LegalizeTypes.h revision 331120b1a482b782e8dffce63033bb8514ba2a96
1//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#define DEBUG_TYPE "legalize-types"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/DenseSet.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26
27namespace llvm {
28
29//===----------------------------------------------------------------------===//
30/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31/// on it until only value types the target machine can handle are left.  This
32/// involves promoting small sizes to large sizes or splitting up large values
33/// into small values.
34///
35class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
36  const TargetLowering &TLI;
37  SelectionDAG &DAG;
38public:
39  // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40  // about the state of the node.  The enum has all the values.
41  enum NodeIdFlags {
42    /// ReadyToProcess - All operands have been processed, so this node is ready
43    /// to be handled.
44    ReadyToProcess = 0,
45
46    /// NewNode - This is a new node, not before seen, that was created in the
47    /// process of legalizing some other node.
48    NewNode = -1,
49
50    /// Unanalyzed - This node's ID needs to be set to the number of its
51    /// unprocessed operands.
52    Unanalyzed = -2,
53
54    /// Processed - This is a node that has already been processed.
55    Processed = -3
56
57    // 1+ - This is a node which has this many unprocessed operands.
58  };
59private:
60
61  /// ValueTypeActions - This is a bitvector that contains two bits for each
62  /// simple value type, where the two bits correspond to the LegalizeAction
63  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
64  TargetLowering::ValueTypeActionImpl ValueTypeActions;
65
66  /// getTypeAction - Return how we should legalize values of this type.
67  TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
68    return TLI.getTypeAction(*DAG.getContext(), VT);
69  }
70
71  /// isTypeLegal - Return true if this type is legal on this target.
72  bool isTypeLegal(EVT VT) const {
73    return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
74  }
75
76  /// IgnoreNodeResults - Pretend all of this node's results are legal.
77  bool IgnoreNodeResults(SDNode *N) const {
78    return N->getOpcode() == ISD::TargetConstant;
79  }
80
81  /// PromotedIntegers - For integer nodes that are below legal width, this map
82  /// indicates what promoted value to use.
83  DenseMap<SDValue, SDValue> PromotedIntegers;
84
85  /// ExpandedIntegers - For integer nodes that need to be expanded this map
86  /// indicates which operands are the expanded version of the input.
87  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
88
89  /// SoftenedFloats - For floating point nodes converted to integers of
90  /// the same size, this map indicates the converted value to use.
91  DenseMap<SDValue, SDValue> SoftenedFloats;
92
93  /// ExpandedFloats - For float nodes that need to be expanded this map
94  /// indicates which operands are the expanded version of the input.
95  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
96
97  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
98  /// scalar value of type 'ty' to use.
99  DenseMap<SDValue, SDValue> ScalarizedVectors;
100
101  /// SplitVectors - For nodes that need to be split this map indicates
102  /// which operands are the expanded version of the input.
103  DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
104
105  /// WidenedVectors - For vector nodes that need to be widened, indicates
106  /// the widened value to use.
107  DenseMap<SDValue, SDValue> WidenedVectors;
108
109  /// ReplacedValues - For values that have been replaced with another,
110  /// indicates the replacement value to use.
111  DenseMap<SDValue, SDValue> ReplacedValues;
112
113  /// Worklist - This defines a worklist of nodes to process.  In order to be
114  /// pushed onto this worklist, all operands of a node must have already been
115  /// processed.
116  SmallVector<SDNode*, 128> Worklist;
117
118public:
119  explicit DAGTypeLegalizer(SelectionDAG &dag)
120    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
121    ValueTypeActions(TLI.getValueTypeActions()) {
122    assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
123           "Too many value types for ValueTypeActions to hold!");
124  }
125
126  /// run - This is the main entry point for the type legalizer.  This does a
127  /// top-down traversal of the dag, legalizing types as it goes.  Returns
128  /// "true" if it made any changes.
129  bool run();
130
131  void NoteDeletion(SDNode *Old, SDNode *New) {
132    ExpungeNode(Old);
133    ExpungeNode(New);
134    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
135      ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
136  }
137
138private:
139  SDNode *AnalyzeNewNode(SDNode *N);
140  void AnalyzeNewValue(SDValue &Val);
141  void ExpungeNode(SDNode *N);
142  void PerformExpensiveChecks();
143  void RemapValue(SDValue &N);
144
145  // Common routines.
