LegalizeTypes.h revision 33390848a7eca75301d04a59b89b516d83e19ee0
1//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#define DEBUG_TYPE "legalize-types"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/DenseSet.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26
27namespace llvm {
28
29//===----------------------------------------------------------------------===//
30/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31/// on it until only value types the target machine can handle are left.  This
32/// involves promoting small sizes to large sizes or splitting up large values
33/// into small values.
34///
35class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
36  const TargetLowering &TLI;
37  SelectionDAG &DAG;
38public:
39  // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40  // about the state of the node.  The enum has all the values.
41  enum NodeIdFlags {
42    /// ReadyToProcess - All operands have been processed, so this node is ready
43    /// to be handled.
44    ReadyToProcess = 0,
45
46    /// NewNode - This is a new node, not before seen, that was created in the
47    /// process of legalizing some other node.
48    NewNode = -1,
49
50    /// Unanalyzed - This node's ID needs to be set to the number of its
51    /// unprocessed operands.
52    Unanalyzed = -2,
53
54    /// Processed - This is a node that has already been processed.
55    Processed = -3
56
57    // 1+ - This is a node which has this many unprocessed operands.
58  };
59private:
60
61  /// ValueTypeActions - This is a bitvector that contains two bits for each
62  /// simple value type, where the two bits correspond to the LegalizeAction
63  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
64  TargetLowering::ValueTypeActionImpl ValueTypeActions;
65
66  /// getTypeAction - Return how we should legalize values of this type.
67  TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
68    return TLI.getTypeAction(*DAG.getContext(), VT);
69  }
70
71  /// isTypeLegal - Return true if this type is legal on this target.
72  bool isTypeLegal(EVT VT) const {
73    return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
74  }
75
76  /// IgnoreNodeResults - Pretend all of this node's results are legal.
77  bool IgnoreNodeResults(SDNode *N) const {
78    return N->getOpcode() == ISD::TargetConstant;
79  }
80
81  /// PromotedIntegers - For integer nodes that are below legal width, this map
82  /// indicates what promoted value to use.
83  DenseMap<SDValue, SDValue> PromotedIntegers;
84
85  /// ExpandedIntegers - For integer nodes that need to be expanded this map
86  /// indicates which operands are the expanded version of the input.
87  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
88
89  /// SoftenedFloats - For floating point nodes converted to integers of
90  /// the same size, this map indicates the converted value to use.
91  DenseMap<SDValue, SDValue> SoftenedFloats;
92
93  /// ExpandedFloats - For float nodes that need to be expanded this map
94  /// indicates which operands are the expanded version of the input.
95  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
96
97  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
98  /// scalar value of type 'ty' to use.
99  DenseMap<SDValue, SDValue> ScalarizedVectors;
100
101  /// SplitVectors - For nodes that need to be split this map indicates
102  /// which operands are the expanded version of the input.
103  DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
104
105  /// WidenedVectors - For vector nodes that need to be widened, indicates
106  /// the widened value to use.
107  DenseMap<SDValue, SDValue> WidenedVectors;
108
109  /// ReplacedValues - For values that have been replaced with another,
110  /// indicates the replacement value to use.
111  DenseMap<SDValue, SDValue> ReplacedValues;
112
113  /// Worklist - This defines a worklist of nodes to process.  In order to be
114  /// pushed onto this worklist, all operands of a node must have already been
115  /// processed.
116  SmallVector<SDNode*, 128> Worklist;
117
118public:
119  explicit DAGTypeLegalizer(SelectionDAG &dag)
120    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
121    ValueTypeActions(TLI.getValueTypeActions()) {
122    assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
123           "Too many value types for ValueTypeActions to hold!");
124  }
125
126  /// run - This is the main entry point for the type legalizer.  This does a
127  /// top-down traversal of the dag, legalizing types as it goes.  Returns
128  /// "true" if it made any changes.
129  bool run();
130
131  void NoteDeletion(SDNode *Old, SDNode *New) {
132    ExpungeNode(Old);
133    ExpungeNode(New);
134    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
135      ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
136  }
137
138private:
139  SDNode *AnalyzeNewNode(SDNode *N);
140  void AnalyzeNewValue(SDValue &Val);
141  void ExpungeNode(SDNode *N);
142  void PerformExpensiveChecks();
143  void RemapValue(SDValue &N);
144
145  // Common routines.
