LegalizeTypes.cpp revision d164ea2fb07ab3540121ffe1c59ad2cdc0a7a0a3
1//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11// an arbitrary well-formed SelectionDAG to only consist of legal types.  This
12// is common code shared among the LegalizeTypes*.cpp files.
13//
14//===----------------------------------------------------------------------===//
15
16#include "LegalizeTypes.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Support/CommandLine.h"
19#include "llvm/Target/TargetData.h"
20using namespace llvm;
21
22#ifndef NDEBUG
23static cl::opt<bool>
24ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
25                cl::desc("Pop up a window to show dags before legalize types"));
26#else
27static const bool ViewLegalizeTypesDAGs = 0;
28#endif
29
30
31/// run - This is the main entry point for the type legalizer.  This does a
32/// top-down traversal of the dag, legalizing types as it goes.
33void DAGTypeLegalizer::run() {
34  // Create a dummy node (which is not added to allnodes), that adds a reference
35  // to the root node, preventing it from being deleted, and tracking any
36  // changes of the root.
37  HandleSDNode Dummy(DAG.getRoot());
38
39  // The root of the dag may dangle to deleted nodes until the type legalizer is
40  // done.  Set it to null to avoid confusion.
41  DAG.setRoot(SDOperand());
42
43  // Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess'
44  // (and remembering them) if they are leaves and assigning 'NewNode' if
45  // non-leaves.
46  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
47       E = DAG.allnodes_end(); I != E; ++I) {
48    if (I->getNumOperands() == 0) {
49      I->setNodeId(ReadyToProcess);
50      Worklist.push_back(I);
51    } else {
52      I->setNodeId(NewNode);
53    }
54  }
55
56  // Now that we have a set of nodes to process, handle them all.
57  while (!Worklist.empty()) {
58    SDNode *N = Worklist.back();
59    Worklist.pop_back();
60    assert(N->getNodeId() == ReadyToProcess &&
61           "Node should be ready if on worklist!");
62
63    if (IgnoreNodeResults(N))
64      goto ScanOperands;
65
66    // Scan the values produced by the node, checking to see if any result
67    // types are illegal.
68    for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
69      MVT ResultVT = N->getValueType(i);
70      switch (getTypeAction(ResultVT)) {
71      default:
72        assert(false && "Unknown action!");
73      case Legal:
74        break;
75      case PromoteInteger:
76        PromoteIntegerResult(N, i);
77        goto NodeDone;
78      case ExpandInteger:
79        ExpandIntegerResult(N, i);
80        goto NodeDone;
81      case SoftenFloat:
82        SoftenFloatResult(N, i);
83        goto NodeDone;
84      case ExpandFloat:
85        ExpandFloatResult(N, i);
86        goto NodeDone;
87      case ScalarizeVector:
88        ScalarizeVectorResult(N, i);
89        goto NodeDone;
90      case SplitVector:
91        SplitVectorResult(N, i);
92        goto NodeDone;
93      }
94    }
95
96ScanOperands:
97    // Scan the operand list for the node, handling any nodes with operands that
98    // are illegal.
99    {
100    unsigned NumOperands = N->getNumOperands();
101    bool NeedsRevisit = false;
102    unsigned i;
103    for (i = 0; i != NumOperands; ++i) {
104      if (IgnoreNodeResults(N->getOperand(i).Val))
105        continue;
106
107      MVT OpVT = N->getOperand(i).getValueType();
108      switch (getTypeAction(OpVT)) {
109      default:
110        assert(false && "Unknown action!");
111      case Legal:
112        continue;
113      case PromoteInteger:
114        NeedsRevisit = PromoteIntegerOperand(N, i);
115        break;
116      case ExpandInteger:
117        NeedsRevisit = ExpandIntegerOperand(N, i);
118        break;
119      case SoftenFloat:
120        NeedsRevisit = SoftenFloatOperand(N, i);
121        break;
122      case ExpandFloat:
123        NeedsRevisit = ExpandFloatOperand(N, i);
124        break;
125      case ScalarizeVector:
126        NeedsRevisit = ScalarizeVectorOperand(N, i);
127        break;
128      case SplitVector:
129        NeedsRevisit = SplitVectorOperand(N, i);
130        break;
131      }
132      break;
133    }
134
135    // If the node needs revisiting, don't add all users to the worklist etc.
