LegalizeTypes.cpp revision debcb01b0f0a15f568ca69e8f288fade4bfc7297
1//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11// an arbitrary well-formed SelectionDAG to only consist of legal types.  This
12// is common code shared among the LegalizeTypes*.cpp files.
13//
14//===----------------------------------------------------------------------===//
15
16#include "LegalizeTypes.h"
17#include "llvm/CallingConv.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/Support/CommandLine.h"
20#include "llvm/Support/ErrorHandling.h"
21#include "llvm/Target/TargetData.h"
22using namespace llvm;
23
24static cl::opt<bool>
25EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
26
27/// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
28void DAGTypeLegalizer::PerformExpensiveChecks() {
29  // If a node is not processed, then none of its values should be mapped by any
30  // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
31
32  // If a node is processed, then each value with an illegal type must be mapped
33  // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
34  // Values with a legal type may be mapped by ReplacedValues, but not by any of
35  // the other maps.
36
37  // Note that these invariants may not hold momentarily when processing a node:
38  // the node being processed may be put in a map before being marked Processed.
39
40  // Note that it is possible to have nodes marked NewNode in the DAG.  This can
41  // occur in two ways.  Firstly, a node may be created during legalization but
42  // never passed to the legalization core.  This is usually due to the implicit
43  // folding that occurs when using the DAG.getNode operators.  Secondly, a new
44  // node may be passed to the legalization core, but when analyzed may morph
45  // into a different node, leaving the original node as a NewNode in the DAG.
46  // A node may morph if one of its operands changes during analysis.  Whether
47  // it actually morphs or not depends on whether, after updating its operands,
48  // it is equivalent to an existing node: if so, it morphs into that existing
49  // node (CSE).  An operand can change during analysis if the operand is a new
50  // node that morphs, or it is a processed value that was mapped to some other
51  // value (as recorded in ReplacedValues) in which case the operand is turned
52  // into that other value.  If a node morphs then the node it morphed into will
53  // be used instead of it for legalization, however the original node continues
54  // to live on in the DAG.
55  // The conclusion is that though there may be nodes marked NewNode in the DAG,
56  // all uses of such nodes are also marked NewNode: the result is a fungus of
57  // NewNodes growing on top of the useful nodes, and perhaps using them, but
58  // not used by them.
59
60  // If a value is mapped by ReplacedValues, then it must have no uses, except
61  // by nodes marked NewNode (see above).
62
63  // The final node obtained by mapping by ReplacedValues is not marked NewNode.
64  // Note that ReplacedValues should be applied iteratively.
65
66  // Note that the ReplacedValues map may also map deleted nodes.  By iterating
67  // over the DAG we only consider non-deleted nodes.
68  SmallVector<SDNode*, 16> NewNodes;
69  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
70       E = DAG.allnodes_end(); I != E; ++I) {
71    // Remember nodes marked NewNode - they are subject to extra checking below.
72    if (I->getNodeId() == NewNode)
73      NewNodes.push_back(I);
74
75    for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) {
76      SDValue Res(I, i);
77      bool Failed = false;
78
79      unsigned Mapped = 0;
80      if (ReplacedValues.find(Res) != ReplacedValues.end()) {
81        Mapped |= 1;
82        // Check that remapped values are only used by nodes marked NewNode.
83        for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end();
84             UI != UE; ++UI)
85          if (UI.getUse().getResNo() == i)
86            assert(UI->getNodeId() == NewNode &&
87                   "Remapped value has non-trivial use!");
88
89        // Check that the final result of applying ReplacedValues is not
90        // marked NewNode.
91        SDValue NewVal = ReplacedValues[Res];
92        DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
93        while (I != ReplacedValues.end()) {
94          NewVal = I->second;
95          I = ReplacedValues.find(NewVal);
96        }
97        assert(NewVal.getNode()->getNodeId() != NewNode &&
98               "ReplacedValues maps to a new node!");
99      }
100      if (PromotedIntegers.find(Res) != PromotedIntegers.end())
101        Mapped |= 2;
102      if (SoftenedFloats.find(Res) != SoftenedFloats.end())
103        Mapped |= 4;
104      if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
105        Mapped |= 8;
106      if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
107        Mapped |= 16;
108      if (ExpandedFloats.find(Res) != ExpandedFloats.end())
109        Mapped |= 32;
110      if (SplitVectors.find(Res) != SplitVectors.end())
111        Mapped |= 64;
112      if (WidenedVectors.find(Res) != WidenedVectors.end())
113        Mapped |= 128;
114
115      if (I->getNodeId() != Processed) {
116        if (Mapped != 0) {
117          cerr << "Unprocessed value in a map!";
118          Failed = true;
119        }
120      } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
121        if (Mapped > 1) {
122          cerr << "Value with legal type was transformed!";
123          Failed = true;
124        }
125      } else {
126        if (Mapped == 0) {
127          cerr << "Processed value not in any map!";
128          Failed = true;
129        } else if (Mapped & (Mapped - 1)) {
130          cerr << "Value in multiple maps!";
131          Failed = true;
132        }
133      }
134
135      if (Failed) {
136        if (Mapped & 1)
137          cerr << " ReplacedValues";
138        if (Mapped & 2)
139          cerr << " PromotedIntegers";
140        if (Mapped & 4)
141          cerr << " SoftenedFloats";
142        if (Mapped & 8)
143          cerr << " ScalarizedVectors";
144        if (Mapped & 16)
145          cerr << " ExpandedIntegers";
146        if (Mapped & 32)
147          cerr << " ExpandedFloats";
148        if (Mapped & 64)
149          cerr << " SplitVectors";
150        if (Mapped & 128)
151          cerr << " WidenedVectors";
152        cerr << "\n";
153        llvm_unreachable(0);
154      }
155    }
156  }
157
158  // Checked that NewNodes are only used by other NewNodes.