146  SDValue BitConvertToInteger(SDValue Op);
147  SDValue BitConvertVectorToIntegerVector(SDValue Op);
148  SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
149  bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
150  bool CustomWidenLowerNode(SDNode *N, EVT VT);
151
152  // DecomposeMERGE_VALUES takes a SDNode and returns the first
153  // illegal value. All other results are replaced with the
154  // corresponding input operand.
155  SDValue DecomposeMERGE_VALUES(SDNode *N);
156
157  SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
158  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
159  SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
160  SDValue MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
161                      const SDValue *Ops, unsigned NumOps, bool isSigned,
162                      DebugLoc dl);
163
164  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
165                                                 SDNode *Node, bool isSigned);
166  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
167
168  SDValue PromoteTargetBoolean(SDValue Bool, EVT VT);
169  void ReplaceValueWith(SDValue From, SDValue To);
170  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
171  void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
172                    SDValue &Lo, SDValue &Hi);
173
174  //===--------------------------------------------------------------------===//
175  // Integer Promotion Support: LegalizeIntegerTypes.cpp
176  //===--------------------------------------------------------------------===//
177
178  /// GetPromotedInteger - Given a processed operand Op which was promoted to a
179  /// larger integer type, this returns the promoted value.  The low bits of the
180  /// promoted value corresponding to the original type are exactly equal to Op.
181  /// The extra bits contain rubbish, so the promoted value may need to be zero-
182  /// or sign-extended from the original type before it is usable (the helpers
183  /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
184  /// For example, if Op is an i16 and was promoted to an i32, then this method
185  /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
186  /// 16 bits of which contain rubbish.
187  SDValue GetPromotedInteger(SDValue Op) {
188    SDValue &PromotedOp = PromotedIntegers[Op];
189    RemapValue(PromotedOp);
190    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
191    return PromotedOp;
192  }
193  void SetPromotedInteger(SDValue Op, SDValue Result);
194
195  /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
196  /// final size.
197  SDValue SExtPromotedInteger(SDValue Op) {
198    EVT OldVT = Op.getValueType();
199    DebugLoc dl = Op.getDebugLoc();
200    Op = GetPromotedInteger(Op);
201    return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
202                       DAG.getValueType(OldVT));
203  }
204
205  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
206  /// final size.
207  SDValue ZExtPromotedInteger(SDValue Op) {
208    EVT OldVT = Op.getValueType();
209    DebugLoc dl = Op.getDebugLoc();
210    Op = GetPromotedInteger(Op);
211    return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
212  }
213
214  // Integer Result Promotion.
215  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
216  SDValue PromoteIntRes_MERGE_VALUES(SDNode *N);
217  SDValue PromoteIntRes_AssertSext(SDNode *N);
218  SDValue PromoteIntRes_AssertZext(SDNode *N);
219  SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
220  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
221  SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
222  SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
223  SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
224  SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
225  SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
226  SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
227  SDValue PromoteIntRes_BITCAST(SDNode *N);
228  SDValue PromoteIntRes_BSWAP(SDNode *N);
229  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
230  SDValue PromoteIntRes_Constant(SDNode *N);
231  SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
232  SDValue PromoteIntRes_CTLZ(SDNode *N);
233  SDValue PromoteIntRes_CTPOP(SDNode *N);
234  SDValue PromoteIntRes_CTTZ(SDNode *N);
235  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
236  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
237  SDValue PromoteIntRes_FP32_TO_FP16(SDNode *N);
238  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
239  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
240  SDValue PromoteIntRes_Overflow(SDNode *N);
241  SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
242  SDValue PromoteIntRes_SDIV(SDNode *N);
243  SDValue PromoteIntRes_SELECT(SDNode *N);
244  SDValue PromoteIntRes_VSELECT(SDNode *N);
245  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
246  SDValue PromoteIntRes_SETCC(SDNode *N);
247  SDValue PromoteIntRes_SHL(SDNode *N);
248  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
249  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
250  SDValue PromoteIntRes_SRA(SDNode *N);
251  SDValue PromoteIntRes_SRL(SDNode *N);
252  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
253  SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
254  SDValue PromoteIntRes_UDIV(SDNode *N);
255  SDValue PromoteIntRes_UNDEF(SDNode *N);
256  SDValue PromoteIntRes_VAARG(SDNode *N);
257  SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
258
259  // Integer Operand Promotion.
