LegalizeTypes.cpp revision 8f036b4ae53d52851497a9ddca9f5e3ab77d8fd1
1//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11// an arbitrary well-formed SelectionDAG to only consist of legal types.  This
12// is common code shared among the LegalizeTypes*.cpp files.
13//
14//===----------------------------------------------------------------------===//
15
16#include "LegalizeTypes.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Support/CommandLine.h"
21#include "llvm/Support/MathExtras.h"
22using namespace llvm;
23
24#ifndef NDEBUG
25static cl::opt<bool>
26ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
27                cl::desc("Pop up a window to show dags before legalize types"));
28#else
29static const bool ViewLegalizeTypesDAGs = 0;
30#endif
31
32
33
34/// run - This is the main entry point for the type legalizer.  This does a
35/// top-down traversal of the dag, legalizing types as it goes.
36void DAGTypeLegalizer::run() {
37  // Create a dummy node (which is not added to allnodes), that adds a reference
38  // to the root node, preventing it from being deleted, and tracking any
39  // changes of the root.
40  HandleSDNode Dummy(DAG.getRoot());
41
42  // The root of the dag may dangle to deleted nodes until the type legalizer is
43  // done.  Set it to null to avoid confusion.
44  DAG.setRoot(SDOperand());
45
46  // Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess'
47  // (and remembering them) if they are leaves and assigning 'NewNode' if
48  // non-leaves.
49  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
50       E = DAG.allnodes_end(); I != E; ++I) {
51    if (I->getNumOperands() == 0) {
52      I->setNodeId(ReadyToProcess);
53      Worklist.push_back(I);
54    } else {
55      I->setNodeId(NewNode);
56    }
57  }
58
59  // Now that we have a set of nodes to process, handle them all.
60  while (!Worklist.empty()) {
61    SDNode *N = Worklist.back();
62    Worklist.pop_back();
63    assert(N->getNodeId() == ReadyToProcess &&
64           "Node should be ready if on worklist!");
65
66    // Scan the values produced by the node, checking to see if any result
67    // types are illegal.
68    unsigned i = 0;
69    unsigned NumResults = N->getNumValues();
70    do {
71      MVT ResultVT = N->getValueType(i);
72      switch (getTypeAction(ResultVT)) {
73      default:
74        assert(false && "Unknown action!");
75      case Legal:
76        break;
77      case PromoteInteger:
78        PromoteIntegerResult(N, i);
79        goto NodeDone;
80      case ExpandInteger:
81        ExpandIntegerResult(N, i);
82        goto NodeDone;
83      case SoftenFloat:
84        SoftenFloatResult(N, i);
85        goto NodeDone;
86      case ExpandFloat:
87        ExpandFloatResult(N, i);
88        goto NodeDone;
89      case Scalarize:
90        ScalarizeResult(N, i);
91        goto NodeDone;
92      case Split:
93        SplitResult(N, i);
94        goto NodeDone;
95      }
96    } while (++i < NumResults);
97
98    // Scan the operand list for the node, handling any nodes with operands that
99    // are illegal.
100    {
101    unsigned NumOperands = N->getNumOperands();
102    bool NeedsRevisit = false;
103    for (i = 0; i != NumOperands; ++i) {
104      MVT OpVT = N->getOperand(i).getValueType();
105      switch (getTypeAction(OpVT)) {
106      default:
107        assert(false && "Unknown action!");
108      case Legal:
109        continue;
110      case PromoteInteger:
111        NeedsRevisit = PromoteIntegerOperand(N, i);
112        break;
113      case ExpandInteger:
114        NeedsRevisit = ExpandIntegerOperand(N, i);
115        break;
116      case SoftenFloat:
117        NeedsRevisit = SoftenFloatOperand(N, i);
118        break;
119      case ExpandFloat:
120        NeedsRevisit = ExpandFloatOperand(N, i);
121        break;
122      case Scalarize:
123        NeedsRevisit = ScalarizeOperand(N, i);
124        break;
125      case Split:
126        NeedsRevisit = SplitOperand(N, i);
127        break;
128      }
129      break;
130    }
131
132    // If the node needs revisiting, don't add all users to the worklist etc.
