LegalizeTypes.cpp revision 0493715f4b23233bb29562cbd7b750b0d9ad346d
1//===-- LegalizeDAGTypes.cpp - Implement SelectionDAG::LegalizeTypes ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11// an arbitrary well-formed SelectionDAG to only consist of legal types.
12//
13//===----------------------------------------------------------------------===//
14
15#include "LegalizeTypes.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Support/MathExtras.h"
19using namespace llvm;
20
21/// run - This is the main entry point for the type legalizer.  This does a
22/// top-down traversal of the dag, legalizing types as it goes.
23void DAGTypeLegalizer::run() {
24  // Create a dummy node (which is not added to allnodes), that adds a reference
25  // to the root node, preventing it from being deleted, and tracking any
26  // changes of the root.
27  HandleSDNode Dummy(DAG.getRoot());
28
29  // The root of the dag may dangle to deleted nodes until the type legalizer is
30  // done.  Set it to null to avoid confusion.
31  DAG.setRoot(SDOperand());
32
33  // Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess'
34  // (and remembering them) if they are leaves and assigning 'NewNode' if
35  // non-leaves.
36  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
37       E = DAG.allnodes_end(); I != E; ++I) {
38    if (I->getNumOperands() == 0) {
39      I->setNodeId(ReadyToProcess);
40      Worklist.push_back(I);
41    } else {
42      I->setNodeId(NewNode);
43    }
44  }
45
46  // Now that we have a set of nodes to process, handle them all.
47  while (!Worklist.empty()) {
48    SDNode *N = Worklist.back();
49    Worklist.pop_back();
50    assert(N->getNodeId() == ReadyToProcess &&
51           "Node should be ready if on worklist!");
52
53    // Scan the values produced by the node, checking to see if any result
54    // types are illegal.
55    unsigned i = 0;
56    unsigned NumResults = N->getNumValues();
57    do {
58      MVT::ValueType ResultVT = N->getValueType(i);
59      LegalizeAction Action = getTypeAction(ResultVT);
60      if (Action == Promote) {
61        PromoteResult(N, i);
62        goto NodeDone;
63      } else if (Action == Expand) {
64        // Expand can mean 1) split integer in half 2) scalarize single-element
65        // vector 3) split vector in half.
66        if (!MVT::isVector(ResultVT))
67          ExpandResult(N, i);
68        else if (MVT::getVectorNumElements(ResultVT) == 1)
69          ScalarizeResult(N, i);     // Scalarize the single-element vector.
70        else         // Split the vector in half.
71          assert(0 && "Vector splitting not implemented");
72        goto NodeDone;
73      } else {
74        assert(Action == Legal && "Unknown action!");
75      }
76    } while (++i < NumResults);
77
78    // Scan the operand list for the node, handling any nodes with operands that
79    // are illegal.
80    {
81    unsigned NumOperands = N->getNumOperands();
82    bool NeedsRevisit = false;
83    for (i = 0; i != NumOperands; ++i) {
84      MVT::ValueType OpVT = N->getOperand(i).getValueType();
85      LegalizeAction Action = getTypeAction(OpVT);
86      if (Action == Promote) {
87        NeedsRevisit = PromoteOperand(N, i);
88        break;
89      } else if (Action == Expand) {
90        // Expand can mean 1) split integer in half 2) scalarize single-element
91        // vector 3) split vector in half.
92        if (!MVT::isVector(OpVT)) {
93          NeedsRevisit = ExpandOperand(N, i);
94        } else if (MVT::getVectorNumElements(OpVT) == 1) {
95          // Scalarize the single-element vector.
96          NeedsRevisit = ScalarizeOperand(N, i);
97        } else {
98          // Split the vector in half.
99          assert(0 && "Vector splitting not implemented");
100        }
101        break;
102      } else {
103        assert(Action == Legal && "Unknown action!");
104      }
105    }
106
107    // If the node needs revisiting, don't add all users to the worklist etc.
108    if (NeedsRevisit)
109      continue;
110
111    if (i == NumOperands)
112      DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
113    }
114NodeDone:
115
116    // If we reach here, the node was processed, potentially creating new nodes.
117    // Mark it as processed and add its users to the worklist as appropriate.
118    N->setNodeId(Processed);
119
120    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
121         UI != E; ++UI) {
122      SDNode *User = *UI;
123      int NodeID = User->getNodeId();
124      assert(NodeID != ReadyToProcess && NodeID != Processed &&
125             "Invalid node id for user of unprocessed node!");
126
127      // This node has two options: it can either be a new node or its Node ID
128      // may be a count of the number of operands it has that are not ready.
129      if (NodeID > 0) {
130        User->setNodeId(NodeID-1);
131
132        // If this was the last use it was waiting on, add it to the ready list.
133        if (NodeID-1 == ReadyToProcess)
134          Worklist.push_back(User);
135        continue;
136      }
137
138      // Otherwise, this node is new: this is the first operand of it that
139      // became ready.  Its new NodeID is the number of operands it has minus 1
140      // (as this node is now processed).
141      assert(NodeID == NewNode && "Unknown node ID!");
142      User->setNodeId(User->getNumOperands()-1);
143
144      // If the node only has a single operand, it is now ready.
145      if (User->getNumOperands() == 1)
146        Worklist.push_back(User);
147    }
148  }
149
150  // If the root changed (e.g. it was a dead load, update the root).
151  DAG.setRoot(Dummy.getValue());
152
153  //DAG.viewGraph();
154
155  // Remove dead nodes.  This is important to do for cleanliness but also before
156  // the checking loop below.  Implicit folding by the DAG.getNode operators can
157  // cause unreachable nodes to be around with their flags set to new.
158  DAG.RemoveDeadNodes();
159
160  // In a debug build, scan all the nodes to make sure we found them all.  This
161  // ensures that there are no cycles and that everything got processed.
162#ifndef NDEBUG
163  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
164       E = DAG.allnodes_end(); I != E; ++I) {
165    if (I->getNodeId() == Processed)
166      continue;
167    cerr << "Unprocessed node: ";
168    I->dump(&DAG); cerr << "\n";
169
170    if (I->getNodeId() == NewNode)
171      cerr << "New node not 'noticed'?\n";
172    else if (I->getNodeId() > 0)
173      cerr << "Operand not processed?\n";
174    else if (I->getNodeId() == ReadyToProcess)
175      cerr << "Not added to worklist?\n";
176    abort();
177  }
178#endif
179}
180
181/// MarkNewNodes - The specified node is the root of a subtree of potentially
182/// new nodes.  Add the correct NodeId to mark it.
183void DAGTypeLegalizer::MarkNewNodes(SDNode *N) {
184  // If this was an existing node that is already done, we're done.
185  if (N->getNodeId() != NewNode)
186    return;
187
188  // Okay, we know that this node is new.  Recursively walk all of its operands
189  // to see if they are new also.  The depth of this walk is bounded by the size
190  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
191  // about revisiting of nodes.
192  //
193  // As we walk the operands, keep track of the number of nodes that are
194  // processed.  If non-zero, this will become the new nodeid of this node.
195  unsigned NumProcessed = 0;
196  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
197    int OpId = N->getOperand(i).Val->getNodeId();
198    if (OpId == NewNode)
199      MarkNewNodes(N->getOperand(i).Val);
200    else if (OpId == Processed)
201      ++NumProcessed;
202  }
203
204  N->setNodeId(N->getNumOperands()-NumProcessed);
205  if (N->getNodeId() == ReadyToProcess)
206    Worklist.push_back(N);
207}
208
209/// ReplaceValueWith - The specified value was legalized to the specified other
210/// value.  If they are different, update the DAG and NodeIDs replacing any uses
211/// of From to use To instead.
212void DAGTypeLegalizer::ReplaceValueWith(SDOperand From, SDOperand To) {
213  if (From == To) return;
214
215  // If expansion produced new nodes, make sure they are properly marked.
216  if (To.Val->getNodeId() == NewNode)
217    MarkNewNodes(To.Val);
218
219  // Anything that used the old node should now use the new one.  Note that this
220  // can potentially cause recursive merging.
221  DAG.ReplaceAllUsesOfValueWith(From, To);
222
223  // The old node may still be present in ExpandedNodes or PromotedNodes.
224  // Inform them about the replacement.
225  ReplacedNodes[From] = To;
226
227  // Since we just made an unstructured update to the DAG, which could wreak
228  // general havoc on anything that once used From and now uses To, walk all
229  // users of the result, updating their flags.
230  for (SDNode::use_iterator I = To.Val->use_begin(), E = To.Val->use_end();
231       I != E; ++I) {
232    SDNode *User = *I;
233    // If the node isn't already processed or in the worklist, mark it as new,
234    // then use MarkNewNodes to recompute its ID.
235    int NodeId = User->getNodeId();
236    if (NodeId != ReadyToProcess && NodeId != Processed) {
237      User->setNodeId(NewNode);
238      MarkNewNodes(User);
239    }
240  }
241}
242
243/// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to'
244/// node's results.  The from and to node must define identical result types.
245void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) {
246  if (From == To) return;
247  assert(From->getNumValues() == To->getNumValues() &&
248         "Node results don't match");
249
250  // If expansion produced new nodes, make sure they are properly marked.
251  if (To->getNodeId() == NewNode)
252    MarkNewNodes(To);
253
254  // Anything that used the old node should now use the new one.  Note that this
255  // can potentially cause recursive merging.
256  DAG.ReplaceAllUsesWith(From, To);
257
258  // The old node may still be present in ExpandedNodes or PromotedNodes.
259  // Inform them about the replacement.
260  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
261    assert(From->getValueType(i) == To->getValueType(i) &&
262           "Node results don't match");
263    ReplacedNodes[SDOperand(From, i)] = SDOperand(To, i);
264  }
265
266  // Since we just made an unstructured update to the DAG, which could wreak
267  // general havoc on anything that once used From and now uses To, walk all
268  // users of the result, updating their flags.
269  for (SDNode::use_iterator I = To->use_begin(), E = To->use_end();I != E; ++I){
270    SDNode *User = *I;
271    // If the node isn't already processed or in the worklist, mark it as new,
272    // then use MarkNewNodes to recompute its ID.
273    int NodeId = User->getNodeId();
274    if (NodeId != ReadyToProcess && NodeId != Processed) {
275      User->setNodeId(NewNode);
276      MarkNewNodes(User);
277    }
278  }
279}
280
281
282/// RemapNode - If the specified value was already legalized to another value,
283/// replace it by that value.
284void DAGTypeLegalizer::RemapNode(SDOperand &N) {
285  DenseMap<SDOperand, SDOperand>::iterator I = ReplacedNodes.find(N);
286  if (I != ReplacedNodes.end()) {
287    // Use path compression to speed up future lookups if values get multiply
288    // replaced with other values.
289    RemapNode(I->second);
290    N = I->second;
291  }
292}
293
294void DAGTypeLegalizer::SetPromotedOp(SDOperand Op, SDOperand Result) {
295  if (Result.Val->getNodeId() == NewNode)
296    MarkNewNodes(Result.Val);
297
298  SDOperand &OpEntry = PromotedNodes[Op];
299  assert(OpEntry.Val == 0 && "Node is already promoted!");
300  OpEntry = Result;
301}
302
303void DAGTypeLegalizer::SetScalarizedOp(SDOperand Op, SDOperand Result) {
304  if (Result.Val->getNodeId() == NewNode)
305    MarkNewNodes(Result.Val);
306
307  SDOperand &OpEntry = ScalarizedNodes[Op];
308  assert(OpEntry.Val == 0 && "Node is already scalarized!");
309  OpEntry = Result;
310}
311
312
313void DAGTypeLegalizer::GetExpandedOp(SDOperand Op, SDOperand &Lo,
314                                     SDOperand &Hi) {
315  std::pair<SDOperand, SDOperand> &Entry = ExpandedNodes[Op];
316  RemapNode(Entry.first);
317  RemapNode(Entry.second);
318  assert(Entry.first.Val && "Operand isn't expanded");
319  Lo = Entry.first;
320  Hi = Entry.second;
321}
322
323void DAGTypeLegalizer::SetExpandedOp(SDOperand Op, SDOperand Lo,
324                                     SDOperand Hi) {
325  // Remember that this is the result of the node.