159  for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
160    SDNode *N = NewNodes[i];
161    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
162         UI != UE; ++UI)
163      assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
164  }
165}
166
167/// run - This is the main entry point for the type legalizer.  This does a
168/// top-down traversal of the dag, legalizing types as it goes.  Returns "true"
169/// if it made any changes.
170bool DAGTypeLegalizer::run() {
171  bool Changed = false;
172
173  // Create a dummy node (which is not added to allnodes), that adds a reference
174  // to the root node, preventing it from being deleted, and tracking any
175  // changes of the root.
176  HandleSDNode Dummy(DAG.getRoot());
177  Dummy.setNodeId(Unanalyzed);
178
179  // The root of the dag may dangle to deleted nodes until the type legalizer is
180  // done.  Set it to null to avoid confusion.
181  DAG.setRoot(SDValue());
182
183  // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
184  // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
185  // non-leaves.
186  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
187       E = DAG.allnodes_end(); I != E; ++I) {
188    if (I->getNumOperands() == 0) {
189      I->setNodeId(ReadyToProcess);
190      Worklist.push_back(I);
191    } else {
192      I->setNodeId(Unanalyzed);
193    }
194  }
195
196  // Now that we have a set of nodes to process, handle them all.
197  while (!Worklist.empty()) {
198#ifndef XDEBUG
199    if (EnableExpensiveChecks)
200#endif
201      PerformExpensiveChecks();
202
203    SDNode *N = Worklist.back();
204    Worklist.pop_back();
205    assert(N->getNodeId() == ReadyToProcess &&
206           "Node should be ready if on worklist!");
207
208    if (IgnoreNodeResults(N))
209      goto ScanOperands;
210
211    // Scan the values produced by the node, checking to see if any result
212    // types are illegal.
213    for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
214      MVT ResultVT = N->getValueType(i);
215      switch (getTypeAction(ResultVT)) {
216      default:
217        assert(false && "Unknown action!");
218      case Legal:
219        break;
220      // The following calls must take care of *all* of the node's results,
221      // not just the illegal result they were passed (this includes results
222      // with a legal type).  Results can be remapped using ReplaceValueWith,
223      // or their promoted/expanded/etc values registered in PromotedIntegers,
224      // ExpandedIntegers etc.
225      case PromoteInteger:
226        PromoteIntegerResult(N, i);
227        Changed = true;
228        goto NodeDone;
229      case ExpandInteger:
230        ExpandIntegerResult(N, i);
231        Changed = true;
232        goto NodeDone;
233      case SoftenFloat:
234        SoftenFloatResult(N, i);
235        Changed = true;
236        goto NodeDone;
237      case ExpandFloat:
238        ExpandFloatResult(N, i);
239        Changed = true;
240        goto NodeDone;
241      case ScalarizeVector:
242        ScalarizeVectorResult(N, i);
243        Changed = true;
244        goto NodeDone;
245      case SplitVector:
246        SplitVectorResult(N, i);
247        Changed = true;
248        goto NodeDone;
249      case WidenVector:
250        WidenVectorResult(N, i);
251        Changed = true;
252        goto NodeDone;
253      }
254    }
255
256ScanOperands:
257    // Scan the operand list for the node, handling any nodes with operands that
258    // are illegal.
259    {
260    unsigned NumOperands = N->getNumOperands();
261    bool NeedsReanalyzing = false;
262    unsigned i;
263    for (i = 0; i != NumOperands; ++i) {
264      if (IgnoreNodeResults(N->getOperand(i).getNode()))
265        continue;
266
267      MVT OpVT = N->getOperand(i).getValueType();
268      switch (getTypeAction(OpVT)) {
269      default:
270        assert(false && "Unknown action!");
271      case Legal:
272        continue;
273      // The following calls must either replace all of the node's results
274      // using ReplaceValueWith, and return "false"; or update the node's
275      // operands in place, and return "true".