260  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
261  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
262  SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
263  SDValue PromoteIntOp_BITCAST(SDNode *N);
264  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
265  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
266  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
267  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
268  SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
269  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
270  SDValue PromoteIntOp_EXTRACT_ELEMENT(SDNode *N);
271  SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
272  SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
273  SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
274  SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
275  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
276  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
277  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
278  SDValue PromoteIntOp_VSETCC(SDNode *N, unsigned OpNo);
279  SDValue PromoteIntOp_Shift(SDNode *N);
280  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
281  SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
282  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
283  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
284  SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
285  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
286
287  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
288
289  //===--------------------------------------------------------------------===//
290  // Integer Expansion Support: LegalizeIntegerTypes.cpp
291  //===--------------------------------------------------------------------===//
292
293  /// GetExpandedInteger - Given a processed operand Op which was expanded into
294  /// two integers of half the size, this returns the two halves.  The low bits
295  /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
296  /// For example, if Op is an i64 which was expanded into two i32's, then this
297  /// method returns the two i32's, with Lo being equal to the lower 32 bits of
298  /// Op, and Hi being equal to the upper 32 bits.
299  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
300  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
301
302  // Integer Result Expansion.
303  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
304  void ExpandIntRes_MERGE_VALUES      (SDNode *N, SDValue &Lo, SDValue &Hi);
305  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
306  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
307  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
308  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
309  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
310  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
311  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
312  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
313  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
314  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
315  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
316  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
317  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
318  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
319
320  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
321  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
322  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
323  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
324  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
325  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
326  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
327  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
328  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
329  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
330  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
331
332  void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
333  void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
334  void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
335
336  void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
337
338  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
339                             SDValue &Lo, SDValue &Hi);
340  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
341  bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
342
343  // Integer Operand Expansion.
344  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
345  SDValue ExpandIntOp_BITCAST(SDNode *N);
346  SDValue ExpandIntOp_BR_CC(SDNode *N);
347  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
348  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
349  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
350  SDValue ExpandIntOp_SETCC(SDNode *N);
351  SDValue ExpandIntOp_Shift(SDNode *N);
352  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
353  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
354  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
355  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
356  SDValue ExpandIntOp_RETURNADDR(SDNode *N);
357  SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
358
359  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
360                                  ISD::CondCode &CCCode, DebugLoc dl);
361
362  //===--------------------------------------------------------------------===//
363  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
364  //===--------------------------------------------------------------------===//
365
366  /// GetSoftenedFloat - Given a processed operand Op which was converted to an
367  /// integer of the same size, this returns the integer.  The integer contains
368  /// exactly the same bits as Op - only the type changed.  For example, if Op
369  /// is an f32 which was softened to an i32, then this method returns an i32,
370  /// the bits of which coincide with those of Op.
371  SDValue GetSoftenedFloat(SDValue Op) {
372    SDValue &SoftenedOp = SoftenedFloats[Op];
373    RemapValue(SoftenedOp);
374    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
375    return SoftenedOp;
376  }
377  void SetSoftenedFloat(SDValue Op, SDValue Result);
378
379  // Result Float to Integer Conversion.
