LegalizeTypes.cpp revision 7d2ad624fa749a6d3edac0d94e9c107989c16304
1//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11// an arbitrary well-formed SelectionDAG to only consist of legal types.  This
12// is common code shared among the LegalizeTypes*.cpp files.
13//
14//===----------------------------------------------------------------------===//
15
16#include "LegalizeTypes.h"
17#include "llvm/CallingConv.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/Support/CommandLine.h"
20#include "llvm/Target/TargetData.h"
21using namespace llvm;
22
23static cl::opt<bool>
24EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
25
26/// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
27void DAGTypeLegalizer::PerformExpensiveChecks() {
28  // If a node is not processed, then none of its values should be mapped by any
29  // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
30
31  // If a node is processed, then each value with an illegal type must be mapped
32  // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
33  // Values with a legal type may be mapped by ReplacedValues, but not by any of
34  // the other maps.
35
36  // Note that these invariants may not hold momentarily when processing a node:
37  // the node being processed may be put in a map before being marked Processed.
38
39  // Note that it is possible to have nodes marked NewNode in the DAG.  This can
40  // occur in two ways.  Firstly, a node may be created during legalization but
41  // never passed to the legalization core.  This is usually due to the implicit
42  // folding that occurs when using the DAG.getNode operators.  Secondly, a new
43  // node may be passed to the legalization core, but when analyzed may morph
44  // into a different node, leaving the original node as a NewNode in the DAG.
45  // A node may morph if one of its operands changes during analysis.  Whether
46  // it actually morphs or not depends on whether, after updating its operands,
47  // it is equivalent to an existing node: if so, it morphs into that existing
48  // node (CSE).  An operand can change during analysis if the operand is a new
49  // node that morphs, or it is a processed value that was mapped to some other
50  // value (as recorded in ReplacedValues) in which case the operand is turned
51  // into that other value.  If a node morphs then the node it morphed into will
52  // be used instead of it for legalization, however the original node continues
53  // to live on in the DAG.
54  // The conclusion is that though there may be nodes marked NewNode in the DAG,
55  // all uses of such nodes are also marked NewNode: the result is a fungus of
56  // NewNodes growing on top of the useful nodes, and perhaps using them, but
57  // not used by them.
58
59  // If a value is mapped by ReplacedValues, then it must have no uses, except
60  // by nodes marked NewNode (see above).
61
62  // The final node obtained by mapping by ReplacedValues is not marked NewNode.
63  // Note that ReplacedValues should be applied iteratively.
64
65  // Note that the ReplacedValues map may also map deleted nodes.  By iterating
66  // over the DAG we only consider non-deleted nodes.
67  SmallVector<SDNode*, 16> NewNodes;
68  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
69       E = DAG.allnodes_end(); I != E; ++I) {
70    // Remember nodes marked NewNode - they are subject to extra checking below.
71    if (I->getNodeId() == NewNode)
72      NewNodes.push_back(I);
73
74    for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) {
75      SDValue Res(I, i);
76      bool Failed = false;
77
78      unsigned Mapped = 0;
79      if (ReplacedValues.find(Res) != ReplacedValues.end()) {
80        Mapped |= 1;
81        // Check that remapped values are only used by nodes marked NewNode.
82        for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end();
83             UI != UE; ++UI)
84          if (UI.getUse().getResNo() == i)
85            assert(UI->getNodeId() == NewNode &&
86                   "Remapped value has non-trivial use!");
87
88        // Check that the final result of applying ReplacedValues is not
89        // marked NewNode.
90        SDValue NewVal = ReplacedValues[Res];
91        DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
92        while (I != ReplacedValues.end()) {
93          NewVal = I->second;
94          I = ReplacedValues.find(NewVal);
95        }
96        assert(NewVal.getNode()->getNodeId() != NewNode &&
97               "ReplacedValues maps to a new node!");
98      }
99      if (PromotedIntegers.find(Res) != PromotedIntegers.end())
100        Mapped |= 2;
101      if (SoftenedFloats.find(Res) != SoftenedFloats.end())
102        Mapped |= 4;
103      if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
104        Mapped |= 8;
105      if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
106        Mapped |= 16;
107      if (ExpandedFloats.find(Res) != ExpandedFloats.end())
108        Mapped |= 32;
109      if (SplitVectors.find(Res) != SplitVectors.end())
110        Mapped |= 64;
111      if (WidenedVectors.find(Res) != WidenedVectors.end())
112        Mapped |= 128;
113
114      if (I->getNodeId() != Processed) {
115        if (Mapped != 0) {
116          cerr << "Unprocessed value in a map!";
117          Failed = true;
118        }
119      } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
120        // FIXME: Because of PR2957, the build vector can be placed on this
121        // list but if the associated vector shuffle is split, the build vector
122        // can also be split so we allow this to go through for now.