146  SDValue BitConvertToInteger(SDValue Op);
147  SDValue BitConvertVectorToIntegerVector(SDValue Op);
148  SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
149  bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
150  bool CustomWidenLowerNode(SDNode *N, EVT VT);
151  SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
152  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
153  SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
154  SDValue MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
155                      const SDValue *Ops, unsigned NumOps, bool isSigned,
156                      DebugLoc dl);
157	std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
158									                               SDNode *Node, bool isSigned);
159	std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
160
161  SDValue PromoteTargetBoolean(SDValue Bool, EVT VT);
162  void ReplaceValueWith(SDValue From, SDValue To);
163  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
164  void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
165                    SDValue &Lo, SDValue &Hi);
166
167  //===--------------------------------------------------------------------===//
168  // Integer Promotion Support: LegalizeIntegerTypes.cpp
169  //===--------------------------------------------------------------------===//
170
171  /// GetPromotedInteger - Given a processed operand Op which was promoted to a
172  /// larger integer type, this returns the promoted value.  The low bits of the
173  /// promoted value corresponding to the original type are exactly equal to Op.
174  /// The extra bits contain rubbish, so the promoted value may need to be zero-
175  /// or sign-extended from the original type before it is usable (the helpers
176  /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
177  /// For example, if Op is an i16 and was promoted to an i32, then this method
178  /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
179  /// 16 bits of which contain rubbish.
180  SDValue GetPromotedInteger(SDValue Op) {
181    SDValue &PromotedOp = PromotedIntegers[Op];
182    RemapValue(PromotedOp);
183    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
184    return PromotedOp;
185  }
186  void SetPromotedInteger(SDValue Op, SDValue Result);
187
188  /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
189  /// final size.
190  SDValue SExtPromotedInteger(SDValue Op) {
191    EVT OldVT = Op.getValueType();
192    DebugLoc dl = Op.getDebugLoc();
193    Op = GetPromotedInteger(Op);
194    return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
195                       DAG.getValueType(OldVT));
196  }
197
198  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
199  /// final size.
200  SDValue ZExtPromotedInteger(SDValue Op) {
201    EVT OldVT = Op.getValueType();
202    DebugLoc dl = Op.getDebugLoc();
203    Op = GetPromotedInteger(Op);
204    return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
205  }
206
207  // Integer Result Promotion.
208  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
209  SDValue PromoteIntRes_AssertSext(SDNode *N);
210  SDValue PromoteIntRes_AssertZext(SDNode *N);
211  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
212  SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
213  SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
214  SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
215  SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
216  SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
217  SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
218  SDValue PromoteIntRes_BITCAST(SDNode *N);
219  SDValue PromoteIntRes_BSWAP(SDNode *N);
220  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
221  SDValue PromoteIntRes_Constant(SDNode *N);
222  SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
223  SDValue PromoteIntRes_CTLZ(SDNode *N);
224  SDValue PromoteIntRes_CTPOP(SDNode *N);
225  SDValue PromoteIntRes_CTTZ(SDNode *N);
226  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
227  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
228  SDValue PromoteIntRes_FP32_TO_FP16(SDNode *N);
229  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
230  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
231  SDValue PromoteIntRes_Overflow(SDNode *N);
232  SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
233  SDValue PromoteIntRes_SDIV(SDNode *N);
234  SDValue PromoteIntRes_SELECT(SDNode *N);
235  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
236  SDValue PromoteIntRes_SETCC(SDNode *N);
237  SDValue PromoteIntRes_SHL(SDNode *N);
238  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
239  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
240  SDValue PromoteIntRes_SRA(SDNode *N);
241  SDValue PromoteIntRes_SRL(SDNode *N);
242  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
243  SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
244  SDValue PromoteIntRes_UDIV(SDNode *N);
245  SDValue PromoteIntRes_UNDEF(SDNode *N);
246  SDValue PromoteIntRes_VAARG(SDNode *N);
247  SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
248
249  // Integer Operand Promotion.
250  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
251  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
252  SDValue PromoteIntOp_BITCAST(SDNode *N);
253  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
254  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
255  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
256  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
257  SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
258  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
259  SDValue PromoteIntOp_EXTRACT_ELEMENT(SDNode *N);
260  SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
261  SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
262  SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
263  SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
264  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
265  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
266  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
267  SDValue PromoteIntOp_Shift(SDNode *N);
268  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
269  SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
270  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
271  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
272  SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
273  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
274
275  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
276
277  //===--------------------------------------------------------------------===//
278  // Integer Expansion Support: LegalizeIntegerTypes.cpp
279  //===--------------------------------------------------------------------===//
280
281  /// GetExpandedInteger - Given a processed operand Op which was expanded into
282  /// two integers of half the size, this returns the two halves.  The low bits
283  /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
284  /// For example, if Op is an i64 which was expanded into two i32's, then this
285  /// method returns the two i32's, with Lo being equal to the lower 32 bits of
286  /// Op, and Hi being equal to the upper 32 bits.
287  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
288  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
289
290  // Integer Result Expansion.