380  void SoftenFloatResult(SDNode *N, unsigned OpNo);
381  SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N);
382  SDValue SoftenFloatRes_BITCAST(SDNode *N);
383  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
384  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
385  SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
386  SDValue SoftenFloatRes_FABS(SDNode *N);
387  SDValue SoftenFloatRes_FADD(SDNode *N);
388  SDValue SoftenFloatRes_FCEIL(SDNode *N);
389  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
390  SDValue SoftenFloatRes_FCOS(SDNode *N);
391  SDValue SoftenFloatRes_FDIV(SDNode *N);
392  SDValue SoftenFloatRes_FEXP(SDNode *N);
393  SDValue SoftenFloatRes_FEXP2(SDNode *N);
394  SDValue SoftenFloatRes_FFLOOR(SDNode *N);
395  SDValue SoftenFloatRes_FLOG(SDNode *N);
396  SDValue SoftenFloatRes_FLOG2(SDNode *N);
397  SDValue SoftenFloatRes_FLOG10(SDNode *N);
398  SDValue SoftenFloatRes_FMA(SDNode *N);
399  SDValue SoftenFloatRes_FMUL(SDNode *N);
400  SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
401  SDValue SoftenFloatRes_FNEG(SDNode *N);
402  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
403  SDValue SoftenFloatRes_FP16_TO_FP32(SDNode *N);
404  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
405  SDValue SoftenFloatRes_FPOW(SDNode *N);
406  SDValue SoftenFloatRes_FPOWI(SDNode *N);
407  SDValue SoftenFloatRes_FREM(SDNode *N);
408  SDValue SoftenFloatRes_FRINT(SDNode *N);
409  SDValue SoftenFloatRes_FSIN(SDNode *N);
410  SDValue SoftenFloatRes_FSQRT(SDNode *N);
411  SDValue SoftenFloatRes_FSUB(SDNode *N);
412  SDValue SoftenFloatRes_FTRUNC(SDNode *N);
413  SDValue SoftenFloatRes_LOAD(SDNode *N);
414  SDValue SoftenFloatRes_SELECT(SDNode *N);
415  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
416  SDValue SoftenFloatRes_UNDEF(SDNode *N);
417  SDValue SoftenFloatRes_VAARG(SDNode *N);
418  SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
419
420  // Operand Float to Integer Conversion.
421  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
422  SDValue SoftenFloatOp_BITCAST(SDNode *N);
423  SDValue SoftenFloatOp_BR_CC(SDNode *N);
424  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
425  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
426  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
427  SDValue SoftenFloatOp_FP32_TO_FP16(SDNode *N);
428  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
429  SDValue SoftenFloatOp_SETCC(SDNode *N);
430  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
431
432  void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
433                           ISD::CondCode &CCCode, DebugLoc dl);
434
435  //===--------------------------------------------------------------------===//
436  // Float Expansion Support: LegalizeFloatTypes.cpp
437  //===--------------------------------------------------------------------===//
438
439  /// GetExpandedFloat - Given a processed operand Op which was expanded into
440  /// two floating point values of half the size, this returns the two halves.
441  /// The low bits of Op are exactly equal to the bits of Lo; the high bits
442  /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
443  /// into two f64's, then this method returns the two f64's, with Lo being
444  /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
445  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
446  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
447
448  // Float Result Expansion.
449  void ExpandFloatResult(SDNode *N, unsigned ResNo);
450  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
451  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
452  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
453  void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
454  void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
455  void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
456  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
457  void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
458  void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
459  void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
460  void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
461  void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
462  void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
463  void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
464  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
465  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
466  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
467  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
468  void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
469  void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
470  void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
471  void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
472  void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
473  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
474  void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
475  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
476  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
477
478  // Float Operand Expansion.
479  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
480  SDValue ExpandFloatOp_BR_CC(SDNode *N);
481  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
482  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
483  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
484  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
485  SDValue ExpandFloatOp_SETCC(SDNode *N);
486  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
487
488  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
489                                ISD::CondCode &CCCode, DebugLoc dl);
490
491  //===--------------------------------------------------------------------===//
492  // Scalarization Support: LegalizeVectorTypes.cpp
493  //===--------------------------------------------------------------------===//
494
495  /// GetScalarizedVector - Given a processed one-element vector Op which was
496  /// scalarized to its element type, this returns the element.  For example,
497  /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
498  SDValue GetScalarizedVector(SDValue Op) {
499    SDValue &ScalarizedOp = ScalarizedVectors[Op];
500    RemapValue(ScalarizedOp);
501    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
502    return ScalarizedOp;
503  }
504  void SetScalarizedVector(SDValue Op, SDValue Result);
505
506  // Vector Result Scalarization: <1 x ty> -> ty.
