LegalizeTypes.cpp revision dd1c20d2580236280694a22264fa26b36cb8fbe6
1//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11// an arbitrary well-formed SelectionDAG to only consist of legal types.  This
12// is common code shared among the LegalizeTypes*.cpp files.
13//
14//===----------------------------------------------------------------------===//
15
16#include "LegalizeTypes.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Support/CommandLine.h"
19using namespace llvm;
20
21#ifndef NDEBUG
22static cl::opt<bool>
23ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
24                cl::desc("Pop up a window to show dags before legalize types"));
25#else
26static const bool ViewLegalizeTypesDAGs = 0;
27#endif
28
29
30
31/// run - This is the main entry point for the type legalizer.  This does a
32/// top-down traversal of the dag, legalizing types as it goes.
33void DAGTypeLegalizer::run() {
34  // Create a dummy node (which is not added to allnodes), that adds a reference
35  // to the root node, preventing it from being deleted, and tracking any
36  // changes of the root.
37  HandleSDNode Dummy(DAG.getRoot());
38
39  // The root of the dag may dangle to deleted nodes until the type legalizer is
40  // done.  Set it to null to avoid confusion.
41  DAG.setRoot(SDOperand());
42
43  // Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess'
44  // (and remembering them) if they are leaves and assigning 'NewNode' if
45  // non-leaves.
46  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
47       E = DAG.allnodes_end(); I != E; ++I) {
48    if (I->getNumOperands() == 0) {
49      I->setNodeId(ReadyToProcess);
50      Worklist.push_back(I);
51    } else {
52      I->setNodeId(NewNode);
53    }
54  }
55
56  // Now that we have a set of nodes to process, handle them all.
57  while (!Worklist.empty()) {
58    SDNode *N = Worklist.back();
59    Worklist.pop_back();
60    assert(N->getNodeId() == ReadyToProcess &&
61           "Node should be ready if on worklist!");
62
63    // Scan the values produced by the node, checking to see if any result
64    // types are illegal.
65    unsigned i = 0;
66    unsigned NumResults = N->getNumValues();
67    do {
68      MVT ResultVT = N->getValueType(i);
69      switch (getTypeAction(ResultVT)) {
70      default:
71        assert(false && "Unknown action!");
72      case Legal:
73        break;
74      case PromoteInteger:
75        PromoteIntegerResult(N, i);
76        goto NodeDone;
77      case ExpandInteger:
78        ExpandIntegerResult(N, i);
79        goto NodeDone;
80      case SoftenFloat:
81        SoftenFloatResult(N, i);
82        goto NodeDone;
83      case ExpandFloat:
84        ExpandFloatResult(N, i);
85        goto NodeDone;
86      case Scalarize:
87        ScalarizeResult(N, i);
88        goto NodeDone;
89      case Split:
90        SplitResult(N, i);
91        goto NodeDone;
92      }
93    } while (++i < NumResults);
94
95    // Scan the operand list for the node, handling any nodes with operands that
96    // are illegal.
97    {
98    unsigned NumOperands = N->getNumOperands();
99    bool NeedsRevisit = false;
100    for (i = 0; i != NumOperands; ++i) {
101      MVT OpVT = N->getOperand(i).getValueType();
102      switch (getTypeAction(OpVT)) {
103      default:
104        assert(false && "Unknown action!");
105      case Legal:
106        continue;
107      case PromoteInteger:
108        NeedsRevisit = PromoteIntegerOperand(N, i);
109        break;
110      case ExpandInteger:
111        NeedsRevisit = ExpandIntegerOperand(N, i);
112        break;
113      case SoftenFloat:
114        NeedsRevisit = SoftenFloatOperand(N, i);
115        break;
116      case ExpandFloat:
117        NeedsRevisit = ExpandFloatOperand(N, i);
118        break;
119      case Scalarize:
120        NeedsRevisit = ScalarizeOperand(N, i);
121        break;
122      case Split:
123        NeedsRevisit = SplitOperand(N, i);
124        break;
125      }
126      break;
127    }
128
129    // If the node needs revisiting, don't add all users to the worklist etc.