291  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
292  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
293  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
294  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
295  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
296  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
297  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
298  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
299  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
300  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
301  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
302  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
303  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
304  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
305  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
306
307  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
308  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
309  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
310  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
311  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
312  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
313  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
314  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
315  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
316  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
317  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
318
319  void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
320  void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
321  void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
322
323  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
324                             SDValue &Lo, SDValue &Hi);
325  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
326  bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
327
328  // Integer Operand Expansion.
329  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
330  SDValue ExpandIntOp_BITCAST(SDNode *N);
331  SDValue ExpandIntOp_BR_CC(SDNode *N);
332  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
333  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
334  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
335  SDValue ExpandIntOp_SETCC(SDNode *N);
336  SDValue ExpandIntOp_Shift(SDNode *N);
337  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
338  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
339  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
340  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
341  SDValue ExpandIntOp_RETURNADDR(SDNode *N);
342
343  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
344                                  ISD::CondCode &CCCode, DebugLoc dl);
345
346  //===--------------------------------------------------------------------===//
347  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
348  //===--------------------------------------------------------------------===//
349
350  /// GetSoftenedFloat - Given a processed operand Op which was converted to an
351  /// integer of the same size, this returns the integer.  The integer contains
352  /// exactly the same bits as Op - only the type changed.  For example, if Op
353  /// is an f32 which was softened to an i32, then this method returns an i32,
354  /// the bits of which coincide with those of Op.
355  SDValue GetSoftenedFloat(SDValue Op) {
356    SDValue &SoftenedOp = SoftenedFloats[Op];
357    RemapValue(SoftenedOp);
358    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
359    return SoftenedOp;
360  }
361  void SetSoftenedFloat(SDValue Op, SDValue Result);
362
363  // Result Float to Integer Conversion.
364  void SoftenFloatResult(SDNode *N, unsigned OpNo);
365  SDValue SoftenFloatRes_BITCAST(SDNode *N);
366  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
367  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
368  SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
369  SDValue SoftenFloatRes_FABS(SDNode *N);
370  SDValue SoftenFloatRes_FADD(SDNode *N);
371  SDValue SoftenFloatRes_FCEIL(SDNode *N);
372  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
373  SDValue SoftenFloatRes_FCOS(SDNode *N);
374  SDValue SoftenFloatRes_FDIV(SDNode *N);
375  SDValue SoftenFloatRes_FEXP(SDNode *N);
376  SDValue SoftenFloatRes_FEXP2(SDNode *N);
377  SDValue SoftenFloatRes_FFLOOR(SDNode *N);
378  SDValue SoftenFloatRes_FLOG(SDNode *N);
379  SDValue SoftenFloatRes_FLOG2(SDNode *N);
380  SDValue SoftenFloatRes_FLOG10(SDNode *N);
381  SDValue SoftenFloatRes_FMA(SDNode *N);
382  SDValue SoftenFloatRes_FMUL(SDNode *N);
383  SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
384  SDValue SoftenFloatRes_FNEG(SDNode *N);
385  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
386  SDValue SoftenFloatRes_FP16_TO_FP32(SDNode *N);
387  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
388  SDValue SoftenFloatRes_FPOW(SDNode *N);
389  SDValue SoftenFloatRes_FPOWI(SDNode *N);
390  SDValue SoftenFloatRes_FREM(SDNode *N);
391  SDValue SoftenFloatRes_FRINT(SDNode *N);
392  SDValue SoftenFloatRes_FSIN(SDNode *N);
393  SDValue SoftenFloatRes_FSQRT(SDNode *N);
394  SDValue SoftenFloatRes_FSUB(SDNode *N);
395  SDValue SoftenFloatRes_FTRUNC(SDNode *N);
396  SDValue SoftenFloatRes_LOAD(SDNode *N);
397  SDValue SoftenFloatRes_SELECT(SDNode *N);
398  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
399  SDValue SoftenFloatRes_UNDEF(SDNode *N);
400  SDValue SoftenFloatRes_VAARG(SDNode *N);
401  SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
402
403  // Operand Float to Integer Conversion.
404  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
405  SDValue SoftenFloatOp_BITCAST(SDNode *N);
406  SDValue SoftenFloatOp_BR_CC(SDNode *N);
407  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
408  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
409  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
410  SDValue SoftenFloatOp_FP32_TO_FP16(SDNode *N);
411  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
412  SDValue SoftenFloatOp_SETCC(SDNode *N);
413  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
414
415  void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
416                           ISD::CondCode &CCCode, DebugLoc dl);
417
418  //===--------------------------------------------------------------------===//
419  // Float Expansion Support: LegalizeFloatTypes.cpp
420  //===--------------------------------------------------------------------===//
421
422  /// GetExpandedFloat - Given a processed operand Op which was expanded into
423  /// two floating point values of half the size, this returns the two halves.
424  /// The low bits of Op are exactly equal to the bits of Lo; the high bits
425  /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
426  /// into two f64's, then this method returns the two f64's, with Lo being
427  /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
428  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
429  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
430
431  // Float Result Expansion.