136    if (NeedsRevisit)
137      continue;
138
139    if (i == NumOperands)
140      DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
141    }
142NodeDone:
143
144    // If we reach here, the node was processed, potentially creating new nodes.
145    // Mark it as processed and add its users to the worklist as appropriate.
146    N->setNodeId(Processed);
147
148    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
149         UI != E; ++UI) {
150      SDNode *User = UI->getUser();
151      int NodeID = User->getNodeId();
152      assert(NodeID != ReadyToProcess && NodeID != Processed &&
153             "Invalid node id for user of unprocessed node!");
154
155      // This node has two options: it can either be a new node or its Node ID
156      // may be a count of the number of operands it has that are not ready.
157      if (NodeID > 0) {
158        User->setNodeId(NodeID-1);
159
160        // If this was the last use it was waiting on, add it to the ready list.
161        if (NodeID-1 == ReadyToProcess)
162          Worklist.push_back(User);
163        continue;
164      }
165
166      // Otherwise, this node is new: this is the first operand of it that
167      // became ready.  Its new NodeID is the number of operands it has minus 1
168      // (as this node is now processed).
169      assert(NodeID == NewNode && "Unknown node ID!");
170      User->setNodeId(User->getNumOperands()-1);
171
172      // If the node only has a single operand, it is now ready.
173      if (User->getNumOperands() == 1)
174        Worklist.push_back(User);
175    }
176  }
177
178  // If the root changed (e.g. it was a dead load, update the root).
179  DAG.setRoot(Dummy.getValue());
180
181  //DAG.viewGraph();
182
183  // Remove dead nodes.  This is important to do for cleanliness but also before
184  // the checking loop below.  Implicit folding by the DAG.getNode operators can
185  // cause unreachable nodes to be around with their flags set to new.
186  DAG.RemoveDeadNodes();
187
188  // In a debug build, scan all the nodes to make sure we found them all.  This
189  // ensures that there are no cycles and that everything got processed.
190#ifndef NDEBUG
191  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
192       E = DAG.allnodes_end(); I != E; ++I) {
193    bool Failed = false;
194
195    // Check that all result types are legal.
196    if (!IgnoreNodeResults(I))
197      for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
198        if (!isTypeLegal(I->getValueType(i))) {
199          cerr << "Result type " << i << " illegal!\n";
200          Failed = true;
201        }
202
203    // Check that all operand types are legal.
204    for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
205      if (!IgnoreNodeResults(I->getOperand(i).Val) &&
206          !isTypeLegal(I->getOperand(i).getValueType())) {
207        cerr << "Operand type " << i << " illegal!\n";
208        Failed = true;
209      }
210
211    if (I->getNodeId() != Processed) {
212       if (I->getNodeId() == NewNode)
213         cerr << "New node not 'noticed'?\n";
214       else if (I->getNodeId() > 0)
215         cerr << "Operand not processed?\n";
216       else if (I->getNodeId() == ReadyToProcess)
217         cerr << "Not added to worklist?\n";
218       Failed = true;
219    }
220
221    if (Failed) {
222      I->dump(&DAG); cerr << "\n";
223      abort();
224    }
225  }
226#endif
227}
228
229/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
230/// new nodes.  Correct any processed operands (this may change the node) and
231/// calculate the NodeId.
232void DAGTypeLegalizer::AnalyzeNewNode(SDNode *&N) {
233  // If this was an existing node that is already done, we're done.
234  if (N->getNodeId() != NewNode)
235    return;
236
237  // Remove any stale map entries.
238  ExpungeNode(N);
239
240  // Okay, we know that this node is new.  Recursively walk all of its operands
241  // to see if they are new also.  The depth of this walk is bounded by the size
242  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
243  // about revisiting of nodes.
244  //
245  // As we walk the operands, keep track of the number of nodes that are
246  // processed.  If non-zero, this will become the new nodeid of this node.
247  // Already processed operands may need to be remapped to the node that
248  // replaced them, which can result in our node changing.  Since remapping
249  // is rare, the code tries to minimize overhead in the non-remapping case.