133    if (NeedsRevisit)
134      continue;
135
136    if (i == NumOperands)
137      DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
138    }
139NodeDone:
140
141    // If we reach here, the node was processed, potentially creating new nodes.
142    // Mark it as processed and add its users to the worklist as appropriate.
143    N->setNodeId(Processed);
144
145    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
146         UI != E; ++UI) {
147      SDNode *User = UI->getUser();
148      int NodeID = User->getNodeId();
149      assert(NodeID != ReadyToProcess && NodeID != Processed &&
150             "Invalid node id for user of unprocessed node!");
151
152      // This node has two options: it can either be a new node or its Node ID
153      // may be a count of the number of operands it has that are not ready.
154      if (NodeID > 0) {
155        User->setNodeId(NodeID-1);
156
157        // If this was the last use it was waiting on, add it to the ready list.
158        if (NodeID-1 == ReadyToProcess)
159          Worklist.push_back(User);
160        continue;
161      }
162
163      // Otherwise, this node is new: this is the first operand of it that
164      // became ready.  Its new NodeID is the number of operands it has minus 1
165      // (as this node is now processed).
166      assert(NodeID == NewNode && "Unknown node ID!");
167      User->setNodeId(User->getNumOperands()-1);
168
169      // If the node only has a single operand, it is now ready.
170      if (User->getNumOperands() == 1)
171        Worklist.push_back(User);
172    }
173  }
174
175  // If the root changed (e.g. it was a dead load, update the root).
176  DAG.setRoot(Dummy.getValue());
177
178  //DAG.viewGraph();
179
180  // Remove dead nodes.  This is important to do for cleanliness but also before
181  // the checking loop below.  Implicit folding by the DAG.getNode operators can
182  // cause unreachable nodes to be around with their flags set to new.
183  DAG.RemoveDeadNodes();
184
185  // In a debug build, scan all the nodes to make sure we found them all.  This
186  // ensures that there are no cycles and that everything got processed.
187#ifndef NDEBUG
188  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
189       E = DAG.allnodes_end(); I != E; ++I) {
190    bool Failed = false;
191
192    // Check that all result types are legal.
193    for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
194      if (!isTypeLegal(I->getValueType(i))) {
195        cerr << "Result type " << i << " illegal!\n";
196        Failed = true;
197      }
198
199    // Check that all operand types are legal.
200    for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
201      if (!isTypeLegal(I->getOperand(i).getValueType())) {
202        cerr << "Operand type " << i << " illegal!\n";
203        Failed = true;
204      }
205
206    if (I->getNodeId() != Processed) {
207       if (I->getNodeId() == NewNode)
208         cerr << "New node not 'noticed'?\n";
209       else if (I->getNodeId() > 0)
210         cerr << "Operand not processed?\n";
211       else if (I->getNodeId() == ReadyToProcess)
212         cerr << "Not added to worklist?\n";
213       Failed = true;
214    }
215
216    if (Failed) {
217      I->dump(&DAG); cerr << "\n";
218      abort();
219    }
220  }
221#endif
222}
223
224/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
225/// new nodes.  Correct any processed operands (this may change the node) and
226/// calculate the NodeId.
227void DAGTypeLegalizer::AnalyzeNewNode(SDNode *&N) {
228  // If this was an existing node that is already done, we're done.
229  if (N->getNodeId() != NewNode)
230    return;
231
232  // Okay, we know that this node is new.  Recursively walk all of its operands
233  // to see if they are new also.  The depth of this walk is bounded by the size
234  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
235  // about revisiting of nodes.
236  //
237  // As we walk the operands, keep track of the number of nodes that are
238  // processed.  If non-zero, this will become the new nodeid of this node.
239  // Already processed operands may need to be remapped to the node that
240  // replaced them, which can result in our node changing.  Since remapping
241  // is rare, the code tries to minimize overhead in the non-remapping case.
