LegalizeTypes.cpp revision d1474d09cbe5fdeec8ba0d6c6b52f316f3422532
1//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11// an arbitrary well-formed SelectionDAG to only consist of legal types.  This
12// is common code shared among the LegalizeTypes*.cpp files.
13//
14//===----------------------------------------------------------------------===//
15
16#include "LegalizeTypes.h"
17#include "llvm/CallingConv.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/Support/CommandLine.h"
20#include "llvm/Target/TargetData.h"
21using namespace llvm;
22
23static cl::opt<bool>
24EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
25
26/// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
27void DAGTypeLegalizer::PerformExpensiveChecks() {
28  // If a node is not processed, then none of its values should be mapped by any
29  // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
30
31  // If a node is processed, then each value with an illegal type must be mapped
32  // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
33  // Values with a legal type may be mapped by ReplacedValues, but not by any of
34  // the other maps.
35
36  // Note that these invariants may not hold momentarily when processing a node:
37  // the node being processed may be put in a map before being marked Processed.
38
39  // Note that it is possible to have nodes marked NewNode in the DAG.  This can
40  // occur in two ways.  Firstly, a node may be created during legalization but
41  // never passed to the legalization core.  This is usually due to the implicit
42  // folding that occurs when using the DAG.getNode operators.  Secondly, a new
43  // node may be passed to the legalization core, but when analyzed may morph
44  // into a different node, leaving the original node as a NewNode in the DAG.
45  // A node may morph if one of its operands changes during analysis.  Whether
46  // it actually morphs or not depends on whether, after updating its operands,
47  // it is equivalent to an existing node: if so, it morphs into that existing
48  // node (CSE).  An operand can change during analysis if the operand is a new
49  // node that morphs, or it is a processed value that was mapped to some other
50  // value (as recorded in ReplacedValues) in which case the operand is turned
51  // into that other value.  If a node morphs then the node it morphed into will
52  // be used instead of it for legalization, however the original node continues
53  // to live on in the DAG.
54  // The conclusion is that though there may be nodes marked NewNode in the DAG,
55  // all uses of such nodes are also marked NewNode: the result is a fungus of
56  // NewNodes growing on top of the useful nodes, and perhaps using them, but
57  // not used by them.
58
59  // If a value is mapped by ReplacedValues, then it must have no uses, except
60  // by nodes marked NewNode (see above).
61
62  // The final node obtained by mapping by ReplacedValues is not marked NewNode.
63  // Note that ReplacedValues should be applied iteratively.
64
65  // Note that the ReplacedValues map may also map deleted nodes.  By iterating
66  // over the DAG we only consider non-deleted nodes.
67  SmallVector<SDNode*, 16> NewNodes;
68  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
69       E = DAG.allnodes_end(); I != E; ++I) {
70    // Remember nodes marked NewNode - they are subject to extra checking below.
71    if (I->getNodeId() == NewNode)
72      NewNodes.push_back(I);
73
74    for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) {
75      SDValue Res(I, i);
76      bool Failed = false;
77
78      unsigned Mapped = 0;
79      if (ReplacedValues.find(Res) != ReplacedValues.end()) {
80        Mapped |= 1;
81        // Check that remapped values are only used by nodes marked NewNode.
82        for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end();
83             UI != UE; ++UI)
84          if (UI.getUse().getResNo() == i)
85            assert(UI->getNodeId() == NewNode &&
86                   "Remapped value has non-trivial use!");
87
88        // Check that the final result of applying ReplacedValues is not
89        // marked NewNode.
90        SDValue NewVal = ReplacedValues[Res];
91        DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
92        while (I != ReplacedValues.end()) {
93          NewVal = I->second;
94          I = ReplacedValues.find(NewVal);
95        }
96        assert(NewVal.getNode()->getNodeId() != NewNode &&
97               "ReplacedValues maps to a new node!");
98      }
99      if (PromotedIntegers.find(Res) != PromotedIntegers.end())
100        Mapped |= 2;
101      if (SoftenedFloats.find(Res) != SoftenedFloats.end())
102        Mapped |= 4;
103      if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
104        Mapped |= 8;
105      if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
106        Mapped |= 16;
107      if (ExpandedFloats.find(Res) != ExpandedFloats.end())
108        Mapped |= 32;
109      if (SplitVectors.find(Res) != SplitVectors.end())
110        Mapped |= 64;
111      if (WidenedVectors.find(Res) != WidenedVectors.end())
112        Mapped |= 128;
113
114      if (I->getNodeId() != Processed) {
115        if (Mapped != 0) {
116          cerr << "Unprocessed value in a map!";
117          Failed = true;
118        }
119      } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
120        if (Mapped > 1) {
121          cerr << "Value with legal type was transformed!";
122          Failed = true;
123        }
124      } else {
125        if (Mapped == 0) {
126          cerr << "Processed value not in any map!";
127          Failed = true;
128        } else if (Mapped & (Mapped - 1)) {
129          cerr << "Value in multiple maps!";
130          Failed = true;
131        }
132      }
133
134      if (Failed) {
135        if (Mapped & 1)
136          cerr << " ReplacedValues";
137        if (Mapped & 2)
138          cerr << " PromotedIntegers";
139        if (Mapped & 4)
140          cerr << " SoftenedFloats";
141        if (Mapped & 8)
142          cerr << " ScalarizedVectors";
143        if (Mapped & 16)
144          cerr << " ExpandedIntegers";
145        if (Mapped & 32)
146          cerr << " ExpandedFloats";
147        if (Mapped & 64)
148          cerr << " SplitVectors";
149        if (Mapped & 128)
150          cerr << " WidenedVectors";
151        cerr << "\n";
152        abort();
153      }
154    }
155  }
156
157  // Checked that NewNodes are only used by other NewNodes.