276      case PromoteInteger:
277        NeedsReanalyzing = PromoteIntegerOperand(N, i);
278        Changed = true;
279        break;
280      case ExpandInteger:
281        NeedsReanalyzing = ExpandIntegerOperand(N, i);
282        Changed = true;
283        break;
284      case SoftenFloat:
285        NeedsReanalyzing = SoftenFloatOperand(N, i);
286        Changed = true;
287        break;
288      case ExpandFloat:
289        NeedsReanalyzing = ExpandFloatOperand(N, i);
290        Changed = true;
291        break;
292      case ScalarizeVector:
293        NeedsReanalyzing = ScalarizeVectorOperand(N, i);
294        Changed = true;
295        break;
296      case SplitVector:
297        NeedsReanalyzing = SplitVectorOperand(N, i);
298        Changed = true;
299        break;
300      case WidenVector:
301        NeedsReanalyzing = WidenVectorOperand(N, i);
302        Changed = true;
303        break;
304      }
305      break;
306    }
307
308    // The sub-method updated N in place.  Check to see if any operands are new,
309    // and if so, mark them.  If the node needs revisiting, don't add all users
310    // to the worklist etc.
311    if (NeedsReanalyzing) {
312      assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
313      N->setNodeId(NewNode);
314      // Recompute the NodeId and correct processed operands, adding the node to
315      // the worklist if ready.
316      SDNode *M = AnalyzeNewNode(N);
317      if (M == N)
318        // The node didn't morph - nothing special to do, it will be revisited.
319        continue;
320
321      // The node morphed - this is equivalent to legalizing by replacing every
322      // value of N with the corresponding value of M.  So do that now.  However
323      // there is no need to remember the replacement - morphing will make sure
324      // it is never used non-trivially.
325      assert(N->getNumValues() == M->getNumValues() &&
326             "Node morphing changed the number of results!");
327      for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
328        // Replacing the value takes care of remapping the new value.  Do the
329        // replacement without recording it in ReplacedValues.  This does not
330        // expunge From but that is fine - it is not really a new node.
331        ReplaceValueWithHelper(SDValue(N, i), SDValue(M, i));
332      assert(N->getNodeId() == NewNode && "Unexpected node state!");
333      // The node continues to live on as part of the NewNode fungus that
334      // grows on top of the useful nodes.  Nothing more needs to be done
335      // with it - move on to the next node.
336      continue;
337    }
338
339    if (i == NumOperands) {
340      DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
341    }
342    }
343NodeDone:
344
345    // If we reach here, the node was processed, potentially creating new nodes.
346    // Mark it as processed and add its users to the worklist as appropriate.
347    assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
348    N->setNodeId(Processed);
349
350    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
351         UI != E; ++UI) {
352      SDNode *User = *UI;
353      int NodeId = User->getNodeId();
354
355      // This node has two options: it can either be a new node or its Node ID
356      // may be a count of the number of operands it has that are not ready.
357      if (NodeId > 0) {
358        User->setNodeId(NodeId-1);
359
360        // If this was the last use it was waiting on, add it to the ready list.
361        if (NodeId-1 == ReadyToProcess)
362          Worklist.push_back(User);
363        continue;
364      }
365
366      // If this is an unreachable new node, then ignore it.  If it ever becomes
367      // reachable by being used by a newly created node then it will be handled
368      // by AnalyzeNewNode.
369      if (NodeId == NewNode)
370        continue;
371
372      // Otherwise, this node is new: this is the first operand of it that
373      // became ready.  Its new NodeId is the number of operands it has minus 1
374      // (as this node is now processed).
375      assert(NodeId == Unanalyzed && "Unknown node ID!");
376      User->setNodeId(User->getNumOperands() - 1);
377
378      // If the node only has a single operand, it is now ready.
379      if (User->getNumOperands() == 1)
380        Worklist.push_back(User);
381    }
382  }
383
384#ifndef XDEBUG
385  if (EnableExpensiveChecks)
386#endif
387    PerformExpensiveChecks();
388
389  // If the root changed (e.g. it was a dead load) update the root.
390  DAG.setRoot(Dummy.getValue());
391
392  // Remove dead nodes.  This is important to do for cleanliness but also before
393  // the checking loop below.  Implicit folding by the DAG.getNode operators and
394  // node morphing can cause unreachable nodes to be around with their flags set
395  // to new.
396  DAG.RemoveDeadNodes();
397
398  // In a debug build, scan all the nodes to make sure we found them all.  This
399  // ensures that there are no cycles and that everything got processed.
400#ifndef NDEBUG
401  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
402       E = DAG.allnodes_end(); I != E; ++I) {
403    bool Failed = false;
404
405    // Check that all result types are legal.
406    if (!IgnoreNodeResults(I))
407      for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
408        if (!isTypeLegal(I->getValueType(i))) {
409          cerr << "Result type " << i << " illegal!\n";
410          Failed = true;
411        }
412
413    // Check that all operand types are legal.
