LegalizeTypes.cpp revision 608f7ae5f7a2268b391c372a35d4fe70920dc49b
1//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11// an arbitrary well-formed SelectionDAG to only consist of legal types.  This
12// is common code shared among the LegalizeTypes*.cpp files.
13//
14//===----------------------------------------------------------------------===//
15
16#include "LegalizeTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Support/CommandLine.h"
20#include "llvm/Support/MathExtras.h"
21using namespace llvm;
22
23#ifndef NDEBUG
24static cl::opt<bool>
25ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
26                cl::desc("Pop up a window to show dags before legalize types"));
27#else
28static const bool ViewLegalizeTypesDAGs = 0;
29#endif
30
31
32
33/// run - This is the main entry point for the type legalizer.  This does a
34/// top-down traversal of the dag, legalizing types as it goes.
35void DAGTypeLegalizer::run() {
36  // Create a dummy node (which is not added to allnodes), that adds a reference
37  // to the root node, preventing it from being deleted, and tracking any
38  // changes of the root.
39  HandleSDNode Dummy(DAG.getRoot());
40
41  // The root of the dag may dangle to deleted nodes until the type legalizer is
42  // done.  Set it to null to avoid confusion.
43  DAG.setRoot(SDOperand());
44
45  // Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess'
46  // (and remembering them) if they are leaves and assigning 'NewNode' if
47  // non-leaves.
48  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
49       E = DAG.allnodes_end(); I != E; ++I) {
50    if (I->getNumOperands() == 0) {
51      I->setNodeId(ReadyToProcess);
52      Worklist.push_back(I);
53    } else {
54      I->setNodeId(NewNode);
55    }
56  }
57
58  // Now that we have a set of nodes to process, handle them all.
59  while (!Worklist.empty()) {
60    SDNode *N = Worklist.back();
61    Worklist.pop_back();
62    assert(N->getNodeId() == ReadyToProcess &&
63           "Node should be ready if on worklist!");
64
65    // Scan the values produced by the node, checking to see if any result
66    // types are illegal.
67    unsigned i = 0;
68    unsigned NumResults = N->getNumValues();
69    do {
70      MVT::ValueType ResultVT = N->getValueType(i);
71      LegalizeAction Action = getTypeAction(ResultVT);
72      if (Action == Promote) {
73        PromoteResult(N, i);
74        goto NodeDone;
75      } else if (Action == Expand) {
76        // Expand can mean 1) split integer in half 2) scalarize single-element
77        // vector 3) split vector in half.
78        if (!MVT::isVector(ResultVT))
79          ExpandResult(N, i);
80        else if (MVT::getVectorNumElements(ResultVT) == 1)
81          ScalarizeResult(N, i);     // Scalarize the single-element vector.
82        else
83          SplitResult(N, i);         // Split the vector in half.
84        goto NodeDone;
85      } else {
86        assert(Action == Legal && "Unknown action!");
87      }
88    } while (++i < NumResults);
89
90    // Scan the operand list for the node, handling any nodes with operands that
91    // are illegal.
92    {
93    unsigned NumOperands = N->getNumOperands();
94    bool NeedsRevisit = false;
95    for (i = 0; i != NumOperands; ++i) {
96      MVT::ValueType OpVT = N->getOperand(i).getValueType();
97      LegalizeAction Action = getTypeAction(OpVT);
98      if (Action == Promote) {
99        NeedsRevisit = PromoteOperand(N, i);
100        break;
101      } else if (Action == Expand) {
102        // Expand can mean 1) split integer in half 2) scalarize single-element
103        // vector 3) split vector in half.
104        if (!MVT::isVector(OpVT)) {
105          NeedsRevisit = ExpandOperand(N, i);
106        } else if (MVT::getVectorNumElements(OpVT) == 1) {
107          // Scalarize the single-element vector.
108          NeedsRevisit = ScalarizeOperand(N, i);
109        } else {
110          NeedsRevisit = SplitOperand(N, i); // Split the vector in half.
111        }
112        break;
113      } else {
114        assert(Action == Legal && "Unknown action!");
115      }
116    }
117
118    // If the node needs revisiting, don't add all users to the worklist etc.
119    if (NeedsRevisit)
120      continue;
121
122    if (i == NumOperands)
123      DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
124    }
125NodeDone:
126
127    // If we reach here, the node was processed, potentially creating new nodes.