158  for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
159    SDNode *N = NewNodes[i];
160    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
161         UI != UE; ++UI)
162      assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
163  }
164}
165
166/// run - This is the main entry point for the type legalizer.  This does a
167/// top-down traversal of the dag, legalizing types as it goes.  Returns "true"
168/// if it made any changes.
169bool DAGTypeLegalizer::run() {
170  bool Changed = false;
171
172  // Create a dummy node (which is not added to allnodes), that adds a reference
173  // to the root node, preventing it from being deleted, and tracking any
174  // changes of the root.
175  HandleSDNode Dummy(DAG.getRoot());
176  Dummy.setNodeId(Unanalyzed);
177
178  // The root of the dag may dangle to deleted nodes until the type legalizer is
179  // done.  Set it to null to avoid confusion.
180  DAG.setRoot(SDValue());
181
182  // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
183  // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
184  // non-leaves.
185  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
186       E = DAG.allnodes_end(); I != E; ++I) {
187    if (I->getNumOperands() == 0) {
188      I->setNodeId(ReadyToProcess);
189      Worklist.push_back(I);
190    } else {
191      I->setNodeId(Unanalyzed);
192    }
193  }
194
195  // Now that we have a set of nodes to process, handle them all.
196  while (!Worklist.empty()) {
197#ifndef XDEBUG
198    if (EnableExpensiveChecks)
199#endif
200      PerformExpensiveChecks();
201
202    SDNode *N = Worklist.back();
203    Worklist.pop_back();
204    assert(N->getNodeId() == ReadyToProcess &&
205           "Node should be ready if on worklist!");
206
207    if (IgnoreNodeResults(N))
208      goto ScanOperands;
209
210    // Scan the values produced by the node, checking to see if any result
211    // types are illegal.
212    for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
213      MVT ResultVT = N->getValueType(i);
214      switch (getTypeAction(ResultVT)) {
215      default:
216        assert(false && "Unknown action!");
217      case Legal:
218        break;
219      // The following calls must take care of *all* of the node's results,
220      // not just the illegal result they were passed (this includes results
221      // with a legal type).  Results can be remapped using ReplaceValueWith,
222      // or their promoted/expanded/etc values registered in PromotedIntegers,
223      // ExpandedIntegers etc.
224      case PromoteInteger:
225        PromoteIntegerResult(N, i);
226        Changed = true;
227        goto NodeDone;
228      case ExpandInteger:
229        ExpandIntegerResult(N, i);
230        Changed = true;
231        goto NodeDone;
232      case SoftenFloat:
233        SoftenFloatResult(N, i);
234        Changed = true;
235        goto NodeDone;
236      case ExpandFloat:
237        ExpandFloatResult(N, i);
238        Changed = true;
239        goto NodeDone;
240      case ScalarizeVector:
241        ScalarizeVectorResult(N, i);
242        Changed = true;
243        goto NodeDone;
244      case SplitVector:
245        SplitVectorResult(N, i);
246        Changed = true;
247        goto NodeDone;
248      case WidenVector:
249        WidenVectorResult(N, i);
250        Changed = true;
251        goto NodeDone;
252      }
253    }
254
255ScanOperands:
256    // Scan the operand list for the node, handling any nodes with operands that
257    // are illegal.
258    {
259    unsigned NumOperands = N->getNumOperands();
260    bool NeedsReanalyzing = false;
261    unsigned i;
262    for (i = 0; i != NumOperands; ++i) {
263      if (IgnoreNodeResults(N->getOperand(i).getNode()))
264        continue;
265
266      MVT OpVT = N->getOperand(i).getValueType();
267      switch (getTypeAction(OpVT)) {
268      default:
269        assert(false && "Unknown action!");
270      case Legal:
271        continue;
272      // The following calls must either replace all of the node's results
273      // using ReplaceValueWith, and return "false"; or update the node's
274      // operands in place, and return "true".
