LegalizeTypes.cpp revision 027657db7cf60bcbf40403496d7e4a170f9ce1ec
1//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11// an arbitrary well-formed SelectionDAG to only consist of legal types.  This
12// is common code shared among the LegalizeTypes*.cpp files.
13//
14//===----------------------------------------------------------------------===//
15
16#include "LegalizeTypes.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/Support/CommandLine.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace llvm;
24
25static cl::opt<bool>
26EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
27
28/// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
29void DAGTypeLegalizer::PerformExpensiveChecks() {
30  // If a node is not processed, then none of its values should be mapped by any
31  // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
32
33  // If a node is processed, then each value with an illegal type must be mapped
34  // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
35  // Values with a legal type may be mapped by ReplacedValues, but not by any of
36  // the other maps.
37
38  // Note that these invariants may not hold momentarily when processing a node:
39  // the node being processed may be put in a map before being marked Processed.
40
41  // Note that it is possible to have nodes marked NewNode in the DAG.  This can
42  // occur in two ways.  Firstly, a node may be created during legalization but
43  // never passed to the legalization core.  This is usually due to the implicit
44  // folding that occurs when using the DAG.getNode operators.  Secondly, a new
45  // node may be passed to the legalization core, but when analyzed may morph
46  // into a different node, leaving the original node as a NewNode in the DAG.
47  // A node may morph if one of its operands changes during analysis.  Whether
48  // it actually morphs or not depends on whether, after updating its operands,
49  // it is equivalent to an existing node: if so, it morphs into that existing
50  // node (CSE).  An operand can change during analysis if the operand is a new
51  // node that morphs, or it is a processed value that was mapped to some other
52  // value (as recorded in ReplacedValues) in which case the operand is turned
53  // into that other value.  If a node morphs then the node it morphed into will
54  // be used instead of it for legalization, however the original node continues
55  // to live on in the DAG.
56  // The conclusion is that though there may be nodes marked NewNode in the DAG,
57  // all uses of such nodes are also marked NewNode: the result is a fungus of
58  // NewNodes growing on top of the useful nodes, and perhaps using them, but
59  // not used by them.
60
61  // If a value is mapped by ReplacedValues, then it must have no uses, except
62  // by nodes marked NewNode (see above).
63
64  // The final node obtained by mapping by ReplacedValues is not marked NewNode.
65  // Note that ReplacedValues should be applied iteratively.
66
67  // Note that the ReplacedValues map may also map deleted nodes (by iterating
68  // over the DAG we never dereference deleted nodes).  This means that it may
69  // also map nodes marked NewNode if the deallocated memory was reallocated as
70  // another node, and that new node was not seen by the LegalizeTypes machinery
71  // (for example because it was created but not used).  In general, we cannot
72  // distinguish between new nodes and deleted nodes.
73  SmallVector<SDNode*, 16> NewNodes;
74  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
75       E = DAG.allnodes_end(); I != E; ++I) {
76    // Remember nodes marked NewNode - they are subject to extra checking below.
77    if (I->getNodeId() == NewNode)
78      NewNodes.push_back(I);
79
80    for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) {
81      SDValue Res(I, i);
82      bool Failed = false;
83
84      unsigned Mapped = 0;
85      if (ReplacedValues.find(Res) != ReplacedValues.end()) {
86        Mapped |= 1;
87        // Check that remapped values are only used by nodes marked NewNode.
88        for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end();
89             UI != UE; ++UI)
90          if (UI.getUse().getResNo() == i)
91            assert(UI->getNodeId() == NewNode &&
92                   "Remapped value has non-trivial use!");
93
94        // Check that the final result of applying ReplacedValues is not
95        // marked NewNode.
96        SDValue NewVal = ReplacedValues[Res];
97        DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
98        while (I != ReplacedValues.end()) {
99          NewVal = I->second;
100          I = ReplacedValues.find(NewVal);
101        }
102        assert(NewVal.getNode()->getNodeId() != NewNode &&
103               "ReplacedValues maps to a new node!");
104      }
105      if (PromotedIntegers.find(Res) != PromotedIntegers.end())
106        Mapped |= 2;
107      if (SoftenedFloats.find(Res) != SoftenedFloats.end())
108        Mapped |= 4;
109      if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
110        Mapped |= 8;
111      if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
112        Mapped |= 16;
113      if (ExpandedFloats.find(Res) != ExpandedFloats.end())
114        Mapped |= 32;
115      if (SplitVectors.find(Res) != SplitVectors.end())
116        Mapped |= 64;
117      if (WidenedVectors.find(Res) != WidenedVectors.end())
118        Mapped |= 128;
119
120      if (I->getNodeId() != Processed) {
121        // Since we allow ReplacedValues to map deleted nodes, it may map nodes
122        // marked NewNode too, since a deleted node may have been reallocated as
123        // another node that has not been seen by the LegalizeTypes machinery.