414    for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
415      if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
416          !isTypeLegal(I->getOperand(i).getValueType())) {
417        cerr << "Operand type " << i << " illegal!\n";
418        Failed = true;
419      }
420
421    if (I->getNodeId() != Processed) {
422       if (I->getNodeId() == NewNode)
423         cerr << "New node not analyzed?\n";
424       else if (I->getNodeId() == Unanalyzed)
425         cerr << "Unanalyzed node not noticed?\n";
426       else if (I->getNodeId() > 0)
427         cerr << "Operand not processed?\n";
428       else if (I->getNodeId() == ReadyToProcess)
429         cerr << "Not added to worklist?\n";
430       Failed = true;
431    }
432
433    if (Failed) {
434      I->dump(&DAG); cerr << "\n";
435      llvm_unreachable(0);
436    }
437  }
438#endif
439
440  return Changed;
441}
442
443/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
444/// new nodes.  Correct any processed operands (this may change the node) and
445/// calculate the NodeId.  If the node itself changes to a processed node, it
446/// is not remapped - the caller needs to take care of this.
447/// Returns the potentially changed node.
448SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
449  // If this was an existing node that is already done, we're done.
450  if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
451    return N;
452
453  // Remove any stale map entries.
454  ExpungeNode(N);
455
456  // Okay, we know that this node is new.  Recursively walk all of its operands
457  // to see if they are new also.  The depth of this walk is bounded by the size
458  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
459  // about revisiting of nodes.
460  //
461  // As we walk the operands, keep track of the number of nodes that are
462  // processed.  If non-zero, this will become the new nodeid of this node.
463  // Operands may morph when they are analyzed.  If so, the node will be
464  // updated after all operands have been analyzed.  Since this is rare,
465  // the code tries to minimize overhead in the non-morphing case.
466
467  SmallVector<SDValue, 8> NewOps;
468  unsigned NumProcessed = 0;
469  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
470    SDValue OrigOp = N->getOperand(i);
471    SDValue Op = OrigOp;
472
473    AnalyzeNewValue(Op); // Op may morph.
474
475    if (Op.getNode()->getNodeId() == Processed)
476      ++NumProcessed;
477
478    if (!NewOps.empty()) {
479      // Some previous operand changed.  Add this one to the list.
480      NewOps.push_back(Op);
481    } else if (Op != OrigOp) {
482      // This is the first operand to change - add all operands so far.
483      for (unsigned j = 0; j < i; ++j)
484        NewOps.push_back(N->getOperand(j));
485      NewOps.push_back(Op);
486    }
487  }
488
489  // Some operands changed - update the node.
490  if (!NewOps.empty()) {
491    SDNode *M = DAG.UpdateNodeOperands(SDValue(N, 0), &NewOps[0],
492                                       NewOps.size()).getNode();
493    if (M != N) {
494      // The node morphed into a different node.  Normally for this to happen
495      // the original node would have to be marked NewNode.  However this can
496      // in theory momentarily not be the case while ReplaceValueWith is doing
497      // its stuff.  Mark the original node NewNode to help sanity checking.
498      N->setNodeId(NewNode);
499      if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
500        // It morphed into a previously analyzed node - nothing more to do.
501        return M;
502
503      // It morphed into a different new node.  Do the equivalent of passing
504      // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
505      // to remap the operands, since they are the same as the operands we
506      // remapped above.
507      N = M;
508      ExpungeNode(N);
509    }
510  }
511
512  // Calculate the NodeId.
513  N->setNodeId(N->getNumOperands() - NumProcessed);
514  if (N->getNodeId() == ReadyToProcess)
515    Worklist.push_back(N);
516
517  return N;
518}
519
520/// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
521/// If the node changes to a processed node, then remap it.
522void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
523  Val.setNode(AnalyzeNewNode(Val.getNode()));
524  if (Val.getNode()->getNodeId() == Processed)
525    // We were passed a processed node, or it morphed into one - remap it.
526    RemapValue(Val);
527}
528
529/// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
530/// This can occur when a node is deleted then reallocated as a new node -
531/// the mapping in ReplacedValues applies to the deleted node, not the new
532/// one.
533/// The only map that can have a deleted node as a source is ReplacedValues.
534/// Other maps can have deleted nodes as targets, but since their looked-up
535/// values are always immediately remapped using RemapValue, resulting in a
536/// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
537/// always performs correct mappings.  In order to keep the mapping correct,
538/// ExpungeNode should be called on any new nodes *before* adding them as
539/// either source or target to ReplacedValues (which typically means calling
540/// Expunge when a new node is first seen, since it may no longer be marked
541/// NewNode by the time it is added to ReplacedValues).
542void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
543  if (N->getNodeId() != NewNode)
544    return;
545
546  // If N is not remapped by ReplacedValues then there is nothing to do.
547  unsigned i, e;
548  for (i = 0, e = N->getNumValues(); i != e; ++i)
549    if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
550      break;
551
552  if (i == e)
553    return;
554
555  // Remove N from all maps - this is expensive but rare.