326  std::pair<SDOperand, SDOperand> &Entry = ExpandedNodes[Op];
327  assert(Entry.first.Val == 0 && "Node already expanded");
328  Entry.first = Lo;
329  Entry.second = Hi;
330
331  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
332  if (Lo.Val->getNodeId() == NewNode)
333    MarkNewNodes(Lo.Val);
334  if (Hi.Val->getNodeId() == NewNode)
335    MarkNewNodes(Hi.Val);
336}
337
338SDOperand DAGTypeLegalizer::CreateStackStoreLoad(SDOperand Op,
339                                                 MVT::ValueType DestVT) {
340  // Create the stack frame object.
341  SDOperand FIPtr = DAG.CreateStackTemporary(DestVT);
342
343  // Emit a store to the stack slot.
344  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0);
345  // Result is a load from the stack slot.
346  return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
347}
348
349/// HandleMemIntrinsic - This handles memcpy/memset/memmove with invalid
350/// operands.  This promotes or expands the operands as required.
351SDOperand DAGTypeLegalizer::HandleMemIntrinsic(SDNode *N) {
352  // The chain and pointer [operands #0 and #1] are always valid types.
353  SDOperand Chain = N->getOperand(0);
354  SDOperand Ptr   = N->getOperand(1);
355  SDOperand Op2   = N->getOperand(2);
356
357  // Op #2 is either a value (memset) or a pointer.  Promote it if required.
358  switch (getTypeAction(Op2.getValueType())) {
359  default: assert(0 && "Unknown action for pointer/value operand");
360  case Legal: break;
361  case Promote: Op2 = GetPromotedOp(Op2); break;
362  }
363
364  // The length could have any action required.
365  SDOperand Length = N->getOperand(3);
366  switch (getTypeAction(Length.getValueType())) {
367  default: assert(0 && "Unknown action for memop operand");
368  case Legal: break;
369  case Promote: Length = GetPromotedZExtOp(Length); break;
370  case Expand:
371    SDOperand Dummy;  // discard the high part.
372    GetExpandedOp(Length, Length, Dummy);
373    break;
374  }
375
376  SDOperand Align = N->getOperand(4);
377  switch (getTypeAction(Align.getValueType())) {
378  default: assert(0 && "Unknown action for memop operand");
379  case Legal: break;
380  case Promote: Align = GetPromotedZExtOp(Align); break;
381  }
382
383  SDOperand AlwaysInline = N->getOperand(5);
384  switch (getTypeAction(AlwaysInline.getValueType())) {
385  default: assert(0 && "Unknown action for memop operand");
386  case Legal: break;
387  case Promote: AlwaysInline = GetPromotedZExtOp(AlwaysInline); break;
388  }
389
390  SDOperand Ops[] = { Chain, Ptr, Op2, Length, Align, AlwaysInline };
391  return DAG.UpdateNodeOperands(SDOperand(N, 0), Ops, 6);
392}
393
394/// SplitOp - Return the lower and upper halves of Op's bits in a value type
395/// half the size of Op's.
396void DAGTypeLegalizer::SplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) {
397  unsigned NVTBits = MVT::getSizeInBits(Op.getValueType())/2;
398  assert(MVT::getSizeInBits(Op.getValueType()) == 2*NVTBits &&
399         "Cannot split odd sized integer type");
400  MVT::ValueType NVT = MVT::getIntegerType(NVTBits);
401  Lo = DAG.getNode(ISD::TRUNCATE, NVT, Op);
402  Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op,
403                   DAG.getConstant(NVTBits, TLI.getShiftAmountTy()));
404  Hi = DAG.getNode(ISD::TRUNCATE, NVT, Hi);
405}
406
407
408//===----------------------------------------------------------------------===//
409//  Result Promotion
410//===----------------------------------------------------------------------===//
411
412/// PromoteResult - This method is called when a result of a node is found to be
413/// in need of promotion to a larger type.  At this point, the node may also
414/// have invalid operands or may have other results that need expansion, we just
415/// know that (at least) one result needs promotion.
416void DAGTypeLegalizer::PromoteResult(SDNode *N, unsigned ResNo) {
417  DEBUG(cerr << "Promote node result: "; N->dump(&DAG); cerr << "\n");
418  SDOperand Result = SDOperand();
419
420  switch (N->getOpcode()) {
421  default:
422#ifndef NDEBUG
423    cerr << "PromoteResult #" << ResNo << ": ";
424    N->dump(&DAG); cerr << "\n";
425#endif
426    assert(0 && "Do not know how to promote this operator!");
427    abort();
428  case ISD::UNDEF:    Result = PromoteResult_UNDEF(N); break;
429  case ISD::Constant: Result = PromoteResult_Constant(N); break;
430
431  case ISD::TRUNCATE:    Result = PromoteResult_TRUNCATE(N); break;
432  case ISD::SIGN_EXTEND:
433  case ISD::ZERO_EXTEND:
434  case ISD::ANY_EXTEND:  Result = PromoteResult_INT_EXTEND(N); break;
435  case ISD::FP_ROUND:    Result = PromoteResult_FP_ROUND(N); break;
436  case ISD::FP_TO_SINT:
437  case ISD::FP_TO_UINT:  Result = PromoteResult_FP_TO_XINT(N); break;
438  case ISD::SETCC:    Result = PromoteResult_SETCC(N); break;
439  case ISD::LOAD:     Result = PromoteResult_LOAD(cast<LoadSDNode>(N)); break;
440
441  case ISD::AND:
442  case ISD::OR:
443  case ISD::XOR:
444  case ISD::ADD:
445  case ISD::SUB:
446  case ISD::MUL:      Result = PromoteResult_SimpleIntBinOp(N); break;
447
448  case ISD::SDIV:
449  case ISD::SREM:     Result = PromoteResult_SDIV(N); break;
450
451  case ISD::UDIV:
452  case ISD::UREM:     Result = PromoteResult_UDIV(N); break;
453
454  case ISD::SHL:      Result = PromoteResult_SHL(N); break;
455  case ISD::SRA:      Result = PromoteResult_SRA(N); break;
456  case ISD::SRL:      Result = PromoteResult_SRL(N); break;
457
458  case ISD::SELECT:    Result = PromoteResult_SELECT(N); break;
459  case ISD::SELECT_CC: Result = PromoteResult_SELECT_CC(N); break;
460
461  }
462
463  // If Result is null, the sub-method took care of registering the result.
464  if (Result.Val)
465    SetPromotedOp(SDOperand(N, ResNo), Result);
466}
467
468SDOperand DAGTypeLegalizer::PromoteResult_UNDEF(SDNode *N) {
469  return DAG.getNode(ISD::UNDEF, TLI.getTypeToTransformTo(N->getValueType(0)));
470}
471
472SDOperand DAGTypeLegalizer::PromoteResult_Constant(SDNode *N) {
473  MVT::ValueType VT = N->getValueType(0);
474  // Zero extend things like i1, sign extend everything else.  It shouldn't
475  // matter in theory which one we pick, but this tends to give better code?
476  unsigned Opc = VT != MVT::i1 ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
477  SDOperand Result = DAG.getNode(Opc, TLI.getTypeToTransformTo(VT),
478                                 SDOperand(N, 0));
479  assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
480  return Result;
481}
482
483SDOperand DAGTypeLegalizer::PromoteResult_TRUNCATE(SDNode *N) {
484  SDOperand Res;
485
486  switch (getTypeAction(N->getOperand(0).getValueType())) {
487  default: assert(0 && "Unknown type action!");
488  case Legal:
489  case Expand:
490    Res = N->getOperand(0);
491    break;
492  case Promote:
493    Res = GetPromotedOp(N->getOperand(0));
494    break;
495  }
496
497  MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
498  assert(MVT::getSizeInBits(Res.getValueType()) >= MVT::getSizeInBits(NVT) &&
499         "Truncation doesn't make sense!");
500  if (Res.getValueType() == NVT)
501    return Res;
502
503  // Truncate to NVT instead of VT
504  return DAG.getNode(ISD::TRUNCATE, NVT, Res);
505}
506
507SDOperand DAGTypeLegalizer::PromoteResult_INT_EXTEND(SDNode *N) {
508  MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
509
510  if (getTypeAction(N->getOperand(0).getValueType()) == Promote) {
511    SDOperand Res = GetPromotedOp(N->getOperand(0));
512    assert(MVT::getSizeInBits(Res.getValueType()) <= MVT::getSizeInBits(NVT) &&
513           "Extension doesn't make sense!");
514
515    // If the result and operand types are the same after promotion, simplify
516    // to an in-register extension.
517    if (NVT == Res.getValueType()) {
518      // The high bits are not guaranteed to be anything.  Insert an extend.
519      if (N->getOpcode() == ISD::SIGN_EXTEND)
520        return DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Res,
521                           DAG.getValueType(N->getOperand(0).getValueType()));
522      if (N->getOpcode() == ISD::ZERO_EXTEND)
523        return DAG.getZeroExtendInReg(Res, N->getOperand(0).getValueType());
524      assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
525      return Res;
526    }
527  }
528
529  // Otherwise, just extend the original operand all the way to the larger type.
530  return DAG.getNode(N->getOpcode(), NVT, N->getOperand(0));
531}
532
533SDOperand DAGTypeLegalizer::PromoteResult_FP_ROUND(SDNode *N) {
534  // NOTE: Assumes input is legal.
535  return DAG.getNode(ISD::FP_ROUND_INREG, N->getOperand(0).getValueType(),
536                     N->getOperand(0), DAG.getValueType(N->getValueType(0)));
537}
538
539SDOperand DAGTypeLegalizer::PromoteResult_FP_TO_XINT(SDNode *N) {
540  SDOperand Op = N->getOperand(0);
541  // If the operand needed to be promoted, do so now.
542  if (getTypeAction(Op.getValueType()) == Promote)
543    // The input result is prerounded, so we don't have to do anything special.
544    Op = GetPromotedOp(Op);
545
546  unsigned NewOpc = N->getOpcode();
547  MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
548
549  // If we're promoting a UINT to a larger size, check to see if the new node
550  // will be legal.  If it isn't, check to see if FP_TO_SINT is legal, since
551  // we can use that instead.  This allows us to generate better code for
552  // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not
553  // legal, such as PowerPC.
554  if (N->getOpcode() == ISD::FP_TO_UINT) {
555    if (!TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
556        (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) ||
557         TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom))
558      NewOpc = ISD::FP_TO_SINT;
559  }
560
561  return DAG.getNode(NewOpc, NVT, Op);
562}
563
564SDOperand DAGTypeLegalizer::PromoteResult_SETCC(SDNode *N) {
565  assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??");
566  return DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), N->getOperand(0),
567                     N->getOperand(1), N->getOperand(2));
568}
569
570SDOperand DAGTypeLegalizer::PromoteResult_LOAD(LoadSDNode *N) {
571  MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
572  ISD::LoadExtType ExtType =
573    ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
574  SDOperand Res = DAG.getExtLoad(ExtType, NVT, N->getChain(), N->getBasePtr(),
575                                 N->getSrcValue(), N->getSrcValueOffset(),
576                                 N->getLoadedVT(), N->isVolatile(),
577                                 N->getAlignment());
578
579  // Legalized the chain result - switch anything that used the old chain to
580  // use the new one.
581  ReplaceValueWith(SDOperand(N, 1), Res.getValue(1));
582  return Res;
583}
584
585SDOperand DAGTypeLegalizer::PromoteResult_SimpleIntBinOp(SDNode *N) {
586  // The input may have strange things in the top bits of the registers, but
587  // these operations don't care.  They may have weird bits going out, but
588  // that too is okay if they are integer operations.
589  SDOperand LHS = GetPromotedOp(N->getOperand(0));
590  SDOperand RHS = GetPromotedOp(N->getOperand(1));
591  return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS);
592}
593
594SDOperand DAGTypeLegalizer::PromoteResult_SDIV(SDNode *N) {
595  // Sign extend the input.