130    if (NeedsRevisit)
131      continue;
132
133    if (i == NumOperands)
134      DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
135    }
136NodeDone:
137
138    // If we reach here, the node was processed, potentially creating new nodes.
139    // Mark it as processed and add its users to the worklist as appropriate.
140    N->setNodeId(Processed);
141
142    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
143         UI != E; ++UI) {
144      SDNode *User = UI->getUser();
145      int NodeID = User->getNodeId();
146      assert(NodeID != ReadyToProcess && NodeID != Processed &&
147             "Invalid node id for user of unprocessed node!");
148
149      // This node has two options: it can either be a new node or its Node ID
150      // may be a count of the number of operands it has that are not ready.
151      if (NodeID > 0) {
152        User->setNodeId(NodeID-1);
153
154        // If this was the last use it was waiting on, add it to the ready list.
155        if (NodeID-1 == ReadyToProcess)
156          Worklist.push_back(User);
157        continue;
158      }
159
160      // Otherwise, this node is new: this is the first operand of it that
161      // became ready.  Its new NodeID is the number of operands it has minus 1
162      // (as this node is now processed).
163      assert(NodeID == NewNode && "Unknown node ID!");
164      User->setNodeId(User->getNumOperands()-1);
165
166      // If the node only has a single operand, it is now ready.
167      if (User->getNumOperands() == 1)
168        Worklist.push_back(User);
169    }
170  }
171
172  // If the root changed (e.g. it was a dead load, update the root).
173  DAG.setRoot(Dummy.getValue());
174
175  //DAG.viewGraph();
176
177  // Remove dead nodes.  This is important to do for cleanliness but also before
178  // the checking loop below.  Implicit folding by the DAG.getNode operators can
179  // cause unreachable nodes to be around with their flags set to new.
180  DAG.RemoveDeadNodes();
181
182  // In a debug build, scan all the nodes to make sure we found them all.  This
183  // ensures that there are no cycles and that everything got processed.
184#ifndef NDEBUG
185  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
186       E = DAG.allnodes_end(); I != E; ++I) {
187    bool Failed = false;
188
189    // Check that all result types are legal.
190    for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
191      if (!isTypeLegal(I->getValueType(i))) {
192        cerr << "Result type " << i << " illegal!\n";
193        Failed = true;
194      }
195
196    // Check that all operand types are legal.
197    for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
198      if (!isTypeLegal(I->getOperand(i).getValueType())) {
199        cerr << "Operand type " << i << " illegal!\n";
200        Failed = true;
201      }
202
203    if (I->getNodeId() != Processed) {
204       if (I->getNodeId() == NewNode)
205         cerr << "New node not 'noticed'?\n";
206       else if (I->getNodeId() > 0)
207         cerr << "Operand not processed?\n";
208       else if (I->getNodeId() == ReadyToProcess)
209         cerr << "Not added to worklist?\n";
210       Failed = true;
211    }
212
213    if (Failed) {
214      I->dump(&DAG); cerr << "\n";
215      abort();
216    }
217  }
218#endif
219}
220
221/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
222/// new nodes.  Correct any processed operands (this may change the node) and
223/// calculate the NodeId.
224void DAGTypeLegalizer::AnalyzeNewNode(SDNode *&N) {
225  // If this was an existing node that is already done, we're done.
226  if (N->getNodeId() != NewNode)
227    return;
228
229  // Remove any stale map entries.
230  ExpungeNode(N);
231
232  // Okay, we know that this node is new.  Recursively walk all of its operands
233  // to see if they are new also.  The depth of this walk is bounded by the size
234  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
235  // about revisiting of nodes.
236  //
237  // As we walk the operands, keep track of the number of nodes that are
238  // processed.  If non-zero, this will become the new nodeid of this node.
239  // Already processed operands may need to be remapped to the node that
240  // replaced them, which can result in our node changing.  Since remapping
241  // is rare, the code tries to minimize overhead in the non-remapping case.
242
243  SmallVector<SDOperand, 8> NewOps;
244  unsigned NumProcessed = 0;
245  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
246    SDOperand OrigOp = N->getOperand(i);
247    SDOperand Op = OrigOp;
248
249    if (Op.Val->getNodeId() == Processed)
250      RemapNode(Op);
251
252    if (Op.Val->getNodeId() == NewNode)
253      AnalyzeNewNode(Op.Val);
254    else if (Op.Val->getNodeId() == Processed)
255      ++NumProcessed;
256
257    if (!NewOps.empty()) {
258      // Some previous operand changed.  Add this one to the list.