124        if ((I->getNodeId() == NewNode && Mapped > 1) ||
125            (I->getNodeId() != NewNode && Mapped != 0)) {
126          dbgs() << "Unprocessed value in a map!";
127          Failed = true;
128        }
129      } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
130        if (Mapped > 1) {
131          dbgs() << "Value with legal type was transformed!";
132          Failed = true;
133        }
134      } else {
135        if (Mapped == 0) {
136          dbgs() << "Processed value not in any map!";
137          Failed = true;
138        } else if (Mapped & (Mapped - 1)) {
139          dbgs() << "Value in multiple maps!";
140          Failed = true;
141        }
142      }
143
144      if (Failed) {
145        if (Mapped & 1)
146          dbgs() << " ReplacedValues";
147        if (Mapped & 2)
148          dbgs() << " PromotedIntegers";
149        if (Mapped & 4)
150          dbgs() << " SoftenedFloats";
151        if (Mapped & 8)
152          dbgs() << " ScalarizedVectors";
153        if (Mapped & 16)
154          dbgs() << " ExpandedIntegers";
155        if (Mapped & 32)
156          dbgs() << " ExpandedFloats";
157        if (Mapped & 64)
158          dbgs() << " SplitVectors";
159        if (Mapped & 128)
160          dbgs() << " WidenedVectors";
161        dbgs() << "\n";
162        llvm_unreachable(0);
163      }
164    }
165  }
166
167  // Checked that NewNodes are only used by other NewNodes.
168  for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
169    SDNode *N = NewNodes[i];
170    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
171         UI != UE; ++UI)
172      assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
173  }
174}
175
176/// run - This is the main entry point for the type legalizer.  This does a
177/// top-down traversal of the dag, legalizing types as it goes.  Returns "true"
178/// if it made any changes.
179bool DAGTypeLegalizer::run() {
180  bool Changed = false;
181
182  // Create a dummy node (which is not added to allnodes), that adds a reference
183  // to the root node, preventing it from being deleted, and tracking any
184  // changes of the root.
185  HandleSDNode Dummy(DAG.getRoot());
186  Dummy.setNodeId(Unanalyzed);
187
188  // The root of the dag may dangle to deleted nodes until the type legalizer is
189  // done.  Set it to null to avoid confusion.
190  DAG.setRoot(SDValue());
191
192  // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
193  // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
194  // non-leaves.
195  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
196       E = DAG.allnodes_end(); I != E; ++I) {
197    if (I->getNumOperands() == 0) {
198      I->setNodeId(ReadyToProcess);
199      Worklist.push_back(I);
200    } else {
201      I->setNodeId(Unanalyzed);
202    }
203  }
204
205  // Now that we have a set of nodes to process, handle them all.
206  while (!Worklist.empty()) {
207#ifndef XDEBUG
208    if (EnableExpensiveChecks)
209#endif
210      PerformExpensiveChecks();
211
212    SDNode *N = Worklist.back();
213    Worklist.pop_back();
214    assert(N->getNodeId() == ReadyToProcess &&
215           "Node should be ready if on worklist!");
216
217    if (IgnoreNodeResults(N))
218      goto ScanOperands;
219
220    // Scan the values produced by the node, checking to see if any result
221    // types are illegal.
222    for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
223      EVT ResultVT = N->getValueType(i);
224      switch (getTypeAction(ResultVT)) {
225      default:
226        assert(false && "Unknown action!");
227      case Legal:
228        break;
229      // The following calls must take care of *all* of the node's results,
230      // not just the illegal result they were passed (this includes results
231      // with a legal type).  Results can be remapped using ReplaceValueWith,
232      // or their promoted/expanded/etc values registered in PromotedIntegers,
233      // ExpandedIntegers etc.
234      case PromoteInteger:
235        PromoteIntegerResult(N, i);
236        Changed = true;
237        goto NodeDone;
238      case ExpandInteger:
239        ExpandIntegerResult(N, i);
240        Changed = true;
241        goto NodeDone;
242      case SoftenFloat:
243        SoftenFloatResult(N, i);
244        Changed = true;
245        goto NodeDone;
246      case ExpandFloat:
247        ExpandFloatResult(N, i);
248        Changed = true;
249        goto NodeDone;
250      case ScalarizeVector:
251        ScalarizeVectorResult(N, i);
252        Changed = true;
253        goto NodeDone;
254      case SplitVector:
255        SplitVectorResult(N, i);
256        Changed = true;
257        goto NodeDone;
258      case WidenVector:
259        WidenVectorResult(N, i);
260        Changed = true;
261        goto NodeDone;
262      }
263    }
264
265ScanOperands:
266    // Scan the operand list for the node, handling any nodes with operands that
267    // are illegal.