556
557  for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
558       E = PromotedIntegers.end(); I != E; ++I) {
559    assert(I->first.getNode() != N);
560    RemapValue(I->second);
561  }
562
563  for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
564       E = SoftenedFloats.end(); I != E; ++I) {
565    assert(I->first.getNode() != N);
566    RemapValue(I->second);
567  }
568
569  for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
570       E = ScalarizedVectors.end(); I != E; ++I) {
571    assert(I->first.getNode() != N);
572    RemapValue(I->second);
573  }
574
575  for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
576       E = WidenedVectors.end(); I != E; ++I) {
577    assert(I->first.getNode() != N);
578    RemapValue(I->second);
579  }
580
581  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
582       I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
583    assert(I->first.getNode() != N);
584    RemapValue(I->second.first);
585    RemapValue(I->second.second);
586  }
587
588  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
589       I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
590    assert(I->first.getNode() != N);
591    RemapValue(I->second.first);
592    RemapValue(I->second.second);
593  }
594
595  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
596       I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
597    assert(I->first.getNode() != N);
598    RemapValue(I->second.first);
599    RemapValue(I->second.second);
600  }
601
602  for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
603       E = ReplacedValues.end(); I != E; ++I)
604    RemapValue(I->second);
605
606  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
607    ReplacedValues.erase(SDValue(N, i));
608}
609
610/// RemapValue - If the specified value was already legalized to another value,
611/// replace it by that value.
612void DAGTypeLegalizer::RemapValue(SDValue &N) {
613  DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
614  if (I != ReplacedValues.end()) {
615    // Use path compression to speed up future lookups if values get multiply
616    // replaced with other values.
617    RemapValue(I->second);
618    N = I->second;
619    assert(N.getNode()->getNodeId() != NewNode && "Mapped to new node!");
620  }
621}
622
623namespace {
624  /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
625  /// updates to nodes and recomputes their ready state.
626  class VISIBILITY_HIDDEN NodeUpdateListener :
627    public SelectionDAG::DAGUpdateListener {
628    DAGTypeLegalizer &DTL;
629    SmallSetVector<SDNode*, 16> &NodesToAnalyze;
630  public:
631    explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
632                                SmallSetVector<SDNode*, 16> &nta)
633      : DTL(dtl), NodesToAnalyze(nta) {}
634
635    virtual void NodeDeleted(SDNode *N, SDNode *E) {
636      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
637             N->getNodeId() != DAGTypeLegalizer::Processed &&
638             "Invalid node ID for RAUW deletion!");
639      // It is possible, though rare, for the deleted node N to occur as a
640      // target in a map, so note the replacement N -> E in ReplacedValues.
641      assert(E && "Node not replaced?");
642      DTL.NoteDeletion(N, E);
643
644      // In theory the deleted node could also have been scheduled for analysis.
645      // So remove it from the set of nodes which will be analyzed.
646      NodesToAnalyze.remove(N);
647
648      // In general nothing needs to be done for E, since it didn't change but
649      // only gained new uses.  However N -> E was just added to ReplacedValues,
650      // and the result of a ReplacedValues mapping is not allowed to be marked
651      // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
652      if (E->getNodeId() == DAGTypeLegalizer::NewNode)
653        NodesToAnalyze.insert(E);
654    }
655
656    virtual void NodeUpdated(SDNode *N) {
657      // Node updates can mean pretty much anything.  It is possible that an
658      // operand was set to something already processed (f.e.) in which case
659      // this node could become ready.  Recompute its flags.
660      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
661             N->getNodeId() != DAGTypeLegalizer::Processed &&
662             "Invalid node ID for RAUW deletion!");
663      N->setNodeId(DAGTypeLegalizer::NewNode);
664      NodesToAnalyze.insert(N);
665    }
666  };
667}
668
669
670/// ReplaceValueWithHelper - Internal helper for ReplaceValueWith.  Updates the
671/// DAG causing any uses of From to use To instead, but without expunging From
672/// or recording the replacement in ReplacedValues.  Do not call directly unless
673/// you really know what you are doing!
674void DAGTypeLegalizer::ReplaceValueWithHelper(SDValue From, SDValue To) {
675  assert(From.getNode() != To.getNode() && "Potential legalization loop!");
676
677  // If expansion produced new nodes, make sure they are properly marked.
678  AnalyzeNewValue(To); // Expunges To.
679
680  // Anything that used the old node should now use the new one.  Note that this
681  // can potentially cause recursive merging.
682  SmallSetVector<SDNode*, 16> NodesToAnalyze;
683  NodeUpdateListener NUL(*this, NodesToAnalyze);
684  DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
685
686  // Process the list of nodes that need to be reanalyzed.