259      NewOps.push_back(Op);
260    } else if (Op != OrigOp) {
261      // This is the first operand to change - add all operands so far.
262      for (unsigned j = 0; j < i; ++j)
263        NewOps.push_back(N->getOperand(j));
264      NewOps.push_back(Op);
265    }
266  }
267
268  // Some operands changed - update the node.
269  if (!NewOps.empty())
270    N = DAG.UpdateNodeOperands(SDOperand(N, 0), &NewOps[0], NewOps.size()).Val;
271
272  N->setNodeId(N->getNumOperands()-NumProcessed);
273  if (N->getNodeId() == ReadyToProcess)
274    Worklist.push_back(N);
275}
276
277namespace {
278  /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
279  /// updates to nodes and recomputes their ready state.
280  class VISIBILITY_HIDDEN NodeUpdateListener :
281    public SelectionDAG::DAGUpdateListener {
282    DAGTypeLegalizer &DTL;
283  public:
284    explicit NodeUpdateListener(DAGTypeLegalizer &dtl) : DTL(dtl) {}
285
286    virtual void NodeDeleted(SDNode *N, SDNode *E) {
287      assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
288             N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
289             "RAUW deleted processed node!");
290      // It is possible, though rare, for the deleted node N to occur as a
291      // target in a map, so note the replacement N -> E in ReplacedNodes.
292      assert(E && "Node not replaced?");
293      DTL.NoteDeletion(N, E);
294    }
295
296    virtual void NodeUpdated(SDNode *N) {
297      // Node updates can mean pretty much anything.  It is possible that an
298      // operand was set to something already processed (f.e.) in which case
299      // this node could become ready.  Recompute its flags.
300      assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
301             N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
302             "RAUW updated processed node!");
303      DTL.ReanalyzeNode(N);
304    }
305  };
306}
307
308
309/// ReplaceValueWith - The specified value was legalized to the specified other
310/// value.  If they are different, update the DAG and NodeIDs replacing any uses
311/// of From to use To instead.
312void DAGTypeLegalizer::ReplaceValueWith(SDOperand From, SDOperand To) {
313  if (From == To) return;
314
315  // If expansion produced new nodes, make sure they are properly marked.
316  ExpungeNode(From.Val);
317  AnalyzeNewNode(To.Val); // Expunges To.
318
319  // Anything that used the old node should now use the new one.  Note that this
320  // can potentially cause recursive merging.
321  NodeUpdateListener NUL(*this);
322  DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
323
324  // The old node may still be present in a map like ExpandedIntegers or
325  // PromotedIntegers.  Inform maps about the replacement.
326  ReplacedNodes[From] = To;
327}
328
329/// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to'
330/// node's results.  The from and to node must define identical result types.
331void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) {
332  if (From == To) return;
333
334  // If expansion produced new nodes, make sure they are properly marked.
335  ExpungeNode(From);
336  AnalyzeNewNode(To); // Expunges To.
337
338  assert(From->getNumValues() == To->getNumValues() &&
339         "Node results don't match");
340
341  // Anything that used the old node should now use the new one.  Note that this
342  // can potentially cause recursive merging.
343  NodeUpdateListener NUL(*this);
344  DAG.ReplaceAllUsesWith(From, To, &NUL);
345
346  // The old node may still be present in a map like ExpandedIntegers or
347  // PromotedIntegers.  Inform maps about the replacement.
348  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
349    assert(From->getValueType(i) == To->getValueType(i) &&
350           "Node results don't match");
351    ReplacedNodes[SDOperand(From, i)] = SDOperand(To, i);
352  }
353}
354
355
356/// RemapNode - If the specified value was already legalized to another value,
357/// replace it by that value.
358void DAGTypeLegalizer::RemapNode(SDOperand &N) {
359  DenseMap<SDOperand, SDOperand>::iterator I = ReplacedNodes.find(N);
360  if (I != ReplacedNodes.end()) {
361    // Use path compression to speed up future lookups if values get multiply
362    // replaced with other values.