250
251  SmallVector<SDOperand, 8> NewOps;
252  unsigned NumProcessed = 0;
253  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
254    SDOperand OrigOp = N->getOperand(i);
255    SDOperand Op = OrigOp;
256
257    if (Op.Val->getNodeId() == Processed)
258      RemapNode(Op);
259
260    if (Op.Val->getNodeId() == NewNode)
261      AnalyzeNewNode(Op.Val);
262    else if (Op.Val->getNodeId() == Processed)
263      ++NumProcessed;
264
265    if (!NewOps.empty()) {
266      // Some previous operand changed.  Add this one to the list.
267      NewOps.push_back(Op);
268    } else if (Op != OrigOp) {
269      // This is the first operand to change - add all operands so far.
270      for (unsigned j = 0; j < i; ++j)
271        NewOps.push_back(N->getOperand(j));
272      NewOps.push_back(Op);
273    }
274  }
275
276  // Some operands changed - update the node.
277  if (!NewOps.empty())
278    N = DAG.UpdateNodeOperands(SDOperand(N, 0), &NewOps[0], NewOps.size()).Val;
279
280  N->setNodeId(N->getNumOperands()-NumProcessed);
281  if (N->getNodeId() == ReadyToProcess)
282    Worklist.push_back(N);
283}
284
285namespace {
286  /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
287  /// updates to nodes and recomputes their ready state.
288  class VISIBILITY_HIDDEN NodeUpdateListener :
289    public SelectionDAG::DAGUpdateListener {
290    DAGTypeLegalizer &DTL;
291  public:
292    explicit NodeUpdateListener(DAGTypeLegalizer &dtl) : DTL(dtl) {}
293
294    virtual void NodeDeleted(SDNode *N, SDNode *E) {
295      assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
296             N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
297             "RAUW deleted processed node!");
298      // It is possible, though rare, for the deleted node N to occur as a
299      // target in a map, so note the replacement N -> E in ReplacedNodes.
300      assert(E && "Node not replaced?");
301      DTL.NoteDeletion(N, E);
302    }
303
304    virtual void NodeUpdated(SDNode *N) {
305      // Node updates can mean pretty much anything.  It is possible that an
306      // operand was set to something already processed (f.e.) in which case
307      // this node could become ready.  Recompute its flags.
308      assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
309             N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
310             "RAUW updated processed node!");
311      DTL.ReanalyzeNode(N);
312    }
313  };
314}
315
316
317/// ReplaceValueWith - The specified value was legalized to the specified other
318/// value.  If they are different, update the DAG and NodeIDs replacing any uses
319/// of From to use To instead.
320void DAGTypeLegalizer::ReplaceValueWith(SDOperand From, SDOperand To) {
321  if (From == To) return;
322
323  // If expansion produced new nodes, make sure they are properly marked.
324  ExpungeNode(From.Val);
325  AnalyzeNewNode(To.Val); // Expunges To.
326
327  // Anything that used the old node should now use the new one.  Note that this
328  // can potentially cause recursive merging.
329  NodeUpdateListener NUL(*this);
330  DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
331
332  // The old node may still be present in a map like ExpandedIntegers or
333  // PromotedIntegers.  Inform maps about the replacement.
334  ReplacedNodes[From] = To;
335}
336
337/// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to'
338/// node's results.  The from and to node must define identical result types.
339void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) {
340  if (From == To) return;
341
342  // If expansion produced new nodes, make sure they are properly marked.
343  ExpungeNode(From);
344  AnalyzeNewNode(To); // Expunges To.
345
346  assert(From->getNumValues() == To->getNumValues() &&
347         "Node results don't match");
348
349  // Anything that used the old node should now use the new one.  Note that this
350  // can potentially cause recursive merging.
351  NodeUpdateListener NUL(*this);
352  DAG.ReplaceAllUsesWith(From, To, &NUL);
353
354  // The old node may still be present in a map like ExpandedIntegers or
355  // PromotedIntegers.  Inform maps about the replacement.
356  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
357    assert(From->getValueType(i) == To->getValueType(i) &&
358           "Node results don't match");
359    ReplacedNodes[SDOperand(From, i)] = SDOperand(To, i);
360  }
361}
362
363/// RemapNode - If the specified value was already legalized to another value,
364/// replace it by that value.