123        if (Mapped > 1 && Res.getOpcode() != ISD::BUILD_VECTOR) {
124          cerr << "Value with legal type was transformed!";
125          Failed = true;
126        }
127      } else {
128        if (Mapped == 0) {
129          cerr << "Processed value not in any map!";
130          Failed = true;
131        } else if (Mapped & (Mapped - 1)) {
132          cerr << "Value in multiple maps!";
133          Failed = true;
134        }
135      }
136
137      if (Failed) {
138        if (Mapped & 1)
139          cerr << " ReplacedValues";
140        if (Mapped & 2)
141          cerr << " PromotedIntegers";
142        if (Mapped & 4)
143          cerr << " SoftenedFloats";
144        if (Mapped & 8)
145          cerr << " ScalarizedVectors";
146        if (Mapped & 16)
147          cerr << " ExpandedIntegers";
148        if (Mapped & 32)
149          cerr << " ExpandedFloats";
150        if (Mapped & 64)
151          cerr << " SplitVectors";
152        if (Mapped & 128)
153          cerr << " WidenedVectors";
154        cerr << "\n";
155        abort();
156      }
157    }
158  }
159
160  // Checked that NewNodes are only used by other NewNodes.
161  for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
162    SDNode *N = NewNodes[i];
163    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
164         UI != UE; ++UI)
165      assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
166  }
167}
168
169/// run - This is the main entry point for the type legalizer.  This does a
170/// top-down traversal of the dag, legalizing types as it goes.  Returns "true"
171/// if it made any changes.
172bool DAGTypeLegalizer::run() {
173  bool Changed = false;
174
175  // Create a dummy node (which is not added to allnodes), that adds a reference
176  // to the root node, preventing it from being deleted, and tracking any
177  // changes of the root.
178  HandleSDNode Dummy(DAG.getRoot());
179  Dummy.setNodeId(Unanalyzed);
180
181  // The root of the dag may dangle to deleted nodes until the type legalizer is
182  // done.  Set it to null to avoid confusion.
183  DAG.setRoot(SDValue());
184
185  // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
186  // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
187  // non-leaves.
188  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
189       E = DAG.allnodes_end(); I != E; ++I) {
190    if (I->getNumOperands() == 0) {
191      I->setNodeId(ReadyToProcess);
192      Worklist.push_back(I);
193    } else {
194      I->setNodeId(Unanalyzed);
195    }
196  }
197
198  // Now that we have a set of nodes to process, handle them all.
199  while (!Worklist.empty()) {
200#ifndef XDEBUG
201    if (EnableExpensiveChecks)
202#endif
203      PerformExpensiveChecks();
204
205    SDNode *N = Worklist.back();
206    Worklist.pop_back();
207    assert(N->getNodeId() == ReadyToProcess &&
208           "Node should be ready if on worklist!");
209
210    if (IgnoreNodeResults(N))
211      goto ScanOperands;
212
213    // Scan the values produced by the node, checking to see if any result
214    // types are illegal.
215    for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
216      MVT ResultVT = N->getValueType(i);
217      switch (getTypeAction(ResultVT)) {
218      default:
219        assert(false && "Unknown action!");
220      case Legal:
221        break;
222      // The following calls must take care of *all* of the node's results,
223      // not just the illegal result they were passed (this includes results
224      // with a legal type).  Results can be remapped using ReplaceValueWith,
225      // or their promoted/expanded/etc values registered in PromotedIntegers,
226      // ExpandedIntegers etc.
227      case PromoteInteger:
228        PromoteIntegerResult(N, i);
229        Changed = true;
230        goto NodeDone;
231      case ExpandInteger:
232        ExpandIntegerResult(N, i);
233        Changed = true;
234        goto NodeDone;
235      case SoftenFloat:
236        SoftenFloatResult(N, i);
237        Changed = true;
238        goto NodeDone;
239      case ExpandFloat:
240        ExpandFloatResult(N, i);
241        Changed = true;
242        goto NodeDone;
243      case ScalarizeVector:
244        ScalarizeVectorResult(N, i);
245        Changed = true;
246        goto NodeDone;
247      case SplitVector:
248        SplitVectorResult(N, i);
249        Changed = true;
250        goto NodeDone;
251      case WidenVector:
252        WidenVectorResult(N, i);
253        Changed = true;
254        goto NodeDone;
255      }
256    }
257
258ScanOperands:
259    // Scan the operand list for the node, handling any nodes with operands that
260    // are illegal.
261    {
262    unsigned NumOperands = N->getNumOperands();
263    bool NeedsReanalyzing = false;
264    unsigned i;
265    for (i = 0; i != NumOperands; ++i) {
266      if (IgnoreNodeResults(N->getOperand(i).getNode()))
267        continue;
268
269      if (N->getOpcode() == ISD::VECTOR_SHUFFLE && i == 2) {
270        // The shuffle mask doesn't need to be a legal vector type.