363    RemapNode(I->second);
364    N = I->second;
365  }
366}
367
368/// ExpungeNode - If N has a bogus mapping in ReplacedNodes, eliminate it.
369/// This can occur when a node is deleted then reallocated as a new node -
370/// the mapping in ReplacedNodes applies to the deleted node, not the new
371/// one.
372/// The only map that can have a deleted node as a source is ReplacedNodes.
373/// Other maps can have deleted nodes as targets, but since their looked-up
374/// values are always immediately remapped using RemapNode, resulting in a
375/// not-deleted node, this is harmless as long as ReplacedNodes/RemapNode
376/// always performs correct mappings.  In order to keep the mapping correct,
377/// ExpungeNode should be called on any new nodes *before* adding them as
378/// either source or target to ReplacedNodes (which typically means calling
379/// Expunge when a new node is first seen, since it may no longer be marked
380/// NewNode by the time it is added to ReplacedNodes).
381void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
382  if (N->getNodeId() != NewNode)
383    return;
384
385  // If N is not remapped by ReplacedNodes then there is nothing to do.
386  unsigned i, e;
387  for (i = 0, e = N->getNumValues(); i != e; ++i)
388    if (ReplacedNodes.find(SDOperand(N, i)) != ReplacedNodes.end())
389      break;
390
391  if (i == e)
392    return;
393
394  // Remove N from all maps - this is expensive but rare.
395
396  for (DenseMap<SDOperand, SDOperand>::iterator I = PromotedIntegers.begin(),
397       E = PromotedIntegers.end(); I != E; ++I) {
398    assert(I->first.Val != N);
399    RemapNode(I->second);
400  }
401
402  for (DenseMap<SDOperand, SDOperand>::iterator I = SoftenedFloats.begin(),
403       E = SoftenedFloats.end(); I != E; ++I) {
404    assert(I->first.Val != N);
405    RemapNode(I->second);
406  }
407
408  for (DenseMap<SDOperand, SDOperand>::iterator I = ScalarizedVectors.begin(),
409       E = ScalarizedVectors.end(); I != E; ++I) {
410    assert(I->first.Val != N);
411    RemapNode(I->second);
412  }
413
414  for (DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator
415       I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
416    assert(I->first.Val != N);
417    RemapNode(I->second.first);
418    RemapNode(I->second.second);
419  }
420
421  for (DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator
422       I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
423    assert(I->first.Val != N);
424    RemapNode(I->second.first);
425    RemapNode(I->second.second);
426  }
427
428  for (DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator
429       I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
430    assert(I->first.Val != N);
431    RemapNode(I->second.first);
432    RemapNode(I->second.second);
433  }
434
435  for (DenseMap<SDOperand, SDOperand>::iterator I = ReplacedNodes.begin(),
436       E = ReplacedNodes.end(); I != E; ++I)
437    RemapNode(I->second);
438
439  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
440    ReplacedNodes.erase(SDOperand(N, i));
441}
442
443
444void DAGTypeLegalizer::SetPromotedInteger(SDOperand Op, SDOperand Result) {
445  AnalyzeNewNode(Result.Val);
446
447  SDOperand &OpEntry = PromotedIntegers[Op];
448  assert(OpEntry.Val == 0 && "Node is already promoted!");
449  OpEntry = Result;
450}
451
452void DAGTypeLegalizer::SetSoftenedFloat(SDOperand Op, SDOperand Result) {
453  AnalyzeNewNode(Result.Val);
454
455  SDOperand &OpEntry = SoftenedFloats[Op];
456  assert(OpEntry.Val == 0 && "Node is already converted to integer!");
457  OpEntry = Result;
458}
459
460void DAGTypeLegalizer::SetScalarizedVector(SDOperand Op, SDOperand Result) {
461  AnalyzeNewNode(Result.Val);
462
463  SDOperand &OpEntry = ScalarizedVectors[Op];
464  assert(OpEntry.Val == 0 && "Node is already scalarized!");
465  OpEntry = Result;
466}
467
468void DAGTypeLegalizer::GetExpandedInteger(SDOperand Op, SDOperand &Lo,
469                                          SDOperand &Hi) {
470  std::pair<SDOperand, SDOperand> &Entry = ExpandedIntegers[Op];
471  RemapNode(Entry.first);
472  RemapNode(Entry.second);
473  assert(Entry.first.Val && "Operand isn't expanded");
474  Lo = Entry.first;
475  Hi = Entry.second;
476}
477
478void DAGTypeLegalizer::SetExpandedInteger(SDOperand Op, SDOperand Lo,
479                                          SDOperand Hi) {
480  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
481  AnalyzeNewNode(Lo.Val);
482  AnalyzeNewNode(Hi.Val);
483
484  // Remember that this is the result of the node.