268    {
269    unsigned NumOperands = N->getNumOperands();
270    bool NeedsReanalyzing = false;
271    unsigned i;
272    for (i = 0; i != NumOperands; ++i) {
273      if (IgnoreNodeResults(N->getOperand(i).getNode()))
274        continue;
275
276      EVT OpVT = N->getOperand(i).getValueType();
277      switch (getTypeAction(OpVT)) {
278      default:
279        assert(false && "Unknown action!");
280      case Legal:
281        continue;
282      // The following calls must either replace all of the node's results
283      // using ReplaceValueWith, and return "false"; or update the node's
284      // operands in place, and return "true".
285      case PromoteInteger:
286        NeedsReanalyzing = PromoteIntegerOperand(N, i);
287        Changed = true;
288        break;
289      case ExpandInteger:
290        NeedsReanalyzing = ExpandIntegerOperand(N, i);
291        Changed = true;
292        break;
293      case SoftenFloat:
294        NeedsReanalyzing = SoftenFloatOperand(N, i);
295        Changed = true;
296        break;
297      case ExpandFloat:
298        NeedsReanalyzing = ExpandFloatOperand(N, i);
299        Changed = true;
300        break;
301      case ScalarizeVector:
302        NeedsReanalyzing = ScalarizeVectorOperand(N, i);
303        Changed = true;
304        break;
305      case SplitVector:
306        NeedsReanalyzing = SplitVectorOperand(N, i);
307        Changed = true;
308        break;
309      case WidenVector:
310        NeedsReanalyzing = WidenVectorOperand(N, i);
311        Changed = true;
312        break;
313      }
314      break;
315    }
316
317    // The sub-method updated N in place.  Check to see if any operands are new,
318    // and if so, mark them.  If the node needs revisiting, don't add all users
319    // to the worklist etc.
320    if (NeedsReanalyzing) {
321      assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
322      N->setNodeId(NewNode);
323      // Recompute the NodeId and correct processed operands, adding the node to
324      // the worklist if ready.
325      SDNode *M = AnalyzeNewNode(N);
326      if (M == N)
327        // The node didn't morph - nothing special to do, it will be revisited.
328        continue;
329
330      // The node morphed - this is equivalent to legalizing by replacing every
331      // value of N with the corresponding value of M.  So do that now.
332      assert(N->getNumValues() == M->getNumValues() &&
333             "Node morphing changed the number of results!");
334      for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
335        // Replacing the value takes care of remapping the new value.
336        ReplaceValueWith(SDValue(N, i), SDValue(M, i));
337      assert(N->getNodeId() == NewNode && "Unexpected node state!");
338      // The node continues to live on as part of the NewNode fungus that
339      // grows on top of the useful nodes.  Nothing more needs to be done
340      // with it - move on to the next node.
341      continue;
342    }
343
344    if (i == NumOperands) {
345      DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n");
346    }
347    }
348NodeDone:
349
350    // If we reach here, the node was processed, potentially creating new nodes.
351    // Mark it as processed and add its users to the worklist as appropriate.
352    assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
353    N->setNodeId(Processed);
354
355    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
356         UI != E; ++UI) {
357      SDNode *User = *UI;
358      int NodeId = User->getNodeId();
359
360      // This node has two options: it can either be a new node or its Node ID
361      // may be a count of the number of operands it has that are not ready.
362      if (NodeId > 0) {
363        User->setNodeId(NodeId-1);
364
365        // If this was the last use it was waiting on, add it to the ready list.
366        if (NodeId-1 == ReadyToProcess)
367          Worklist.push_back(User);
368        continue;
369      }
370
371      // If this is an unreachable new node, then ignore it.  If it ever becomes
372      // reachable by being used by a newly created node then it will be handled
373      // by AnalyzeNewNode.
374      if (NodeId == NewNode)
375        continue;
376
377      // Otherwise, this node is new: this is the first operand of it that
378      // became ready.  Its new NodeId is the number of operands it has minus 1
379      // (as this node is now processed).
380      assert(NodeId == Unanalyzed && "Unknown node ID!");
381      User->setNodeId(User->getNumOperands() - 1);
382
383      // If the node only has a single operand, it is now ready.
384      if (User->getNumOperands() == 1)
385        Worklist.push_back(User);
386    }
387  }
388
389#ifndef XDEBUG
390  if (EnableExpensiveChecks)
391#endif
392    PerformExpensiveChecks();
393
394  // If the root changed (e.g. it was a dead load) update the root.
395  DAG.setRoot(Dummy.getValue());
396
397  // Remove dead nodes.  This is important to do for cleanliness but also before
398  // the checking loop below.  Implicit folding by the DAG.getNode operators and
399  // node morphing can cause unreachable nodes to be around with their flags set
400  // to new.
401  DAG.RemoveDeadNodes();
402
403  // In a debug build, scan all the nodes to make sure we found them all.  This
404  // ensures that there are no cycles and that everything got processed.
405#ifndef NDEBUG
406  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
407       E = DAG.allnodes_end(); I != E; ++I) {
408    bool Failed = false;
409
410    // Check that all result types are legal.