242
243  SmallVector<SDOperand, 8> NewOps;
244  unsigned NumProcessed = 0;
245  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
246    SDOperand OrigOp = N->getOperand(i);
247    SDOperand Op = OrigOp;
248
249    if (Op.Val->getNodeId() == Processed)
250      RemapNode(Op);
251
252    if (Op.Val->getNodeId() == NewNode)
253      AnalyzeNewNode(Op.Val);
254    else if (Op.Val->getNodeId() == Processed)
255      ++NumProcessed;
256
257    if (!NewOps.empty()) {
258      // Some previous operand changed.  Add this one to the list.
259      NewOps.push_back(Op);
260    } else if (Op != OrigOp) {
261      // This is the first operand to change - add all operands so far.
262      for (unsigned j = 0; j < i; ++j)
263        NewOps.push_back(N->getOperand(j));
264      NewOps.push_back(Op);
265    }
266  }
267
268  // Some operands changed - update the node.
269  if (!NewOps.empty())
270    N = DAG.UpdateNodeOperands(SDOperand(N, 0), &NewOps[0], NewOps.size()).Val;
271
272  N->setNodeId(N->getNumOperands()-NumProcessed);
273  if (N->getNodeId() == ReadyToProcess)
274    Worklist.push_back(N);
275}
276
277namespace {
278  /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
279  /// updates to nodes and recomputes their ready state.
280  class VISIBILITY_HIDDEN NodeUpdateListener :
281    public SelectionDAG::DAGUpdateListener {
282    DAGTypeLegalizer &DTL;
283  public:
284    NodeUpdateListener(DAGTypeLegalizer &dtl) : DTL(dtl) {}
285
286    virtual void NodeDeleted(SDNode *N, SDNode *E) {
287      assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
288             N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
289             "RAUW deleted processed node!");
290      // It is possible, though rare, for the deleted node N to occur as a
291      // target in a map, so note the replacement N -> E in ReplacedNodes.
292      assert(E && "Node not replaced?");
293      for (unsigned i = 0, e = E->getNumValues(); i != e; ++i)
294        DTL.NoteReplacement(SDOperand(N, i), SDOperand(E, i));
295    }
296
297    virtual void NodeUpdated(SDNode *N) {
298      // Node updates can mean pretty much anything.  It is possible that an
299      // operand was set to something already processed (f.e.) in which case
300      // this node could become ready.  Recompute its flags.
301      assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
302             N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
303             "RAUW updated processed node!");
304      DTL.ReanalyzeNode(N);
305    }
306  };
307}
308
309
310/// ReplaceValueWith - The specified value was legalized to the specified other
311/// value.  If they are different, update the DAG and NodeIDs replacing any uses
312/// of From to use To instead.
313void DAGTypeLegalizer::ReplaceValueWith(SDOperand From, SDOperand To) {
314  if (From == To) return;
315
316  // If expansion produced new nodes, make sure they are properly marked.
317  AnalyzeNewNode(To.Val);
318
319  // Anything that used the old node should now use the new one.  Note that this
320  // can potentially cause recursive merging.
321  NodeUpdateListener NUL(*this);
322  DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
323
324  // The old node may still be present in a map like ExpandedIntegers or
325  // PromotedIntegers.  Inform maps about the replacement.
326  NoteReplacement(From, To);
327}
328
329/// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to'
330/// node's results.  The from and to node must define identical result types.
331void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) {
332  if (From == To) return;
333
334  // If expansion produced new nodes, make sure they are properly marked.
335  AnalyzeNewNode(To);
336
337  assert(From->getNumValues() == To->getNumValues() &&
338         "Node results don't match");
339
340  // Anything that used the old node should now use the new one.  Note that this
341  // can potentially cause recursive merging.
342  NodeUpdateListener NUL(*this);
343  DAG.ReplaceAllUsesWith(From, To, &NUL);
344
345  // The old node may still be present in a map like ExpandedIntegers or
346  // PromotedIntegers.  Inform maps about the replacement.