271        // FIXME: We can remove this once we fix PR2957.
272        SetIgnoredNodeResult(N->getOperand(2).getNode());
273        continue;
274      }
275
276      MVT OpVT = N->getOperand(i).getValueType();
277      switch (getTypeAction(OpVT)) {
278      default:
279        assert(false && "Unknown action!");
280      case Legal:
281        continue;
282      // The following calls must either replace all of the node's results
283      // using ReplaceValueWith, and return "false"; or update the node's
284      // operands in place, and return "true".
285      case PromoteInteger:
286        NeedsReanalyzing = PromoteIntegerOperand(N, i);
287        Changed = true;
288        break;
289      case ExpandInteger:
290        NeedsReanalyzing = ExpandIntegerOperand(N, i);
291        Changed = true;
292        break;
293      case SoftenFloat:
294        NeedsReanalyzing = SoftenFloatOperand(N, i);
295        Changed = true;
296        break;
297      case ExpandFloat:
298        NeedsReanalyzing = ExpandFloatOperand(N, i);
299        Changed = true;
300        break;
301      case ScalarizeVector:
302        NeedsReanalyzing = ScalarizeVectorOperand(N, i);
303        Changed = true;
304        break;
305      case SplitVector:
306        NeedsReanalyzing = SplitVectorOperand(N, i);
307        Changed = true;
308        break;
309      case WidenVector:
310        NeedsReanalyzing = WidenVectorOperand(N, i);
311        Changed = true;
312        break;
313      }
314      break;
315    }
316
317    // The sub-method updated N in place.  Check to see if any operands are new,
318    // and if so, mark them.  If the node needs revisiting, don't add all users
319    // to the worklist etc.
320    if (NeedsReanalyzing) {
321      assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
322      N->setNodeId(NewNode);
323      // Recompute the NodeId and correct processed operands, adding the node to
324      // the worklist if ready.
325      SDNode *M = AnalyzeNewNode(N);
326      if (M == N)
327        // The node didn't morph - nothing special to do, it will be revisited.
328        continue;
329
330      // The node morphed - this is equivalent to legalizing by replacing every
331      // value of N with the corresponding value of M.  So do that now.  However
332      // there is no need to remember the replacement - morphing will make sure
333      // it is never used non-trivially.
334      assert(N->getNumValues() == M->getNumValues() &&
335             "Node morphing changed the number of results!");
336      for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
337        // Replacing the value takes care of remapping the new value.  Do the
338        // replacement without recording it in ReplacedValues.  This does not
339        // expunge From but that is fine - it is not really a new node.
340        ReplaceValueWithHelper(SDValue(N, i), SDValue(M, i));
341      assert(N->getNodeId() == NewNode && "Unexpected node state!");
342      // The node continues to live on as part of the NewNode fungus that
343      // grows on top of the useful nodes.  Nothing more needs to be done
344      // with it - move on to the next node.
345      continue;
346    }
347
348    if (i == NumOperands) {
349      DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
350    }
351    }
352NodeDone:
353
354    // If we reach here, the node was processed, potentially creating new nodes.
355    // Mark it as processed and add its users to the worklist as appropriate.
356    assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
357    N->setNodeId(Processed);
358
359    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
360         UI != E; ++UI) {
361      SDNode *User = *UI;
362      int NodeId = User->getNodeId();
363
364      // This node has two options: it can either be a new node or its Node ID
365      // may be a count of the number of operands it has that are not ready.
366      if (NodeId > 0) {
367        User->setNodeId(NodeId-1);
368
369        // If this was the last use it was waiting on, add it to the ready list.
370        if (NodeId-1 == ReadyToProcess)
371          Worklist.push_back(User);
372        continue;
373      }
374
375      // If this is an unreachable new node, then ignore it.  If it ever becomes
376      // reachable by being used by a newly created node then it will be handled
377      // by AnalyzeNewNode.
378      if (NodeId == NewNode)
379        continue;
380
381      // Otherwise, this node is new: this is the first operand of it that
382      // became ready.  Its new NodeId is the number of operands it has minus 1
383      // (as this node is now processed).
384      assert(NodeId == Unanalyzed && "Unknown node ID!");
385      User->setNodeId(User->getNumOperands() - 1);
386
387      // If the node only has a single operand, it is now ready.
388      if (User->getNumOperands() == 1)
389        Worklist.push_back(User);
390    }
391  }
392
393#ifndef XDEBUG
394  if (EnableExpensiveChecks)
395#endif
396    PerformExpensiveChecks();
397
398  // If the root changed (e.g. it was a dead load) update the root.