411    if (!IgnoreNodeResults(I))
412      for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
413        if (!isTypeLegal(I->getValueType(i))) {
414          dbgs() << "Result type " << i << " illegal!\n";
415          Failed = true;
416        }
417
418    // Check that all operand types are legal.
419    for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
420      if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
421          !isTypeLegal(I->getOperand(i).getValueType())) {
422        dbgs() << "Operand type " << i << " illegal!\n";
423        Failed = true;
424      }
425
426    if (I->getNodeId() != Processed) {
427       if (I->getNodeId() == NewNode)
428         dbgs() << "New node not analyzed?\n";
429       else if (I->getNodeId() == Unanalyzed)
430         dbgs() << "Unanalyzed node not noticed?\n";
431       else if (I->getNodeId() > 0)
432         dbgs() << "Operand not processed?\n";
433       else if (I->getNodeId() == ReadyToProcess)
434         dbgs() << "Not added to worklist?\n";
435       Failed = true;
436    }
437
438    if (Failed) {
439      I->dump(&DAG); dbgs() << "\n";
440      llvm_unreachable(0);
441    }
442  }
443#endif
444
445  return Changed;
446}
447
448/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
449/// new nodes.  Correct any processed operands (this may change the node) and
450/// calculate the NodeId.  If the node itself changes to a processed node, it
451/// is not remapped - the caller needs to take care of this.
452/// Returns the potentially changed node.
453SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
454  // If this was an existing node that is already done, we're done.
455  if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
456    return N;
457
458  // Remove any stale map entries.
459  ExpungeNode(N);
460
461  // Okay, we know that this node is new.  Recursively walk all of its operands
462  // to see if they are new also.  The depth of this walk is bounded by the size
463  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
464  // about revisiting of nodes.
465  //
466  // As we walk the operands, keep track of the number of nodes that are
467  // processed.  If non-zero, this will become the new nodeid of this node.
468  // Operands may morph when they are analyzed.  If so, the node will be
469  // updated after all operands have been analyzed.  Since this is rare,
470  // the code tries to minimize overhead in the non-morphing case.
471
472  SmallVector<SDValue, 8> NewOps;
473  unsigned NumProcessed = 0;
474  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
475    SDValue OrigOp = N->getOperand(i);
476    SDValue Op = OrigOp;
477
478    AnalyzeNewValue(Op); // Op may morph.
479
480    if (Op.getNode()->getNodeId() == Processed)
481      ++NumProcessed;
482
483    if (!NewOps.empty()) {
484      // Some previous operand changed.  Add this one to the list.
485      NewOps.push_back(Op);
486    } else if (Op != OrigOp) {
487      // This is the first operand to change - add all operands so far.
488      NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
489      NewOps.push_back(Op);
490    }
491  }
492
493  // Some operands changed - update the node.
494  if (!NewOps.empty()) {
495    SDNode *M = DAG.UpdateNodeOperands(N, &NewOps[0], NewOps.size());
496    if (M != N) {
497      // The node morphed into a different node.  Normally for this to happen
498      // the original node would have to be marked NewNode.  However this can
499      // in theory momentarily not be the case while ReplaceValueWith is doing
500      // its stuff.  Mark the original node NewNode to help sanity checking.
501      N->setNodeId(NewNode);
502      if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
503        // It morphed into a previously analyzed node - nothing more to do.
504        return M;
505
506      // It morphed into a different new node.  Do the equivalent of passing
507      // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
508      // to remap the operands, since they are the same as the operands we
509      // remapped above.
510      N = M;
511      ExpungeNode(N);
512    }
513  }
514
515  // Calculate the NodeId.
516  N->setNodeId(N->getNumOperands() - NumProcessed);
517  if (N->getNodeId() == ReadyToProcess)
518    Worklist.push_back(N);
519
520  return N;
521}
522
523/// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
524/// If the node changes to a processed node, then remap it.
525void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
526  Val.setNode(AnalyzeNewNode(Val.getNode()));
527  if (Val.getNode()->getNodeId() == Processed)
528    // We were passed a processed node, or it morphed into one - remap it.
529    RemapValue(Val);
530}
531
532/// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
533/// This can occur when a node is deleted then reallocated as a new node -
534/// the mapping in ReplacedValues applies to the deleted node, not the new
535/// one.
536/// The only map that can have a deleted node as a source is ReplacedValues.
537/// Other maps can have deleted nodes as targets, but since their looked-up
538/// values are always immediately remapped using RemapValue, resulting in a
539/// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
540/// always performs correct mappings.  In order to keep the mapping correct,
541/// ExpungeNode should be called on any new nodes *before* adding them as
542/// either source or target to ReplacedValues (which typically means calling
543/// Expunge when a new node is first seen, since it may no longer be marked
544/// NewNode by the time it is added to ReplacedValues).