365void DAGTypeLegalizer::RemapNode(SDOperand &N) {
366  DenseMap<SDOperand, SDOperand>::iterator I = ReplacedNodes.find(N);
367  if (I != ReplacedNodes.end()) {
368    // Use path compression to speed up future lookups if values get multiply
369    // replaced with other values.
370    RemapNode(I->second);
371    N = I->second;
372  }
373}
374
375/// ExpungeNode - If N has a bogus mapping in ReplacedNodes, eliminate it.
376/// This can occur when a node is deleted then reallocated as a new node -
377/// the mapping in ReplacedNodes applies to the deleted node, not the new
378/// one.
379/// The only map that can have a deleted node as a source is ReplacedNodes.
380/// Other maps can have deleted nodes as targets, but since their looked-up
381/// values are always immediately remapped using RemapNode, resulting in a
382/// not-deleted node, this is harmless as long as ReplacedNodes/RemapNode
383/// always performs correct mappings.  In order to keep the mapping correct,
384/// ExpungeNode should be called on any new nodes *before* adding them as
385/// either source or target to ReplacedNodes (which typically means calling
386/// Expunge when a new node is first seen, since it may no longer be marked
387/// NewNode by the time it is added to ReplacedNodes).
388void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
389  if (N->getNodeId() != NewNode)
390    return;
391
392  // If N is not remapped by ReplacedNodes then there is nothing to do.
393  unsigned i, e;
394  for (i = 0, e = N->getNumValues(); i != e; ++i)
395    if (ReplacedNodes.find(SDOperand(N, i)) != ReplacedNodes.end())
396      break;
397
398  if (i == e)
399    return;
400
401  // Remove N from all maps - this is expensive but rare.
402
403  for (DenseMap<SDOperand, SDOperand>::iterator I = PromotedIntegers.begin(),
404       E = PromotedIntegers.end(); I != E; ++I) {
405    assert(I->first.Val != N);
406    RemapNode(I->second);
407  }
408
409  for (DenseMap<SDOperand, SDOperand>::iterator I = SoftenedFloats.begin(),
410       E = SoftenedFloats.end(); I != E; ++I) {
411    assert(I->first.Val != N);
412    RemapNode(I->second);
413  }
414
415  for (DenseMap<SDOperand, SDOperand>::iterator I = ScalarizedVectors.begin(),
416       E = ScalarizedVectors.end(); I != E; ++I) {
417    assert(I->first.Val != N);
418    RemapNode(I->second);
419  }
420
421  for (DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator
422       I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
423    assert(I->first.Val != N);
424    RemapNode(I->second.first);
425    RemapNode(I->second.second);
426  }
427
428  for (DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator
429       I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
430    assert(I->first.Val != N);
431    RemapNode(I->second.first);
432    RemapNode(I->second.second);
433  }
434
435  for (DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator
436       I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
437    assert(I->first.Val != N);
438    RemapNode(I->second.first);
439    RemapNode(I->second.second);
440  }
441
442  for (DenseMap<SDOperand, SDOperand>::iterator I = ReplacedNodes.begin(),
443       E = ReplacedNodes.end(); I != E; ++I)
444    RemapNode(I->second);
445
446  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
447    ReplacedNodes.erase(SDOperand(N, i));
448}
449
450void DAGTypeLegalizer::SetPromotedInteger(SDOperand Op, SDOperand Result) {
451  AnalyzeNewNode(Result.Val);
452
453  SDOperand &OpEntry = PromotedIntegers[Op];
454  assert(OpEntry.Val == 0 && "Node is already promoted!");
455  OpEntry = Result;
456}
457
458void DAGTypeLegalizer::SetSoftenedFloat(SDOperand Op, SDOperand Result) {
459  AnalyzeNewNode(Result.Val);
460
461  SDOperand &OpEntry = SoftenedFloats[Op];
462  assert(OpEntry.Val == 0 && "Node is already converted to integer!");
463  OpEntry = Result;
464}
465
466void DAGTypeLegalizer::SetScalarizedVector(SDOperand Op, SDOperand Result) {
467  AnalyzeNewNode(Result.Val);
468
469  SDOperand &OpEntry = ScalarizedVectors[Op];
470  assert(OpEntry.Val == 0 && "Node is already scalarized!");
471  OpEntry = Result;
472}
473
474void DAGTypeLegalizer::GetExpandedInteger(SDOperand Op, SDOperand &Lo,
475                                          SDOperand &Hi) {
476  std::pair<SDOperand, SDOperand> &Entry = ExpandedIntegers[Op];
477  RemapNode(Entry.first);
478  RemapNode(Entry.second);
479  assert(Entry.first.Val && "Operand isn't expanded");
480  Lo = Entry.first;
481  Hi = Entry.second;
482}
483
484void DAGTypeLegalizer::SetExpandedInteger(SDOperand Op, SDOperand Lo,
485                                          SDOperand Hi) {
486  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
487  AnalyzeNewNode(Lo.Val);
488  AnalyzeNewNode(Hi.Val);
489
490  // Remember that this is the result of the node.