507  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
508  SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N);
509  SDValue ScalarizeVecRes_BinOp(SDNode *N);
510  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
511  SDValue ScalarizeVecRes_InregOp(SDNode *N);
512
513  SDValue ScalarizeVecRes_BITCAST(SDNode *N);
514  SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
515  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
516  SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
517  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
518  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
519  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
520  SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
521  SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N);
522  SDValue ScalarizeVecRes_SELECT(SDNode *N);
523  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
524  SDValue ScalarizeVecRes_SETCC(SDNode *N);
525  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
526  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
527  SDValue ScalarizeVecRes_VSETCC(SDNode *N);
528
529  // Vector Operand Scalarization: <1 x ty> -> ty.
530  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
531  SDValue ScalarizeVecOp_BITCAST(SDNode *N);
532  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
533  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
534  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
535
536  //===--------------------------------------------------------------------===//
537  // Vector Splitting Support: LegalizeVectorTypes.cpp
538  //===--------------------------------------------------------------------===//
539
540  /// GetSplitVector - Given a processed vector Op which was split into vectors
541  /// of half the size, this method returns the halves.  The first elements of
542  /// Op coincide with the elements of Lo; the remaining elements of Op coincide
543  /// with the elements of Hi: Op is what you would get by concatenating Lo and
544  /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
545  /// this method returns the two v4i32's, with Lo corresponding to the first 4
546  /// elements of Op, and Hi to the last 4 elements.
547  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
548  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
549
550  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
551  void SplitVectorResult(SDNode *N, unsigned OpNo);
552  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
553  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
554  void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
555
556  void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
557  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
558  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
559  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
560  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
561  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
562  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
563  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
564  void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
565  void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
566  void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
567  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
568  void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
569                                  SDValue &Hi);
570
571  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
572  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
573  SDValue SplitVecOp_UnaryOp(SDNode *N);
574
575  SDValue SplitVecOp_BITCAST(SDNode *N);
576  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
577  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
578  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
579  SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
580  SDValue SplitVecOp_VSETCC(SDNode *N);
581  SDValue SplitVecOp_FP_ROUND(SDNode *N);
582
583  //===--------------------------------------------------------------------===//
584  // Vector Widening Support: LegalizeVectorTypes.cpp
585  //===--------------------------------------------------------------------===//
586
587  /// GetWidenedVector - Given a processed vector Op which was widened into a
588  /// larger vector, this method returns the larger vector.  The elements of
589  /// the returned vector consist of the elements of Op followed by elements
590  /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
591  /// v4i32, then this method returns a v4i32 for which the first two elements
592  /// are the same as those of Op, while the last two elements contain rubbish.
593  SDValue GetWidenedVector(SDValue Op) {
594    SDValue &WidenedOp = WidenedVectors[Op];
595    RemapValue(WidenedOp);
596    assert(WidenedOp.getNode() && "Operand wasn't widened?");
597    return WidenedOp;
598  }
599  void SetWidenedVector(SDValue Op, SDValue Result);
600
601  // Widen Vector Result Promotion.
602  void WidenVectorResult(SDNode *N, unsigned ResNo);
603  SDValue WidenVecRes_MERGE_VALUES(SDNode* N);
604  SDValue WidenVecRes_BITCAST(SDNode* N);
605  SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
606  SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
607  SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
608  SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
609  SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
610  SDValue WidenVecRes_LOAD(SDNode* N);
611  SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
612  SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N);
613  SDValue WidenVecRes_SELECT(SDNode* N);
614  SDValue WidenVecRes_SELECT_CC(SDNode* N);
615  SDValue WidenVecRes_SETCC(SDNode* N);
616  SDValue WidenVecRes_UNDEF(SDNode *N);
617  SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
618  SDValue WidenVecRes_VSETCC(SDNode* N);
619
620  SDValue WidenVecRes_Binary(SDNode *N);
621  SDValue WidenVecRes_Convert(SDNode *N);
622  SDValue WidenVecRes_POWI(SDNode *N);
623  SDValue WidenVecRes_Shift(SDNode *N);
624  SDValue WidenVecRes_Unary(SDNode *N);
625  SDValue WidenVecRes_InregOp(SDNode *N);
626
627  // Widen Vector Operand.