687  while (!NodesToAnalyze.empty()) {
688    SDNode *N = NodesToAnalyze.back();
689    NodesToAnalyze.pop_back();
690    if (N->getNodeId() != DAGTypeLegalizer::NewNode)
691      // The node was analyzed while reanalyzing an earlier node - it is safe to
692      // skip.  Note that this is not a morphing node - otherwise it would still
693      // be marked NewNode.
694      continue;
695
696    // Analyze the node's operands and recalculate the node ID.
697    SDNode *M = AnalyzeNewNode(N);
698    if (M != N) {
699      // The node morphed into a different node.  Make everyone use the new node
700      // instead.
701      assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
702      assert(N->getNumValues() == M->getNumValues() &&
703             "Node morphing changed the number of results!");
704      for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
705        SDValue OldVal(N, i);
706        SDValue NewVal(M, i);
707        if (M->getNodeId() == Processed)
708          RemapValue(NewVal);
709        DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal, &NUL);
710      }
711      // The original node continues to exist in the DAG, marked NewNode.
712    }
713  }
714}
715
716/// ReplaceValueWith - The specified value was legalized to the specified other
717/// value.  Update the DAG and NodeIds replacing any uses of From to use To
718/// instead.
719void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
720  assert(From.getNode()->getNodeId() == ReadyToProcess &&
721         "Only the node being processed may be remapped!");
722
723  // If expansion produced new nodes, make sure they are properly marked.
724  ExpungeNode(From.getNode());
725  AnalyzeNewValue(To); // Expunges To.
726
727  // The old node may still be present in a map like ExpandedIntegers or
728  // PromotedIntegers.  Inform maps about the replacement.
729  ReplacedValues[From] = To;
730
731  // Do the replacement.
732  ReplaceValueWithHelper(From, To);
733}
734
735void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
736  assert(Result.getValueType() == TLI.getTypeToTransformTo(Op.getValueType()) &&
737         "Invalid type for promoted integer");
738  AnalyzeNewValue(Result);
739
740  SDValue &OpEntry = PromotedIntegers[Op];
741  assert(OpEntry.getNode() == 0 && "Node is already promoted!");
742  OpEntry = Result;
743}
744
745void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
746  assert(Result.getValueType() == TLI.getTypeToTransformTo(Op.getValueType()) &&
747         "Invalid type for softened float");
748  AnalyzeNewValue(Result);
749
750  SDValue &OpEntry = SoftenedFloats[Op];
751  assert(OpEntry.getNode() == 0 && "Node is already converted to integer!");
752  OpEntry = Result;
753}
754
755void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
756  assert(Result.getValueType() == Op.getValueType().getVectorElementType() &&
757         "Invalid type for scalarized vector");
758  AnalyzeNewValue(Result);
759
760  SDValue &OpEntry = ScalarizedVectors[Op];
761  assert(OpEntry.getNode() == 0 && "Node is already scalarized!");
762  OpEntry = Result;
763}
764
765void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
766                                          SDValue &Hi) {
767  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
768  RemapValue(Entry.first);
769  RemapValue(Entry.second);
770  assert(Entry.first.getNode() && "Operand isn't expanded");
771  Lo = Entry.first;
772  Hi = Entry.second;
773}
774
775void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
776                                          SDValue Hi) {
777  assert(Lo.getValueType() == TLI.getTypeToTransformTo(Op.getValueType()) &&
778         Hi.getValueType() == Lo.getValueType() &&
779         "Invalid type for expanded integer");
780  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
781  AnalyzeNewValue(Lo);
782  AnalyzeNewValue(Hi);
783
784  // Remember that this is the result of the node.
785  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
786  assert(Entry.first.getNode() == 0 && "Node already expanded");
787  Entry.first = Lo;
788  Entry.second = Hi;
789}
790
791void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
792                                        SDValue &Hi) {
793  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
794  RemapValue(Entry.first);
795  RemapValue(Entry.second);
796  assert(Entry.first.getNode() && "Operand isn't expanded");
797  Lo = Entry.first;
798  Hi = Entry.second;
799}
800
801void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
802                                        SDValue Hi) {
803  assert(Lo.getValueType() == TLI.getTypeToTransformTo(Op.getValueType()) &&
804         Hi.getValueType() == Lo.getValueType() &&
805         "Invalid type for expanded float");
806  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
807  AnalyzeNewValue(Lo);
808  AnalyzeNewValue(Hi);
809
810  // Remember that this is the result of the node.
811  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
812  assert(Entry.first.getNode() == 0 && "Node already expanded");
813  Entry.first = Lo;
814  Entry.second = Hi;
815}
816
817void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
818                                      SDValue &Hi) {
819  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
820  RemapValue(Entry.first);
821  RemapValue(Entry.second);
822  assert(Entry.first.getNode() && "Operand isn't split");
823  Lo = Entry.first;
824  Hi = Entry.second;
825}
826
827void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
828                                      SDValue Hi) {
829  assert(Lo.getValueType().getVectorElementType() ==
830         Op.getValueType().getVectorElementType() &&
831         2*Lo.getValueType().getVectorNumElements() ==
832         Op.getValueType().getVectorNumElements() &&
833         Hi.getValueType() == Lo.getValueType() &&
834         "Invalid type for split vector");
835  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
836  AnalyzeNewValue(Lo);
837  AnalyzeNewValue(Hi);
838
839  // Remember that this is the result of the node.