596  SDOperand LHS = GetPromotedOp(N->getOperand(0));
597  SDOperand RHS = GetPromotedOp(N->getOperand(1));
598  MVT::ValueType VT = N->getValueType(0);
599  LHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, LHS.getValueType(), LHS,
600                    DAG.getValueType(VT));
601  RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, RHS.getValueType(), RHS,
602                    DAG.getValueType(VT));
603
604  return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS);
605}
606
607SDOperand DAGTypeLegalizer::PromoteResult_UDIV(SDNode *N) {
608  // Zero extend the input.
609  SDOperand LHS = GetPromotedOp(N->getOperand(0));
610  SDOperand RHS = GetPromotedOp(N->getOperand(1));
611  MVT::ValueType VT = N->getValueType(0);
612  LHS = DAG.getZeroExtendInReg(LHS, VT);
613  RHS = DAG.getZeroExtendInReg(RHS, VT);
614
615  return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS);
616}
617
618SDOperand DAGTypeLegalizer::PromoteResult_SHL(SDNode *N) {
619  return DAG.getNode(ISD::SHL, TLI.getTypeToTransformTo(N->getValueType(0)),
620                     GetPromotedOp(N->getOperand(0)), N->getOperand(1));
621}
622
623SDOperand DAGTypeLegalizer::PromoteResult_SRA(SDNode *N) {
624  // The input value must be properly sign extended.
625  MVT::ValueType VT = N->getValueType(0);
626  MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
627  SDOperand Res = GetPromotedOp(N->getOperand(0));
628  Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Res, DAG.getValueType(VT));
629  return DAG.getNode(ISD::SRA, NVT, Res, N->getOperand(1));
630}
631
632SDOperand DAGTypeLegalizer::PromoteResult_SRL(SDNode *N) {
633  // The input value must be properly zero extended.
634  MVT::ValueType VT = N->getValueType(0);
635  MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
636  SDOperand Res = GetPromotedZExtOp(N->getOperand(0));
637  return DAG.getNode(ISD::SRL, NVT, Res, N->getOperand(1));
638}
639
640SDOperand DAGTypeLegalizer::PromoteResult_SELECT(SDNode *N) {
641  SDOperand LHS = GetPromotedOp(N->getOperand(1));
642  SDOperand RHS = GetPromotedOp(N->getOperand(2));
643  return DAG.getNode(ISD::SELECT, LHS.getValueType(), N->getOperand(0),LHS,RHS);
644}
645
646SDOperand DAGTypeLegalizer::PromoteResult_SELECT_CC(SDNode *N) {
647  SDOperand LHS = GetPromotedOp(N->getOperand(2));
648  SDOperand RHS = GetPromotedOp(N->getOperand(3));
649  return DAG.getNode(ISD::SELECT_CC, LHS.getValueType(), N->getOperand(0),
650                     N->getOperand(1), LHS, RHS, N->getOperand(4));
651}
652
653
654//===----------------------------------------------------------------------===//
655//  Result Expansion
656//===----------------------------------------------------------------------===//
657
658/// ExpandResult - This method is called when the specified result of the
659/// specified node is found to need expansion.  At this point, the node may also
660/// have invalid operands or may have other results that need promotion, we just
661/// know that (at least) one result needs expansion.
662void DAGTypeLegalizer::ExpandResult(SDNode *N, unsigned ResNo) {
663  DEBUG(cerr << "Expand node result: "; N->dump(&DAG); cerr << "\n");
664  SDOperand Lo, Hi;
665  Lo = Hi = SDOperand();
666
667  // See if the target wants to custom expand this node.
668  if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
669          TargetLowering::Custom) {
670    // If the target wants to, allow it to lower this itself.
671    if (SDNode *P = TLI.ExpandOperationResult(N, DAG)) {
672      // Everything that once used N now uses P.  We are guaranteed that the
673      // result value types of N and the result value types of P match.
674      ReplaceNodeWith(N, P);
675      return;
676    }
677  }
678
679  switch (N->getOpcode()) {
680  default:
681#ifndef NDEBUG
682    cerr << "ExpandResult #" << ResNo << ": ";
683    N->dump(&DAG); cerr << "\n";
684#endif
685    assert(0 && "Do not know how to expand the result of this operator!");
686    abort();
687
688  case ISD::UNDEF:       ExpandResult_UNDEF(N, Lo, Hi); break;
689  case ISD::Constant:    ExpandResult_Constant(N, Lo, Hi); break;
690  case ISD::BUILD_PAIR:  ExpandResult_BUILD_PAIR(N, Lo, Hi); break;
691  case ISD::MERGE_VALUES: ExpandResult_MERGE_VALUES(N, Lo, Hi); break;
692  case ISD::ANY_EXTEND:  ExpandResult_ANY_EXTEND(N, Lo, Hi); break;
693  case ISD::ZERO_EXTEND: ExpandResult_ZERO_EXTEND(N, Lo, Hi); break;
694  case ISD::SIGN_EXTEND: ExpandResult_SIGN_EXTEND(N, Lo, Hi); break;
695  case ISD::BIT_CONVERT: ExpandResult_BIT_CONVERT(N, Lo, Hi); break;
696  case ISD::SIGN_EXTEND_INREG: ExpandResult_SIGN_EXTEND_INREG(N, Lo, Hi); break;
697  case ISD::LOAD:        ExpandResult_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
698
699  case ISD::AND:
700  case ISD::OR:
701  case ISD::XOR:         ExpandResult_Logical(N, Lo, Hi); break;
702  case ISD::BSWAP:       ExpandResult_BSWAP(N, Lo, Hi); break;
703  case ISD::ADD:
704  case ISD::SUB:         ExpandResult_ADDSUB(N, Lo, Hi); break;
705  case ISD::ADDC:
706  case ISD::SUBC:        ExpandResult_ADDSUBC(N, Lo, Hi); break;
707  case ISD::ADDE:
708  case ISD::SUBE:        ExpandResult_ADDSUBE(N, Lo, Hi); break;
709  case ISD::SELECT:      ExpandResult_SELECT(N, Lo, Hi); break;
710  case ISD::SELECT_CC:   ExpandResult_SELECT_CC(N, Lo, Hi); break;
711  case ISD::MUL:         ExpandResult_MUL(N, Lo, Hi); break;
712  case ISD::SHL:
713  case ISD::SRA:
714  case ISD::SRL:         ExpandResult_Shift(N, Lo, Hi); break;
715  }
716
717  // If Lo/Hi is null, the sub-method took care of registering results etc.
718  if (Lo.Val)
719    SetExpandedOp(SDOperand(N, ResNo), Lo, Hi);
720}
721
722void DAGTypeLegalizer::ExpandResult_UNDEF(SDNode *N,
723                                          SDOperand &Lo, SDOperand &Hi) {
724  MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
725  Lo = Hi = DAG.getNode(ISD::UNDEF, NVT);
726}
727
728void DAGTypeLegalizer::ExpandResult_Constant(SDNode *N,
729                                             SDOperand &Lo, SDOperand &Hi) {
730  MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
731  uint64_t Cst = cast<ConstantSDNode>(N)->getValue();
732  Lo = DAG.getConstant(Cst, NVT);
733  Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT);
734}
735
736void DAGTypeLegalizer::ExpandResult_BUILD_PAIR(SDNode *N,
737                                               SDOperand &Lo, SDOperand &Hi) {
738  // Return the operands.
739  Lo = N->getOperand(0);
740  Hi = N->getOperand(1);
741}
742
743void DAGTypeLegalizer::ExpandResult_MERGE_VALUES(SDNode *N,
744                                                 SDOperand &Lo, SDOperand &Hi) {
745  // A MERGE_VALUES node can produce any number of values.  We know that the
746  // first illegal one needs to be expanded into Lo/Hi.
747  unsigned i;
748
749  // The string of legal results gets turns into the input operands, which have
750  // the same type.
751  for (i = 0; isTypeLegal(N->getValueType(i)); ++i)
752    ReplaceValueWith(SDOperand(N, i), SDOperand(N->getOperand(i)));
753
754  // The first illegal result must be the one that needs to be expanded.
755  GetExpandedOp(N->getOperand(i), Lo, Hi);
756
757  // Legalize the rest of the results into the input operands whether they are
758  // legal or not.
759  unsigned e = N->getNumValues();
760  for (++i; i != e; ++i)
761    ReplaceValueWith(SDOperand(N, i), SDOperand(N->getOperand(i)));
762}
763
764void DAGTypeLegalizer::ExpandResult_ANY_EXTEND(SDNode *N,
765                                               SDOperand &Lo, SDOperand &Hi) {
766  MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
767  SDOperand Op = N->getOperand(0);
768  if (MVT::getSizeInBits(Op.getValueType()) <= MVT::getSizeInBits(NVT)) {
769    // The low part is any extension of the input (which degenerates to a copy).
770    Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Op);
771    Hi = DAG.getNode(ISD::UNDEF, NVT);   // The high part is undefined.
772  } else {
773    // For example, extension of an i48 to an i64.  The operand type necessarily
774    // promotes to the result type, so will end up being expanded too.
775    assert(getTypeAction(Op.getValueType()) == Promote &&
776           "Don't know how to expand this result!");
777    SDOperand Res = GetPromotedOp(Op);
778    assert(Res.getValueType() == N->getValueType(0) &&
779           "Operand over promoted?");
780    // Split the promoted operand.  This will simplify when it is expanded.
781    SplitOp(Res, Lo, Hi);
782  }
783}
784
785void DAGTypeLegalizer::ExpandResult_ZERO_EXTEND(SDNode *N,
786                                                SDOperand &Lo, SDOperand &Hi) {
787  MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
788  SDOperand Op = N->getOperand(0);
789  if (MVT::getSizeInBits(Op.getValueType()) <= MVT::getSizeInBits(NVT)) {
790    // The low part is zero extension of the input (which degenerates to a copy).
791    Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, N->getOperand(0));
792    Hi = DAG.getConstant(0, NVT);   // The high part is just a zero.
793  } else {
794    // For example, extension of an i48 to an i64.  The operand type necessarily
795    // promotes to the result type, so will end up being expanded too.
796    assert(getTypeAction(Op.getValueType()) == Promote &&
797           "Don't know how to expand this result!");
798    SDOperand Res = GetPromotedOp(Op);
799    assert(Res.getValueType() == N->getValueType(0) &&
800           "Operand over promoted?");
801    // Split the promoted operand.  This will simplify when it is expanded.
802    SplitOp(Res, Lo, Hi);
803    unsigned ExcessBits =
804      MVT::getSizeInBits(Op.getValueType()) - MVT::getSizeInBits(NVT);
805    Hi = DAG.getZeroExtendInReg(Hi, MVT::getIntegerType(ExcessBits));
806  }
807}
808
809void DAGTypeLegalizer::ExpandResult_SIGN_EXTEND(SDNode *N,
810                                                SDOperand &Lo, SDOperand &Hi) {
811  MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
812  SDOperand Op = N->getOperand(0);
813  if (MVT::getSizeInBits(Op.getValueType()) <= MVT::getSizeInBits(NVT)) {
814    // The low part is sign extension of the input (which degenerates to a copy).
815    Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, N->getOperand(0));
816    // The high part is obtained by SRA'ing all but one of the bits of low part.
817    unsigned LoSize = MVT::getSizeInBits(NVT);
818    Hi = DAG.getNode(ISD::SRA, NVT, Lo,
819                     DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
820  } else {
821    // For example, extension of an i48 to an i64.  The operand type necessarily
822    // promotes to the result type, so will end up being expanded too.
823    assert(getTypeAction(Op.getValueType()) == Promote &&
824           "Don't know how to expand this result!");
825    SDOperand Res = GetPromotedOp(Op);
826    assert(Res.getValueType() == N->getValueType(0) &&
827           "Operand over promoted?");
828    // Split the promoted operand.  This will simplify when it is expanded.
829    SplitOp(Res, Lo, Hi);
830    unsigned ExcessBits =
831      MVT::getSizeInBits(Op.getValueType()) - MVT::getSizeInBits(NVT);
832    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, Hi.getValueType(), Hi,
833                     DAG.getValueType(MVT::getIntegerType(ExcessBits)));
834  }
835}
836
837void DAGTypeLegalizer::ExpandResult_BIT_CONVERT(SDNode *N,
838                                                SDOperand &Lo, SDOperand &Hi) {
839  // Lower the bit-convert to a store/load from the stack, then expand the load.