485  std::pair<SDOperand, SDOperand> &Entry = ExpandedIntegers[Op];
486  assert(Entry.first.Val == 0 && "Node already expanded");
487  Entry.first = Lo;
488  Entry.second = Hi;
489}
490
491void DAGTypeLegalizer::GetExpandedFloat(SDOperand Op, SDOperand &Lo,
492                                        SDOperand &Hi) {
493  std::pair<SDOperand, SDOperand> &Entry = ExpandedFloats[Op];
494  RemapNode(Entry.first);
495  RemapNode(Entry.second);
496  assert(Entry.first.Val && "Operand isn't expanded");
497  Lo = Entry.first;
498  Hi = Entry.second;
499}
500
501void DAGTypeLegalizer::SetExpandedFloat(SDOperand Op, SDOperand Lo,
502                                        SDOperand Hi) {
503  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
504  AnalyzeNewNode(Lo.Val);
505  AnalyzeNewNode(Hi.Val);
506
507  // Remember that this is the result of the node.
508  std::pair<SDOperand, SDOperand> &Entry = ExpandedFloats[Op];
509  assert(Entry.first.Val == 0 && "Node already expanded");
510  Entry.first = Lo;
511  Entry.second = Hi;
512}
513
514void DAGTypeLegalizer::GetSplitVector(SDOperand Op, SDOperand &Lo,
515                                      SDOperand &Hi) {
516  std::pair<SDOperand, SDOperand> &Entry = SplitVectors[Op];
517  RemapNode(Entry.first);
518  RemapNode(Entry.second);
519  assert(Entry.first.Val && "Operand isn't split");
520  Lo = Entry.first;
521  Hi = Entry.second;
522}
523
524void DAGTypeLegalizer::SetSplitVector(SDOperand Op, SDOperand Lo,
525                                      SDOperand Hi) {
526  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
527  AnalyzeNewNode(Lo.Val);
528  AnalyzeNewNode(Hi.Val);
529
530  // Remember that this is the result of the node.
531  std::pair<SDOperand, SDOperand> &Entry = SplitVectors[Op];
532  assert(Entry.first.Val == 0 && "Node already split");
533  Entry.first = Lo;
534  Entry.second = Hi;
535}
536
537
538//===----------------------------------------------------------------------===//
539// Utilities.
540//===----------------------------------------------------------------------===//
541
542/// BitConvertToInteger - Convert to an integer of the same size.
543SDOperand DAGTypeLegalizer::BitConvertToInteger(SDOperand Op) {
544  unsigned BitWidth = Op.getValueType().getSizeInBits();
545  return DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerVT(BitWidth), Op);
546}
547
548SDOperand DAGTypeLegalizer::CreateStackStoreLoad(SDOperand Op,
549                                                 MVT DestVT) {
550  // Create the stack frame object.
551  SDOperand FIPtr = DAG.CreateStackTemporary(DestVT);
552
553  // Emit a store to the stack slot.
554  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0);
555  // Result is a load from the stack slot.
556  return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
557}
558
559/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
560SDOperand DAGTypeLegalizer::JoinIntegers(SDOperand Lo, SDOperand Hi) {
561  MVT LVT = Lo.getValueType();
562  MVT HVT = Hi.getValueType();
563  MVT NVT = MVT::getIntegerVT(LVT.getSizeInBits() + HVT.getSizeInBits());
564
565  Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Lo);
566  Hi = DAG.getNode(ISD::ANY_EXTEND, NVT, Hi);
567  Hi = DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(LVT.getSizeInBits(),
568                                                      TLI.getShiftAmountTy()));
569  return DAG.getNode(ISD::OR, NVT, Lo, Hi);
570}
571
572/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
573/// bits in Hi.
