LegalizeTypes.cpp revision 04b2c5042727b091ad425110d952491a40c88ee3
1//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11// an arbitrary well-formed SelectionDAG to only consist of legal types.  This
12// is common code shared among the LegalizeTypes*.cpp files.
13//
14//===----------------------------------------------------------------------===//
15
16#include "LegalizeTypes.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/Support/CommandLine.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace llvm;
24
25static cl::opt<bool>
26EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
27
28/// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
29void DAGTypeLegalizer::PerformExpensiveChecks() {
30  // If a node is not processed, then none of its values should be mapped by any
31  // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
32
33  // If a node is processed, then each value with an illegal type must be mapped
34  // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
35  // Values with a legal type may be mapped by ReplacedValues, but not by any of
36  // the other maps.
37
38  // Note that these invariants may not hold momentarily when processing a node:
39  // the node being processed may be put in a map before being marked Processed.
40
41  // Note that it is possible to have nodes marked NewNode in the DAG.  This can
42  // occur in two ways.  Firstly, a node may be created during legalization but
43  // never passed to the legalization core.  This is usually due to the implicit
44  // folding that occurs when using the DAG.getNode operators.  Secondly, a new
45  // node may be passed to the legalization core, but when analyzed may morph
46  // into a different node, leaving the original node as a NewNode in the DAG.
47  // A node may morph if one of its operands changes during analysis.  Whether
48  // it actually morphs or not depends on whether, after updating its operands,
49  // it is equivalent to an existing node: if so, it morphs into that existing
50  // node (CSE).  An operand can change during analysis if the operand is a new
51  // node that morphs, or it is a processed value that was mapped to some other
52  // value (as recorded in ReplacedValues) in which case the operand is turned
53  // into that other value.  If a node morphs then the node it morphed into will
54  // be used instead of it for legalization, however the original node continues
55  // to live on in the DAG.
56  // The conclusion is that though there may be nodes marked NewNode in the DAG,
57  // all uses of such nodes are also marked NewNode: the result is a fungus of
58  // NewNodes growing on top of the useful nodes, and perhaps using them, but
59  // not used by them.
60
61  // If a value is mapped by ReplacedValues, then it must have no uses, except
62  // by nodes marked NewNode (see above).
63
64  // The final node obtained by mapping by ReplacedValues is not marked NewNode.
65  // Note that ReplacedValues should be applied iteratively.
66
67  // Note that the ReplacedValues map may also map deleted nodes (by iterating
68  // over the DAG we never dereference deleted nodes).  This means that it may
69  // also map nodes marked NewNode if the deallocated memory was reallocated as
70  // another node, and that new node was not seen by the LegalizeTypes machinery
71  // (for example because it was created but not used).  In general, we cannot
72  // distinguish between new nodes and deleted nodes.
73  SmallVector<SDNode*, 16> NewNodes;
74  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
75       E = DAG.allnodes_end(); I != E; ++I) {
76    // Remember nodes marked NewNode - they are subject to extra checking below.
77    if (I->getNodeId() == NewNode)
78      NewNodes.push_back(I);
79
80    for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) {
81      SDValue Res(I, i);
82      bool Failed = false;
83
84      unsigned Mapped = 0;
85      if (ReplacedValues.find(Res) != ReplacedValues.end()) {
86        Mapped |= 1;
87        // Check that remapped values are only used by nodes marked NewNode.
88        for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end();
89             UI != UE; ++UI)
90          if (UI.getUse().getResNo() == i)
91            assert(UI->getNodeId() == NewNode &&
92                   "Remapped value has non-trivial use!");
93
94        // Check that the final result of applying ReplacedValues is not
95        // marked NewNode.
96        SDValue NewVal = ReplacedValues[Res];
97        DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
98        while (I != ReplacedValues.end()) {
99          NewVal = I->second;
100          I = ReplacedValues.find(NewVal);
101        }
102        assert(NewVal.getNode()->getNodeId() != NewNode &&
103               "ReplacedValues maps to a new node!");
104      }
105      if (PromotedIntegers.find(Res) != PromotedIntegers.end())
106        Mapped |= 2;
107      if (SoftenedFloats.find(Res) != SoftenedFloats.end())
108        Mapped |= 4;
109      if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
110        Mapped |= 8;
111      if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
112        Mapped |= 16;
113      if (ExpandedFloats.find(Res) != ExpandedFloats.end())
114        Mapped |= 32;
115      if (SplitVectors.find(Res) != SplitVectors.end())
116        Mapped |= 64;
117      if (WidenedVectors.find(Res) != WidenedVectors.end())
118        Mapped |= 128;
119
120      if (I->getNodeId() != Processed) {
121        // Since we allow ReplacedValues to map deleted nodes, it may map nodes
122        // marked NewNode too, since a deleted node may have been reallocated as
123        // another node that has not been seen by the LegalizeTypes machinery.