275      case PromoteInteger:
276        NeedsReanalyzing = PromoteIntegerOperand(N, i);
277        Changed = true;
278        break;
279      case ExpandInteger:
280        NeedsReanalyzing = ExpandIntegerOperand(N, i);
281        Changed = true;
282        break;
283      case SoftenFloat:
284        NeedsReanalyzing = SoftenFloatOperand(N, i);
285        Changed = true;
286        break;
287      case ExpandFloat:
288        NeedsReanalyzing = ExpandFloatOperand(N, i);
289        Changed = true;
290        break;
291      case ScalarizeVector:
292        NeedsReanalyzing = ScalarizeVectorOperand(N, i);
293        Changed = true;
294        break;
295      case SplitVector:
296        NeedsReanalyzing = SplitVectorOperand(N, i);
297        Changed = true;
298        break;
299      case WidenVector:
300        NeedsReanalyzing = WidenVectorOperand(N, i);
301        Changed = true;
302        break;
303      }
304      break;
305    }
306
307    // The sub-method updated N in place.  Check to see if any operands are new,
308    // and if so, mark them.  If the node needs revisiting, don't add all users
309    // to the worklist etc.
310    if (NeedsReanalyzing) {
311      assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
312      N->setNodeId(NewNode);
313      // Recompute the NodeId and correct processed operands, adding the node to
314      // the worklist if ready.
315      SDNode *M = AnalyzeNewNode(N);
316      if (M == N)
317        // The node didn't morph - nothing special to do, it will be revisited.
318        continue;
319
320      // The node morphed - this is equivalent to legalizing by replacing every
321      // value of N with the corresponding value of M.  So do that now.  However
322      // there is no need to remember the replacement - morphing will make sure
323      // it is never used non-trivially.
324      assert(N->getNumValues() == M->getNumValues() &&
325             "Node morphing changed the number of results!");
326      for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
327        // Replacing the value takes care of remapping the new value.  Do the
328        // replacement without recording it in ReplacedValues.  This does not
329        // expunge From but that is fine - it is not really a new node.
330        ReplaceValueWithHelper(SDValue(N, i), SDValue(M, i));
331      assert(N->getNodeId() == NewNode && "Unexpected node state!");
332      // The node continues to live on as part of the NewNode fungus that
333      // grows on top of the useful nodes.  Nothing more needs to be done
334      // with it - move on to the next node.
335      continue;
336    }
337
338    if (i == NumOperands) {
339      DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
340    }
341    }
342NodeDone:
343
344    // If we reach here, the node was processed, potentially creating new nodes.
345    // Mark it as processed and add its users to the worklist as appropriate.
346    assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
347    N->setNodeId(Processed);
348
349    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
350         UI != E; ++UI) {
351      SDNode *User = *UI;
352      int NodeId = User->getNodeId();
353
354      // This node has two options: it can either be a new node or its Node ID
355      // may be a count of the number of operands it has that are not ready.
356      if (NodeId > 0) {
357        User->setNodeId(NodeId-1);
358
359        // If this was the last use it was waiting on, add it to the ready list.
360        if (NodeId-1 == ReadyToProcess)
361          Worklist.push_back(User);
362        continue;
363      }
364
365      // If this is an unreachable new node, then ignore it.  If it ever becomes
366      // reachable by being used by a newly created node then it will be handled
367      // by AnalyzeNewNode.
368      if (NodeId == NewNode)
369        continue;
370
371      // Otherwise, this node is new: this is the first operand of it that
372      // became ready.  Its new NodeId is the number of operands it has minus 1
373      // (as this node is now processed).
374      assert(NodeId == Unanalyzed && "Unknown node ID!");
375      User->setNodeId(User->getNumOperands() - 1);
376
377      // If the node only has a single operand, it is now ready.
378      if (User->getNumOperands() == 1)
379        Worklist.push_back(User);
380    }
381  }
382
383#ifndef XDEBUG
384  if (EnableExpensiveChecks)
385#endif
386    PerformExpensiveChecks();
387
388  // If the root changed (e.g. it was a dead load) update the root.
389  DAG.setRoot(Dummy.getValue());
390
391  // Remove dead nodes.  This is important to do for cleanliness but also before
392  // the checking loop below.  Implicit folding by the DAG.getNode operators and
393  // node morphing can cause unreachable nodes to be around with their flags set
394  // to new.
395  DAG.RemoveDeadNodes();
396
397  // In a debug build, scan all the nodes to make sure we found them all.  This
398  // ensures that there are no cycles and that everything got processed.
399#ifndef NDEBUG
400  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
401       E = DAG.allnodes_end(); I != E; ++I) {
402    bool Failed = false;
403
404    // Check that all result types are legal.
405    if (!IgnoreNodeResults(I))
406      for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
407        if (!isTypeLegal(I->getValueType(i))) {
408          cerr << "Result type " << i << " illegal!\n";
409          Failed = true;
410        }
411
412    // Check that all operand types are legal.