840  SDOperand Op = CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
841  ExpandResult_LOAD(cast<LoadSDNode>(Op.Val), Lo, Hi);
842}
843
844void DAGTypeLegalizer::
845ExpandResult_SIGN_EXTEND_INREG(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
846  GetExpandedOp(N->getOperand(0), Lo, Hi);
847  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
848
849  if (MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(Lo.getValueType())) {
850    // sext_inreg the low part if needed.
851    Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, Lo.getValueType(), Lo,
852                     N->getOperand(1));
853
854    // The high part gets the sign extension from the lo-part.  This handles
855    // things like sextinreg V:i64 from i8.
856    Hi = DAG.getNode(ISD::SRA, Hi.getValueType(), Lo,
857                     DAG.getConstant(MVT::getSizeInBits(Hi.getValueType())-1,
858                                     TLI.getShiftAmountTy()));
859  } else {
860    // For example, extension of an i48 to an i64.  Leave the low part alone,
861    // sext_inreg the high part.
862    unsigned ExcessBits =
863      MVT::getSizeInBits(EVT) - MVT::getSizeInBits(Lo.getValueType());
864    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, Hi.getValueType(), Hi,
865                     DAG.getValueType(MVT::getIntegerType(ExcessBits)));
866  }
867}
868
869void DAGTypeLegalizer::ExpandResult_LOAD(LoadSDNode *N,
870                                         SDOperand &Lo, SDOperand &Hi) {
871  MVT::ValueType VT = N->getValueType(0);
872  MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
873  SDOperand Ch  = N->getChain();    // Legalize the chain.
874  SDOperand Ptr = N->getBasePtr();  // Legalize the pointer.
875  ISD::LoadExtType ExtType = N->getExtensionType();
876  int SVOffset = N->getSrcValueOffset();
877  unsigned Alignment = N->getAlignment();
878  bool isVolatile = N->isVolatile();
879
880  assert(!(MVT::getSizeInBits(NVT) & 7) && "Expanded type not byte sized!");
881
882  if (ExtType == ISD::NON_EXTLOAD) {
883    Lo = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset,
884                     isVolatile, Alignment);
885    // Increment the pointer to the other half.
886    unsigned IncrementSize = MVT::getSizeInBits(NVT)/8;
887    Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
888                      getIntPtrConstant(IncrementSize));
889    Hi = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
890                     isVolatile, MinAlign(Alignment, IncrementSize));
891
892    // Build a factor node to remember that this load is independent of the
893    // other one.
894    Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
895                     Hi.getValue(1));
896
897    // Handle endianness of the load.
898    if (!TLI.isLittleEndian())
899      std::swap(Lo, Hi);
900  } else if (MVT::getSizeInBits(N->getLoadedVT()) <= MVT::getSizeInBits(NVT)) {
901    MVT::ValueType EVT = N->getLoadedVT();
902
903    Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset, EVT,
904                        isVolatile, Alignment);
905
906    // Remember the chain.
907    Ch = Lo.getValue(1);
908
909    if (ExtType == ISD::SEXTLOAD) {
910      // The high part is obtained by SRA'ing all but one of the bits of the
911      // lo part.
912      unsigned LoSize = MVT::getSizeInBits(Lo.getValueType());
913      Hi = DAG.getNode(ISD::SRA, NVT, Lo,
914                       DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
915    } else if (ExtType == ISD::ZEXTLOAD) {
916      // The high part is just a zero.
917      Hi = DAG.getConstant(0, NVT);
918    } else {
919      assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
920      // The high part is undefined.
921      Hi = DAG.getNode(ISD::UNDEF, NVT);
922    }
923  } else if (TLI.isLittleEndian()) {
924    // Little-endian - low bits are at low addresses.
925    Lo = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset,
926                     isVolatile, Alignment);
927
928    unsigned ExcessBits =
929      MVT::getSizeInBits(N->getLoadedVT()) - MVT::getSizeInBits(NVT);
930    MVT::ValueType NEVT = MVT::getIntegerType(ExcessBits);
931
932    // Increment the pointer to the other half.
933    unsigned IncrementSize = MVT::getSizeInBits(NVT)/8;
934    Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
935                      getIntPtrConstant(IncrementSize));
936    Hi = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(),
937                        SVOffset+IncrementSize, NEVT,
938                        isVolatile, MinAlign(Alignment, IncrementSize));
939
940    // Build a factor node to remember that this load is independent of the
941    // other one.
942    Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
943                     Hi.getValue(1));
944  } else {
945    // Big-endian - high bits are at low addresses.  Favor aligned loads at
946    // the cost of some bit-fiddling.
947    MVT::ValueType EVT = N->getLoadedVT();
948    unsigned EBytes = MVT::getStoreSizeInBits(EVT)/8;
949    unsigned IncrementSize = MVT::getSizeInBits(NVT)/8;
950    unsigned ExcessBits = (EBytes - IncrementSize)*8;
951
952    // Load both the high bits and maybe some of the low bits.
953    Hi = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset,
954                        MVT::getIntegerType(MVT::getSizeInBits(EVT)-ExcessBits),
955                        isVolatile, Alignment);
956
957    // Increment the pointer to the other half.
958    Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
959                      getIntPtrConstant(IncrementSize));
960    // Load the rest of the low bits.
961    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, NVT, Ch, Ptr, N->getSrcValue(),
962                        SVOffset+IncrementSize, MVT::getIntegerType(ExcessBits),
963                        isVolatile, MinAlign(Alignment, IncrementSize));
964
965    // Build a factor node to remember that this load is independent of the
966    // other one.
967    Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
968                     Hi.getValue(1));
969
970    if (ExcessBits < MVT::getSizeInBits(NVT)) {
971      // Transfer low bits from the bottom of Hi to the top of Lo.
972      Lo = DAG.getNode(ISD::OR, NVT, Lo,
973                       DAG.getNode(ISD::SHL, NVT, Hi,
974                                   DAG.getConstant(ExcessBits,
975                                                   TLI.getShiftAmountTy())));
976      // Move high bits to the right position in Hi.
977      Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, NVT, Hi,
978                       DAG.getConstant(MVT::getSizeInBits(NVT) - ExcessBits,
979                                       TLI.getShiftAmountTy()));
980    }
981  }
982
983  // Legalized the chain result - switch anything that used the old chain to
984  // use the new one.
985  ReplaceValueWith(SDOperand(N, 1), Ch);
986}
987
988void DAGTypeLegalizer::ExpandResult_Logical(SDNode *N,
989                                            SDOperand &Lo, SDOperand &Hi) {
990  SDOperand LL, LH, RL, RH;
991  GetExpandedOp(N->getOperand(0), LL, LH);
992  GetExpandedOp(N->getOperand(1), RL, RH);
993  Lo = DAG.getNode(N->getOpcode(), LL.getValueType(), LL, RL);
994  Hi = DAG.getNode(N->getOpcode(), LL.getValueType(), LH, RH);
995}
996
997void DAGTypeLegalizer::ExpandResult_BSWAP(SDNode *N,
998                                          SDOperand &Lo, SDOperand &Hi) {
999  GetExpandedOp(N->getOperand(0), Hi, Lo);  // Note swapped operands.
1000  Lo = DAG.getNode(ISD::BSWAP, Lo.getValueType(), Lo);
1001  Hi = DAG.getNode(ISD::BSWAP, Hi.getValueType(), Hi);
1002}
1003
1004void DAGTypeLegalizer::ExpandResult_SELECT(SDNode *N,
1005                                           SDOperand &Lo, SDOperand &Hi) {
1006  SDOperand LL, LH, RL, RH;
1007  GetExpandedOp(N->getOperand(1), LL, LH);
1008  GetExpandedOp(N->getOperand(2), RL, RH);
1009  Lo = DAG.getNode(ISD::SELECT, LL.getValueType(), N->getOperand(0), LL, RL);
1010
1011  assert(N->getOperand(0).getValueType() != MVT::f32 &&
1012         "FIXME: softfp shouldn't use expand!");
1013  Hi = DAG.getNode(ISD::SELECT, LL.getValueType(), N->getOperand(0), LH, RH);
1014}
1015
1016void DAGTypeLegalizer::ExpandResult_SELECT_CC(SDNode *N,
1017                                              SDOperand &Lo, SDOperand &Hi) {
1018  SDOperand LL, LH, RL, RH;
1019  GetExpandedOp(N->getOperand(2), LL, LH);
1020  GetExpandedOp(N->getOperand(3), RL, RH);
1021  Lo = DAG.getNode(ISD::SELECT_CC, LL.getValueType(), N->getOperand(0),
1022                   N->getOperand(1), LL, RL, N->getOperand(4));
1023
1024  assert(N->getOperand(0).getValueType() != MVT::f32 &&
1025         "FIXME: softfp shouldn't use expand!");
1026  Hi = DAG.getNode(ISD::SELECT_CC, LL.getValueType(), N->getOperand(0),
1027                   N->getOperand(1), LH, RH, N->getOperand(4));
1028}
1029
1030void DAGTypeLegalizer::ExpandResult_ADDSUB(SDNode *N,
1031                                           SDOperand &Lo, SDOperand &Hi) {
1032  // Expand the subcomponents.
1033  SDOperand LHSL, LHSH, RHSL, RHSH;
1034  GetExpandedOp(N->getOperand(0), LHSL, LHSH);
1035  GetExpandedOp(N->getOperand(1), RHSL, RHSH);
1036  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
1037  SDOperand LoOps[2] = { LHSL, RHSL };
1038  SDOperand HiOps[3] = { LHSH, RHSH };
1039
1040  if (N->getOpcode() == ISD::ADD) {
1041    Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
1042    HiOps[2] = Lo.getValue(1);
1043    Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
1044  } else {
1045    Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
1046    HiOps[2] = Lo.getValue(1);
1047    Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
1048  }
1049}
1050
1051void DAGTypeLegalizer::ExpandResult_ADDSUBC(SDNode *N,
1052                                            SDOperand &Lo, SDOperand &Hi) {
1053  // Expand the subcomponents.
1054  SDOperand LHSL, LHSH, RHSL, RHSH;
1055  GetExpandedOp(N->getOperand(0), LHSL, LHSH);
1056  GetExpandedOp(N->getOperand(1), RHSL, RHSH);
1057  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
1058  SDOperand LoOps[2] = { LHSL, RHSL };
1059  SDOperand HiOps[3] = { LHSH, RHSH };
1060
1061  if (N->getOpcode() == ISD::ADDC) {
1062    Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
1063    HiOps[2] = Lo.getValue(1);
1064    Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
1065  } else {
1066    Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
1067    HiOps[2] = Lo.getValue(1);
1068    Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
1069  }
1070
1071  // Legalized the flag result - switch anything that used the old flag to
1072  // use the new one.
1073  ReplaceValueWith(SDOperand(N, 1), Hi.getValue(1));
1074}
1075
1076void DAGTypeLegalizer::ExpandResult_ADDSUBE(SDNode *N,
1077                                            SDOperand &Lo, SDOperand &Hi) {
1078  // Expand the subcomponents.
1079  SDOperand LHSL, LHSH, RHSL, RHSH;
1080  GetExpandedOp(N->getOperand(0), LHSL, LHSH);
1081  GetExpandedOp(N->getOperand(1), RHSL, RHSH);
1082  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
1083  SDOperand LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
1084  SDOperand HiOps[3] = { LHSH, RHSH };
1085
1086  Lo = DAG.getNode(N->getOpcode(), VTList, LoOps, 3);
1087  HiOps[2] = Lo.getValue(1);
1088  Hi = DAG.getNode(N->getOpcode(), VTList, HiOps, 3);
1089
1090  // Legalized the flag result - switch anything that used the old flag to
1091  // use the new one.