399  DAG.setRoot(Dummy.getValue());
400
401  // Remove dead nodes.  This is important to do for cleanliness but also before
402  // the checking loop below.  Implicit folding by the DAG.getNode operators and
403  // node morphing can cause unreachable nodes to be around with their flags set
404  // to new.
405  DAG.RemoveDeadNodes();
406
407  // In a debug build, scan all the nodes to make sure we found them all.  This
408  // ensures that there are no cycles and that everything got processed.
409#ifndef NDEBUG
410  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
411       E = DAG.allnodes_end(); I != E; ++I) {
412    bool Failed = false;
413
414    // Check that all result types are legal.
415    if (!IgnoreNodeResults(I))
416      for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
417        if (!isTypeLegal(I->getValueType(i))) {
418          cerr << "Result type " << i << " illegal!\n";
419          Failed = true;
420        }
421
422    // Check that all operand types are legal.
423    for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
424      if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
425          !isTypeLegal(I->getOperand(i).getValueType())) {
426        cerr << "Operand type " << i << " illegal!\n";
427        Failed = true;
428      }
429
430    if (I->getNodeId() != Processed) {
431       if (I->getNodeId() == NewNode)
432         cerr << "New node not analyzed?\n";
433       else if (I->getNodeId() == Unanalyzed)
434         cerr << "Unanalyzed node not noticed?\n";
435       else if (I->getNodeId() > 0)
436         cerr << "Operand not processed?\n";
437       else if (I->getNodeId() == ReadyToProcess)
438         cerr << "Not added to worklist?\n";
439       Failed = true;
440    }
441
442    if (Failed) {
443      I->dump(&DAG); cerr << "\n";
444      abort();
445    }
446  }
447#endif
448
449  return Changed;
450}
451
452/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
453/// new nodes.  Correct any processed operands (this may change the node) and
454/// calculate the NodeId.  If the node itself changes to a processed node, it
455/// is not remapped - the caller needs to take care of this.
456/// Returns the potentially changed node.
457SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
458  // If this was an existing node that is already done, we're done.
459  if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
460    return N;
461
462  // Remove any stale map entries.
463  ExpungeNode(N);
464
465  // Okay, we know that this node is new.  Recursively walk all of its operands
466  // to see if they are new also.  The depth of this walk is bounded by the size
467  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
468  // about revisiting of nodes.
469  //
470  // As we walk the operands, keep track of the number of nodes that are
471  // processed.  If non-zero, this will become the new nodeid of this node.
472  // Operands may morph when they are analyzed.  If so, the node will be
473  // updated after all operands have been analyzed.  Since this is rare,
474  // the code tries to minimize overhead in the non-morphing case.
475
476  SmallVector<SDValue, 8> NewOps;
477  unsigned NumProcessed = 0;
478  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
479    SDValue OrigOp = N->getOperand(i);
480    SDValue Op = OrigOp;
481
482    AnalyzeNewValue(Op); // Op may morph.
483
484    if (Op.getNode()->getNodeId() == Processed)
485      ++NumProcessed;
486
487    if (!NewOps.empty()) {
488      // Some previous operand changed.  Add this one to the list.
489      NewOps.push_back(Op);
490    } else if (Op != OrigOp) {
491      // This is the first operand to change - add all operands so far.
492      for (unsigned j = 0; j < i; ++j)
493        NewOps.push_back(N->getOperand(j));
494      NewOps.push_back(Op);
495    }
496  }
497
498  // Some operands changed - update the node.
499  if (!NewOps.empty()) {
500    SDNode *M = DAG.UpdateNodeOperands(SDValue(N, 0), &NewOps[0],
501                                       NewOps.size()).getNode();
502    if (M != N) {
503      // The node morphed into a different node.  Normally for this to happen
504      // the original node would have to be marked NewNode.  However this can
505      // in theory momentarily not be the case while ReplaceValueWith is doing
506      // its stuff.  Mark the original node NewNode to help sanity checking.
507      N->setNodeId(NewNode);
508      if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
509        // It morphed into a previously analyzed node - nothing more to do.
510        return M;
511
512      // It morphed into a different new node.  Do the equivalent of passing
513      // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
514      // to remap the operands, since they are the same as the operands we
515      // remapped above.
516      N = M;
517      ExpungeNode(N);
518    }
519  }
520
521  // Calculate the NodeId.
522  N->setNodeId(N->getNumOperands() - NumProcessed);
523  if (N->getNodeId() == ReadyToProcess)
524    Worklist.push_back(N);
525
526  return N;
527}
528
529/// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
530/// If the node changes to a processed node, then remap it.
531void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
532  Val.setNode(AnalyzeNewNode(Val.getNode()));
533  if (Val.getNode()->getNodeId() == Processed)
534    // We were passed a processed node, or it morphed into one - remap it.