124        if ((I->getNodeId() == NewNode && Mapped > 1) ||
125            (I->getNodeId() != NewNode && Mapped != 0)) {
126          dbgs() << "Unprocessed value in a map!";
127          Failed = true;
128        }
129      } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
130        if (Mapped > 1) {
131          dbgs() << "Value with legal type was transformed!";
132          Failed = true;
133        }
134      } else {
135        if (Mapped == 0) {
136          dbgs() << "Processed value not in any map!";
137          Failed = true;
138        } else if (Mapped & (Mapped - 1)) {
139          dbgs() << "Value in multiple maps!";
140          Failed = true;
141        }
142      }
143
144      if (Failed) {
145        if (Mapped & 1)
146          dbgs() << " ReplacedValues";
147        if (Mapped & 2)
148          dbgs() << " PromotedIntegers";
149        if (Mapped & 4)
150          dbgs() << " SoftenedFloats";
151        if (Mapped & 8)
152          dbgs() << " ScalarizedVectors";
153        if (Mapped & 16)
154          dbgs() << " ExpandedIntegers";
155        if (Mapped & 32)
156          dbgs() << " ExpandedFloats";
157        if (Mapped & 64)
158          dbgs() << " SplitVectors";
159        if (Mapped & 128)
160          dbgs() << " WidenedVectors";
161        dbgs() << "\n";
162        llvm_unreachable(0);
163      }
164    }
165  }
166
167  // Checked that NewNodes are only used by other NewNodes.
168  for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
169    SDNode *N = NewNodes[i];
170    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
171         UI != UE; ++UI)
172      assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
173  }
174}
175
176/// run - This is the main entry point for the type legalizer.  This does a
177/// top-down traversal of the dag, legalizing types as it goes.  Returns "true"
178/// if it made any changes.
179bool DAGTypeLegalizer::run() {
180  bool Changed = false;
181
182  // Create a dummy node (which is not added to allnodes), that adds a reference
183  // to the root node, preventing it from being deleted, and tracking any
184  // changes of the root.
185  HandleSDNode Dummy(DAG.getRoot());
186  Dummy.setNodeId(Unanalyzed);
187
188  // The root of the dag may dangle to deleted nodes until the type legalizer is
189  // done.  Set it to null to avoid confusion.
190  DAG.setRoot(SDValue());
191
192  // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
193  // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
194  // non-leaves.
195  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
196       E = DAG.allnodes_end(); I != E; ++I) {
197    if (I->getNumOperands() == 0) {
198      I->setNodeId(ReadyToProcess);
199      Worklist.push_back(I);
200    } else {
201      I->setNodeId(Unanalyzed);
202    }
203  }
204
205  // Now that we have a set of nodes to process, handle them all.
206  while (!Worklist.empty()) {
207#ifndef XDEBUG
208    if (EnableExpensiveChecks)
209#endif
210      PerformExpensiveChecks();
211
212    SDNode *N = Worklist.back();
213    Worklist.pop_back();
214    assert(N->getNodeId() == ReadyToProcess &&
215           "Node should be ready if on worklist!");
216
217    if (IgnoreNodeResults(N))
218      goto ScanOperands;
219
220    // Scan the values produced by the node, checking to see if any result
221    // types are illegal.
222    for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
223      EVT ResultVT = N->getValueType(i);
224      switch (getTypeAction(ResultVT)) {
225      case TargetLowering::TypeLegal:
226        break;
227      // The following calls must take care of *all* of the node's results,
228      // not just the illegal result they were passed (this includes results
229      // with a legal type).  Results can be remapped using ReplaceValueWith,
230      // or their promoted/expanded/etc values registered in PromotedIntegers,
231      // ExpandedIntegers etc.
232      case TargetLowering::TypePromoteInteger:
233        PromoteIntegerResult(N, i);
234        Changed = true;
235        goto NodeDone;
236      case TargetLowering::TypeExpandInteger:
237        ExpandIntegerResult(N, i);
238        Changed = true;
239        goto NodeDone;
240      case TargetLowering::TypeSoftenFloat:
241        SoftenFloatResult(N, i);
242        Changed = true;
243        goto NodeDone;
244      case TargetLowering::TypeExpandFloat:
245        ExpandFloatResult(N, i);
246        Changed = true;
247        goto NodeDone;
248      case TargetLowering::TypeScalarizeVector:
249        ScalarizeVectorResult(N, i);
250        Changed = true;
251        goto NodeDone;
252      case TargetLowering::TypeSplitVector:
253        SplitVectorResult(N, i);
254        Changed = true;
255        goto NodeDone;
256      case TargetLowering::TypeWidenVector:
257        WidenVectorResult(N, i);
258        Changed = true;
259        goto NodeDone;
260      }
261    }
262
263ScanOperands:
264    // Scan the operand list for the node, handling any nodes with operands that
265    // are illegal.
266    {
267    unsigned NumOperands = N->getNumOperands();
268    bool NeedsReanalyzing = false;
269    unsigned i;
270    for (i = 0; i != NumOperands; ++i) {
271      if (IgnoreNodeResults(N->getOperand(i).getNode()))
272        continue;
273
274      EVT OpVT = N->getOperand(i).getValueType();
275      switch (getTypeAction(OpVT)) {
276      case TargetLowering::TypeLegal:
277        continue;
278      // The following calls must either replace all of the node's results
279      // using ReplaceValueWith, and return "false"; or update the node's
280      // operands in place, and return "true".