545void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
546  if (N->getNodeId() != NewNode)
547    return;
548
549  // If N is not remapped by ReplacedValues then there is nothing to do.
550  unsigned i, e;
551  for (i = 0, e = N->getNumValues(); i != e; ++i)
552    if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
553      break;
554
555  if (i == e)
556    return;
557
558  // Remove N from all maps - this is expensive but rare.
559
560  for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
561       E = PromotedIntegers.end(); I != E; ++I) {
562    assert(I->first.getNode() != N);
563    RemapValue(I->second);
564  }
565
566  for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
567       E = SoftenedFloats.end(); I != E; ++I) {
568    assert(I->first.getNode() != N);
569    RemapValue(I->second);
570  }
571
572  for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
573       E = ScalarizedVectors.end(); I != E; ++I) {
574    assert(I->first.getNode() != N);
575    RemapValue(I->second);
576  }
577
578  for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
579       E = WidenedVectors.end(); I != E; ++I) {
580    assert(I->first.getNode() != N);
581    RemapValue(I->second);
582  }
583
584  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
585       I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
586    assert(I->first.getNode() != N);
587    RemapValue(I->second.first);
588    RemapValue(I->second.second);
589  }
590
591  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
592       I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
593    assert(I->first.getNode() != N);
594    RemapValue(I->second.first);
595    RemapValue(I->second.second);
596  }
597
598  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
599       I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
600    assert(I->first.getNode() != N);
601    RemapValue(I->second.first);
602    RemapValue(I->second.second);
603  }
604
605  for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
606       E = ReplacedValues.end(); I != E; ++I)
607    RemapValue(I->second);
608
609  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
610    ReplacedValues.erase(SDValue(N, i));
611}
612
613/// RemapValue - If the specified value was already legalized to another value,
614/// replace it by that value.
615void DAGTypeLegalizer::RemapValue(SDValue &N) {
616  DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
617  if (I != ReplacedValues.end()) {
618    // Use path compression to speed up future lookups if values get multiply
619    // replaced with other values.
620    RemapValue(I->second);
621    N = I->second;
622    assert(N.getNode()->getNodeId() != NewNode && "Mapped to new node!");
623  }
624}
625
626namespace {
627  /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
628  /// updates to nodes and recomputes their ready state.
629  class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
630    DAGTypeLegalizer &DTL;
631    SmallSetVector<SDNode*, 16> &NodesToAnalyze;
632  public:
633    explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
634                                SmallSetVector<SDNode*, 16> &nta)
635      : DTL(dtl), NodesToAnalyze(nta) {}
636
637    virtual void NodeDeleted(SDNode *N, SDNode *E) {
638      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
639             N->getNodeId() != DAGTypeLegalizer::Processed &&
640             "Invalid node ID for RAUW deletion!");
641      // It is possible, though rare, for the deleted node N to occur as a
642      // target in a map, so note the replacement N -> E in ReplacedValues.
643      assert(E && "Node not replaced?");
644      DTL.NoteDeletion(N, E);
645
646      // In theory the deleted node could also have been scheduled for analysis.
647      // So remove it from the set of nodes which will be analyzed.
648      NodesToAnalyze.remove(N);
649
650      // In general nothing needs to be done for E, since it didn't change but
651      // only gained new uses.  However N -> E was just added to ReplacedValues,
652      // and the result of a ReplacedValues mapping is not allowed to be marked
653      // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
654      if (E->getNodeId() == DAGTypeLegalizer::NewNode)
655        NodesToAnalyze.insert(E);
656    }
657
658    virtual void NodeUpdated(SDNode *N) {
659      // Node updates can mean pretty much anything.  It is possible that an
660      // operand was set to something already processed (f.e.) in which case
661      // this node could become ready.  Recompute its flags.
662      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
663             N->getNodeId() != DAGTypeLegalizer::Processed &&
664             "Invalid node ID for RAUW deletion!");
665      N->setNodeId(DAGTypeLegalizer::NewNode);
666      NodesToAnalyze.insert(N);
667    }
668  };
669}
670
671
672/// ReplaceValueWith - The specified value was legalized to the specified other
673/// value.  Update the DAG and NodeIds replacing any uses of From to use To
674/// instead.
675void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
676  assert(From.getNode() != To.getNode() && "Potential legalization loop!");
677
678  // If expansion produced new nodes, make sure they are properly marked.
679  ExpungeNode(From.getNode());
680  AnalyzeNewValue(To); // Expunges To.
681
682  // Anything that used the old node should now use the new one.  Note that this
683  // can potentially cause recursive merging.
684  SmallSetVector<SDNode*, 16> NodesToAnalyze;
685  NodeUpdateListener NUL(*this, NodesToAnalyze);
686  do {
687    DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
688
689    // The old node may still be present in a map like ExpandedIntegers or
690    // PromotedIntegers.  Inform maps about the replacement.