413    for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
414      if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
415          !isTypeLegal(I->getOperand(i).getValueType())) {
416        cerr << "Operand type " << i << " illegal!\n";
417        Failed = true;
418      }
419
420    if (I->getNodeId() != Processed) {
421       if (I->getNodeId() == NewNode)
422         cerr << "New node not analyzed?\n";
423       else if (I->getNodeId() == Unanalyzed)
424         cerr << "Unanalyzed node not noticed?\n";
425       else if (I->getNodeId() > 0)
426         cerr << "Operand not processed?\n";
427       else if (I->getNodeId() == ReadyToProcess)
428         cerr << "Not added to worklist?\n";
429       Failed = true;
430    }
431
432    if (Failed) {
433      I->dump(&DAG); cerr << "\n";
434      abort();
435    }
436  }
437#endif
438
439  return Changed;
440}
441
442/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
443/// new nodes.  Correct any processed operands (this may change the node) and
444/// calculate the NodeId.  If the node itself changes to a processed node, it
445/// is not remapped - the caller needs to take care of this.
446/// Returns the potentially changed node.
447SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
448  // If this was an existing node that is already done, we're done.
449  if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
450    return N;
451
452  // Remove any stale map entries.
453  ExpungeNode(N);
454
455  // Okay, we know that this node is new.  Recursively walk all of its operands
456  // to see if they are new also.  The depth of this walk is bounded by the size
457  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
458  // about revisiting of nodes.
459  //
460  // As we walk the operands, keep track of the number of nodes that are
461  // processed.  If non-zero, this will become the new nodeid of this node.
462  // Operands may morph when they are analyzed.  If so, the node will be
463  // updated after all operands have been analyzed.  Since this is rare,
464  // the code tries to minimize overhead in the non-morphing case.
465
466  SmallVector<SDValue, 8> NewOps;
467  unsigned NumProcessed = 0;
468  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
469    SDValue OrigOp = N->getOperand(i);
470    SDValue Op = OrigOp;
471
472    AnalyzeNewValue(Op); // Op may morph.
473
474    if (Op.getNode()->getNodeId() == Processed)
475      ++NumProcessed;
476
477    if (!NewOps.empty()) {
478      // Some previous operand changed.  Add this one to the list.
479      NewOps.push_back(Op);
480    } else if (Op != OrigOp) {
481      // This is the first operand to change - add all operands so far.
482      for (unsigned j = 0; j < i; ++j)
483        NewOps.push_back(N->getOperand(j));
484      NewOps.push_back(Op);
485    }
486  }
487
488  // Some operands changed - update the node.
489  if (!NewOps.empty()) {
490    SDNode *M = DAG.UpdateNodeOperands(SDValue(N, 0), &NewOps[0],
491                                       NewOps.size()).getNode();
492    if (M != N) {
493      // The node morphed into a different node.  Normally for this to happen
494      // the original node would have to be marked NewNode.  However this can
495      // in theory momentarily not be the case while ReplaceValueWith is doing
496      // its stuff.  Mark the original node NewNode to help sanity checking.
497      N->setNodeId(NewNode);
498      if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
499        // It morphed into a previously analyzed node - nothing more to do.
500        return M;
501
502      // It morphed into a different new node.  Do the equivalent of passing
503      // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
504      // to remap the operands, since they are the same as the operands we
505      // remapped above.
506      N = M;
507      ExpungeNode(N);
508    }
509  }
510
511  // Calculate the NodeId.
512  N->setNodeId(N->getNumOperands() - NumProcessed);
513  if (N->getNodeId() == ReadyToProcess)
514    Worklist.push_back(N);
515
516  return N;
517}
518
519/// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
520/// If the node changes to a processed node, then remap it.
521void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
522  Val.setNode(AnalyzeNewNode(Val.getNode()));
523  if (Val.getNode()->getNodeId() == Processed)
524    // We were passed a processed node, or it morphed into one - remap it.
525    RemapValue(Val);
526}
527
528/// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
529/// This can occur when a node is deleted then reallocated as a new node -
530/// the mapping in ReplacedValues applies to the deleted node, not the new
531/// one.
532/// The only map that can have a deleted node as a source is ReplacedValues.
533/// Other maps can have deleted nodes as targets, but since their looked-up
534/// values are always immediately remapped using RemapValue, resulting in a
535/// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
536/// always performs correct mappings.  In order to keep the mapping correct,
537/// ExpungeNode should be called on any new nodes *before* adding them as
538/// either source or target to ReplacedValues (which typically means calling
539/// Expunge when a new node is first seen, since it may no longer be marked
540/// NewNode by the time it is added to ReplacedValues).
541void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
542  if (N->getNodeId() != NewNode)
543    return;
544
545  // If N is not remapped by ReplacedValues then there is nothing to do.
546  unsigned i, e;
547  for (i = 0, e = N->getNumValues(); i != e; ++i)
548    if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
549      break;
550
551  if (i == e)
552    return;
553
554  // Remove N from all maps - this is expensive but rare.