1092  ReplaceValueWith(SDOperand(N, 1), Hi.getValue(1));
1093}
1094
1095void DAGTypeLegalizer::ExpandResult_MUL(SDNode *N,
1096                                        SDOperand &Lo, SDOperand &Hi) {
1097  MVT::ValueType VT = N->getValueType(0);
1098  MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
1099
1100  bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT);
1101  bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT);
1102  bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT);
1103  bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT);
1104  if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
1105    SDOperand LL, LH, RL, RH;
1106    GetExpandedOp(N->getOperand(0), LL, LH);
1107    GetExpandedOp(N->getOperand(1), RL, RH);
1108    unsigned BitSize = MVT::getSizeInBits(NVT);
1109    unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
1110    unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
1111
1112    // FIXME: generalize this to handle other bit sizes
1113    if (LHSSB == 32 && RHSSB == 32 &&
1114        DAG.MaskedValueIsZero(N->getOperand(0), 0xFFFFFFFF00000000ULL) &&
1115        DAG.MaskedValueIsZero(N->getOperand(1), 0xFFFFFFFF00000000ULL)) {
1116      // The inputs are both zero-extended.
1117      if (HasUMUL_LOHI) {
1118        // We can emit a umul_lohi.
1119        Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL);
1120        Hi = SDOperand(Lo.Val, 1);
1121        return;
1122      }
1123      if (HasMULHU) {
1124        // We can emit a mulhu+mul.
1125        Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
1126        Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL);
1127        return;
1128      }
1129    }
1130    if (LHSSB > BitSize && RHSSB > BitSize) {
1131      // The input values are both sign-extended.
1132      if (HasSMUL_LOHI) {
1133        // We can emit a smul_lohi.
1134        Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL);
1135        Hi = SDOperand(Lo.Val, 1);
1136        return;
1137      }
1138      if (HasMULHS) {
1139        // We can emit a mulhs+mul.
1140        Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
1141        Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL);
1142        return;
1143      }
1144    }
1145    if (HasUMUL_LOHI) {
1146      // Lo,Hi = umul LHS, RHS.
1147      SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI,
1148                                       DAG.getVTList(NVT, NVT), LL, RL);
1149      Lo = UMulLOHI;
1150      Hi = UMulLOHI.getValue(1);
1151      RH = DAG.getNode(ISD::MUL, NVT, LL, RH);
1152      LH = DAG.getNode(ISD::MUL, NVT, LH, RL);
1153      Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH);
1154      Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH);
1155      return;
1156    }
1157  }
1158
1159  abort();
1160#if 0 // FIXME!
1161  // If nothing else, we can make a libcall.
1162  Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), N,
1163                     false/*sign irrelevant*/, Hi);
1164#endif
1165}
1166
1167
1168void DAGTypeLegalizer::ExpandResult_Shift(SDNode *N,
1169                                          SDOperand &Lo, SDOperand &Hi) {
1170  MVT::ValueType VT = N->getValueType(0);
1171
1172  // If we can emit an efficient shift operation, do so now.  Check to see if
1173  // the RHS is a constant.
1174  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1175    return ExpandShiftByConstant(N, CN->getValue(), Lo, Hi);
1176
1177  // If we can determine that the high bit of the shift is zero or one, even if
1178  // the low bits are variable, emit this shift in an optimized form.
1179  if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
1180    return;
1181
1182  // If this target supports shift_PARTS, use it.  First, map to the _PARTS opc.
1183  unsigned PartsOpc;
1184  if (N->getOpcode() == ISD::SHL)
1185    PartsOpc = ISD::SHL_PARTS;
1186  else if (N->getOpcode() == ISD::SRL)
1187    PartsOpc = ISD::SRL_PARTS;
1188  else {
1189    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1190    PartsOpc = ISD::SRA_PARTS;
1191  }
1192
1193  // Next check to see if the target supports this SHL_PARTS operation or if it
1194  // will custom expand it.
1195  MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
1196  TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
1197  if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
1198      Action == TargetLowering::Custom) {
1199    // Expand the subcomponents.
1200    SDOperand LHSL, LHSH;
1201    GetExpandedOp(N->getOperand(0), LHSL, LHSH);
1202
1203    SDOperand Ops[] = { LHSL, LHSH, N->getOperand(1) };
1204    MVT::ValueType VT = LHSL.getValueType();
1205    Lo = DAG.getNode(PartsOpc, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3);
1206    Hi = Lo.getValue(1);
1207    return;
1208  }
1209
1210  abort();
1211#if 0 // FIXME!
1212  // Otherwise, emit a libcall.
1213  unsigned RuntimeCode = ; // SRL -> SRL_I64 etc.
1214  bool Signed = ;
1215  Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), N,
1216                     false/*lshr is unsigned*/, Hi);
1217#endif
1218}
1219
1220
1221/// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
1222/// and the shift amount is a constant 'Amt'.  Expand the operation.
1223void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
1224                                             SDOperand &Lo, SDOperand &Hi) {
1225  // Expand the incoming operand to be shifted, so that we have its parts
1226  SDOperand InL, InH;
1227  GetExpandedOp(N->getOperand(0), InL, InH);
1228
1229  MVT::ValueType NVT = InL.getValueType();
1230  unsigned VTBits = MVT::getSizeInBits(N->getValueType(0));
1231  unsigned NVTBits = MVT::getSizeInBits(NVT);
1232  MVT::ValueType ShTy = N->getOperand(1).getValueType();
1233
1234  if (N->getOpcode() == ISD::SHL) {
1235    if (Amt > VTBits) {
1236      Lo = Hi = DAG.getConstant(0, NVT);
1237    } else if (Amt > NVTBits) {
1238      Lo = DAG.getConstant(0, NVT);
1239      Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt-NVTBits,ShTy));
1240    } else if (Amt == NVTBits) {
1241      Lo = DAG.getConstant(0, NVT);
1242      Hi = InL;
1243    } else {
1244      Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt, ShTy));
1245      Hi = DAG.getNode(ISD::OR, NVT,
1246                       DAG.getNode(ISD::SHL, NVT, InH,
1247                                   DAG.getConstant(Amt, ShTy)),
1248                       DAG.getNode(ISD::SRL, NVT, InL,
1249                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1250    }
1251    return;
1252  }
1253
1254  if (N->getOpcode() == ISD::SRL) {
1255    if (Amt > VTBits) {
1256      Lo = DAG.getConstant(0, NVT);
1257      Hi = DAG.getConstant(0, NVT);
1258    } else if (Amt > NVTBits) {
1259      Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
1260      Hi = DAG.getConstant(0, NVT);
1261    } else if (Amt == NVTBits) {
1262      Lo = InH;
1263      Hi = DAG.getConstant(0, NVT);
1264    } else {
1265      Lo = DAG.getNode(ISD::OR, NVT,
1266                       DAG.getNode(ISD::SRL, NVT, InL,
1267                                   DAG.getConstant(Amt, ShTy)),
1268                       DAG.getNode(ISD::SHL, NVT, InH,
1269                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1270      Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt, ShTy));
1271    }
1272    return;
1273  }
1274
1275  assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1276  if (Amt > VTBits) {
1277    Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH,
1278                          DAG.getConstant(NVTBits-1, ShTy));
1279  } else if (Amt > NVTBits) {
1280    Lo = DAG.getNode(ISD::SRA, NVT, InH,
1281                     DAG.getConstant(Amt-NVTBits, ShTy));
1282    Hi = DAG.getNode(ISD::SRA, NVT, InH,
1283                     DAG.getConstant(NVTBits-1, ShTy));
1284  } else if (Amt == NVTBits) {
1285    Lo = InH;
1286    Hi = DAG.getNode(ISD::SRA, NVT, InH,
1287                     DAG.getConstant(NVTBits-1, ShTy));
1288  } else {
1289    Lo = DAG.getNode(ISD::OR, NVT,
1290                     DAG.getNode(ISD::SRL, NVT, InL,
1291                                 DAG.getConstant(Amt, ShTy)),
1292                     DAG.getNode(ISD::SHL, NVT, InH,
1293                                 DAG.getConstant(NVTBits-Amt, ShTy)));
1294    Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Amt, ShTy));
1295  }
1296}
1297
1298/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1299/// this shift based on knowledge of the high bit of the shift amount.  If we
1300/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1301/// shift amount.
1302bool DAGTypeLegalizer::
1303ExpandShiftWithKnownAmountBit(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
1304  MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
1305  unsigned NVTBits = MVT::getSizeInBits(NVT);
1306  assert(!(NVTBits & (NVTBits - 1)) &&
1307         "Expanded integer type size not a power of two!");
1308
1309  uint64_t HighBitMask = NVTBits, KnownZero, KnownOne;
1310  DAG.ComputeMaskedBits(N->getOperand(1), HighBitMask, KnownZero, KnownOne);
1311
1312  // If we don't know anything about the high bit, exit.
1313  if (((KnownZero|KnownOne) & HighBitMask) == 0)
1314    return false;
1315
1316  // Get the incoming operand to be shifted.
1317  SDOperand InL, InH;
1318  GetExpandedOp(N->getOperand(0), InL, InH);
1319  SDOperand Amt = N->getOperand(1);
1320
1321  // If we know that the high bit of the shift amount is one, then we can do
1322  // this as a couple of simple shifts.
1323  if (KnownOne & HighBitMask) {
1324    // Mask out the high bit, which we know is set.
1325    Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt,
1326                      DAG.getConstant(NVTBits-1, Amt.getValueType()));
1327
1328    switch (N->getOpcode()) {
1329    default: assert(0 && "Unknown shift");
1330    case ISD::SHL:
1331      Lo = DAG.getConstant(0, NVT);              // Low part is zero.
1332      Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part.
1333      return true;
1334    case ISD::SRL:
1335      Hi = DAG.getConstant(0, NVT);              // Hi part is zero.
1336      Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part.
1337      return true;
1338    case ISD::SRA:
1339      Hi = DAG.getNode(ISD::SRA, NVT, InH,       // Sign extend high part.
1340                       DAG.getConstant(NVTBits-1, Amt.getValueType()));
1341      Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part.
1342      return true;
1343    }
1344  }
1345
1346  // If we know that the high bit of the shift amount is zero, then we can do
1347  // this as a couple of simple shifts.
1348  assert((KnownZero & HighBitMask) && "Bad mask computation above");
1349
1350  // Compute 32-amt.
1351  SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(),
1352                               DAG.getConstant(NVTBits, Amt.getValueType()),
1353                               Amt);
1354  unsigned Op1, Op2;
1355  switch (N->getOpcode()) {
1356  default: assert(0 && "Unknown shift");
1357  case ISD::SHL:  Op1 = ISD::SHL; Op2 = ISD::SRL; break;
1358  case ISD::SRL:
1359  case ISD::SRA:  Op1 = ISD::SRL; Op2 = ISD::SHL; break;
1360  }
1361
1362  Lo = DAG.getNode(N->getOpcode(), NVT, InL, Amt);
1363  Hi = DAG.getNode(ISD::OR, NVT,
1364                   DAG.getNode(Op1, NVT, InH, Amt),
1365                   DAG.getNode(Op2, NVT, InL, Amt2));
1366  return true;
1367}
1368
1369//===----------------------------------------------------------------------===//
1370//  Result Vector Scalarization: <1 x ty> -> ty.
1371//===----------------------------------------------------------------------===//
1372
1373
1374void DAGTypeLegalizer::ScalarizeResult(SDNode *N, unsigned ResNo) {
1375  DEBUG(cerr << "Scalarize node result " << ResNo << ": "; N->dump(&DAG);
1376        cerr << "\n");
1377  SDOperand R = SDOperand();
1378
1379  // FIXME: Custom lowering for scalarization?
1380#if 0
1381  // See if the target wants to custom expand this node.
1382  if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
1383      TargetLowering::Custom) {
1384    // If the target wants to, allow it to lower this itself.
1385    if (SDNode *P = TLI.ExpandOperationResult(N, DAG)) {
1386      // Everything that once used N now uses P.  We are guaranteed that the
1387      // result value types of N and the result value types of P match.