281      case TargetLowering::TypePromoteInteger:
282        NeedsReanalyzing = PromoteIntegerOperand(N, i);
283        Changed = true;
284        break;
285      case TargetLowering::TypeExpandInteger:
286        NeedsReanalyzing = ExpandIntegerOperand(N, i);
287        Changed = true;
288        break;
289      case TargetLowering::TypeSoftenFloat:
290        NeedsReanalyzing = SoftenFloatOperand(N, i);
291        Changed = true;
292        break;
293      case TargetLowering::TypeExpandFloat:
294        NeedsReanalyzing = ExpandFloatOperand(N, i);
295        Changed = true;
296        break;
297      case TargetLowering::TypeScalarizeVector:
298        NeedsReanalyzing = ScalarizeVectorOperand(N, i);
299        Changed = true;
300        break;
301      case TargetLowering::TypeSplitVector:
302        NeedsReanalyzing = SplitVectorOperand(N, i);
303        Changed = true;
304        break;
305      case TargetLowering::TypeWidenVector:
306        NeedsReanalyzing = WidenVectorOperand(N, i);
307        Changed = true;
308        break;
309      }
310      break;
311    }
312
313    // The sub-method updated N in place.  Check to see if any operands are new,
314    // and if so, mark them.  If the node needs revisiting, don't add all users
315    // to the worklist etc.
316    if (NeedsReanalyzing) {
317      assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
318      N->setNodeId(NewNode);
319      // Recompute the NodeId and correct processed operands, adding the node to
320      // the worklist if ready.
321      SDNode *M = AnalyzeNewNode(N);
322      if (M == N)
323        // The node didn't morph - nothing special to do, it will be revisited.
324        continue;
325
326      // The node morphed - this is equivalent to legalizing by replacing every
327      // value of N with the corresponding value of M.  So do that now.
328      assert(N->getNumValues() == M->getNumValues() &&
329             "Node morphing changed the number of results!");
330      for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
331        // Replacing the value takes care of remapping the new value.
332        ReplaceValueWith(SDValue(N, i), SDValue(M, i));
333      assert(N->getNodeId() == NewNode && "Unexpected node state!");
334      // The node continues to live on as part of the NewNode fungus that
335      // grows on top of the useful nodes.  Nothing more needs to be done
336      // with it - move on to the next node.
337      continue;
338    }
339
340    if (i == NumOperands) {
341      DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n");
342    }
343    }
344NodeDone:
345
346    // If we reach here, the node was processed, potentially creating new nodes.
347    // Mark it as processed and add its users to the worklist as appropriate.
348    assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
349    N->setNodeId(Processed);
350
351    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
352         UI != E; ++UI) {
353      SDNode *User = *UI;
354      int NodeId = User->getNodeId();
355
356      // This node has two options: it can either be a new node or its Node ID
357      // may be a count of the number of operands it has that are not ready.
358      if (NodeId > 0) {
359        User->setNodeId(NodeId-1);
360
361        // If this was the last use it was waiting on, add it to the ready list.
362        if (NodeId-1 == ReadyToProcess)
363          Worklist.push_back(User);
364        continue;
365      }
366
367      // If this is an unreachable new node, then ignore it.  If it ever becomes
368      // reachable by being used by a newly created node then it will be handled
369      // by AnalyzeNewNode.
370      if (NodeId == NewNode)
371        continue;
372
373      // Otherwise, this node is new: this is the first operand of it that
374      // became ready.  Its new NodeId is the number of operands it has minus 1
375      // (as this node is now processed).
376      assert(NodeId == Unanalyzed && "Unknown node ID!");
377      User->setNodeId(User->getNumOperands() - 1);
378
379      // If the node only has a single operand, it is now ready.
380      if (User->getNumOperands() == 1)
381        Worklist.push_back(User);
382    }
383  }
384
385#ifndef XDEBUG
386  if (EnableExpensiveChecks)
387#endif
388    PerformExpensiveChecks();
389
390  // If the root changed (e.g. it was a dead load) update the root.
391  DAG.setRoot(Dummy.getValue());
392
393  // Remove dead nodes.  This is important to do for cleanliness but also before
394  // the checking loop below.  Implicit folding by the DAG.getNode operators and
395  // node morphing can cause unreachable nodes to be around with their flags set
396  // to new.
397  DAG.RemoveDeadNodes();
398
399  // In a debug build, scan all the nodes to make sure we found them all.  This
400  // ensures that there are no cycles and that everything got processed.
401#ifndef NDEBUG
402  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
403       E = DAG.allnodes_end(); I != E; ++I) {
404    bool Failed = false;
405
406    // Check that all result types are legal.
407    if (!IgnoreNodeResults(I))
408      for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
409        if (!isTypeLegal(I->getValueType(i))) {
410          dbgs() << "Result type " << i << " illegal!\n";
411          Failed = true;
412        }
413
414    // Check that all operand types are legal.