840  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
841  assert(Entry.first.getNode() == 0 && "Node already split");
842  Entry.first = Lo;
843  Entry.second = Hi;
844}
845
846void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
847  assert(Result.getValueType() == TLI.getTypeToTransformTo(Op.getValueType()) &&
848         "Invalid type for widened vector");
849  AnalyzeNewValue(Result);
850
851  SDValue &OpEntry = WidenedVectors[Op];
852  assert(OpEntry.getNode() == 0 && "Node already widened!");
853  OpEntry = Result;
854}
855
856
857//===----------------------------------------------------------------------===//
858// Utilities.
859//===----------------------------------------------------------------------===//
860
861/// BitConvertToInteger - Convert to an integer of the same size.
862SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
863  unsigned BitWidth = Op.getValueType().getSizeInBits();
864  return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(),
865                     MVT::getIntegerVT(BitWidth), Op);
866}
867
868/// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
869/// same size.
870SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
871  assert(Op.getValueType().isVector() && "Only applies to vectors!");
872  unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
873  MVT EltNVT = MVT::getIntegerVT(EltWidth);
874  unsigned NumElts = Op.getValueType().getVectorNumElements();
875  return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(),
876                     MVT::getVectorVT(EltNVT, NumElts), Op);
877}
878
879SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
880                                               MVT DestVT) {
881  DebugLoc dl = Op.getDebugLoc();
882  // Create the stack frame object.  Make sure it is aligned for both
883  // the source and destination types.
884  SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
885  // Emit a store to the stack slot.
886  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr, NULL, 0);
887  // Result is a load from the stack slot.
888  return DAG.getLoad(DestVT, dl, Store, StackPtr, NULL, 0);
889}
890
891/// CustomLowerNode - Replace the node's results with custom code provided
892/// by the target and return "true", or do nothing and return "false".
893/// The last parameter is FALSE if we are dealing with a node with legal
894/// result types and illegal operand. The second parameter denotes the type of
895/// illegal OperandNo in that case.
896/// The last parameter being TRUE means we are dealing with a
897/// node with illegal result types. The second parameter denotes the type of
898/// illegal ResNo in that case.
899bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, MVT VT, bool LegalizeResult) {
900  // See if the target wants to custom lower this node.
901  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
902    return false;
903
904  SmallVector<SDValue, 8> Results;
905  if (LegalizeResult)
906    TLI.ReplaceNodeResults(N, Results, DAG);
907  else
908    TLI.LowerOperationWrapper(N, Results, DAG);
909
910  if (Results.empty())
911    // The target didn't want to custom lower it after all.
912    return false;
913
914  // Make everything that once used N's values now use those in Results instead.
915  assert(Results.size() == N->getNumValues() &&
916         "Custom lowering returned the wrong number of results!");
917  for (unsigned i = 0, e = Results.size(); i != e; ++i)
918    ReplaceValueWith(SDValue(N, i), Results[i]);
919  return true;
920}
921
922/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
923/// which is split into two not necessarily identical pieces.
924void DAGTypeLegalizer::GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT) {
925  // Currently all types are split in half.
926  if (!InVT.isVector()) {
927    LoVT = HiVT = TLI.getTypeToTransformTo(InVT);
928  } else {
929    unsigned NumElements = InVT.getVectorNumElements();
930    assert(!(NumElements & 1) && "Splitting vector, but not in half!");
931    LoVT = HiVT = MVT::getVectorVT(InVT.getVectorElementType(), NumElements/2);
932  }
933}
934
935/// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
936/// high parts of the given value.
937void DAGTypeLegalizer::GetPairElements(SDValue Pair,
938                                       SDValue &Lo, SDValue &Hi) {
939  DebugLoc dl = Pair.getDebugLoc();
940  MVT NVT = TLI.getTypeToTransformTo(Pair.getValueType());
941  Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
942                   DAG.getIntPtrConstant(0));
943  Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
944                   DAG.getIntPtrConstant(1));
945}
946
947SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, MVT EltVT,
948                                                  SDValue Index) {
949  DebugLoc dl = Index.getDebugLoc();
950  // Make sure the index type is big enough to compute in.
951  if (Index.getValueType().bitsGT(TLI.getPointerTy()))
952    Index = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Index);
953  else
954    Index = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Index);
955
956  // Calculate the element offset and add it to the pointer.