128    // Mark it as processed and add its users to the worklist as appropriate.
129    N->setNodeId(Processed);
130
131    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
132         UI != E; ++UI) {
133      SDNode *User = *UI;
134      int NodeID = User->getNodeId();
135      assert(NodeID != ReadyToProcess && NodeID != Processed &&
136             "Invalid node id for user of unprocessed node!");
137
138      // This node has two options: it can either be a new node or its Node ID
139      // may be a count of the number of operands it has that are not ready.
140      if (NodeID > 0) {
141        User->setNodeId(NodeID-1);
142
143        // If this was the last use it was waiting on, add it to the ready list.
144        if (NodeID-1 == ReadyToProcess)
145          Worklist.push_back(User);
146        continue;
147      }
148
149      // Otherwise, this node is new: this is the first operand of it that
150      // became ready.  Its new NodeID is the number of operands it has minus 1
151      // (as this node is now processed).
152      assert(NodeID == NewNode && "Unknown node ID!");
153      User->setNodeId(User->getNumOperands()-1);
154
155      // If the node only has a single operand, it is now ready.
156      if (User->getNumOperands() == 1)
157        Worklist.push_back(User);
158    }
159  }
160
161  // If the root changed (e.g. it was a dead load, update the root).
162  DAG.setRoot(Dummy.getValue());
163
164  //DAG.viewGraph();
165
166  // Remove dead nodes.  This is important to do for cleanliness but also before
167  // the checking loop below.  Implicit folding by the DAG.getNode operators can
168  // cause unreachable nodes to be around with their flags set to new.
169  DAG.RemoveDeadNodes();
170
171  // In a debug build, scan all the nodes to make sure we found them all.  This
172  // ensures that there are no cycles and that everything got processed.
173#ifndef NDEBUG
174  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
175       E = DAG.allnodes_end(); I != E; ++I) {
176    if (I->getNodeId() == Processed)
177      continue;
178    cerr << "Unprocessed node: ";
179    I->dump(&DAG); cerr << "\n";
180
181    if (I->getNodeId() == NewNode)
182      cerr << "New node not 'noticed'?\n";
183    else if (I->getNodeId() > 0)
184      cerr << "Operand not processed?\n";
185    else if (I->getNodeId() == ReadyToProcess)
186      cerr << "Not added to worklist?\n";
187    abort();
188  }
189#endif
190}
191
192/// MarkNewNodes - The specified node is the root of a subtree of potentially
193/// new nodes.  Add the correct NodeId to mark it.
194void DAGTypeLegalizer::MarkNewNodes(SDNode *N) {
195  // If this was an existing node that is already done, we're done.
196  if (N->getNodeId() != NewNode)
197    return;
198
199  // Okay, we know that this node is new.  Recursively walk all of its operands
200  // to see if they are new also.  The depth of this walk is bounded by the size
201  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
202  // about revisiting of nodes.
203  //
204  // As we walk the operands, keep track of the number of nodes that are
205  // processed.  If non-zero, this will become the new nodeid of this node.
206  unsigned NumProcessed = 0;
207  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
208    int OpId = N->getOperand(i).Val->getNodeId();
209    if (OpId == NewNode)
210      MarkNewNodes(N->getOperand(i).Val);
211    else if (OpId == Processed)
212      ++NumProcessed;
213  }
214
215  N->setNodeId(N->getNumOperands()-NumProcessed);
216  if (N->getNodeId() == ReadyToProcess)
217    Worklist.push_back(N);
218}
219
220namespace {
221  /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
222  /// updates to nodes and recomputes their ready state.
223  class VISIBILITY_HIDDEN NodeUpdateListener :
224    public SelectionDAG::DAGUpdateListener {
225    DAGTypeLegalizer &DTL;
226  public:
227    NodeUpdateListener(DAGTypeLegalizer &dtl) : DTL(dtl) {}
228
229    virtual void NodeDeleted(SDNode *N) {
230      // Ignore deletes.
231      assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
232             N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
233             "RAUW deleted processed node!");
234    }
235
236    virtual void NodeUpdated(SDNode *N) {
237      // Node updates can mean pretty much anything.  It is possible that an
238      // operand was set to something already processed (f.e.) in which case
239      // this node could become ready.  Recompute its flags.