415    for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
416      if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
417          !isTypeLegal(I->getOperand(i).getValueType())) {
418        dbgs() << "Operand type " << i << " illegal!\n";
419        Failed = true;
420      }
421
422    if (I->getNodeId() != Processed) {
423       if (I->getNodeId() == NewNode)
424         dbgs() << "New node not analyzed?\n";
425       else if (I->getNodeId() == Unanalyzed)
426         dbgs() << "Unanalyzed node not noticed?\n";
427       else if (I->getNodeId() > 0)
428         dbgs() << "Operand not processed?\n";
429       else if (I->getNodeId() == ReadyToProcess)
430         dbgs() << "Not added to worklist?\n";
431       Failed = true;
432    }
433
434    if (Failed) {
435      I->dump(&DAG); dbgs() << "\n";
436      llvm_unreachable(0);
437    }
438  }
439#endif
440
441  return Changed;
442}
443
444/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
445/// new nodes.  Correct any processed operands (this may change the node) and
446/// calculate the NodeId.  If the node itself changes to a processed node, it
447/// is not remapped - the caller needs to take care of this.
448/// Returns the potentially changed node.
449SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
450  // If this was an existing node that is already done, we're done.
451  if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
452    return N;
453
454  // Remove any stale map entries.
455  ExpungeNode(N);
456
457  // Okay, we know that this node is new.  Recursively walk all of its operands
458  // to see if they are new also.  The depth of this walk is bounded by the size
459  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
460  // about revisiting of nodes.
461  //
462  // As we walk the operands, keep track of the number of nodes that are
463  // processed.  If non-zero, this will become the new nodeid of this node.
464  // Operands may morph when they are analyzed.  If so, the node will be
465  // updated after all operands have been analyzed.  Since this is rare,
466  // the code tries to minimize overhead in the non-morphing case.
467
468  SmallVector<SDValue, 8> NewOps;
469  unsigned NumProcessed = 0;
470  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
471    SDValue OrigOp = N->getOperand(i);
472    SDValue Op = OrigOp;
473
474    AnalyzeNewValue(Op); // Op may morph.
475
476    if (Op.getNode()->getNodeId() == Processed)
477      ++NumProcessed;
478
479    if (!NewOps.empty()) {
480      // Some previous operand changed.  Add this one to the list.
481      NewOps.push_back(Op);
482    } else if (Op != OrigOp) {
483      // This is the first operand to change - add all operands so far.
484      NewOps.append(N->op_begin(), N->op_begin() + i);
485      NewOps.push_back(Op);
486    }
487  }
488
489  // Some operands changed - update the node.
490  if (!NewOps.empty()) {
491    SDNode *M = DAG.UpdateNodeOperands(N, &NewOps[0], NewOps.size());
492    if (M != N) {
493      // The node morphed into a different node.  Normally for this to happen
494      // the original node would have to be marked NewNode.  However this can
495      // in theory momentarily not be the case while ReplaceValueWith is doing
496      // its stuff.  Mark the original node NewNode to help sanity checking.
497      N->setNodeId(NewNode);
498      if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
499        // It morphed into a previously analyzed node - nothing more to do.
500        return M;
501
502      // It morphed into a different new node.  Do the equivalent of passing
503      // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
504      // to remap the operands, since they are the same as the operands we
505      // remapped above.
506      N = M;
507      ExpungeNode(N);
508    }
509  }
510
511  // Calculate the NodeId.
512  N->setNodeId(N->getNumOperands() - NumProcessed);
513  if (N->getNodeId() == ReadyToProcess)
514    Worklist.push_back(N);
515
516  return N;
517}
518
519/// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
520/// If the node changes to a processed node, then remap it.
521void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
522  Val.setNode(AnalyzeNewNode(Val.getNode()));
523  if (Val.getNode()->getNodeId() == Processed)
524    // We were passed a processed node, or it morphed into one - remap it.
525    RemapValue(Val);
526}
527
528/// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
529/// This can occur when a node is deleted then reallocated as a new node -
530/// the mapping in ReplacedValues applies to the deleted node, not the new
531/// one.
532/// The only map that can have a deleted node as a source is ReplacedValues.
533/// Other maps can have deleted nodes as targets, but since their looked-up
534/// values are always immediately remapped using RemapValue, resulting in a
535/// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
536/// always performs correct mappings.  In order to keep the mapping correct,
537/// ExpungeNode should be called on any new nodes *before* adding them as
538/// either source or target to ReplacedValues (which typically means calling
539/// Expunge when a new node is first seen, since it may no longer be marked
540/// NewNode by the time it is added to ReplacedValues).
541void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
542  if (N->getNodeId() != NewNode)
543    return;
544
545  // If N is not remapped by ReplacedValues then there is nothing to do.
546  unsigned i, e;
547  for (i = 0, e = N->getNumValues(); i != e; ++i)
548    if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
549      break;
550
551  if (i == e)
552    return;
553
554  // Remove N from all maps - this is expensive but rare.