957  unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
958
959  Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
960                      DAG.getConstant(EltSize, Index.getValueType()));
961  return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
962}
963
964/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
965SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
966  // Arbitrarily use dlHi for result DebugLoc
967  DebugLoc dlHi = Hi.getDebugLoc();
968  DebugLoc dlLo = Lo.getDebugLoc();
969  MVT LVT = Lo.getValueType();
970  MVT HVT = Hi.getValueType();
971  MVT NVT = MVT::getIntegerVT(LVT.getSizeInBits() + HVT.getSizeInBits());
972
973  Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
974  Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
975  Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
976                   DAG.getConstant(LVT.getSizeInBits(), TLI.getPointerTy()));
977  return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
978}
979
980/// LibCallify - Convert the node into a libcall with the same prototype.
981SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
982                                     bool isSigned) {
983  unsigned NumOps = N->getNumOperands();
984  DebugLoc dl = N->getDebugLoc();
985  if (NumOps == 0) {
986    return MakeLibCall(LC, N->getValueType(0), 0, 0, isSigned, dl);
987  } else if (NumOps == 1) {
988    SDValue Op = N->getOperand(0);
989    return MakeLibCall(LC, N->getValueType(0), &Op, 1, isSigned, dl);
990  } else if (NumOps == 2) {
991    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
992    return MakeLibCall(LC, N->getValueType(0), Ops, 2, isSigned, dl);
993  }
994  SmallVector<SDValue, 8> Ops(NumOps);
995  for (unsigned i = 0; i < NumOps; ++i)
996    Ops[i] = N->getOperand(i);
997
998  return MakeLibCall(LC, N->getValueType(0), &Ops[0], NumOps, isSigned, dl);
999}
1000
1001/// MakeLibCall - Generate a libcall taking the given operands as arguments and
1002/// returning a result of type RetVT.
1003SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
1004                                      const SDValue *Ops, unsigned NumOps,
1005                                      bool isSigned, DebugLoc dl) {
1006  TargetLowering::ArgListTy Args;
1007  Args.reserve(NumOps);
1008
1009  TargetLowering::ArgListEntry Entry;
1010  for (unsigned i = 0; i != NumOps; ++i) {
1011    Entry.Node = Ops[i];
1012    Entry.Ty = Entry.Node.getValueType().getTypeForMVT();
1013    Entry.isSExt = isSigned;
1014    Entry.isZExt = !isSigned;
1015    Args.push_back(Entry);
1016  }
1017  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1018                                         TLI.getPointerTy());
1019
1020  const Type *RetTy = RetVT.getTypeForMVT();
1021  std::pair<SDValue,SDValue> CallInfo =
1022    TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1023                    false, 0, CallingConv::C, false, Callee, Args, DAG, dl);
1024  return CallInfo.first;
1025}
1026
1027/// PromoteTargetBoolean - Promote the given target boolean to a target boolean
1028/// of the given type.  A target boolean is an integer value, not necessarily of
1029/// type i1, the bits of which conform to getBooleanContents.
1030SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, MVT VT) {
1031  DebugLoc dl = Bool.getDebugLoc();
1032  ISD::NodeType ExtendCode;
1033  switch (TLI.getBooleanContents()) {
1034  default:
1035    assert(false && "Unknown BooleanContent!");
1036  case TargetLowering::UndefinedBooleanContent:
1037    // Extend to VT by adding rubbish bits.
1038    ExtendCode = ISD::ANY_EXTEND;
1039    break;
1040  case TargetLowering::ZeroOrOneBooleanContent:
1041    // Extend to VT by adding zero bits.
1042    ExtendCode = ISD::ZERO_EXTEND;
1043    break;
1044  case TargetLowering::ZeroOrNegativeOneBooleanContent: {
1045    // Extend to VT by copying the sign bit.
1046    ExtendCode = ISD::SIGN_EXTEND;
1047    break;
1048  }
1049  }
1050  return DAG.getNode(ExtendCode, dl, VT, Bool);
1051}
1052
1053/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
1054/// bits in Hi.
1055void DAGTypeLegalizer::SplitInteger(SDValue Op,
1056                                    MVT LoVT, MVT HiVT,
1057                                    SDValue &Lo, SDValue &Hi) {
1058  DebugLoc dl = Op.getDebugLoc();
1059  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1060         Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
1061  Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1062  Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1063                   DAG.getConstant(LoVT.getSizeInBits(), TLI.getPointerTy()));
1064  Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1065}
1066
1067/// SplitInteger - Return the lower and upper halves of Op's bits in a value
1068/// type half the size of Op's.
1069void DAGTypeLegalizer::SplitInteger(SDValue Op,
1070                                    SDValue &Lo, SDValue &Hi) {
1071  MVT HalfVT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()/2);
1072  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1073}
1074
1075
1076//===----------------------------------------------------------------------===//
1077//  Entry Point
1078//===----------------------------------------------------------------------===//
1079
1080/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
1081/// only uses types natively supported by the target.  Returns "true" if it made
1082/// any changes.
1083///
1084/// Note that this is an involved process that may invalidate pointers into
1085/// the graph.
1086bool SelectionDAG::LegalizeTypes() {
1087  return DAGTypeLegalizer(*this).run();
1088}
1089