535    RemapValue(Val);
536}
537
538/// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
539/// This can occur when a node is deleted then reallocated as a new node -
540/// the mapping in ReplacedValues applies to the deleted node, not the new
541/// one.
542/// The only map that can have a deleted node as a source is ReplacedValues.
543/// Other maps can have deleted nodes as targets, but since their looked-up
544/// values are always immediately remapped using RemapValue, resulting in a
545/// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
546/// always performs correct mappings.  In order to keep the mapping correct,
547/// ExpungeNode should be called on any new nodes *before* adding them as
548/// either source or target to ReplacedValues (which typically means calling
549/// Expunge when a new node is first seen, since it may no longer be marked
550/// NewNode by the time it is added to ReplacedValues).
551void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
552  if (N->getNodeId() != NewNode)
553    return;
554
555  // If N is not remapped by ReplacedValues then there is nothing to do.
556  unsigned i, e;
557  for (i = 0, e = N->getNumValues(); i != e; ++i)
558    if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
559      break;
560
561  if (i == e)
562    return;
563
564  // Remove N from all maps - this is expensive but rare.
565
566  for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
567       E = PromotedIntegers.end(); I != E; ++I) {
568    assert(I->first.getNode() != N);
569    RemapValue(I->second);
570  }
571
572  for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
573       E = SoftenedFloats.end(); I != E; ++I) {
574    assert(I->first.getNode() != N);
575    RemapValue(I->second);
576  }
577
578  for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
579       E = ScalarizedVectors.end(); I != E; ++I) {
580    assert(I->first.getNode() != N);
581    RemapValue(I->second);
582  }
583
584  for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
585       E = WidenedVectors.end(); I != E; ++I) {
586    assert(I->first.getNode() != N);
587    RemapValue(I->second);
588  }
589
590  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
591       I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
592    assert(I->first.getNode() != N);
593    RemapValue(I->second.first);
594    RemapValue(I->second.second);
595  }
596
597  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
598       I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
599    assert(I->first.getNode() != N);
600    RemapValue(I->second.first);
601    RemapValue(I->second.second);
602  }
603
604  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
605       I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
606    assert(I->first.getNode() != N);
607    RemapValue(I->second.first);
608    RemapValue(I->second.second);
609  }
610
611  for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
612       E = ReplacedValues.end(); I != E; ++I)
613    RemapValue(I->second);
614
615  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
616    ReplacedValues.erase(SDValue(N, i));
617}
618
619/// RemapValue - If the specified value was already legalized to another value,
620/// replace it by that value.
621void DAGTypeLegalizer::RemapValue(SDValue &N) {
622  DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
623  if (I != ReplacedValues.end()) {
624    // Use path compression to speed up future lookups if values get multiply
625    // replaced with other values.
626    RemapValue(I->second);
627    N = I->second;
628    assert(N.getNode()->getNodeId() != NewNode && "Mapped to new node!");
629  }
630}
631
632namespace {
633  /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
634  /// updates to nodes and recomputes their ready state.
635  class VISIBILITY_HIDDEN NodeUpdateListener :
636    public SelectionDAG::DAGUpdateListener {
637    DAGTypeLegalizer &DTL;
638    SmallSetVector<SDNode*, 16> &NodesToAnalyze;
639  public:
640    explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
641                                SmallSetVector<SDNode*, 16> &nta)
642      : DTL(dtl), NodesToAnalyze(nta) {}
643
644    virtual void NodeDeleted(SDNode *N, SDNode *E) {
645      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
646             N->getNodeId() != DAGTypeLegalizer::Processed &&
647             "Invalid node ID for RAUW deletion!");
648      // It is possible, though rare, for the deleted node N to occur as a
649      // target in a map, so note the replacement N -> E in ReplacedValues.
650      assert(E && "Node not replaced?");
651      DTL.NoteDeletion(N, E);
652
653      // In theory the deleted node could also have been scheduled for analysis.
654      // So add it to the set of nodes which will not be analyzed.
655      NodesToAnalyze.remove(N);
656
657      // In general nothing needs to be done for E, since it didn't change but
658      // only gained new uses.  However N -> E was just added to ReplacedValues,
659      // and the result of a ReplacedValues mapping is not allowed to be marked
660      // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
661      if (E->getNodeId() == DAGTypeLegalizer::NewNode)
662        NodesToAnalyze.insert(E);
663    }
664
665    virtual void NodeUpdated(SDNode *N) {
666      // Node updates can mean pretty much anything.  It is possible that an
667      // operand was set to something already processed (f.e.) in which case
668      // this node could become ready.  Recompute its flags.