574void DAGTypeLegalizer::SplitInteger(SDOperand Op,
575                                    MVT LoVT, MVT HiVT,
576                                    SDOperand &Lo, SDOperand &Hi) {
577  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
578         Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
579  Lo = DAG.getNode(ISD::TRUNCATE, LoVT, Op);
580  Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op,
581                   DAG.getConstant(LoVT.getSizeInBits(),
582                                   TLI.getShiftAmountTy()));
583  Hi = DAG.getNode(ISD::TRUNCATE, HiVT, Hi);
584}
585
586/// SplitInteger - Return the lower and upper halves of Op's bits in a value type
587/// half the size of Op's.
588void DAGTypeLegalizer::SplitInteger(SDOperand Op,
589                                    SDOperand &Lo, SDOperand &Hi) {
590  MVT HalfVT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()/2);
591  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
592}
593
594/// MakeLibCall - Generate a libcall taking the given operands as arguments and
595/// returning a result of type RetVT.
596SDOperand DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
597                                        const SDOperand *Ops, unsigned NumOps,
598                                        bool isSigned) {
599  TargetLowering::ArgListTy Args;
600  Args.reserve(NumOps);
601
602  TargetLowering::ArgListEntry Entry;
603  for (unsigned i = 0; i != NumOps; ++i) {
604    Entry.Node = Ops[i];
605    Entry.Ty = Entry.Node.getValueType().getTypeForMVT();
606    Entry.isSExt = isSigned;
607    Entry.isZExt = !isSigned;
608    Args.push_back(Entry);
609  }
610  SDOperand Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
611                                           TLI.getPointerTy());
612
613  const Type *RetTy = RetVT.getTypeForMVT();
614  std::pair<SDOperand,SDOperand> CallInfo =
615    TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
616                    CallingConv::C, false, Callee, Args, DAG);
617  return CallInfo.first;
618}
619
620SDOperand DAGTypeLegalizer::GetVectorElementPointer(SDOperand VecPtr, MVT EltVT,
621                                                    SDOperand Index) {
622  // Make sure the index type is big enough to compute in.
623  if (Index.getValueType().bitsGT(TLI.getPointerTy()))
624    Index = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Index);
625  else
626    Index = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Index);
627
628  // Calculate the element offset and add it to the pointer.
629  unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
630
631  Index = DAG.getNode(ISD::MUL, Index.getValueType(), Index,
632                      DAG.getConstant(EltSize, Index.getValueType()));
633  return DAG.getNode(ISD::ADD, Index.getValueType(), Index, VecPtr);
634}
635
636/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
637/// which is split into two not necessarily identical pieces.
638void DAGTypeLegalizer::GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT) {
639  if (!InVT.isVector()) {
640    LoVT = HiVT = TLI.getTypeToTransformTo(InVT);
641  } else {
642    MVT NewEltVT = InVT.getVectorElementType();
643    unsigned NumElements = InVT.getVectorNumElements();
644    if ((NumElements & (NumElements-1)) == 0) {  // Simple power of two vector.
645      NumElements >>= 1;
646      LoVT = HiVT =  MVT::getVectorVT(NewEltVT, NumElements);
647    } else {                                     // Non-power-of-two vectors.
648      unsigned NewNumElts_Lo = 1 << Log2_32(NumElements);
649      unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo;
650      LoVT = MVT::getVectorVT(NewEltVT, NewNumElts_Lo);
651      HiVT = MVT::getVectorVT(NewEltVT, NewNumElts_Hi);
652    }
653  }
654}
655
656
657//===----------------------------------------------------------------------===//
658//  Entry Point
659//===----------------------------------------------------------------------===//
660
661/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
662/// only uses types natively supported by the target.
663///
664/// Note that this is an involved process that may invalidate pointers into
665/// the graph.
666void SelectionDAG::LegalizeTypes() {
667  if (ViewLegalizeTypesDAGs) viewGraph();
668
669  DAGTypeLegalizer(*this).run();
670}
671