347  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
348    assert(From->getValueType(i) == To->getValueType(i) &&
349           "Node results don't match");
350    NoteReplacement(SDOperand(From, i), SDOperand(To, i));
351  }
352}
353
354
355/// RemapNode - If the specified value was already legalized to another value,
356/// replace it by that value.
357void DAGTypeLegalizer::RemapNode(SDOperand &N) {
358  DenseMap<SDOperand, SDOperand>::iterator I = ReplacedNodes.find(N);
359  if (I != ReplacedNodes.end()) {
360    // Use path compression to speed up future lookups if values get multiply
361    // replaced with other values.
362    RemapNode(I->second);
363    N = I->second;
364  }
365}
366
367/// ExpungeNode - If this is a deleted value that was kept around to speed up
368/// remapping, remove it globally now.  The only map that can have a deleted
369/// node as a source is ReplacedNodes.  Other maps can have deleted nodes as
370/// targets, but since their looked-up values are always immediately remapped
371/// using RemapNode, resulting in a not-deleted node, this is harmless as long
372/// as ReplacedNodes/RemapNode always performs correct mappings.  The mapping
373/// will always be correct as long as ExpungeNode is called on the source when
374/// adding a new node to ReplacedNodes, and called on the target when adding
375/// a new node to any map.
376void DAGTypeLegalizer::ExpungeNode(SDOperand N) {
377  SDOperand Replacement = N;
378  RemapNode(Replacement);
379  if (Replacement != N) {
380    // Remove N from all maps - this is expensive but extremely rare.
381    ReplacedNodes.erase(N);
382
383    for (DenseMap<SDOperand, SDOperand>::iterator I = ReplacedNodes.begin(),
384         E = ReplacedNodes.end(); I != E; ++I) {
385      if (I->second == N)
386        I->second = Replacement;
387    }
388
389    for (DenseMap<SDOperand, SDOperand>::iterator I = PromotedIntegers.begin(),
390         E = PromotedIntegers.end(); I != E; ++I) {
391      assert(I->first != N);
392      if (I->second == N)
393        I->second = Replacement;
394    }
395
396    for (DenseMap<SDOperand, SDOperand>::iterator I = SoftenedFloats.begin(),
397         E = SoftenedFloats.end(); I != E; ++I) {
398      assert(I->first != N);
399      if (I->second == N)
400        I->second = Replacement;
401    }
402
403    for (DenseMap<SDOperand, SDOperand>::iterator I = ScalarizedVectors.begin(),
404         E = ScalarizedVectors.end(); I != E; ++I) {
405      assert(I->first != N);
406      if (I->second == N)
407        I->second = Replacement;
408    }
409
410    for (DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator
411         I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
412      assert(I->first != N);
413      if (I->second.first == N)
414        I->second.first = Replacement;
415      if (I->second.second == N)
416        I->second.second = Replacement;
417    }
418
419    for (DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator
420         I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
421      assert(I->first != N);
422      if (I->second.first == N)
423        I->second.first = Replacement;
424      if (I->second.second == N)
425        I->second.second = Replacement;
426    }
427
428    for (DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator
429         I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
430      assert(I->first != N);
431      if (I->second.first == N)
432        I->second.first = Replacement;
433      if (I->second.second == N)
434        I->second.second = Replacement;
435    }
436  }
437}
438
439
440void DAGTypeLegalizer::SetPromotedInteger(SDOperand Op, SDOperand Result) {
441  ExpungeNode(Result);
442  AnalyzeNewNode(Result.Val);
443
444  SDOperand &OpEntry = PromotedIntegers[Op];