669      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
670             N->getNodeId() != DAGTypeLegalizer::Processed &&
671             "Invalid node ID for RAUW deletion!");
672      NodesToAnalyze.insert(N);
673    }
674  };
675}
676
677
678/// ReplaceValueWithHelper - Internal helper for ReplaceValueWith.  Updates the
679/// DAG causing any uses of From to use To instead, but without expunging From
680/// or recording the replacement in ReplacedValues.  Do not call directly unless
681/// you really know what you are doing!
682void DAGTypeLegalizer::ReplaceValueWithHelper(SDValue From, SDValue To) {
683  assert(From.getNode() != To.getNode() && "Potential legalization loop!");
684
685  // If expansion produced new nodes, make sure they are properly marked.
686  AnalyzeNewValue(To); // Expunges To.
687
688  // Anything that used the old node should now use the new one.  Note that this
689  // can potentially cause recursive merging.
690  SmallSetVector<SDNode*, 16> NodesToAnalyze;
691  NodeUpdateListener NUL(*this, NodesToAnalyze);
692  DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
693
694  // Process the list of nodes that need to be reanalyzed.
695  while (!NodesToAnalyze.empty()) {
696    SDNode *N = NodesToAnalyze.back();
697    NodesToAnalyze.pop_back();
698
699    // Analyze the node's operands and recalculate the node ID.
700    assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
701           N->getNodeId() != DAGTypeLegalizer::Processed &&
702           "Invalid node ID for RAUW analysis!");
703    N->setNodeId(NewNode);
704    SDNode *M = AnalyzeNewNode(N);
705    if (M != N) {
706      // The node morphed into a different node.  Make everyone use the new node
707      // instead.
708      assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
709      assert(N->getNumValues() == M->getNumValues() &&
710             "Node morphing changed the number of results!");
711      for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
712        SDValue OldVal(N, i);
713        SDValue NewVal(M, i);
714        if (M->getNodeId() == Processed)
715          RemapValue(NewVal);
716        DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal, &NUL);
717      }
718      // The original node continues to exist in the DAG, marked NewNode.
719    }
720  }
721}
722
723/// ReplaceValueWith - The specified value was legalized to the specified other
724/// value.  Update the DAG and NodeIds replacing any uses of From to use To
725/// instead.
726void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
727  assert(From.getNode()->getNodeId() == ReadyToProcess &&
728         "Only the node being processed may be remapped!");
729
730  // If expansion produced new nodes, make sure they are properly marked.
731  ExpungeNode(From.getNode());
732  AnalyzeNewValue(To); // Expunges To.
733
734  // The old node may still be present in a map like ExpandedIntegers or
735  // PromotedIntegers.  Inform maps about the replacement.
736  ReplacedValues[From] = To;
737
738  // Do the replacement.
739  ReplaceValueWithHelper(From, To);
740}
741
742void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
743  AnalyzeNewValue(Result);
744
745  SDValue &OpEntry = PromotedIntegers[Op];
746  assert(OpEntry.getNode() == 0 && "Node is already promoted!");
747  OpEntry = Result;
748}
749
750void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
751  AnalyzeNewValue(Result);
752
753  SDValue &OpEntry = SoftenedFloats[Op];
754  assert(OpEntry.getNode() == 0 && "Node is already converted to integer!");
755  OpEntry = Result;
756}
757
758void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
759  AnalyzeNewValue(Result);
760
761  SDValue &OpEntry = ScalarizedVectors[Op];
762  assert(OpEntry.getNode() == 0 && "Node is already scalarized!");
763  OpEntry = Result;
764}
765
766void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
767                                          SDValue &Hi) {
768  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
769  RemapValue(Entry.first);
770  RemapValue(Entry.second);
771  assert(Entry.first.getNode() && "Operand isn't expanded");
772  Lo = Entry.first;
773  Hi = Entry.second;
774}
775
776void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
777                                          SDValue Hi) {
778  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
779  AnalyzeNewValue(Lo);
780  AnalyzeNewValue(Hi);
781
782  // Remember that this is the result of the node.
783  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
784  assert(Entry.first.getNode() == 0 && "Node already expanded");
785  Entry.first = Lo;
786  Entry.second = Hi;
787}
788
789void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
790                                        SDValue &Hi) {
791  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
792  RemapValue(Entry.first);
793  RemapValue(Entry.second);
794  assert(Entry.first.getNode() && "Operand isn't expanded");
795  Lo = Entry.first;
796  Hi = Entry.second;
797}
798
799void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
800                                        SDValue Hi) {
801  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
802  AnalyzeNewValue(Lo);
803  AnalyzeNewValue(Hi);
804
805  // Remember that this is the result of the node.