1388      ReplaceNodeWith(N, P);
1389      return;
1390    }
1391  }
1392#endif
1393
1394  switch (N->getOpcode()) {
1395  default:
1396#ifndef NDEBUG
1397    cerr << "ScalarizeResult #" << ResNo << ": ";
1398    N->dump(&DAG); cerr << "\n";
1399#endif
1400    assert(0 && "Do not know how to scalarize the result of this operator!");
1401    abort();
1402
1403  case ISD::UNDEF:       R = ScalarizeRes_UNDEF(N); break;
1404  case ISD::LOAD:        R = ScalarizeRes_LOAD(cast<LoadSDNode>(N)); break;
1405  case ISD::ADD:
1406  case ISD::FADD:
1407  case ISD::SUB:
1408  case ISD::FSUB:
1409  case ISD::MUL:
1410  case ISD::FMUL:
1411  case ISD::SDIV:
1412  case ISD::UDIV:
1413  case ISD::FDIV:
1414  case ISD::SREM:
1415  case ISD::UREM:
1416  case ISD::FREM:
1417  case ISD::FPOW:
1418  case ISD::AND:
1419  case ISD::OR:
1420  case ISD::XOR:         R = ScalarizeRes_BinOp(N); break;
1421  case ISD::FNEG:
1422  case ISD::FABS:
1423  case ISD::FSQRT:
1424  case ISD::FSIN:
1425  case ISD::FCOS:              R = ScalarizeRes_UnaryOp(N); break;
1426  case ISD::FPOWI:             R = ScalarizeRes_FPOWI(N); break;
1427  case ISD::BUILD_VECTOR:      R = N->getOperand(0); break;
1428  case ISD::INSERT_VECTOR_ELT: R = N->getOperand(1); break;
1429  case ISD::VECTOR_SHUFFLE:    R = ScalarizeRes_VECTOR_SHUFFLE(N); break;
1430  case ISD::BIT_CONVERT:       R = ScalarizeRes_BIT_CONVERT(N); break;
1431  case ISD::SELECT:            R = ScalarizeRes_SELECT(N); break;
1432  }
1433
1434  // If R is null, the sub-method took care of registering the resul.
1435  if (R.Val)
1436    SetScalarizedOp(SDOperand(N, ResNo), R);
1437}
1438
1439SDOperand DAGTypeLegalizer::ScalarizeRes_UNDEF(SDNode *N) {
1440  return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(N->getValueType(0)));
1441}
1442
1443SDOperand DAGTypeLegalizer::ScalarizeRes_LOAD(LoadSDNode *N) {
1444  SDOperand Result = DAG.getLoad(MVT::getVectorElementType(N->getValueType(0)),
1445                                 N->getChain(), N->getBasePtr(),
1446                                 N->getSrcValue(), N->getSrcValueOffset(),
1447                                 N->isVolatile(), N->getAlignment());
1448
1449  // Legalized the chain result - switch anything that used the old chain to
1450  // use the new one.
1451  ReplaceValueWith(SDOperand(N, 1), Result.getValue(1));
1452  return Result;
1453}
1454
1455SDOperand DAGTypeLegalizer::ScalarizeRes_BinOp(SDNode *N) {
1456  SDOperand LHS = GetScalarizedOp(N->getOperand(0));
1457  SDOperand RHS = GetScalarizedOp(N->getOperand(1));
1458  return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS);
1459}
1460
1461SDOperand DAGTypeLegalizer::ScalarizeRes_UnaryOp(SDNode *N) {
1462  SDOperand Op = GetScalarizedOp(N->getOperand(0));
1463  return DAG.getNode(N->getOpcode(), Op.getValueType(), Op);
1464}
1465
1466SDOperand DAGTypeLegalizer::ScalarizeRes_FPOWI(SDNode *N) {
1467  SDOperand Op = GetScalarizedOp(N->getOperand(0));
1468  return DAG.getNode(ISD::FPOWI, Op.getValueType(), Op, N->getOperand(1));
1469}
1470
1471SDOperand DAGTypeLegalizer::ScalarizeRes_VECTOR_SHUFFLE(SDNode *N) {
1472  // Figure out if the scalar is the LHS or RHS and return it.
1473  SDOperand EltNum = N->getOperand(2).getOperand(0);
1474  unsigned Op = cast<ConstantSDNode>(EltNum)->getValue() != 0;
1475  return GetScalarizedOp(N->getOperand(Op));
1476}
1477
1478SDOperand DAGTypeLegalizer::ScalarizeRes_BIT_CONVERT(SDNode *N) {
1479  MVT::ValueType NewVT = MVT::getVectorElementType(N->getValueType(0));
1480  return DAG.getNode(ISD::BIT_CONVERT, NewVT, N->getOperand(0));
1481}
1482
1483SDOperand DAGTypeLegalizer::ScalarizeRes_SELECT(SDNode *N) {
1484  SDOperand LHS = GetScalarizedOp(N->getOperand(1));
1485  return DAG.getNode(ISD::SELECT, LHS.getValueType(), N->getOperand(0), LHS,
1486                     GetScalarizedOp(N->getOperand(2)));
1487}
1488
1489
1490//===----------------------------------------------------------------------===//
1491//  Operand Promotion
1492//===----------------------------------------------------------------------===//
1493
1494/// PromoteOperand - This method is called when the specified operand of the
1495/// specified node is found to need promotion.  At this point, all of the result
1496/// types of the node are known to be legal, but other operands of the node may
1497/// need promotion or expansion as well as the specified one.
1498bool DAGTypeLegalizer::PromoteOperand(SDNode *N, unsigned OpNo) {
1499  DEBUG(cerr << "Promote node operand: "; N->dump(&DAG); cerr << "\n");
1500  SDOperand Res;
1501  switch (N->getOpcode()) {
1502    default:
1503#ifndef NDEBUG
1504    cerr << "PromoteOperand Op #" << OpNo << ": ";
1505    N->dump(&DAG); cerr << "\n";
1506#endif
1507    assert(0 && "Do not know how to promote this operator's operand!");
1508    abort();
1509
1510  case ISD::ANY_EXTEND:  Res = PromoteOperand_ANY_EXTEND(N); break;
1511  case ISD::ZERO_EXTEND: Res = PromoteOperand_ZERO_EXTEND(N); break;
1512  case ISD::SIGN_EXTEND: Res = PromoteOperand_SIGN_EXTEND(N); break;
1513  case ISD::TRUNCATE:    Res = PromoteOperand_TRUNCATE(N); break;
1514  case ISD::FP_EXTEND:   Res = PromoteOperand_FP_EXTEND(N); break;
1515  case ISD::FP_ROUND:    Res = PromoteOperand_FP_ROUND(N); break;
1516  case ISD::SINT_TO_FP:
1517  case ISD::UINT_TO_FP:  Res = PromoteOperand_INT_TO_FP(N); break;
1518
1519  case ISD::SELECT:      Res = PromoteOperand_SELECT(N, OpNo); break;
1520  case ISD::BRCOND:      Res = PromoteOperand_BRCOND(N, OpNo); break;
1521  case ISD::BR_CC:       Res = PromoteOperand_BR_CC(N, OpNo); break;
1522  case ISD::SETCC:       Res = PromoteOperand_SETCC(N, OpNo); break;
1523
1524  case ISD::STORE:       Res = PromoteOperand_STORE(cast<StoreSDNode>(N),
1525                                                    OpNo); break;
1526  case ISD::MEMSET:
1527  case ISD::MEMCPY:
1528  case ISD::MEMMOVE:     Res = HandleMemIntrinsic(N); break;
1529  }
1530
1531  // If the result is null, the sub-method took care of registering results etc.
1532  if (!Res.Val) return false;
1533  // If the result is N, the sub-method updated N in place.
1534  if (Res.Val == N) {
1535    // Mark N as new and remark N and its operands.  This allows us to correctly
1536    // revisit N if it needs another step of promotion and allows us to visit
1537    // any new operands to N.
1538    N->setNodeId(NewNode);
1539    MarkNewNodes(N);
1540    return true;
1541  }
1542
1543  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1544         "Invalid operand expansion");
1545
1546  ReplaceValueWith(SDOperand(N, 0), Res);
1547  return false;
1548}
1549
1550SDOperand DAGTypeLegalizer::PromoteOperand_ANY_EXTEND(SDNode *N) {
1551  SDOperand Op = GetPromotedOp(N->getOperand(0));
1552  return DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op);
1553}
1554
1555SDOperand DAGTypeLegalizer::PromoteOperand_ZERO_EXTEND(SDNode *N) {
1556  SDOperand Op = GetPromotedOp(N->getOperand(0));
1557  Op = DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op);
1558  return DAG.getZeroExtendInReg(Op, N->getOperand(0).getValueType());
1559}
1560
1561SDOperand DAGTypeLegalizer::PromoteOperand_SIGN_EXTEND(SDNode *N) {
1562  SDOperand Op = GetPromotedOp(N->getOperand(0));
1563  Op = DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op);
1564  return DAG.getNode(ISD::SIGN_EXTEND_INREG, Op.getValueType(),
1565                     Op, DAG.getValueType(N->getOperand(0).getValueType()));
1566}
1567
1568SDOperand DAGTypeLegalizer::PromoteOperand_TRUNCATE(SDNode *N) {
1569  SDOperand Op = GetPromotedOp(N->getOperand(0));
1570  return DAG.getNode(ISD::TRUNCATE, N->getValueType(0), Op);
1571}
1572
1573SDOperand DAGTypeLegalizer::PromoteOperand_FP_EXTEND(SDNode *N) {
1574  SDOperand Op = GetPromotedOp(N->getOperand(0));
1575  return DAG.getNode(ISD::FP_EXTEND, N->getValueType(0), Op);
1576}
1577
1578SDOperand DAGTypeLegalizer::PromoteOperand_FP_ROUND(SDNode *N) {
1579  SDOperand Op = GetPromotedOp(N->getOperand(0));
1580  return DAG.getNode(ISD::FP_ROUND, N->getValueType(0), Op);
1581}
1582
1583SDOperand DAGTypeLegalizer::PromoteOperand_INT_TO_FP(SDNode *N) {
1584  SDOperand In = GetPromotedOp(N->getOperand(0));
1585  MVT::ValueType OpVT = N->getOperand(0).getValueType();
1586  if (N->getOpcode() == ISD::UINT_TO_FP)
1587    In = DAG.getZeroExtendInReg(In, OpVT);
1588  else
1589    In = DAG.getNode(ISD::SIGN_EXTEND_INREG, In.getValueType(),
1590                     In, DAG.getValueType(OpVT));
1591
1592  return DAG.UpdateNodeOperands(SDOperand(N, 0), In);
1593}
1594
1595SDOperand DAGTypeLegalizer::PromoteOperand_SELECT(SDNode *N, unsigned OpNo) {
1596  assert(OpNo == 0 && "Only know how to promote condition");
1597  SDOperand Cond = GetPromotedOp(N->getOperand(0));  // Promote the condition.
1598
1599  // The top bits of the promoted condition are not necessarily zero, ensure
1600  // that the value is properly zero extended.
1601  if (!DAG.MaskedValueIsZero(Cond,
1602                             MVT::getIntVTBitMask(Cond.getValueType())^1)) {
1603    Cond = DAG.getZeroExtendInReg(Cond, MVT::i1);
1604    MarkNewNodes(Cond.Val);
1605  }
1606
1607  // The chain (Op#0) and basic block destination (Op#2) are always legal types.
1608  return DAG.UpdateNodeOperands(SDOperand(N, 0), Cond, N->getOperand(1),
1609                                N->getOperand(2));
1610}
1611
1612SDOperand DAGTypeLegalizer::PromoteOperand_BRCOND(SDNode *N, unsigned OpNo) {
1613  assert(OpNo == 1 && "only know how to promote condition");
1614  SDOperand Cond = GetPromotedOp(N->getOperand(1));  // Promote the condition.
1615
1616  // The top bits of the promoted condition are not necessarily zero, ensure
1617  // that the value is properly zero extended.
1618  if (!DAG.MaskedValueIsZero(Cond,
1619                             MVT::getIntVTBitMask(Cond.getValueType())^1)) {
1620    Cond = DAG.getZeroExtendInReg(Cond, MVT::i1);
1621    MarkNewNodes(Cond.Val);
1622  }
1623
1624  // The chain (Op#0) and basic block destination (Op#2) are always legal types.
1625  return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0), Cond,
1626                                N->getOperand(2));
1627}
1628
1629SDOperand DAGTypeLegalizer::PromoteOperand_BR_CC(SDNode *N, unsigned OpNo) {
1630  assert(OpNo == 2 && "Don't know how to promote this operand");
1631
1632  SDOperand LHS = N->getOperand(2);
1633  SDOperand RHS = N->getOperand(3);
1634  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
1635
1636  // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
1637  // legal types.