691    ReplacedValues[From] = To;
692
693    // Process the list of nodes that need to be reanalyzed.
694    while (!NodesToAnalyze.empty()) {
695      SDNode *N = NodesToAnalyze.back();
696      NodesToAnalyze.pop_back();
697      if (N->getNodeId() != DAGTypeLegalizer::NewNode)
698        // The node was analyzed while reanalyzing an earlier node - it is safe
699        // to skip.  Note that this is not a morphing node - otherwise it would
700        // still be marked NewNode.
701        continue;
702
703      // Analyze the node's operands and recalculate the node ID.
704      SDNode *M = AnalyzeNewNode(N);
705      if (M != N) {
706        // The node morphed into a different node.  Make everyone use the new
707        // node instead.
708        assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
709        assert(N->getNumValues() == M->getNumValues() &&
710               "Node morphing changed the number of results!");
711        for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
712          SDValue OldVal(N, i);
713          SDValue NewVal(M, i);
714          if (M->getNodeId() == Processed)
715            RemapValue(NewVal);
716          DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal, &NUL);
717        }
718        // The original node continues to exist in the DAG, marked NewNode.
719      }
720    }
721    // When recursively update nodes with new nodes, it is possible to have
722    // new uses of From due to CSE. If this happens, replace the new uses of
723    // From with To.
724  } while (!From.use_empty());
725}
726
727void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
728  assert(Result.getValueType() ==
729         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
730         "Invalid type for promoted integer");
731  AnalyzeNewValue(Result);
732
733  SDValue &OpEntry = PromotedIntegers[Op];
734  assert(OpEntry.getNode() == 0 && "Node is already promoted!");
735  OpEntry = Result;
736}
737
738void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
739  assert(Result.getValueType() ==
740         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
741         "Invalid type for softened float");
742  AnalyzeNewValue(Result);
743
744  SDValue &OpEntry = SoftenedFloats[Op];
745  assert(OpEntry.getNode() == 0 && "Node is already converted to integer!");
746  OpEntry = Result;
747}
748
749void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
750  assert(Result.getValueType() == Op.getValueType().getVectorElementType() &&
751         "Invalid type for scalarized vector");
752  AnalyzeNewValue(Result);
753
754  SDValue &OpEntry = ScalarizedVectors[Op];
755  assert(OpEntry.getNode() == 0 && "Node is already scalarized!");
756  OpEntry = Result;
757}
758
759void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
760                                          SDValue &Hi) {
761  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
762  RemapValue(Entry.first);
763  RemapValue(Entry.second);
764  assert(Entry.first.getNode() && "Operand isn't expanded");
765  Lo = Entry.first;
766  Hi = Entry.second;
767}
768
769void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
770                                          SDValue Hi) {
771  assert(Lo.getValueType() ==
772         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
773         Hi.getValueType() == Lo.getValueType() &&
774         "Invalid type for expanded integer");
775  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
776  AnalyzeNewValue(Lo);
777  AnalyzeNewValue(Hi);
778
779  // Remember that this is the result of the node.
780  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
781  assert(Entry.first.getNode() == 0 && "Node already expanded");
782  Entry.first = Lo;
783  Entry.second = Hi;
784}
785
786void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
787                                        SDValue &Hi) {
788  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
789  RemapValue(Entry.first);
790  RemapValue(Entry.second);
791  assert(Entry.first.getNode() && "Operand isn't expanded");
792  Lo = Entry.first;
793  Hi = Entry.second;
794}
795
796void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
797                                        SDValue Hi) {
798  assert(Lo.getValueType() ==
799         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
800         Hi.getValueType() == Lo.getValueType() &&
801         "Invalid type for expanded float");
802  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
803  AnalyzeNewValue(Lo);
804  AnalyzeNewValue(Hi);
805
806  // Remember that this is the result of the node.
807  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
808  assert(Entry.first.getNode() == 0 && "Node already expanded");
809  Entry.first = Lo;
810  Entry.second = Hi;
811}
812
813void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
814                                      SDValue &Hi) {
815  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
816  RemapValue(Entry.first);
817  RemapValue(Entry.second);
818  assert(Entry.first.getNode() && "Operand isn't split");
819  Lo = Entry.first;
820  Hi = Entry.second;
821}
822
823void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
824                                      SDValue Hi) {
825  assert(Lo.getValueType().getVectorElementType() ==
826         Op.getValueType().getVectorElementType() &&
827         2*Lo.getValueType().getVectorNumElements() ==
828         Op.getValueType().getVectorNumElements() &&
829         Hi.getValueType() == Lo.getValueType() &&
830         "Invalid type for split vector");
831  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
832  AnalyzeNewValue(Lo);
833  AnalyzeNewValue(Hi);
834
835  // Remember that this is the result of the node.