491  std::pair<SDOperand, SDOperand> &Entry = ExpandedIntegers[Op];
492  assert(Entry.first.Val == 0 && "Node already expanded");
493  Entry.first = Lo;
494  Entry.second = Hi;
495}
496
497void DAGTypeLegalizer::GetExpandedFloat(SDOperand Op, SDOperand &Lo,
498                                        SDOperand &Hi) {
499  std::pair<SDOperand, SDOperand> &Entry = ExpandedFloats[Op];
500  RemapNode(Entry.first);
501  RemapNode(Entry.second);
502  assert(Entry.first.Val && "Operand isn't expanded");
503  Lo = Entry.first;
504  Hi = Entry.second;
505}
506
507void DAGTypeLegalizer::SetExpandedFloat(SDOperand Op, SDOperand Lo,
508                                        SDOperand Hi) {
509  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
510  AnalyzeNewNode(Lo.Val);
511  AnalyzeNewNode(Hi.Val);
512
513  // Remember that this is the result of the node.
514  std::pair<SDOperand, SDOperand> &Entry = ExpandedFloats[Op];
515  assert(Entry.first.Val == 0 && "Node already expanded");
516  Entry.first = Lo;
517  Entry.second = Hi;
518}
519
520void DAGTypeLegalizer::GetSplitVector(SDOperand Op, SDOperand &Lo,
521                                      SDOperand &Hi) {
522  std::pair<SDOperand, SDOperand> &Entry = SplitVectors[Op];
523  RemapNode(Entry.first);
524  RemapNode(Entry.second);
525  assert(Entry.first.Val && "Operand isn't split");
526  Lo = Entry.first;
527  Hi = Entry.second;
528}
529
530void DAGTypeLegalizer::SetSplitVector(SDOperand Op, SDOperand Lo,
531                                      SDOperand Hi) {
532  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
533  AnalyzeNewNode(Lo.Val);
534  AnalyzeNewNode(Hi.Val);
535
536  // Remember that this is the result of the node.
537  std::pair<SDOperand, SDOperand> &Entry = SplitVectors[Op];
538  assert(Entry.first.Val == 0 && "Node already split");
539  Entry.first = Lo;
540  Entry.second = Hi;
541}
542
543
544//===----------------------------------------------------------------------===//
545// Utilities.
546//===----------------------------------------------------------------------===//
547
548/// BitConvertToInteger - Convert to an integer of the same size.
549SDOperand DAGTypeLegalizer::BitConvertToInteger(SDOperand Op) {
550  unsigned BitWidth = Op.getValueType().getSizeInBits();
551  return DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerVT(BitWidth), Op);
552}
553
554SDOperand DAGTypeLegalizer::CreateStackStoreLoad(SDOperand Op,
555                                                 MVT DestVT) {
556  // Create the stack frame object.  Make sure it is aligned for both
557  // the source and destination types.
558  unsigned SrcAlign =
559   TLI.getTargetData()->getPrefTypeAlignment(Op.getValueType().getTypeForMVT());
560  SDOperand FIPtr = DAG.CreateStackTemporary(DestVT, SrcAlign);
561
562  // Emit a store to the stack slot.
563  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0);
564  // Result is a load from the stack slot.
565  return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
566}
567
568/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
569SDOperand DAGTypeLegalizer::JoinIntegers(SDOperand Lo, SDOperand Hi) {
570  MVT LVT = Lo.getValueType();
571  MVT HVT = Hi.getValueType();
572  MVT NVT = MVT::getIntegerVT(LVT.getSizeInBits() + HVT.getSizeInBits());
573
574  Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Lo);
575  Hi = DAG.getNode(ISD::ANY_EXTEND, NVT, Hi);
576  Hi = DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(LVT.getSizeInBits(),
577                                                      TLI.getShiftAmountTy()));
578  return DAG.getNode(ISD::OR, NVT, Lo, Hi);
579}
580
581/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
582/// bits in Hi.