555
556  for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
557       E = PromotedIntegers.end(); I != E; ++I) {
558    assert(I->first.getNode() != N);
559    RemapValue(I->second);
560  }
561
562  for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
563       E = SoftenedFloats.end(); I != E; ++I) {
564    assert(I->first.getNode() != N);
565    RemapValue(I->second);
566  }
567
568  for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
569       E = ScalarizedVectors.end(); I != E; ++I) {
570    assert(I->first.getNode() != N);
571    RemapValue(I->second);
572  }
573
574  for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
575       E = WidenedVectors.end(); I != E; ++I) {
576    assert(I->first.getNode() != N);
577    RemapValue(I->second);
578  }
579
580  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
581       I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
582    assert(I->first.getNode() != N);
583    RemapValue(I->second.first);
584    RemapValue(I->second.second);
585  }
586
587  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
588       I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
589    assert(I->first.getNode() != N);
590    RemapValue(I->second.first);
591    RemapValue(I->second.second);
592  }
593
594  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
595       I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
596    assert(I->first.getNode() != N);
597    RemapValue(I->second.first);
598    RemapValue(I->second.second);
599  }
600
601  for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
602       E = ReplacedValues.end(); I != E; ++I)
603    RemapValue(I->second);
604
605  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
606    ReplacedValues.erase(SDValue(N, i));
607}
608
609/// RemapValue - If the specified value was already legalized to another value,
610/// replace it by that value.
611void DAGTypeLegalizer::RemapValue(SDValue &N) {
612  DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
613  if (I != ReplacedValues.end()) {
614    // Use path compression to speed up future lookups if values get multiply
615    // replaced with other values.
616    RemapValue(I->second);
617    N = I->second;
618    assert(N.getNode()->getNodeId() != NewNode && "Mapped to new node!");
619  }
620}
621
622namespace {
623  /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
624  /// updates to nodes and recomputes their ready state.
625  class VISIBILITY_HIDDEN NodeUpdateListener :
626    public SelectionDAG::DAGUpdateListener {
627    DAGTypeLegalizer &DTL;
628    SmallSetVector<SDNode*, 16> &NodesToAnalyze;
629  public:
630    explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
631                                SmallSetVector<SDNode*, 16> &nta)
632      : DTL(dtl), NodesToAnalyze(nta) {}
633
634    virtual void NodeDeleted(SDNode *N, SDNode *E) {
635      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
636             N->getNodeId() != DAGTypeLegalizer::Processed &&
637             "Invalid node ID for RAUW deletion!");
638      // It is possible, though rare, for the deleted node N to occur as a
639      // target in a map, so note the replacement N -> E in ReplacedValues.
640      assert(E && "Node not replaced?");
641      DTL.NoteDeletion(N, E);
642
643      // In theory the deleted node could also have been scheduled for analysis.
644      // So remove it from the set of nodes which will be analyzed.
645      NodesToAnalyze.remove(N);
646
647      // In general nothing needs to be done for E, since it didn't change but
648      // only gained new uses.  However N -> E was just added to ReplacedValues,
649      // and the result of a ReplacedValues mapping is not allowed to be marked
650      // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
651      if (E->getNodeId() == DAGTypeLegalizer::NewNode)
652        NodesToAnalyze.insert(E);
653    }
654
655    virtual void NodeUpdated(SDNode *N) {
656      // Node updates can mean pretty much anything.  It is possible that an
657      // operand was set to something already processed (f.e.) in which case
658      // this node could become ready.  Recompute its flags.
659      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
660             N->getNodeId() != DAGTypeLegalizer::Processed &&
661             "Invalid node ID for RAUW deletion!");
662      N->setNodeId(DAGTypeLegalizer::NewNode);
663      NodesToAnalyze.insert(N);
664    }
665  };
666}
667
668
669/// ReplaceValueWithHelper - Internal helper for ReplaceValueWith.  Updates the
670/// DAG causing any uses of From to use To instead, but without expunging From
671/// or recording the replacement in ReplacedValues.  Do not call directly unless
672/// you really know what you are doing!
673void DAGTypeLegalizer::ReplaceValueWithHelper(SDValue From, SDValue To) {
674  assert(From.getNode() != To.getNode() && "Potential legalization loop!");
675
676  // If expansion produced new nodes, make sure they are properly marked.
677  AnalyzeNewValue(To); // Expunges To.
678
679  // Anything that used the old node should now use the new one.  Note that this
680  // can potentially cause recursive merging.
681  SmallSetVector<SDNode*, 16> NodesToAnalyze;
682  NodeUpdateListener NUL(*this, NodesToAnalyze);
683  DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
684
685  // Process the list of nodes that need to be reanalyzed.
686  while (!NodesToAnalyze.empty()) {
687    SDNode *N = NodesToAnalyze.back();
688    NodesToAnalyze.pop_back();
689    if (N->getNodeId() != DAGTypeLegalizer::NewNode)
690      // The node was analyzed while reanalyzing an earlier node - it is safe to
691      // skip.  Note that this is not a morphing node - otherwise it would still
692      // be marked NewNode.