240      assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
241             N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
242             "RAUW updated processed node!");
243      DTL.ReanalyzeNodeFlags(N);
244    }
245  };
246}
247
248
249/// ReplaceValueWith - The specified value was legalized to the specified other
250/// value.  If they are different, update the DAG and NodeIDs replacing any uses
251/// of From to use To instead.
252void DAGTypeLegalizer::ReplaceValueWith(SDOperand From, SDOperand To) {
253  if (From == To) return;
254
255  // If expansion produced new nodes, make sure they are properly marked.
256  if (To.Val->getNodeId() == NewNode)
257    MarkNewNodes(To.Val);
258
259  // Anything that used the old node should now use the new one.  Note that this
260  // can potentially cause recursive merging.
261  NodeUpdateListener NUL(*this);
262  DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
263
264  // The old node may still be present in ExpandedNodes or PromotedNodes.
265  // Inform them about the replacement.
266  ReplacedNodes[From] = To;
267}
268
269/// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to'
270/// node's results.  The from and to node must define identical result types.
271void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) {
272  if (From == To) return;
273  assert(From->getNumValues() == To->getNumValues() &&
274         "Node results don't match");
275
276  // If expansion produced new nodes, make sure they are properly marked.
277  if (To->getNodeId() == NewNode)
278    MarkNewNodes(To);
279
280  // Anything that used the old node should now use the new one.  Note that this
281  // can potentially cause recursive merging.
282  NodeUpdateListener NUL(*this);
283  DAG.ReplaceAllUsesWith(From, To, &NUL);
284
285  // The old node may still be present in ExpandedNodes or PromotedNodes.
286  // Inform them about the replacement.
287  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
288    assert(From->getValueType(i) == To->getValueType(i) &&
289           "Node results don't match");
290    ReplacedNodes[SDOperand(From, i)] = SDOperand(To, i);
291  }
292}
293
294
295/// RemapNode - If the specified value was already legalized to another value,
296/// replace it by that value.
297void DAGTypeLegalizer::RemapNode(SDOperand &N) {
298  DenseMap<SDOperand, SDOperand>::iterator I = ReplacedNodes.find(N);
299  if (I != ReplacedNodes.end()) {
300    // Use path compression to speed up future lookups if values get multiply
301    // replaced with other values.
302    RemapNode(I->second);
303    N = I->second;
304  }
305}
306
307void DAGTypeLegalizer::SetPromotedOp(SDOperand Op, SDOperand Result) {
308  if (Result.Val->getNodeId() == NewNode)
309    MarkNewNodes(Result.Val);
310
311  SDOperand &OpEntry = PromotedNodes[Op];
312  assert(OpEntry.Val == 0 && "Node is already promoted!");
313  OpEntry = Result;
314}
315
316void DAGTypeLegalizer::SetScalarizedOp(SDOperand Op, SDOperand Result) {
317  if (Result.Val->getNodeId() == NewNode)
318    MarkNewNodes(Result.Val);
319
320  SDOperand &OpEntry = ScalarizedNodes[Op];
321  assert(OpEntry.Val == 0 && "Node is already scalarized!");
322  OpEntry = Result;
323}
324
325
326void DAGTypeLegalizer::GetExpandedOp(SDOperand Op, SDOperand &Lo,
327                                     SDOperand &Hi) {
328  std::pair<SDOperand, SDOperand> &Entry = ExpandedNodes[Op];
329  RemapNode(Entry.first);
330  RemapNode(Entry.second);
331  assert(Entry.first.Val && "Operand isn't expanded");
332  Lo = Entry.first;
333  Hi = Entry.second;
334}
335
336void DAGTypeLegalizer::SetExpandedOp(SDOperand Op, SDOperand Lo, SDOperand Hi) {
337  // Remember that this is the result of the node.
338  std::pair<SDOperand, SDOperand> &Entry = ExpandedNodes[Op];
339  assert(Entry.first.Val == 0 && "Node already expanded");
340  Entry.first = Lo;
341  Entry.second = Hi;
342
343  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
344  if (Lo.Val->getNodeId() == NewNode)
345    MarkNewNodes(Lo.Val);
346  if (Hi.Val->getNodeId() == NewNode)
347    MarkNewNodes(Hi.Val);
348}
349
350void DAGTypeLegalizer::GetSplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) {
351  std::pair<SDOperand, SDOperand> &Entry = SplitNodes[Op];
352  RemapNode(Entry.first);
353  RemapNode(Entry.second);
354  assert(Entry.first.Val && "Operand isn't split");
355  Lo = Entry.first;
356  Hi = Entry.second;
357}
358
359void DAGTypeLegalizer::SetSplitOp(SDOperand Op, SDOperand Lo, SDOperand Hi) {
360  // Remember that this is the result of the node.