836  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
837  assert(Entry.first.getNode() == 0 && "Node already split");
838  Entry.first = Lo;
839  Entry.second = Hi;
840}
841
842void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
843  assert(Result.getValueType() ==
844         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
845         "Invalid type for widened vector");
846  AnalyzeNewValue(Result);
847
848  SDValue &OpEntry = WidenedVectors[Op];
849  assert(OpEntry.getNode() == 0 && "Node already widened!");
850  OpEntry = Result;
851}
852
853
854//===----------------------------------------------------------------------===//
855// Utilities.
856//===----------------------------------------------------------------------===//
857
858/// BitConvertToInteger - Convert to an integer of the same size.
859SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
860  unsigned BitWidth = Op.getValueType().getSizeInBits();
861  return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(),
862                     EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
863}
864
865/// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
866/// same size.
867SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
868  assert(Op.getValueType().isVector() && "Only applies to vectors!");
869  unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
870  EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
871  unsigned NumElts = Op.getValueType().getVectorNumElements();
872  return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(),
873                     EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
874}
875
876SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
877                                               EVT DestVT) {
878  DebugLoc dl = Op.getDebugLoc();
879  // Create the stack frame object.  Make sure it is aligned for both
880  // the source and destination types.
881  SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
882  // Emit a store to the stack slot.
883  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr, NULL, 0,
884                               false, false, 0);
885  // Result is a load from the stack slot.
886  return DAG.getLoad(DestVT, dl, Store, StackPtr, NULL, 0, false, false, 0);
887}
888
889/// CustomLowerNode - Replace the node's results with custom code provided
890/// by the target and return "true", or do nothing and return "false".
891/// The last parameter is FALSE if we are dealing with a node with legal
892/// result types and illegal operand. The second parameter denotes the type of
893/// illegal OperandNo in that case.
894/// The last parameter being TRUE means we are dealing with a
895/// node with illegal result types. The second parameter denotes the type of
896/// illegal ResNo in that case.
897bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
898  // See if the target wants to custom lower this node.
899  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
900    return false;
901
902  SmallVector<SDValue, 8> Results;
903  if (LegalizeResult)
904    TLI.ReplaceNodeResults(N, Results, DAG);
905  else
906    TLI.LowerOperationWrapper(N, Results, DAG);
907
908  if (Results.empty())
909    // The target didn't want to custom lower it after all.
910    return false;
911
912  // Make everything that once used N's values now use those in Results instead.
913  assert(Results.size() == N->getNumValues() &&
914         "Custom lowering returned the wrong number of results!");
915  for (unsigned i = 0, e = Results.size(); i != e; ++i)
916    ReplaceValueWith(SDValue(N, i), Results[i]);
917  return true;
918}
919
920
921/// CustomWidenLowerNode - Widen the node's results with custom code provided
922/// by the target and return "true", or do nothing and return "false".
923bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
924  // See if the target wants to custom lower this node.
925  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
926    return false;
927
928  SmallVector<SDValue, 8> Results;
929  TLI.ReplaceNodeResults(N, Results, DAG);
930
931  if (Results.empty())
932    // The target didn't want to custom widen lower its result  after all.
933    return false;
934
935  // Update the widening map.
936  assert(Results.size() == N->getNumValues() &&
937         "Custom lowering returned the wrong number of results!");
938  for (unsigned i = 0, e = Results.size(); i != e; ++i)
939    SetWidenedVector(SDValue(N, i), Results[i]);
940  return true;
941}
942
943/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
944/// which is split into two not necessarily identical pieces.
945void DAGTypeLegalizer::GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT) {
946  // Currently all types are split in half.
947  if (!InVT.isVector()) {
948    LoVT = HiVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
949  } else {
950    unsigned NumElements = InVT.getVectorNumElements();
951    assert(!(NumElements & 1) && "Splitting vector, but not in half!");
952    LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
953                                   InVT.getVectorElementType(), NumElements/2);
954  }
955}
956
957/// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
958/// high parts of the given value.
959void DAGTypeLegalizer::GetPairElements(SDValue Pair,
960                                       SDValue &Lo, SDValue &Hi) {
961  DebugLoc dl = Pair.getDebugLoc();
962  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
963  Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
964                   DAG.getIntPtrConstant(0));
965  Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
966                   DAG.getIntPtrConstant(1));
967}
968
969SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
970                                                  SDValue Index) {
971  DebugLoc dl = Index.getDebugLoc();
972  // Make sure the index type is big enough to compute in.
973  if (Index.getValueType().bitsGT(TLI.getPointerTy()))
974    Index = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Index);
975  else
976    Index = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Index);
977
978  // Calculate the element offset and add it to the pointer.