693      continue;
694
695    // Analyze the node's operands and recalculate the node ID.
696    SDNode *M = AnalyzeNewNode(N);
697    if (M != N) {
698      // The node morphed into a different node.  Make everyone use the new node
699      // instead.
700      assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
701      assert(N->getNumValues() == M->getNumValues() &&
702             "Node morphing changed the number of results!");
703      for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
704        SDValue OldVal(N, i);
705        SDValue NewVal(M, i);
706        if (M->getNodeId() == Processed)
707          RemapValue(NewVal);
708        DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal, &NUL);
709      }
710      // The original node continues to exist in the DAG, marked NewNode.
711    }
712  }
713}
714
715/// ReplaceValueWith - The specified value was legalized to the specified other
716/// value.  Update the DAG and NodeIds replacing any uses of From to use To
717/// instead.
718void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
719  assert(From.getNode()->getNodeId() == ReadyToProcess &&
720         "Only the node being processed may be remapped!");
721
722  // If expansion produced new nodes, make sure they are properly marked.
723  ExpungeNode(From.getNode());
724  AnalyzeNewValue(To); // Expunges To.
725
726  // The old node may still be present in a map like ExpandedIntegers or
727  // PromotedIntegers.  Inform maps about the replacement.
728  ReplacedValues[From] = To;
729
730  // Do the replacement.
731  ReplaceValueWithHelper(From, To);
732}
733
734void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
735  assert(Result.getValueType() == TLI.getTypeToTransformTo(Op.getValueType()) &&
736         "Invalid type for promoted integer");
737  AnalyzeNewValue(Result);
738
739  SDValue &OpEntry = PromotedIntegers[Op];
740  assert(OpEntry.getNode() == 0 && "Node is already promoted!");
741  OpEntry = Result;
742}
743
744void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
745  assert(Result.getValueType() == TLI.getTypeToTransformTo(Op.getValueType()) &&
746         "Invalid type for softened float");
747  AnalyzeNewValue(Result);
748
749  SDValue &OpEntry = SoftenedFloats[Op];
750  assert(OpEntry.getNode() == 0 && "Node is already converted to integer!");
751  OpEntry = Result;
752}
753
754void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
755  assert(Result.getValueType() == Op.getValueType().getVectorElementType() &&
756         "Invalid type for scalarized vector");
757  AnalyzeNewValue(Result);
758
759  SDValue &OpEntry = ScalarizedVectors[Op];
760  assert(OpEntry.getNode() == 0 && "Node is already scalarized!");
761  OpEntry = Result;
762}
763
764void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
765                                          SDValue &Hi) {
766  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
767  RemapValue(Entry.first);
768  RemapValue(Entry.second);
769  assert(Entry.first.getNode() && "Operand isn't expanded");
770  Lo = Entry.first;
771  Hi = Entry.second;
772}
773
774void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
775                                          SDValue Hi) {
776  assert(Lo.getValueType() == TLI.getTypeToTransformTo(Op.getValueType()) &&
777         Hi.getValueType() == Lo.getValueType() &&
778         "Invalid type for expanded integer");
779  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
780  AnalyzeNewValue(Lo);
781  AnalyzeNewValue(Hi);
782
783  // Remember that this is the result of the node.
784  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
785  assert(Entry.first.getNode() == 0 && "Node already expanded");
786  Entry.first = Lo;
787  Entry.second = Hi;
788}
789
790void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
791                                        SDValue &Hi) {
792  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
793  RemapValue(Entry.first);
794  RemapValue(Entry.second);
795  assert(Entry.first.getNode() && "Operand isn't expanded");
796  Lo = Entry.first;
797  Hi = Entry.second;
798}
799
800void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
801                                        SDValue Hi) {
802  assert(Lo.getValueType() == TLI.getTypeToTransformTo(Op.getValueType()) &&
803         Hi.getValueType() == Lo.getValueType() &&
804         "Invalid type for expanded float");
805  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
806  AnalyzeNewValue(Lo);
807  AnalyzeNewValue(Hi);
808
809  // Remember that this is the result of the node.
810  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
811  assert(Entry.first.getNode() == 0 && "Node already expanded");
812  Entry.first = Lo;
813  Entry.second = Hi;
814}
815
816void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
817                                      SDValue &Hi) {
818  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
819  RemapValue(Entry.first);
820  RemapValue(Entry.second);
821  assert(Entry.first.getNode() && "Operand isn't split");
822  Lo = Entry.first;
823  Hi = Entry.second;
824}
825
826void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
827                                      SDValue Hi) {
828  assert(Lo.getValueType().getVectorElementType() ==
829         Op.getValueType().getVectorElementType() &&
830         2*Lo.getValueType().getVectorNumElements() ==
831         Op.getValueType().getVectorNumElements() &&
832         Hi.getValueType() == Lo.getValueType() &&
833         "Invalid type for split vector");
834  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
835  AnalyzeNewValue(Lo);
836  AnalyzeNewValue(Hi);
837
838  // Remember that this is the result of the node.