806  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
807  assert(Entry.first.getNode() == 0 && "Node already expanded");
808  Entry.first = Lo;
809  Entry.second = Hi;
810}
811
812void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
813                                      SDValue &Hi) {
814  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
815  RemapValue(Entry.first);
816  RemapValue(Entry.second);
817  assert(Entry.first.getNode() && "Operand isn't split");
818  Lo = Entry.first;
819  Hi = Entry.second;
820}
821
822void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
823                                      SDValue Hi) {
824  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
825  AnalyzeNewValue(Lo);
826  AnalyzeNewValue(Hi);
827
828  // Remember that this is the result of the node.
829  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
830  assert(Entry.first.getNode() == 0 && "Node already split");
831  Entry.first = Lo;
832  Entry.second = Hi;
833}
834
835void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
836  AnalyzeNewValue(Result);
837
838  SDValue &OpEntry = WidenedVectors[Op];
839  assert(OpEntry.getNode() == 0 && "Node already widened!");
840  OpEntry = Result;
841}
842
843// Set to ignore result
844void DAGTypeLegalizer::SetIgnoredNodeResult(SDNode* N) {
845  IgnoredNodesResultsSet.insert(N);
846}
847
848//===----------------------------------------------------------------------===//
849// Utilities.
850//===----------------------------------------------------------------------===//
851
852/// BitConvertToInteger - Convert to an integer of the same size.
853SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
854  unsigned BitWidth = Op.getValueType().getSizeInBits();
855  return DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerVT(BitWidth), Op);
856}
857
858SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
859                                               MVT DestVT) {
860  // Create the stack frame object.  Make sure it is aligned for both
861  // the source and destination types.
862  SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
863  // Emit a store to the stack slot.
864  SDValue Store = DAG.getStore(DAG.getEntryNode(), Op, StackPtr, NULL, 0);
865  // Result is a load from the stack slot.
866  return DAG.getLoad(DestVT, Store, StackPtr, NULL, 0);
867}
868
869/// CustomLowerResults - Replace the node's results with custom code provided
870/// by the target and return "true", or do nothing and return "false".
871/// The last parameter is FALSE if we are dealing with a node with legal
872/// result types and illegal operand. The second parameter denotes the illegal
873/// OperandNo in that case.
874/// The last parameter being TRUE means we are dealing with a
875/// node with illegal result types. The second parameter denotes the illegal
876/// ResNo in that case.
877bool DAGTypeLegalizer::CustomLowerResults(SDNode *N, MVT VT,
878                                          bool LegalizeResult) {
879  // See if the target wants to custom lower this node.
880  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
881    return false;
882
883  SmallVector<SDValue, 8> Results;
884  if (LegalizeResult)
885    TLI.ReplaceNodeResults(N, Results, DAG);
886  else
887    TLI.LowerOperationWrapper(N, Results, DAG);
888
889  if (Results.empty())
890    // The target didn't want to custom lower it after all.
891    return false;
892
893  // Make everything that once used N's values now use those in Results instead.
894  assert(Results.size() == N->getNumValues() &&
895         "Custom lowering returned the wrong number of results!");
896  for (unsigned i = 0, e = Results.size(); i != e; ++i)
897    ReplaceValueWith(SDValue(N, i), Results[i]);
898  return true;
899}
900
901/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
902/// which is split into two not necessarily identical pieces.
903void DAGTypeLegalizer::GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT) {
904  if (!InVT.isVector()) {
905    LoVT = HiVT = TLI.getTypeToTransformTo(InVT);
906  } else {
907    MVT NewEltVT = InVT.getVectorElementType();
908    unsigned NumElements = InVT.getVectorNumElements();
909    if ((NumElements & (NumElements-1)) == 0) {  // Simple power of two vector.
910      NumElements >>= 1;
911      LoVT = HiVT =  MVT::getVectorVT(NewEltVT, NumElements);
912    } else {                                     // Non-power-of-two vectors.
913      unsigned NewNumElts_Lo = 1 << Log2_32(NumElements);
914      unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo;
915      LoVT = MVT::getVectorVT(NewEltVT, NewNumElts_Lo);
916      HiVT = MVT::getVectorVT(NewEltVT, NewNumElts_Hi);
917    }
918  }
919}
920
921SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, MVT EltVT,
922                                                  SDValue Index) {
923  // Make sure the index type is big enough to compute in.
924  if (Index.getValueType().bitsGT(TLI.getPointerTy()))
925    Index = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Index);
926  else
927    Index = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Index);
928
929  // Calculate the element offset and add it to the pointer.
930  unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
931
932  Index = DAG.getNode(ISD::MUL, Index.getValueType(), Index,
933                      DAG.getConstant(EltSize, Index.getValueType()));
934  return DAG.getNode(ISD::ADD, Index.getValueType(), Index, VecPtr);
935}
936
937/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
938SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
939  MVT LVT = Lo.getValueType();
940  MVT HVT = Hi.getValueType();
941  MVT NVT = MVT::getIntegerVT(LVT.getSizeInBits() + HVT.getSizeInBits());
942
943  Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Lo);
944  Hi = DAG.getNode(ISD::ANY_EXTEND, NVT, Hi);
945  Hi = DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(LVT.getSizeInBits(),
946                                                      TLI.getShiftAmountTy()));
947  return DAG.getNode(ISD::OR, NVT, Lo, Hi);
948}
949
950/// LibCallify - Convert the node into a libcall with the same prototype.
951SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
952                                     bool isSigned) {
953  unsigned NumOps = N->getNumOperands();
954  if (NumOps == 0) {
955    return MakeLibCall(LC, N->getValueType(0), 0, 0, isSigned);
956  } else if (NumOps == 1) {
957    SDValue Op = N->getOperand(0);
958    return MakeLibCall(LC, N->getValueType(0), &Op, 1, isSigned);
959  } else if (NumOps == 2) {
960    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
961    return MakeLibCall(LC, N->getValueType(0), Ops, 2, isSigned);
962  }
963  SmallVector<SDValue, 8> Ops(NumOps);
964  for (unsigned i = 0; i < NumOps; ++i)
965    Ops[i] = N->getOperand(i);
966
967  return MakeLibCall(LC, N->getValueType(0), &Ops[0], NumOps, isSigned);
968}
969
970/// MakeLibCall - Generate a libcall taking the given operands as arguments and
971/// returning a result of type RetVT.
972SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
973                                      const SDValue *Ops, unsigned NumOps,
974                                      bool isSigned) {
975  TargetLowering::ArgListTy Args;
976  Args.reserve(NumOps);
977
978  TargetLowering::ArgListEntry Entry;
979  for (unsigned i = 0; i != NumOps; ++i) {
980    Entry.Node = Ops[i];
981    Entry.Ty = Entry.Node.getValueType().getTypeForMVT();
982    Entry.isSExt = isSigned;
983    Entry.isZExt = !isSigned;
984    Args.push_back(Entry);
985  }
986  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
987                                         TLI.getPointerTy());
988
989  const Type *RetTy = RetVT.getTypeForMVT();
990  // FIXME pass in debug loc
991  std::pair<SDValue,SDValue> CallInfo =
992    TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
993                    false, CallingConv::C, false, Callee, Args, DAG,
994                    DebugLoc::getUnknownLoc());
995  return CallInfo.first;
996}
997
998/// PromoteTargetBoolean - Promote the given target boolean to a target boolean
999/// of the given type.  A target boolean is an integer value, not necessarily of
1000/// type i1, the bits of which conform to getBooleanContents.
1001SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, MVT VT) {
1002  ISD::NodeType ExtendCode;
1003  switch (TLI.getBooleanContents()) {
1004  default:
1005    assert(false && "Unknown BooleanContent!");
1006  case TargetLowering::UndefinedBooleanContent:
1007    // Extend to VT by adding rubbish bits.
1008    ExtendCode = ISD::ANY_EXTEND;
1009    break;
1010  case TargetLowering::ZeroOrOneBooleanContent:
1011    // Extend to VT by adding zero bits.
1012    ExtendCode = ISD::ZERO_EXTEND;
1013    break;
1014  case TargetLowering::ZeroOrNegativeOneBooleanContent: {
1015    // Extend to VT by copying the sign bit.
1016    ExtendCode = ISD::SIGN_EXTEND;
1017    break;
1018  }
1019  }
1020  return DAG.getNode(ExtendCode, VT, Bool);
1021}
1022
1023/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
1024/// bits in Hi.
1025void DAGTypeLegalizer::SplitInteger(SDValue Op,
1026                                    MVT LoVT, MVT HiVT,
1027                                    SDValue &Lo, SDValue &Hi) {
1028  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1029         Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
1030  Lo = DAG.getNode(ISD::TRUNCATE, LoVT, Op);
1031  Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op,
1032                   DAG.getConstant(LoVT.getSizeInBits(),
1033                                   TLI.getShiftAmountTy()));
1034  Hi = DAG.getNode(ISD::TRUNCATE, HiVT, Hi);
1035}
1036
1037/// SplitInteger - Return the lower and upper halves of Op's bits in a value
1038/// type half the size of Op's.
1039void DAGTypeLegalizer::SplitInteger(SDValue Op,
1040                                    SDValue &Lo, SDValue &Hi) {
1041  MVT HalfVT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()/2);
1042  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1043}
1044
1045
1046//===----------------------------------------------------------------------===//
1047//  Entry Point
1048//===----------------------------------------------------------------------===//
1049
1050/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
1051/// only uses types natively supported by the target.  Returns "true" if it made
1052/// any changes.
1053///
1054/// Note that this is an involved process that may invalidate pointers into
1055/// the graph.
1056bool SelectionDAG::LegalizeTypes() {
1057  return DAGTypeLegalizer(*this).run();
1058}
1059