1638  return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0),
1639                                N->getOperand(1), LHS, RHS, N->getOperand(4));
1640}
1641
1642SDOperand DAGTypeLegalizer::PromoteOperand_SETCC(SDNode *N, unsigned OpNo) {
1643  assert(OpNo == 0 && "Don't know how to promote this operand");
1644
1645  SDOperand LHS = N->getOperand(0);
1646  SDOperand RHS = N->getOperand(1);
1647  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
1648
1649  // The CC (#2) is always legal.
1650  return DAG.UpdateNodeOperands(SDOperand(N, 0), LHS, RHS, N->getOperand(2));
1651}
1652
1653/// PromoteSetCCOperands - Promote the operands of a comparison.  This code is
1654/// shared among BR_CC, SELECT_CC, and SETCC handlers.
1655void DAGTypeLegalizer::PromoteSetCCOperands(SDOperand &NewLHS,SDOperand &NewRHS,
1656                                            ISD::CondCode CCCode) {
1657  MVT::ValueType VT = NewLHS.getValueType();
1658
1659  // Get the promoted values.
1660  NewLHS = GetPromotedOp(NewLHS);
1661  NewRHS = GetPromotedOp(NewRHS);
1662
1663  // If this is an FP compare, the operands have already been extended.
1664  if (!MVT::isInteger(NewLHS.getValueType()))
1665    return;
1666
1667  // Otherwise, we have to insert explicit sign or zero extends.  Note
1668  // that we could insert sign extends for ALL conditions, but zero extend
1669  // is cheaper on many machines (an AND instead of two shifts), so prefer
1670  // it.
1671  switch (CCCode) {
1672  default: assert(0 && "Unknown integer comparison!");
1673  case ISD::SETEQ:
1674  case ISD::SETNE:
1675  case ISD::SETUGE:
1676  case ISD::SETUGT:
1677  case ISD::SETULE:
1678  case ISD::SETULT:
1679    // ALL of these operations will work if we either sign or zero extend
1680    // the operands (including the unsigned comparisons!).  Zero extend is
1681    // usually a simpler/cheaper operation, so prefer it.
1682    NewLHS = DAG.getZeroExtendInReg(NewLHS, VT);
1683    NewRHS = DAG.getZeroExtendInReg(NewRHS, VT);
1684    return;
1685  case ISD::SETGE:
1686  case ISD::SETGT:
1687  case ISD::SETLT:
1688  case ISD::SETLE:
1689    NewLHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, NewLHS.getValueType(), NewLHS,
1690                         DAG.getValueType(VT));
1691    NewRHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, NewRHS.getValueType(), NewRHS,
1692                         DAG.getValueType(VT));
1693    return;
1694  }
1695}
1696
1697SDOperand DAGTypeLegalizer::PromoteOperand_STORE(StoreSDNode *N, unsigned OpNo){
1698  SDOperand Ch = N->getChain(), Ptr = N->getBasePtr();
1699  int SVOffset = N->getSrcValueOffset();
1700  unsigned Alignment = N->getAlignment();
1701  bool isVolatile = N->isVolatile();
1702
1703  SDOperand Val = GetPromotedOp(N->getValue());  // Get promoted value.
1704
1705  assert(!N->isTruncatingStore() && "Cannot promote this store operand!");
1706
1707  // Truncate the value and store the result.
1708  return DAG.getTruncStore(Ch, Val, Ptr, N->getSrcValue(),
1709                           SVOffset, N->getStoredVT(),
1710                           isVolatile, Alignment);
1711}
1712
1713
1714//===----------------------------------------------------------------------===//
1715//  Operand Expansion
1716//===----------------------------------------------------------------------===//
1717
1718/// ExpandOperand - This method is called when the specified operand of the
1719/// specified node is found to need expansion.  At this point, all of the result
1720/// types of the node are known to be legal, but other operands of the node may
1721/// need promotion or expansion as well as the specified one.
1722bool DAGTypeLegalizer::ExpandOperand(SDNode *N, unsigned OpNo) {
1723  DEBUG(cerr << "Expand node operand: "; N->dump(&DAG); cerr << "\n");
1724  SDOperand Res(0, 0);
1725
1726  if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
1727      TargetLowering::Custom)
1728    Res = TLI.LowerOperation(SDOperand(N, 0), DAG);
1729
1730  if (Res.Val == 0) {
1731    switch (N->getOpcode()) {
1732    default:
1733  #ifndef NDEBUG
1734      cerr << "ExpandOperand Op #" << OpNo << ": ";
1735      N->dump(&DAG); cerr << "\n";
1736  #endif
1737      assert(0 && "Do not know how to expand this operator's operand!");
1738      abort();
1739
1740    case ISD::TRUNCATE:        Res = ExpandOperand_TRUNCATE(N); break;
1741    case ISD::BIT_CONVERT:     Res = ExpandOperand_BIT_CONVERT(N); break;
1742
1743    case ISD::SINT_TO_FP:
1744      Res = ExpandOperand_SINT_TO_FP(N->getOperand(0), N->getValueType(0));
1745      break;
1746    case ISD::UINT_TO_FP:
1747      Res = ExpandOperand_UINT_TO_FP(N->getOperand(0), N->getValueType(0));
1748      break;
1749    case ISD::EXTRACT_ELEMENT: Res = ExpandOperand_EXTRACT_ELEMENT(N); break;
1750    case ISD::SETCC:           Res = ExpandOperand_SETCC(N); break;
1751
1752    case ISD::STORE:
1753      Res = ExpandOperand_STORE(cast<StoreSDNode>(N), OpNo);
1754      break;
1755    case ISD::MEMSET:
1756    case ISD::MEMCPY:
1757    case ISD::MEMMOVE:     Res = HandleMemIntrinsic(N); break;
1758    }
1759  }
1760
1761  // If the result is null, the sub-method took care of registering results etc.
1762  if (!Res.Val) return false;
1763  // If the result is N, the sub-method updated N in place.  Check to see if any
1764  // operands are new, and if so, mark them.
1765  if (Res.Val == N) {
1766    // Mark N as new and remark N and its operands.  This allows us to correctly
1767    // revisit N if it needs another step of promotion and allows us to visit
1768    // any new operands to N.
1769    N->setNodeId(NewNode);
1770    MarkNewNodes(N);
1771    return true;
1772  }
1773
1774  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1775         "Invalid operand expansion");
1776
1777  ReplaceValueWith(SDOperand(N, 0), Res);
1778  return false;
1779}
1780
1781SDOperand DAGTypeLegalizer::ExpandOperand_TRUNCATE(SDNode *N) {
1782  SDOperand InL, InH;
1783  GetExpandedOp(N->getOperand(0), InL, InH);
1784  // Just truncate the low part of the source.
1785  return DAG.getNode(ISD::TRUNCATE, N->getValueType(0), InL);
1786}
1787
1788SDOperand DAGTypeLegalizer::ExpandOperand_BIT_CONVERT(SDNode *N) {
1789  return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
1790}
1791
1792SDOperand DAGTypeLegalizer::ExpandOperand_SINT_TO_FP(SDOperand Source,
1793                                                     MVT::ValueType DestTy) {
1794  // We know the destination is legal, but that the input needs to be expanded.
1795  assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!");
1796
1797  // Check to see if the target has a custom way to lower this.  If so, use it.
1798  switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) {
1799  default: assert(0 && "This action not implemented for this operation!");
1800  case TargetLowering::Legal:
1801  case TargetLowering::Expand:
1802    break;   // This case is handled below.
1803  case TargetLowering::Custom:
1804    SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy,
1805                                                  Source), DAG);
1806    if (NV.Val) return NV;
1807    break;   // The target lowered this.
1808  }
1809
1810  RTLIB::Libcall LC;
1811  if (DestTy == MVT::f32)
1812    LC = RTLIB::SINTTOFP_I64_F32;
1813  else {
1814    assert(DestTy == MVT::f64 && "Unknown fp value type!");
1815    LC = RTLIB::SINTTOFP_I64_F64;
1816  }
1817
1818  assert(0 && "FIXME: no libcalls yet!");
1819  abort();
1820#if 0
1821  assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!");
1822  Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source);
1823  SDOperand UnusedHiPart;
1824  return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, true, UnusedHiPart);
1825#endif
1826}
1827
1828SDOperand DAGTypeLegalizer::ExpandOperand_UINT_TO_FP(SDOperand Source,
1829                                                     MVT::ValueType DestTy) {
1830  // We know the destination is legal, but that the input needs to be expanded.
1831  assert(getTypeAction(Source.getValueType()) == Expand &&
1832         "This is not an expansion!");
1833  assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!");
1834
1835  // If this is unsigned, and not supported, first perform the conversion to
1836  // signed, then adjust the result if the sign bit is set.
1837  SDOperand SignedConv = ExpandOperand_SINT_TO_FP(Source, DestTy);
1838
1839  // The 64-bit value loaded will be incorrectly if the 'sign bit' of the
1840  // incoming integer is set.  To handle this, we dynamically test to see if
1841  // it is set, and, if so, add a fudge factor.
1842  SDOperand Lo, Hi;
1843  GetExpandedOp(Source, Lo, Hi);
1844
1845  SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi,
1846                                   DAG.getConstant(0, Hi.getValueType()),
1847                                   ISD::SETLT);
1848  SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4);
1849  SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
1850                                    SignSet, Four, Zero);
1851  uint64_t FF = 0x5f800000ULL;
1852  if (TLI.isLittleEndian()) FF <<= 32;
1853  Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
1854
1855  SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
1856  CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
1857  SDOperand FudgeInReg;
1858  if (DestTy == MVT::f32)
1859    FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0);
1860  else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32))
1861    // FIXME: Avoid the extend by construction the right constantpool?
1862    FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(),
1863                                CPIdx, NULL, 0, MVT::f32);
1864  else
1865    assert(0 && "Unexpected conversion");
1866
1867  return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg);
1868}
1869
1870SDOperand DAGTypeLegalizer::ExpandOperand_EXTRACT_ELEMENT(SDNode *N) {
1871  SDOperand Lo, Hi;
1872  GetExpandedOp(N->getOperand(0), Lo, Hi);
1873  return cast<ConstantSDNode>(N->getOperand(1))->getValue() ? Hi : Lo;
1874}
1875
1876SDOperand DAGTypeLegalizer::ExpandOperand_SETCC(SDNode *N) {
1877  SDOperand NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
1878  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
1879  ExpandSetCCOperands(NewLHS, NewRHS, CCCode);
1880
1881  // If ExpandSetCCOperands returned a scalar, use it.
1882  if (NewRHS.Val == 0) return NewLHS;
1883
1884  // Otherwise, update N to have the operands specified.
1885  return DAG.UpdateNodeOperands(SDOperand(N, 0), NewLHS, NewRHS,
1886                                DAG.getCondCode(CCCode));
1887}
1888
1889/// ExpandSetCCOperands - Expand the operands of a comparison.  This code is
1890/// shared among BR_CC, SELECT_CC, and SETCC handlers.
1891void DAGTypeLegalizer::ExpandSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS,
1892                                           ISD::CondCode &CCCode) {
1893  SDOperand LHSLo, LHSHi, RHSLo, RHSHi;
1894  GetExpandedOp(NewLHS, LHSLo, LHSHi);
1895  GetExpandedOp(NewRHS, RHSLo, RHSHi);
1896
1897  MVT::ValueType VT = NewLHS.getValueType();
1898  if (VT == MVT::f32 || VT == MVT::f64) {
1899    assert(0 && "FIXME: softfp not implemented yet! should be promote not exp");
1900  }
1901
1902  if (VT == MVT::ppcf128) {
1903    // FIXME:  This generated code sucks.  We want to generate
1904    //         FCMP crN, hi1, hi2
1905    //         BNE crN, L:
1906    //         FCMP crN, lo1, lo2
1907    // The following can be improved, but not that much.
1908    SDOperand Tmp1, Tmp2, Tmp3;
1909    Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ);
1910    Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode);
1911    Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
1912    Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE);
1913    Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode);
1914    Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
1915    NewLHS = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3);
1916    NewRHS = SDOperand();   // LHS is the result, not a compare.
1917    return;
1918  }
1919
1920
1921  if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
1922    if (RHSLo == RHSHi)
1923      if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo))
1924        if (RHSCST->isAllOnesValue()) {
1925          // Equality comparison to -1.