555
556  for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
557       E = PromotedIntegers.end(); I != E; ++I) {
558    assert(I->first.getNode() != N);
559    RemapValue(I->second);
560  }
561
562  for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
563       E = SoftenedFloats.end(); I != E; ++I) {
564    assert(I->first.getNode() != N);
565    RemapValue(I->second);
566  }
567
568  for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
569       E = ScalarizedVectors.end(); I != E; ++I) {
570    assert(I->first.getNode() != N);
571    RemapValue(I->second);
572  }
573
574  for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
575       E = WidenedVectors.end(); I != E; ++I) {
576    assert(I->first.getNode() != N);
577    RemapValue(I->second);
578  }
579
580  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
581       I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
582    assert(I->first.getNode() != N);
583    RemapValue(I->second.first);
584    RemapValue(I->second.second);
585  }
586
587  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
588       I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
589    assert(I->first.getNode() != N);
590    RemapValue(I->second.first);
591    RemapValue(I->second.second);
592  }
593
594  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
595       I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
596    assert(I->first.getNode() != N);
597    RemapValue(I->second.first);
598    RemapValue(I->second.second);
599  }
600
601  for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
602       E = ReplacedValues.end(); I != E; ++I)
603    RemapValue(I->second);
604
605  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
606    ReplacedValues.erase(SDValue(N, i));
607}
608
609/// RemapValue - If the specified value was already legalized to another value,
610/// replace it by that value.
611void DAGTypeLegalizer::RemapValue(SDValue &N) {
612  DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
613  if (I != ReplacedValues.end()) {
614    // Use path compression to speed up future lookups if values get multiply
615    // replaced with other values.
616    RemapValue(I->second);
617    N = I->second;
618    assert(N.getNode()->getNodeId() != NewNode && "Mapped to new node!");
619  }
620}
621
622namespace {
623  /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
624  /// updates to nodes and recomputes their ready state.
625  class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
626    DAGTypeLegalizer &DTL;
627    SmallSetVector<SDNode*, 16> &NodesToAnalyze;
628  public:
629    explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
630                                SmallSetVector<SDNode*, 16> &nta)
631      : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
632        DTL(dtl), NodesToAnalyze(nta) {}
633
634    virtual void NodeDeleted(SDNode *N, SDNode *E) {
635      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
636             N->getNodeId() != DAGTypeLegalizer::Processed &&
637             "Invalid node ID for RAUW deletion!");
638      // It is possible, though rare, for the deleted node N to occur as a
639      // target in a map, so note the replacement N -> E in ReplacedValues.
640      assert(E && "Node not replaced?");
641      DTL.NoteDeletion(N, E);
642
643      // In theory the deleted node could also have been scheduled for analysis.
644      // So remove it from the set of nodes which will be analyzed.
645      NodesToAnalyze.remove(N);
646
647      // In general nothing needs to be done for E, since it didn't change but
648      // only gained new uses.  However N -> E was just added to ReplacedValues,
649      // and the result of a ReplacedValues mapping is not allowed to be marked
650      // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
651      if (E->getNodeId() == DAGTypeLegalizer::NewNode)
652        NodesToAnalyze.insert(E);
653    }
654
655    virtual void NodeUpdated(SDNode *N) {
656      // Node updates can mean pretty much anything.  It is possible that an
657      // operand was set to something already processed (f.e.) in which case
658      // this node could become ready.  Recompute its flags.
659      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
660             N->getNodeId() != DAGTypeLegalizer::Processed &&
661             "Invalid node ID for RAUW deletion!");
662      N->setNodeId(DAGTypeLegalizer::NewNode);
663      NodesToAnalyze.insert(N);
664    }
665  };
666}
667
668
669/// ReplaceValueWith - The specified value was legalized to the specified other
670/// value.  Update the DAG and NodeIds replacing any uses of From to use To
671/// instead.
672void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
673  assert(From.getNode() != To.getNode() && "Potential legalization loop!");
674
675  // If expansion produced new nodes, make sure they are properly marked.
676  ExpungeNode(From.getNode());
677  AnalyzeNewValue(To); // Expunges To.
678
679  // Anything that used the old node should now use the new one.  Note that this
680  // can potentially cause recursive merging.
681  SmallSetVector<SDNode*, 16> NodesToAnalyze;
682  NodeUpdateListener NUL(*this, NodesToAnalyze);
683  do {
684    DAG.ReplaceAllUsesOfValueWith(From, To);
685
686    // The old node may still be present in a map like ExpandedIntegers or
687    // PromotedIntegers.  Inform maps about the replacement.
688    ReplacedValues[From] = To;
689
690    // Process the list of nodes that need to be reanalyzed.
691    while (!NodesToAnalyze.empty()) {
692      SDNode *N = NodesToAnalyze.back();
693      NodesToAnalyze.pop_back();
694      if (N->getNodeId() != DAGTypeLegalizer::NewNode)
695        // The node was analyzed while reanalyzing an earlier node - it is safe
696        // to skip.  Note that this is not a morphing node - otherwise it would
697        // still be marked NewNode.