979  unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
980
981  Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
982                      DAG.getConstant(EltSize, Index.getValueType()));
983  return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
984}
985
986/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
987SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
988  // Arbitrarily use dlHi for result DebugLoc
989  DebugLoc dlHi = Hi.getDebugLoc();
990  DebugLoc dlLo = Lo.getDebugLoc();
991  EVT LVT = Lo.getValueType();
992  EVT HVT = Hi.getValueType();
993  EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
994                              LVT.getSizeInBits() + HVT.getSizeInBits());
995
996  Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
997  Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
998  Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
999                   DAG.getConstant(LVT.getSizeInBits(), TLI.getPointerTy()));
1000  return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1001}
1002
1003/// LibCallify - Convert the node into a libcall with the same prototype.
1004SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
1005                                     bool isSigned) {
1006  unsigned NumOps = N->getNumOperands();
1007  DebugLoc dl = N->getDebugLoc();
1008  if (NumOps == 0) {
1009    return MakeLibCall(LC, N->getValueType(0), 0, 0, isSigned, dl);
1010  } else if (NumOps == 1) {
1011    SDValue Op = N->getOperand(0);
1012    return MakeLibCall(LC, N->getValueType(0), &Op, 1, isSigned, dl);
1013  } else if (NumOps == 2) {
1014    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1015    return MakeLibCall(LC, N->getValueType(0), Ops, 2, isSigned, dl);
1016  }
1017  SmallVector<SDValue, 8> Ops(NumOps);
1018  for (unsigned i = 0; i < NumOps; ++i)
1019    Ops[i] = N->getOperand(i);
1020
1021  return MakeLibCall(LC, N->getValueType(0), &Ops[0], NumOps, isSigned, dl);
1022}
1023
1024/// MakeLibCall - Generate a libcall taking the given operands as arguments and
1025/// returning a result of type RetVT.
1026SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
1027                                      const SDValue *Ops, unsigned NumOps,
1028                                      bool isSigned, DebugLoc dl) {
1029  TargetLowering::ArgListTy Args;
1030  Args.reserve(NumOps);
1031
1032  TargetLowering::ArgListEntry Entry;
1033  for (unsigned i = 0; i != NumOps; ++i) {
1034    Entry.Node = Ops[i];
1035    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1036    Entry.isSExt = isSigned;
1037    Entry.isZExt = !isSigned;
1038    Args.push_back(Entry);
1039  }
1040  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1041                                         TLI.getPointerTy());
1042
1043  const Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1044  std::pair<SDValue,SDValue> CallInfo =
1045    TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1046                    false, 0, TLI.getLibcallCallingConv(LC), false,
1047                    /*isReturnValueUsed=*/true,
1048                    Callee, Args, DAG, dl);
1049  return CallInfo.first;
1050}
1051
1052/// PromoteTargetBoolean - Promote the given target boolean to a target boolean
1053/// of the given type.  A target boolean is an integer value, not necessarily of
1054/// type i1, the bits of which conform to getBooleanContents.
1055SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT VT) {
1056  DebugLoc dl = Bool.getDebugLoc();
1057  ISD::NodeType ExtendCode;
1058  switch (TLI.getBooleanContents()) {
1059  default:
1060    assert(false && "Unknown BooleanContent!");
1061  case TargetLowering::UndefinedBooleanContent:
1062    // Extend to VT by adding rubbish bits.
1063    ExtendCode = ISD::ANY_EXTEND;
1064    break;
1065  case TargetLowering::ZeroOrOneBooleanContent:
1066    // Extend to VT by adding zero bits.
1067    ExtendCode = ISD::ZERO_EXTEND;
1068    break;
1069  case TargetLowering::ZeroOrNegativeOneBooleanContent: {
1070    // Extend to VT by copying the sign bit.
1071    ExtendCode = ISD::SIGN_EXTEND;
1072    break;
1073  }
1074  }
1075  return DAG.getNode(ExtendCode, dl, VT, Bool);
1076}
1077
1078/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
1079/// bits in Hi.
1080void DAGTypeLegalizer::SplitInteger(SDValue Op,
1081                                    EVT LoVT, EVT HiVT,
1082                                    SDValue &Lo, SDValue &Hi) {
1083  DebugLoc dl = Op.getDebugLoc();
1084  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1085         Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
1086  Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1087  Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1088                   DAG.getConstant(LoVT.getSizeInBits(), TLI.getPointerTy()));
1089  Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1090}
1091
1092/// SplitInteger - Return the lower and upper halves of Op's bits in a value
1093/// type half the size of Op's.
1094void DAGTypeLegalizer::SplitInteger(SDValue Op,
1095                                    SDValue &Lo, SDValue &Hi) {
1096  EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(),
1097                                 Op.getValueType().getSizeInBits()/2);
1098  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1099}
1100
1101
1102//===----------------------------------------------------------------------===//
1103//  Entry Point
1104//===----------------------------------------------------------------------===//
1105
1106/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
1107/// only uses types natively supported by the target.  Returns "true" if it made
1108/// any changes.
1109///
1110/// Note that this is an involved process that may invalidate pointers into
1111/// the graph.
1112bool SelectionDAG::LegalizeTypes() {
1113  return DAGTypeLegalizer(*this).run();
1114}
1115