1926          NewLHS = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi);
1927          NewRHS = RHSLo;
1928          return;
1929        }
1930
1931    NewLHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo);
1932    NewRHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi);
1933    NewLHS = DAG.getNode(ISD::OR, NewLHS.getValueType(), NewLHS, NewRHS);
1934    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
1935    return;
1936  }
1937
1938  // If this is a comparison of the sign bit, just look at the top part.
1939  // X > -1,  x < 0
1940  if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
1941    if ((CCCode == ISD::SETLT && CST->getValue() == 0) ||   // X < 0
1942        (CCCode == ISD::SETGT && CST->isAllOnesValue())) {  // X > -1
1943      NewLHS = LHSHi;
1944      NewRHS = RHSHi;
1945      return;
1946    }
1947
1948  // FIXME: This generated code sucks.
1949  ISD::CondCode LowCC;
1950  switch (CCCode) {
1951  default: assert(0 && "Unknown integer setcc!");
1952  case ISD::SETLT:
1953  case ISD::SETULT: LowCC = ISD::SETULT; break;
1954  case ISD::SETGT:
1955  case ISD::SETUGT: LowCC = ISD::SETUGT; break;
1956  case ISD::SETLE:
1957  case ISD::SETULE: LowCC = ISD::SETULE; break;
1958  case ISD::SETGE:
1959  case ISD::SETUGE: LowCC = ISD::SETUGE; break;
1960  }
1961
1962  // Tmp1 = lo(op1) < lo(op2)   // Always unsigned comparison
1963  // Tmp2 = hi(op1) < hi(op2)   // Signedness depends on operands
1964  // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
1965
1966  // NOTE: on targets without efficient SELECT of bools, we can always use
1967  // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
1968  TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL);
1969  SDOperand Tmp1, Tmp2;
1970  Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC,
1971                           false, DagCombineInfo);
1972  if (!Tmp1.Val)
1973    Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC);
1974  Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi,
1975                           CCCode, false, DagCombineInfo);
1976  if (!Tmp2.Val)
1977    Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,
1978                       DAG.getCondCode(CCCode));
1979
1980  ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val);
1981  ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val);
1982  if ((Tmp1C && Tmp1C->getValue() == 0) ||
1983      (Tmp2C && Tmp2C->getValue() == 0 &&
1984       (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
1985        CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
1986      (Tmp2C && Tmp2C->getValue() == 1 &&
1987       (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
1988        CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
1989    // low part is known false, returns high part.
1990    // For LE / GE, if high part is known false, ignore the low part.
1991    // For LT / GT, if high part is known true, ignore the low part.
1992    NewLHS = Tmp2;
1993    NewRHS = SDOperand();
1994    return;
1995  }
1996
1997  NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi,
1998                             ISD::SETEQ, false, DagCombineInfo);
1999  if (!NewLHS.Val)
2000    NewLHS = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ);
2001  NewLHS = DAG.getNode(ISD::SELECT, Tmp1.getValueType(),
2002                       NewLHS, Tmp1, Tmp2);
2003  NewRHS = SDOperand();
2004}
2005
2006SDOperand DAGTypeLegalizer::ExpandOperand_STORE(StoreSDNode *N, unsigned OpNo) {
2007  assert(OpNo == 1 && "Can only expand the stored value so far");
2008
2009  MVT::ValueType VT = N->getOperand(1).getValueType();
2010  MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
2011  SDOperand Ch  = N->getChain();
2012  SDOperand Ptr = N->getBasePtr();
2013  int SVOffset = N->getSrcValueOffset();
2014  unsigned Alignment = N->getAlignment();
2015  bool isVolatile = N->isVolatile();
2016  SDOperand Lo, Hi;
2017
2018  assert(!(MVT::getSizeInBits(NVT) & 7) && "Expanded type not byte sized!");
2019
2020  if (!N->isTruncatingStore()) {
2021    unsigned IncrementSize = 0;
2022
2023    // If this is a vector type, then we have to calculate the increment as
2024    // the product of the element size in bytes, and the number of elements
2025    // in the high half of the vector.
2026    if (MVT::isVector(N->getValue().getValueType())) {
2027      assert(0 && "Vectors not supported yet");
2028  #if 0
2029      SDNode *InVal = ST->getValue().Val;
2030      unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(0));
2031      MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(0));
2032
2033      // Figure out if there is a simple type corresponding to this Vector
2034      // type.  If so, convert to the vector type.
2035      MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems);
2036      if (TLI.isTypeLegal(TVT)) {
2037        // Turn this into a normal store of the vector type.
2038        Tmp3 = LegalizeOp(Node->getOperand(1));
2039        Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
2040                              SVOffset, isVolatile, Alignment);
2041        Result = LegalizeOp(Result);
2042        break;
2043      } else if (NumElems == 1) {
2044        // Turn this into a normal store of the scalar type.
2045        Tmp3 = ScalarizeVectorOp(Node->getOperand(1));
2046        Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
2047                              SVOffset, isVolatile, Alignment);
2048        // The scalarized value type may not be legal, e.g. it might require
2049        // promotion or expansion.  Relegalize the scalar store.
2050        return LegalizeOp(Result);
2051      } else {
2052        SplitVectorOp(Node->getOperand(1), Lo, Hi);
2053        IncrementSize = NumElems/2 * MVT::getSizeInBits(EVT)/8;
2054      }
2055  #endif
2056    } else {
2057      GetExpandedOp(N->getValue(), Lo, Hi);
2058      IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0;
2059
2060      if (!TLI.isLittleEndian())
2061        std::swap(Lo, Hi);
2062    }
2063
2064    Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(),
2065                      SVOffset, isVolatile, Alignment);
2066
2067    assert(Hi.Val && "FIXME: int <-> float should be handled with promote!");
2068  #if 0
2069    if (Hi.Val == NULL) {
2070      // Must be int <-> float one-to-one expansion.
2071      return Lo;
2072    }
2073  #endif
2074
2075    Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
2076                      getIntPtrConstant(IncrementSize));
2077    assert(isTypeLegal(Ptr.getValueType()) && "Pointers must be legal!");
2078    Hi = DAG.getStore(Ch, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
2079                      isVolatile, MinAlign(Alignment, IncrementSize));
2080    return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
2081  } else if (MVT::getSizeInBits(N->getStoredVT()) <= MVT::getSizeInBits(NVT)) {
2082    GetExpandedOp(N->getValue(), Lo, Hi);
2083    return DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset,
2084                             N->getStoredVT(), isVolatile, Alignment);
2085  } else if (TLI.isLittleEndian()) {
2086    // Little-endian - low bits are at low addresses.
2087    GetExpandedOp(N->getValue(), Lo, Hi);
2088
2089    Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset,
2090                      isVolatile, Alignment);
2091
2092    unsigned ExcessBits =
2093      MVT::getSizeInBits(N->getStoredVT()) - MVT::getSizeInBits(NVT);
2094    MVT::ValueType NEVT = MVT::getIntegerType(ExcessBits);
2095
2096    // Increment the pointer to the other half.
2097    unsigned IncrementSize = MVT::getSizeInBits(NVT)/8;
2098    Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
2099                      getIntPtrConstant(IncrementSize));
2100    Hi = DAG.getTruncStore(Ch, Hi, Ptr, N->getSrcValue(),
2101                           SVOffset+IncrementSize, NEVT,
2102                           isVolatile, MinAlign(Alignment, IncrementSize));
2103    return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
2104  } else {
2105    // Big-endian - high bits are at low addresses.  Favor aligned stores at
2106    // the cost of some bit-fiddling.
2107    GetExpandedOp(N->getValue(), Lo, Hi);
2108
2109    MVT::ValueType EVT = N->getStoredVT();
2110    unsigned EBytes = MVT::getStoreSizeInBits(EVT)/8;
2111    unsigned IncrementSize = MVT::getSizeInBits(NVT)/8;
2112    unsigned ExcessBits = (EBytes - IncrementSize)*8;
2113    MVT::ValueType HiVT =
2114      MVT::getIntegerType(MVT::getSizeInBits(EVT)-ExcessBits);
2115
2116    if (ExcessBits < MVT::getSizeInBits(NVT)) {
2117      // Transfer high bits from the top of Lo to the bottom of Hi.
2118      Hi = DAG.getNode(ISD::SHL, NVT, Hi,
2119                       DAG.getConstant(MVT::getSizeInBits(NVT) - ExcessBits,
2120                                       TLI.getShiftAmountTy()));
2121      Hi = DAG.getNode(ISD::OR, NVT, Hi,
2122                       DAG.getNode(ISD::SRL, NVT, Lo,
2123                                   DAG.getConstant(ExcessBits,
2124                                                   TLI.getShiftAmountTy())));
2125    }
2126
2127    // Store both the high bits and maybe some of the low bits.
2128    Hi = DAG.getTruncStore(Ch, Hi, Ptr, N->getSrcValue(),
2129                           SVOffset, HiVT, isVolatile, Alignment);
2130
2131    // Increment the pointer to the other half.
2132    Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
2133                      getIntPtrConstant(IncrementSize));
2134    // Store the lowest ExcessBits bits in the second half.
2135    Lo = DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(),
2136                           SVOffset+IncrementSize,
2137                           MVT::getIntegerType(ExcessBits),
2138                           isVolatile, MinAlign(Alignment, IncrementSize));
2139    return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
2140  }
2141}
2142
2143//===----------------------------------------------------------------------===//
2144//  Operand Vector Scalarization <1 x ty> -> ty.
2145//===----------------------------------------------------------------------===//
2146
2147bool DAGTypeLegalizer::ScalarizeOperand(SDNode *N, unsigned OpNo) {
2148  DEBUG(cerr << "Scalarize node operand " << OpNo << ": "; N->dump(&DAG);
2149        cerr << "\n");
2150  SDOperand Res(0, 0);
2151
2152  // FIXME: Should we support custom lowering for scalarization?
2153#if 0
2154  if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
2155      TargetLowering::Custom)
2156    Res = TLI.LowerOperation(SDOperand(N, 0), DAG);
2157#endif
2158
2159  if (Res.Val == 0) {
2160    switch (N->getOpcode()) {
2161    default:
2162#ifndef NDEBUG
2163      cerr << "ScalarizeOperand Op #" << OpNo << ": ";
2164      N->dump(&DAG); cerr << "\n";
2165#endif
2166      assert(0 && "Do not know how to scalarize this operator's operand!");
2167      abort();
2168
2169    case ISD::EXTRACT_VECTOR_ELT:
2170      Res = ScalarizeOp_EXTRACT_VECTOR_ELT(N, OpNo);
2171      break;
2172    }
2173  }
2174
2175  // If the result is null, the sub-method took care of registering results etc.
2176  if (!Res.Val) return false;
2177
2178  // If the result is N, the sub-method updated N in place.  Check to see if any
2179  // operands are new, and if so, mark them.
2180  if (Res.Val == N) {
2181    // Mark N as new and remark N and its operands.  This allows us to correctly
2182    // revisit N if it needs another step of promotion and allows us to visit
2183    // any new operands to N.
2184    N->setNodeId(NewNode);
2185    MarkNewNodes(N);
2186    return true;
2187  }
2188
2189  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2190         "Invalid operand expansion");
2191
2192  ReplaceValueWith(SDOperand(N, 0), Res);
2193  return false;
2194}
2195
2196/// ScalarizeOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to be
2197/// scalarized, it must be <1 x ty>, just return the operand, ignoring the
2198/// index.
2199SDOperand DAGTypeLegalizer::ScalarizeOp_EXTRACT_VECTOR_ELT(SDNode *N,
2200                                                           unsigned OpNo) {
2201  return GetScalarizedOp(N->getOperand(0));
2202}
2203
2204
2205//===----------------------------------------------------------------------===//
2206//  Entry Point
2207//===----------------------------------------------------------------------===//
2208
2209/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
2210/// only uses types natively supported by the target.
2211///
2212/// Note that this is an involved process that may invalidate pointers into
2213/// the graph.
2214void SelectionDAG::LegalizeTypes() {
2215  DAGTypeLegalizer(*this).run();
2216}
2217