NumElem; ++i) {
3011      // Extract element from incoming vector
3012      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SclrTy,
3013      Incoming, DAG.getIntPtrConstant(i));
3014      SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex);
3015      NewOps.push_back(Tr);
3016    }
3017  }
3018
3019  return DAG.getNode(ISD::BUILD_VECTOR, dl,  N->getValueType(0),
3020    &NewOps[0], NewOps.size());
3021  }
3022