361  std::pair<SDOperand, SDOperand> &Entry = SplitNodes[Op];
362  assert(Entry.first.Val == 0 && "Node already split");
363  Entry.first = Lo;
364  Entry.second = Hi;
365
366  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
367  if (Lo.Val->getNodeId() == NewNode)
368    MarkNewNodes(Lo.Val);
369  if (Hi.Val->getNodeId() == NewNode)
370    MarkNewNodes(Hi.Val);
371}
372
373
374SDOperand DAGTypeLegalizer::CreateStackStoreLoad(SDOperand Op,
375                                                 MVT::ValueType DestVT) {
376  // Create the stack frame object.
377  SDOperand FIPtr = DAG.CreateStackTemporary(DestVT);
378
379  // Emit a store to the stack slot.
380  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0);
381  // Result is a load from the stack slot.
382  return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
383}
384
385/// HandleMemIntrinsic - This handles memcpy/memset/memmove with invalid
386/// operands.  This promotes or expands the operands as required.
387SDOperand DAGTypeLegalizer::HandleMemIntrinsic(SDNode *N) {
388  // The chain and pointer [operands #0 and #1] are always valid types.
389  SDOperand Chain = N->getOperand(0);
390  SDOperand Ptr   = N->getOperand(1);
391  SDOperand Op2   = N->getOperand(2);
392
393  // Op #2 is either a value (memset) or a pointer.  Promote it if required.
394  switch (getTypeAction(Op2.getValueType())) {
395  default: assert(0 && "Unknown action for pointer/value operand");
396  case Legal: break;
397  case Promote: Op2 = GetPromotedOp(Op2); break;
398  }
399
400  // The length could have any action required.
401  SDOperand Length = N->getOperand(3);
402  switch (getTypeAction(Length.getValueType())) {
403  default: assert(0 && "Unknown action for memop operand");
404  case Legal: break;
405  case Promote: Length = GetPromotedZExtOp(Length); break;
406  case Expand:
407    SDOperand Dummy;  // discard the high part.
408    GetExpandedOp(Length, Length, Dummy);
409    break;
410  }
411
412  SDOperand Align = N->getOperand(4);
413  switch (getTypeAction(Align.getValueType())) {
414  default: assert(0 && "Unknown action for memop operand");
415  case Legal: break;
416  case Promote: Align = GetPromotedZExtOp(Align); break;
417  }
418
419  SDOperand AlwaysInline = N->getOperand(5);
420  switch (getTypeAction(AlwaysInline.getValueType())) {
421  default: assert(0 && "Unknown action for memop operand");
422  case Legal: break;
423  case Promote: AlwaysInline = GetPromotedZExtOp(AlwaysInline); break;
424  }
425
426  SDOperand Ops[] = { Chain, Ptr, Op2, Length, Align, AlwaysInline };
427  return DAG.UpdateNodeOperands(SDOperand(N, 0), Ops, 6);
428}
429
430/// SplitOp - Return the lower and upper halves of Op's bits in a value type
431/// half the size of Op's.
432void DAGTypeLegalizer::SplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) {
433  unsigned NVTBits = MVT::getSizeInBits(Op.getValueType())/2;
434  assert(MVT::getSizeInBits(Op.getValueType()) == 2*NVTBits &&
435         "Cannot split odd sized integer type");
436  MVT::ValueType NVT = MVT::getIntegerType(NVTBits);
437  Lo = DAG.getNode(ISD::TRUNCATE, NVT, Op);
438  Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op,
439                   DAG.getConstant(NVTBits, TLI.getShiftAmountTy()));
440  Hi = DAG.getNode(ISD::TRUNCATE, NVT, Hi);
441}
442
443
444//===----------------------------------------------------------------------===//
445//  Entry Point
446//===----------------------------------------------------------------------===//
447
448/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
449/// only uses types natively supported by the target.
450///
451/// Note that this is an involved process that may invalidate pointers into
452/// the graph.
453void SelectionDAG::LegalizeTypes() {
454  if (ViewLegalizeTypesDAGs) viewGraph();
455
456  DAGTypeLegalizer(*this).run();
457}
458