698        continue;
699
700      // Analyze the node's operands and recalculate the node ID.
701      SDNode *M = AnalyzeNewNode(N);
702      if (M != N) {
703        // The node morphed into a different node.  Make everyone use the new
704        // node instead.
705        assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
706        assert(N->getNumValues() == M->getNumValues() &&
707               "Node morphing changed the number of results!");
708        for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
709          SDValue OldVal(N, i);
710          SDValue NewVal(M, i);
711          if (M->getNodeId() == Processed)
712            RemapValue(NewVal);
713          DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
714          // OldVal may be a target of the ReplacedValues map which was marked
715          // NewNode to force reanalysis because it was updated.  Ensure that
716          // anything that ReplacedValues mapped to OldVal will now be mapped
717          // all the way to NewVal.
718          ReplacedValues[OldVal] = NewVal;
719        }
720        // The original node continues to exist in the DAG, marked NewNode.
721      }
722    }
723    // When recursively update nodes with new nodes, it is possible to have
724    // new uses of From due to CSE. If this happens, replace the new uses of
725    // From with To.
726  } while (!From.use_empty());
727}
728
729void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
730  assert(Result.getValueType() ==
731         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
732         "Invalid type for promoted integer");
733  AnalyzeNewValue(Result);
734
735  SDValue &OpEntry = PromotedIntegers[Op];
736  assert(OpEntry.getNode() == 0 && "Node is already promoted!");
737  OpEntry = Result;
738}
739
740void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
741  assert(Result.getValueType() ==
742         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
743         "Invalid type for softened float");
744  AnalyzeNewValue(Result);
745
746  SDValue &OpEntry = SoftenedFloats[Op];
747  assert(OpEntry.getNode() == 0 && "Node is already converted to integer!");
748  OpEntry = Result;
749}
750
751void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
752  // Note that in some cases vector operation operands may be greater than
753  // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
754  // a constant i8 operand.
755  assert(Result.getValueType().getSizeInBits() >=
756         Op.getValueType().getVectorElementType().getSizeInBits() &&
757         "Invalid type for scalarized vector");
758  AnalyzeNewValue(Result);
759
760  SDValue &OpEntry = ScalarizedVectors[Op];
761  assert(OpEntry.getNode() == 0 && "Node is already scalarized!");
762  OpEntry = Result;
763}
764
765void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
766                                          SDValue &Hi) {
767  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
768  RemapValue(Entry.first);
769  RemapValue(Entry.second);
770  assert(Entry.first.getNode() && "Operand isn't expanded");
771  Lo = Entry.first;
772  Hi = Entry.second;
773}
774
775void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
776                                          SDValue Hi) {
777  assert(Lo.getValueType() ==
778         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
779         Hi.getValueType() == Lo.getValueType() &&
780         "Invalid type for expanded integer");
781  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
782  AnalyzeNewValue(Lo);
783  AnalyzeNewValue(Hi);
784
785  // Remember that this is the result of the node.
786  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
787  assert(Entry.first.getNode() == 0 && "Node already expanded");
788  Entry.first = Lo;
789  Entry.second = Hi;
790}
791
792void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
793                                        SDValue &Hi) {
794  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
795  RemapValue(Entry.first);
796  RemapValue(Entry.second);
797  assert(Entry.first.getNode() && "Operand isn't expanded");
798  Lo = Entry.first;
799  Hi = Entry.second;
800}
801
802void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
803                                        SDValue Hi) {
804  assert(Lo.getValueType() ==
805         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
806         Hi.getValueType() == Lo.getValueType() &&
807         "Invalid type for expanded float");
808  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
809  AnalyzeNewValue(Lo);
810  AnalyzeNewValue(Hi);
811
812  // Remember that this is the result of the node.
813  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
814  assert(Entry.first.getNode() == 0 && "Node already expanded");
815  Entry.first = Lo;
816  Entry.second = Hi;
817}
818
819void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
820                                      SDValue &Hi) {
821  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
822  RemapValue(Entry.first);
823  RemapValue(Entry.second);
824  assert(Entry.first.getNode() && "Operand isn't split");
825  Lo = Entry.first;
826  Hi = Entry.second;
827}
828
829void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
830                                      SDValue Hi) {
831  assert(Lo.getValueType().getVectorElementType() ==
832         Op.getValueType().getVectorElementType() &&
833         2*Lo.getValueType().getVectorNumElements() ==
834         Op.getValueType().getVectorNumElements() &&
835         Hi.getValueType() == Lo.getValueType() &&
836         "Invalid type for split vector");
837  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
838  AnalyzeNewValue(Lo);
839  AnalyzeNewValue(Hi);
840
841  // Remember that this is the result of the node.
842  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
843  assert(Entry.first.getNode() == 0 && "Node already split");
844  Entry.first = Lo;
845  Entry.second = Hi;
846}
847
848void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
849  assert(Result.getValueType() ==
850         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
851         "Invalid type for widened vector");
852  AnalyzeNewValue(Result);
853
854  SDValue &OpEntry = WidenedVectors[Op];
855  assert(OpEntry.getNode() == 0 && "Node already widened!");
856  OpEntry = Result;
857}
858
859
860//===----------------------------------------------------------------------===//
861// Utilities.