445  assert(OpEntry.Val == 0 && "Node is already promoted!");
446  OpEntry = Result;
447}
448
449void DAGTypeLegalizer::SetSoftenedFloat(SDOperand Op, SDOperand Result) {
450  ExpungeNode(Result);
451  AnalyzeNewNode(Result.Val);
452
453  SDOperand &OpEntry = SoftenedFloats[Op];
454  assert(OpEntry.Val == 0 && "Node is already converted to integer!");
455  OpEntry = Result;
456}
457
458void DAGTypeLegalizer::SetScalarizedVector(SDOperand Op, SDOperand Result) {
459  ExpungeNode(Result);
460  AnalyzeNewNode(Result.Val);
461
462  SDOperand &OpEntry = ScalarizedVectors[Op];
463  assert(OpEntry.Val == 0 && "Node is already scalarized!");
464  OpEntry = Result;
465}
466
467void DAGTypeLegalizer::GetExpandedInteger(SDOperand Op, SDOperand &Lo,
468                                          SDOperand &Hi) {
469  std::pair<SDOperand, SDOperand> &Entry = ExpandedIntegers[Op];
470  RemapNode(Entry.first);
471  RemapNode(Entry.second);
472  assert(Entry.first.Val && "Operand isn't expanded");
473  Lo = Entry.first;
474  Hi = Entry.second;
475}
476
477void DAGTypeLegalizer::SetExpandedInteger(SDOperand Op, SDOperand Lo,
478                                          SDOperand Hi) {
479  ExpungeNode(Lo);
480  ExpungeNode(Hi);
481
482  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
483  AnalyzeNewNode(Lo.Val);
484  AnalyzeNewNode(Hi.Val);
485
486  // Remember that this is the result of the node.
487  std::pair<SDOperand, SDOperand> &Entry = ExpandedIntegers[Op];
488  assert(Entry.first.Val == 0 && "Node already expanded");
489  Entry.first = Lo;
490  Entry.second = Hi;
491}
492
493void DAGTypeLegalizer::GetExpandedFloat(SDOperand Op, SDOperand &Lo,
494                                        SDOperand &Hi) {
495  std::pair<SDOperand, SDOperand> &Entry = ExpandedFloats[Op];
496  RemapNode(Entry.first);
497  RemapNode(Entry.second);
498  assert(Entry.first.Val && "Operand isn't expanded");
499  Lo = Entry.first;
500  Hi = Entry.second;
501}
502
503void DAGTypeLegalizer::SetExpandedFloat(SDOperand Op, SDOperand Lo,
504                                        SDOperand Hi) {
505  ExpungeNode(Lo);
506  ExpungeNode(Hi);
507
508  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
509  AnalyzeNewNode(Lo.Val);
510  AnalyzeNewNode(Hi.Val);
511
512  // Remember that this is the result of the node.
513  std::pair<SDOperand, SDOperand> &Entry = ExpandedFloats[Op];
514  assert(Entry.first.Val == 0 && "Node already expanded");
515  Entry.first = Lo;
516  Entry.second = Hi;
517}
518
519void DAGTypeLegalizer::GetSplitVector(SDOperand Op, SDOperand &Lo,
520                                      SDOperand &Hi) {
521  std::pair<SDOperand, SDOperand> &Entry = SplitVectors[Op];
522  RemapNode(Entry.first);
523  RemapNode(Entry.second);
524  assert(Entry.first.Val && "Operand isn't split");
525  Lo = Entry.first;
526  Hi = Entry.second;
527}
528
529void DAGTypeLegalizer::SetSplitVector(SDOperand Op, SDOperand Lo,
530                                      SDOperand Hi) {
531  ExpungeNode(Lo);
532  ExpungeNode(Hi);
533
534  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
535  AnalyzeNewNode(Lo.Val);
536  AnalyzeNewNode(Hi.Val);
537
538  // Remember that this is the result of the node.
539  std::pair<SDOperand, SDOperand> &Entry = SplitVectors[Op];
540  assert(Entry.first.Val == 0 && "Node already split");
541  Entry.first = Lo;
542  Entry.second = Hi;
543}
544
545
546/// BitConvertToInteger - Convert to an integer of the same size.
547SDOperand DAGTypeLegalizer::BitConvertToInteger(SDOperand Op) {
548  unsigned BitWidth = Op.getValueType().getSizeInBits();
549  return DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerVT(BitWidth), Op);
550}
551
552SDOperand DAGTypeLegalizer::CreateStackStoreLoad(SDOperand Op,
553                                                 MVT DestVT) {
554  // Create the stack frame object.