583void DAGTypeLegalizer::SplitInteger(SDOperand Op,
584                                    MVT LoVT, MVT HiVT,
585                                    SDOperand &Lo, SDOperand &Hi) {
586  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
587         Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
588  Lo = DAG.getNode(ISD::TRUNCATE, LoVT, Op);
589  Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op,
590                   DAG.getConstant(LoVT.getSizeInBits(),
591                                   TLI.getShiftAmountTy()));
592  Hi = DAG.getNode(ISD::TRUNCATE, HiVT, Hi);
593}
594
595/// SplitInteger - Return the lower and upper halves of Op's bits in a value type
596/// half the size of Op's.
597void DAGTypeLegalizer::SplitInteger(SDOperand Op,
598                                    SDOperand &Lo, SDOperand &Hi) {
599  MVT HalfVT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()/2);
600  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
601}
602
603/// MakeLibCall - Generate a libcall taking the given operands as arguments and
604/// returning a result of type RetVT.
605SDOperand DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
606                                        const SDOperand *Ops, unsigned NumOps,
607                                        bool isSigned) {
608  TargetLowering::ArgListTy Args;
609  Args.reserve(NumOps);
610
611  TargetLowering::ArgListEntry Entry;
612  for (unsigned i = 0; i != NumOps; ++i) {
613    Entry.Node = Ops[i];
614    Entry.Ty = Entry.Node.getValueType().getTypeForMVT();
615    Entry.isSExt = isSigned;
616    Entry.isZExt = !isSigned;
617    Args.push_back(Entry);
618  }
619  SDOperand Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
620                                           TLI.getPointerTy());
621
622  const Type *RetTy = RetVT.getTypeForMVT();
623  std::pair<SDOperand,SDOperand> CallInfo =
624    TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
625                    CallingConv::C, false, Callee, Args, DAG);
626  return CallInfo.first;
627}
628
629SDOperand DAGTypeLegalizer::GetVectorElementPointer(SDOperand VecPtr, MVT EltVT,
630                                                    SDOperand Index) {
631  // Make sure the index type is big enough to compute in.
632  if (Index.getValueType().bitsGT(TLI.getPointerTy()))
633    Index = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Index);
634  else
635    Index = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Index);
636
637  // Calculate the element offset and add it to the pointer.
638  unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
639
640  Index = DAG.getNode(ISD::MUL, Index.getValueType(), Index,
641                      DAG.getConstant(EltSize, Index.getValueType()));
642  return DAG.getNode(ISD::ADD, Index.getValueType(), Index, VecPtr);
643}
644
645/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
646/// which is split into two not necessarily identical pieces.
647void DAGTypeLegalizer::GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT) {
648  if (!InVT.isVector()) {
649    LoVT = HiVT = TLI.getTypeToTransformTo(InVT);
650  } else {
651    MVT NewEltVT = InVT.getVectorElementType();
652    unsigned NumElements = InVT.getVectorNumElements();
653    if ((NumElements & (NumElements-1)) == 0) {  // Simple power of two vector.
654      NumElements >>= 1;
655      LoVT = HiVT =  MVT::getVectorVT(NewEltVT, NumElements);
656    } else {                                     // Non-power-of-two vectors.
657      unsigned NewNumElts_Lo = 1 << Log2_32(NumElements);
658      unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo;
659      LoVT = MVT::getVectorVT(NewEltVT, NewNumElts_Lo);
660      HiVT = MVT::getVectorVT(NewEltVT, NewNumElts_Hi);
661    }
662  }
663}
664
665
666//===----------------------------------------------------------------------===//
667//  Entry Point
668//===----------------------------------------------------------------------===//
669
670/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
671/// only uses types natively supported by the target.
672///
673/// Note that this is an involved process that may invalidate pointers into
674/// the graph.
675void SelectionDAG::LegalizeTypes() {
676  if (ViewLegalizeTypesDAGs) viewGraph();
677
678  DAGTypeLegalizer(*this).run();
679}
680