839  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
840  assert(Entry.first.getNode() == 0 && "Node already split");
841  Entry.first = Lo;
842  Entry.second = Hi;
843}
844
845void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
846  assert(Result.getValueType() == TLI.getTypeToTransformTo(Op.getValueType()) &&
847         "Invalid type for widened vector");
848  AnalyzeNewValue(Result);
849
850  SDValue &OpEntry = WidenedVectors[Op];
851  assert(OpEntry.getNode() == 0 && "Node already widened!");
852  OpEntry = Result;
853}
854
855
856//===----------------------------------------------------------------------===//
857// Utilities.
858//===----------------------------------------------------------------------===//
859
860/// BitConvertToInteger - Convert to an integer of the same size.
861SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
862  unsigned BitWidth = Op.getValueType().getSizeInBits();
863  return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(),
864                     MVT::getIntegerVT(BitWidth), Op);
865}
866
867/// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
868/// same size.
869SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
870  assert(Op.getValueType().isVector() && "Only applies to vectors!");
871  unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
872  MVT EltNVT = MVT::getIntegerVT(EltWidth);
873  unsigned NumElts = Op.getValueType().getVectorNumElements();
874  return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(),
875                     MVT::getVectorVT(EltNVT, NumElts), Op);
876}
877
878SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
879                                               MVT DestVT) {
880  DebugLoc dl = Op.getDebugLoc();
881  // Create the stack frame object.  Make sure it is aligned for both
882  // the source and destination types.
883  SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
884  // Emit a store to the stack slot.
885  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr, NULL, 0);
886  // Result is a load from the stack slot.
887  return DAG.getLoad(DestVT, dl, Store, StackPtr, NULL, 0);
888}
889
890/// CustomLowerNode - Replace the node's results with custom code provided
891/// by the target and return "true", or do nothing and return "false".
892/// The last parameter is FALSE if we are dealing with a node with legal
893/// result types and illegal operand. The second parameter denotes the type of
894/// illegal OperandNo in that case.
895/// The last parameter being TRUE means we are dealing with a
896/// node with illegal result types. The second parameter denotes the type of
897/// illegal ResNo in that case.
898bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, MVT VT, bool LegalizeResult) {
899  // See if the target wants to custom lower this node.
900  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
901    return false;
902
903  SmallVector<SDValue, 8> Results;
904  if (LegalizeResult)
905    TLI.ReplaceNodeResults(N, Results, DAG);
906  else
907    TLI.LowerOperationWrapper(N, Results, DAG);
908
909  if (Results.empty())
910    // The target didn't want to custom lower it after all.
911    return false;
912
913  // Make everything that once used N's values now use those in Results instead.
914  assert(Results.size() == N->getNumValues() &&
915         "Custom lowering returned the wrong number of results!");
916  for (unsigned i = 0, e = Results.size(); i != e; ++i)
917    ReplaceValueWith(SDValue(N, i), Results[i]);
918  return true;
919}
920
921/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
922/// which is split into two not necessarily identical pieces.
923void DAGTypeLegalizer::GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT) {
924  // Currently all types are split in half.
925  if (!InVT.isVector()) {
926    LoVT = HiVT = TLI.getTypeToTransformTo(InVT);
927  } else {
928    unsigned NumElements = InVT.getVectorNumElements();
929    assert(!(NumElements & 1) && "Splitting vector, but not in half!");
930    LoVT = HiVT = MVT::getVectorVT(InVT.getVectorElementType(), NumElements/2);
931  }
932}
933
934/// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
935/// high parts of the given value.
936void DAGTypeLegalizer::GetPairElements(SDValue Pair,
937                                       SDValue &Lo, SDValue &Hi) {
938  DebugLoc dl = Pair.getDebugLoc();
939  MVT NVT = TLI.getTypeToTransformTo(Pair.getValueType());
940  Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
941                   DAG.getIntPtrConstant(0));
942  Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
943                   DAG.getIntPtrConstant(1));
944}
945
946SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, MVT EltVT,
947                                                  SDValue Index) {
948  DebugLoc dl = Index.getDebugLoc();
949  // Make sure the index type is big enough to compute in.
950  if (Index.getValueType().bitsGT(TLI.getPointerTy()))
951    Index = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Index);
952  else
953    Index = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Index);
954
955  // Calculate the element offset and add it to the pointer.