555  SDOperand FIPtr = DAG.CreateStackTemporary(DestVT);
556
557  // Emit a store to the stack slot.
558  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0);
559  // Result is a load from the stack slot.
560  return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
561}
562
563/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
564SDOperand DAGTypeLegalizer::JoinIntegers(SDOperand Lo, SDOperand Hi) {
565  MVT LVT = Lo.getValueType();
566  MVT HVT = Hi.getValueType();
567  MVT NVT = MVT::getIntegerVT(LVT.getSizeInBits() + HVT.getSizeInBits());
568
569  Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Lo);
570  Hi = DAG.getNode(ISD::ANY_EXTEND, NVT, Hi);
571  Hi = DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(LVT.getSizeInBits(),
572                                                      TLI.getShiftAmountTy()));
573  return DAG.getNode(ISD::OR, NVT, Lo, Hi);
574}
575
576/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
577/// bits in Hi.
578void DAGTypeLegalizer::SplitInteger(SDOperand Op,
579                                    MVT LoVT, MVT HiVT,
580                                    SDOperand &Lo, SDOperand &Hi) {
581  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
582         Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
583  Lo = DAG.getNode(ISD::TRUNCATE, LoVT, Op);
584  Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op,
585                   DAG.getConstant(LoVT.getSizeInBits(),
586                                   TLI.getShiftAmountTy()));
587  Hi = DAG.getNode(ISD::TRUNCATE, HiVT, Hi);
588}
589
590/// SplitInteger - Return the lower and upper halves of Op's bits in a value type
591/// half the size of Op's.
592void DAGTypeLegalizer::SplitInteger(SDOperand Op,
593                                    SDOperand &Lo, SDOperand &Hi) {
594  MVT HalfVT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()/2);
595  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
596}
597
598/// MakeLibCall - Generate a libcall taking the given operands as arguments and
599/// returning a result of type RetVT.
600SDOperand DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
601                                        const SDOperand *Ops, unsigned NumOps,
602                                        bool isSigned) {
603  TargetLowering::ArgListTy Args;
604  Args.reserve(NumOps);
605
606  TargetLowering::ArgListEntry Entry;
607  for (unsigned i = 0; i != NumOps; ++i) {
608    Entry.Node = Ops[i];
609    Entry.Ty = Entry.Node.getValueType().getTypeForMVT();
610    Entry.isSExt = isSigned;
611    Entry.isZExt = !isSigned;
612    Args.push_back(Entry);
613  }
614  SDOperand Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
615                                           TLI.getPointerTy());
616
617  const Type *RetTy = RetVT.getTypeForMVT();
618  std::pair<SDOperand,SDOperand> CallInfo =
619    TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
620                    CallingConv::C, false, Callee, Args, DAG);
621  return CallInfo.first;
622}
623
624SDOperand DAGTypeLegalizer::GetVectorElementPointer(SDOperand VecPtr, MVT EltVT,
625                                                    SDOperand Index) {
626  // Make sure the index type is big enough to compute in.
627  if (Index.getValueType().bitsGT(TLI.getPointerTy()))
628    Index = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Index);
629  else
630    Index = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Index);
631
632  // Calculate the element offset and add it to the pointer.
633  unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
634
635  Index = DAG.getNode(ISD::MUL, Index.getValueType(), Index,
636                      DAG.getConstant(EltSize, Index.getValueType()));
637  return DAG.getNode(ISD::ADD, Index.getValueType(), Index, VecPtr);
638}
639
640
641//===----------------------------------------------------------------------===//
642//  Entry Point
643//===----------------------------------------------------------------------===//
644
645/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
646/// only uses types natively supported by the target.
647///
648/// Note that this is an involved process that may invalidate pointers into
649/// the graph.
650void SelectionDAG::LegalizeTypes() {
651  if (ViewLegalizeTypesDAGs) viewGraph();
652
653  DAGTypeLegalizer(*this).run();
654}
655