628  bool WidenVectorOperand(SDNode *N, unsigned ResNo);
629  SDValue WidenVecOp_BITCAST(SDNode *N);
630  SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
631  SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
632  SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
633  SDValue WidenVecOp_STORE(SDNode* N);
634
635  SDValue WidenVecOp_Convert(SDNode *N);
636
637  //===--------------------------------------------------------------------===//
638  // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
639  //===--------------------------------------------------------------------===//
640
641  /// Helper GenWidenVectorLoads - Helper function to generate a set of
642  /// loads to load a vector with a resulting wider type. It takes
643  ///   LdChain: list of chains for the load to be generated.
644  ///   Ld:      load to widen
645  SDValue GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
646                              LoadSDNode *LD);
647
648  /// GenWidenVectorExtLoads - Helper function to generate a set of extension
649  /// loads to load a ector with a resulting wider type.  It takes
650  ///   LdChain: list of chains for the load to be generated.
651  ///   Ld:      load to widen
652  ///   ExtType: extension element type
653  SDValue GenWidenVectorExtLoads(SmallVector<SDValue, 16>& LdChain,
654                                 LoadSDNode *LD, ISD::LoadExtType ExtType);
655
656  /// Helper genWidenVectorStores - Helper function to generate a set of
657  /// stores to store a widen vector into non widen memory
658  ///   StChain: list of chains for the stores we have generated
659  ///   ST:      store of a widen value
660  void GenWidenVectorStores(SmallVector<SDValue, 16>& StChain, StoreSDNode *ST);
661
662  /// Helper genWidenVectorTruncStores - Helper function to generate a set of
663  /// stores to store a truncate widen vector into non widen memory
664  ///   StChain: list of chains for the stores we have generated
665  ///   ST:      store of a widen value
666  void GenWidenVectorTruncStores(SmallVector<SDValue, 16>& StChain,
667                                 StoreSDNode *ST);
668
669  /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
670  /// input vector must have the same element type as NVT.
671  SDValue ModifyToType(SDValue InOp, EVT WidenVT);
672
673
674  //===--------------------------------------------------------------------===//
675  // Generic Splitting: LegalizeTypesGeneric.cpp
676  //===--------------------------------------------------------------------===//
677
678  // Legalization methods which only use that the illegal type is split into two
679  // not necessarily identical types.  As such they can be used for splitting
680  // vectors and expanding integers and floats.
681
682  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
683    if (Op.getValueType().isVector())
684      GetSplitVector(Op, Lo, Hi);
685    else if (Op.getValueType().isInteger())
686      GetExpandedInteger(Op, Lo, Hi);
687    else
688      GetExpandedFloat(Op, Lo, Hi);
689  }
690
691  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
692  /// which is split (or expanded) into two not necessarily identical pieces.
693  void GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT);
694
695  /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
696  /// high parts of the given value.
697  void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
698
699  // Generic Result Splitting.
700  void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
701  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
702  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
703  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
704
705  //===--------------------------------------------------------------------===//
706  // Generic Expansion: LegalizeTypesGeneric.cpp
707  //===--------------------------------------------------------------------===//
708
709  // Legalization methods which only use that the illegal type is split into two
710  // identical types of half the size, and that the Lo/Hi part is stored first
711  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
712  // such they can be used for expanding integers and floats.
713
714  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
715    if (Op.getValueType().isInteger())
716      GetExpandedInteger(Op, Lo, Hi);
717    else
718      GetExpandedFloat(Op, Lo, Hi);
719  }
720
721  // Generic Result Expansion.
722  void ExpandRes_MERGE_VALUES      (SDNode *N, SDValue &Lo, SDValue &Hi);
723  void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
724  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
725  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
726  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
727  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
728  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
729
730  // Generic Operand Expansion.
731  SDValue ExpandOp_BITCAST          (SDNode *N);
732  SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
733  SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
734  SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
735  SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
736  SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
737};
738
739} // end namespace llvm.
740
741#endif
742