956  unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
957
958  Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
959                      DAG.getConstant(EltSize, Index.getValueType()));
960  return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
961}
962
963/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
964SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
965  // Arbitrarily use dlHi for result DebugLoc
966  DebugLoc dlHi = Hi.getDebugLoc();
967  DebugLoc dlLo = Lo.getDebugLoc();
968  MVT LVT = Lo.getValueType();
969  MVT HVT = Hi.getValueType();
970  MVT NVT = MVT::getIntegerVT(LVT.getSizeInBits() + HVT.getSizeInBits());
971
972  Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
973  Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
974  Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
975                   DAG.getConstant(LVT.getSizeInBits(), TLI.getPointerTy()));
976  return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
977}
978
979/// LibCallify - Convert the node into a libcall with the same prototype.
980SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
981                                     bool isSigned) {
982  unsigned NumOps = N->getNumOperands();
983  DebugLoc dl = N->getDebugLoc();
984  if (NumOps == 0) {
985    return MakeLibCall(LC, N->getValueType(0), 0, 0, isSigned, dl);
986  } else if (NumOps == 1) {
987    SDValue Op = N->getOperand(0);
988    return MakeLibCall(LC, N->getValueType(0), &Op, 1, isSigned, dl);
989  } else if (NumOps == 2) {
990    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
991    return MakeLibCall(LC, N->getValueType(0), Ops, 2, isSigned, dl);
992  }
993  SmallVector<SDValue, 8> Ops(NumOps);
994  for (unsigned i = 0; i < NumOps; ++i)
995    Ops[i] = N->getOperand(i);
996
997  return MakeLibCall(LC, N->getValueType(0), &Ops[0], NumOps, isSigned, dl);
998}
999
1000/// MakeLibCall - Generate a libcall taking the given operands as arguments and
1001/// returning a result of type RetVT.
1002SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
1003                                      const SDValue *Ops, unsigned NumOps,
1004                                      bool isSigned, DebugLoc dl) {
1005  TargetLowering::ArgListTy Args;
1006  Args.reserve(NumOps);
1007
1008  TargetLowering::ArgListEntry Entry;
1009  for (unsigned i = 0; i != NumOps; ++i) {
1010    Entry.Node = Ops[i];
1011    Entry.Ty = Entry.Node.getValueType().getTypeForMVT(*DAG.getContext());
1012    Entry.isSExt = isSigned;
1013    Entry.isZExt = !isSigned;
1014    Args.push_back(Entry);
1015  }
1016  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1017                                         TLI.getPointerTy());
1018
1019  const Type *RetTy = RetVT.getTypeForMVT(*DAG.getContext());
1020  std::pair<SDValue,SDValue> CallInfo =
1021    TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1022                    false, 0, CallingConv::C, false, Callee, Args, DAG, dl);
1023  return CallInfo.first;
1024}
1025
1026/// PromoteTargetBoolean - Promote the given target boolean to a target boolean
1027/// of the given type.  A target boolean is an integer value, not necessarily of
1028/// type i1, the bits of which conform to getBooleanContents.
1029SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, MVT VT) {
1030  DebugLoc dl = Bool.getDebugLoc();
1031  ISD::NodeType ExtendCode;
1032  switch (TLI.getBooleanContents()) {
1033  default:
1034    assert(false && "Unknown BooleanContent!");
1035  case TargetLowering::UndefinedBooleanContent:
1036    // Extend to VT by adding rubbish bits.
1037    ExtendCode = ISD::ANY_EXTEND;
1038    break;
1039  case TargetLowering::ZeroOrOneBooleanContent:
1040    // Extend to VT by adding zero bits.
1041    ExtendCode = ISD::ZERO_EXTEND;
1042    break;
1043  case TargetLowering::ZeroOrNegativeOneBooleanContent: {
1044    // Extend to VT by copying the sign bit.
1045    ExtendCode = ISD::SIGN_EXTEND;
1046    break;
1047  }
1048  }
1049  return DAG.getNode(ExtendCode, dl, VT, Bool);
1050}
1051
1052/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
1053/// bits in Hi.
1054void DAGTypeLegalizer::SplitInteger(SDValue Op,
1055                                    MVT LoVT, MVT HiVT,
1056                                    SDValue &Lo, SDValue &Hi) {
1057  DebugLoc dl = Op.getDebugLoc();
1058  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1059         Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
1060  Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1061  Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1062                   DAG.getConstant(LoVT.getSizeInBits(), TLI.getPointerTy()));
1063  Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1064}
1065
1066/// SplitInteger - Return the lower and upper halves of Op's bits in a value
1067/// type half the size of Op's.
1068void DAGTypeLegalizer::SplitInteger(SDValue Op,
1069                                    SDValue &Lo, SDValue &Hi) {
1070  MVT HalfVT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()/2);
1071  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1072}
1073
1074
1075//===----------------------------------------------------------------------===//
1076//  Entry Point
1077//===----------------------------------------------------------------------===//
1078
1079/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
1080/// only uses types natively supported by the target.  Returns "true" if it made
1081/// any changes.
1082///
1083/// Note that this is an involved process that may invalidate pointers into
1084/// the graph.
1085bool SelectionDAG::LegalizeTypes() {
1086  return DAGTypeLegalizer(*this).run();
1087}
1088