862//===----------------------------------------------------------------------===//
863
864/// BitConvertToInteger - Convert to an integer of the same size.
865SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
866  unsigned BitWidth = Op.getValueType().getSizeInBits();
867  return DAG.getNode(ISD::BITCAST, Op.getDebugLoc(),
868                     EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
869}
870
871/// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
872/// same size.
873SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
874  assert(Op.getValueType().isVector() && "Only applies to vectors!");
875  unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
876  EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
877  unsigned NumElts = Op.getValueType().getVectorNumElements();
878  return DAG.getNode(ISD::BITCAST, Op.getDebugLoc(),
879                     EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
880}
881
882SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
883                                               EVT DestVT) {
884  DebugLoc dl = Op.getDebugLoc();
885  // Create the stack frame object.  Make sure it is aligned for both
886  // the source and destination types.
887  SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
888  // Emit a store to the stack slot.
889  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
890                               MachinePointerInfo(), false, false, 0);
891  // Result is a load from the stack slot.
892  return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(),
893                     false, false, false, 0);
894}
895
896/// CustomLowerNode - Replace the node's results with custom code provided
897/// by the target and return "true", or do nothing and return "false".
898/// The last parameter is FALSE if we are dealing with a node with legal
899/// result types and illegal operand. The second parameter denotes the type of
900/// illegal OperandNo in that case.
901/// The last parameter being TRUE means we are dealing with a
902/// node with illegal result types. The second parameter denotes the type of
903/// illegal ResNo in that case.
904bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
905  // See if the target wants to custom lower this node.
906  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
907    return false;
908
909  SmallVector<SDValue, 8> Results;
910  if (LegalizeResult)
911    TLI.ReplaceNodeResults(N, Results, DAG);
912  else
913    TLI.LowerOperationWrapper(N, Results, DAG);
914
915  if (Results.empty())
916    // The target didn't want to custom lower it after all.
917    return false;
918
919  // Make everything that once used N's values now use those in Results instead.
920  assert(Results.size() == N->getNumValues() &&
921         "Custom lowering returned the wrong number of results!");
922  for (unsigned i = 0, e = Results.size(); i != e; ++i)
923    ReplaceValueWith(SDValue(N, i), Results[i]);
924  return true;
925}
926
927
928/// CustomWidenLowerNode - Widen the node's results with custom code provided
929/// by the target and return "true", or do nothing and return "false".
930bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
931  // See if the target wants to custom lower this node.
932  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
933    return false;
934
935  SmallVector<SDValue, 8> Results;
936  TLI.ReplaceNodeResults(N, Results, DAG);
937
938  if (Results.empty())
939    // The target didn't want to custom widen lower its result  after all.
940    return false;
941
942  // Update the widening map.
943  assert(Results.size() == N->getNumValues() &&
944         "Custom lowering returned the wrong number of results!");
945  for (unsigned i = 0, e = Results.size(); i != e; ++i)
946    SetWidenedVector(SDValue(N, i), Results[i]);
947  return true;
948}
949
950SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
951  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
952    if (i != ResNo)
953      ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
954  return SDValue(N->getOperand(ResNo));
955}
956
957/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
958/// which is split into two not necessarily identical pieces.
959void DAGTypeLegalizer::GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT) {
960  // Currently all types are split in half.
961  if (!InVT.isVector()) {
962    LoVT = HiVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
963  } else {
964    unsigned NumElements = InVT.getVectorNumElements();
965    assert(!(NumElements & 1) && "Splitting vector, but not in half!");
966    LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
967                                   InVT.getVectorElementType(), NumElements/2);
968  }
969}
970
971/// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
972/// high parts of the given value.
973void DAGTypeLegalizer::GetPairElements(SDValue Pair,
974                                       SDValue &Lo, SDValue &Hi) {
975  DebugLoc dl = Pair.getDebugLoc();
976  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
977  Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
978                   DAG.getIntPtrConstant(0));
979  Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
980                   DAG.getIntPtrConstant(1));
981}
982
983SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
984                                                  SDValue Index) {
985  DebugLoc dl = Index.getDebugLoc();
986  // Make sure the index type is big enough to compute in.
987  if (Index.getValueType().bitsGT(TLI.getPointerTy()))
988    Index = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Index);
989  else
990    Index = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Index);
991
992  // Calculate the element offset and add it to the pointer.
993  unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
994
995  Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
996                      DAG.getConstant(EltSize, Index.getValueType()));
997  return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
998}
999
1000/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
1001SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
1002  // Arbitrarily use dlHi for result DebugLoc
1003  DebugLoc dlHi = Hi.getDebugLoc();
1004  DebugLoc dlLo = Lo.getDebugLoc();
1005  EVT LVT = Lo.getValueType();
1006  EVT HVT = Hi.getValueType();
1007  EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1008                              LVT.getSizeInBits() + HVT.getSizeInBits());
1009
1010  Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
1011  Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
1012  Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
1013                   DAG.getConstant(LVT.getSizeInBits(), TLI.getPointerTy()));
1014  return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1015}
1016
1017/// LibCallify - Convert the node into a libcall with the same prototype.
1018SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
1019                                     bool isSigned) {
1020  unsigned NumOps = N->getNumOperands();
1021  DebugLoc dl = N->getDebugLoc();
1022  if (NumOps == 0) {
1023    return MakeLibCall(LC, N->getValueType(0), 0, 0, isSigned, dl);
1024  } else if (NumOps == 1) {
1025    SDValue Op = N->getOperand(0);
1026    return MakeLibCall(LC, N->getValueType(0), &Op, 1, isSigned, dl);
1027  } else if (NumOps == 2) {
1028    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1029    return MakeLibCall(LC, N->getValueType(0), Ops, 2, isSigned, dl);
1030  }
1031  SmallVector<SDValue, 8> Ops(NumOps);
1032  for (unsigned i = 0; i < NumOps; ++i)
1033    Ops[i] = N->getOperand(i);
1034
1035  return MakeLibCall(LC, N->getValueType(0), &Ops[0], NumOps, isSigned, dl);
1036}
1037
1038/// MakeLibCall - Generate a libcall taking the given operands as arguments and
1039/// returning a result of type RetVT.
1040SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
1041                                      const SDValue *Ops, unsigned NumOps,
1042                                      bool isSigned, DebugLoc dl) {
1043  TargetLowering::ArgListTy Args;
1044  Args.reserve(NumOps);
1045
1046  TargetLowering::ArgListEntry Entry;
1047  for (unsigned i = 0; i != NumOps; ++i) {
1048    Entry.Node = Ops[i];
1049    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1050    Entry.isSExt = isSigned;
1051    Entry.isZExt = !isSigned;
1052    Args.push_back(Entry);
1053  }
1054  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1055                                         TLI.getPointerTy());
1056
1057  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1058  std::pair<SDValue,SDValue> CallInfo =
1059    TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1060                    false, 0, TLI.getLibcallCallingConv(LC),
1061                    /*isTailCall=*/false,
1062                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1063                    Callee, Args, DAG, dl);
1064  return CallInfo.first;
1065}
1066
1067// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1068// ExpandLibCall except that the first operand is the in-chain.
1069std::pair<SDValue, SDValue>
1070DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC,
1071                                         SDNode *Node,
1072                                         bool isSigned) {
1073  SDValue InChain = Node->getOperand(0);
1074
1075  TargetLowering::ArgListTy Args;
1076  TargetLowering::ArgListEntry Entry;
1077  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1078    EVT ArgVT = Node->getOperand(i).getValueType();
1079    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1080    Entry.Node = Node->getOperand(i);
1081    Entry.Ty = ArgTy;
1082    Entry.isSExt = isSigned;
1083    Entry.isZExt = !isSigned;
1084    Args.push_back(Entry);
1085  }
1086  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1087                                         TLI.getPointerTy());
1088
1089  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1090  std::pair<SDValue, SDValue> CallInfo =
1091    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1092                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1093                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1094                    Callee, Args, DAG, Node->getDebugLoc());
1095
1096  return CallInfo;
1097}
1098
1099/// PromoteTargetBoolean - Promote the given target boolean to a target boolean
1100/// of the given type.  A target boolean is an integer value, not necessarily of
1101/// type i1, the bits of which conform to getBooleanContents.
1102SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT VT) {
1103  DebugLoc dl = Bool.getDebugLoc();
1104  ISD::NodeType ExtendCode =
1105    TargetLowering::getExtendForContent(TLI.getBooleanContents(VT.isVector()));
1106  return DAG.getNode(ExtendCode, dl, VT, Bool);
1107}
1108
1109/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
1110/// bits in Hi.
1111void DAGTypeLegalizer::SplitInteger(SDValue Op,
1112                                    EVT LoVT, EVT HiVT,
1113                                    SDValue &Lo, SDValue &Hi) {
1114  DebugLoc dl = Op.getDebugLoc();
1115  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1116         Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
1117  Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1118  Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1119                   DAG.getConstant(LoVT.getSizeInBits(), TLI.getPointerTy()));
1120  Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1121}
1122
1123/// SplitInteger - Return the lower and upper halves of Op's bits in a value
1124/// type half the size of Op's.
1125void DAGTypeLegalizer::SplitInteger(SDValue Op,
1126                                    SDValue &Lo, SDValue &Hi) {
1127  EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(),
1128                                 Op.getValueType().getSizeInBits()/2);
1129  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1130}
1131
1132
1133//===----------------------------------------------------------------------===//
1134//  Entry Point
1135//===----------------------------------------------------------------------===//
1136
1137/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
1138/// only uses types natively supported by the target.  Returns "true" if it made
1139/// any changes.
1140///
1141/// Note that this is an involved process that may invalidate pointers into
1142/// the graph.
1143bool SelectionDAG::LegalizeTypes() {
1144  return DAGTypeLegalizer(*this).run();
1145}
1146