432  void ExpandFloatResult(SDNode *N, unsigned ResNo);
433  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
434  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
435  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
436  void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
437  void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
438  void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
439  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
440  void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
441  void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
442  void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
443  void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
444  void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
445  void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
446  void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
447  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
448  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
449  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
450  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
451  void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
452  void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
453  void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
454  void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
455  void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
456  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
457  void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
458  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
459  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
460
461  // Float Operand Expansion.
462  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
463  SDValue ExpandFloatOp_BR_CC(SDNode *N);
464  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
465  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
466  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
467  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
468  SDValue ExpandFloatOp_SETCC(SDNode *N);
469  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
470
471  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
472                                ISD::CondCode &CCCode, DebugLoc dl);
473
474  //===--------------------------------------------------------------------===//
475  // Scalarization Support: LegalizeVectorTypes.cpp
476  //===--------------------------------------------------------------------===//
477
478  /// GetScalarizedVector - Given a processed one-element vector Op which was
479  /// scalarized to its element type, this returns the element.  For example,
480  /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
481  SDValue GetScalarizedVector(SDValue Op) {
482    SDValue &ScalarizedOp = ScalarizedVectors[Op];
483    RemapValue(ScalarizedOp);
484    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
485    return ScalarizedOp;
486  }
487  void SetScalarizedVector(SDValue Op, SDValue Result);
488
489  // Vector Result Scalarization: <1 x ty> -> ty.
490  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
491  SDValue ScalarizeVecRes_BinOp(SDNode *N);
492  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
493  SDValue ScalarizeVecRes_InregOp(SDNode *N);
494
495  SDValue ScalarizeVecRes_BITCAST(SDNode *N);
496  SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
497  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
498  SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
499  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
500  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
501  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
502  SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
503  SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N);
504  SDValue ScalarizeVecRes_SELECT(SDNode *N);
505  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
506  SDValue ScalarizeVecRes_SETCC(SDNode *N);
507  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
508  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
509  SDValue ScalarizeVecRes_VSETCC(SDNode *N);
510
511  // Vector Operand Scalarization: <1 x ty> -> ty.
512  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
513  SDValue ScalarizeVecOp_BITCAST(SDNode *N);
514  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
515  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
516  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
517
518  //===--------------------------------------------------------------------===//
519  // Vector Splitting Support: LegalizeVectorTypes.cpp
520  //===--------------------------------------------------------------------===//
521
522  /// GetSplitVector - Given a processed vector Op which was split into vectors
523  /// of half the size, this method returns the halves.  The first elements of
524  /// Op coincide with the elements of Lo; the remaining elements of Op coincide
525  /// with the elements of Hi: Op is what you would get by concatenating Lo and
526  /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
527  /// this method returns the two v4i32's, with Lo corresponding to the first 4
528  /// elements of Op, and Hi to the last 4 elements.
529  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
530  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
531
532  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
533  void SplitVectorResult(SDNode *N, unsigned OpNo);
534  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
535  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
536  void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
537
538  void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
539  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
540  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
541  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
542  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
543  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
544  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
545  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
546  void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
547  void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
548  void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
549  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
550  void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
551                                  SDValue &Hi);
552
553  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
554  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
555  SDValue SplitVecOp_UnaryOp(SDNode *N);
556
557  SDValue SplitVecOp_BITCAST(SDNode *N);
558  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
559  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
560  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
561  SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
562  SDValue SplitVecOp_FP_ROUND(SDNode *N);
563
564  //===--------------------------------------------------------------------===//
565  // Vector Widening Support: LegalizeVectorTypes.cpp
566  //===--------------------------------------------------------------------===//
567
568  /// GetWidenedVector - Given a processed vector Op which was widened into a
569  /// larger vector, this method returns the larger vector.  The elements of
570  /// the returned vector consist of the elements of Op followed by elements
571  /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
572  /// v4i32, then this method returns a v4i32 for which the first two elements
573  /// are the same as those of Op, while the last two elements contain rubbish.
574  SDValue GetWidenedVector(SDValue Op) {
575    SDValue &WidenedOp = WidenedVectors[Op];
576    RemapValue(WidenedOp);
577    assert(WidenedOp.getNode() && "Operand wasn't widened?");
578    return WidenedOp;
579  }
580  void SetWidenedVector(SDValue Op, SDValue Result);
581
582  // Widen Vector Result Promotion.
583  void WidenVectorResult(SDNode *N, unsigned ResNo);
584  SDValue WidenVecRes_BITCAST(SDNode* N);
585  SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
586  SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
587  SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
588  SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
589  SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
590  SDValue WidenVecRes_LOAD(SDNode* N);
591  SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
592  SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N);
593  SDValue WidenVecRes_SELECT(SDNode* N);
594  SDValue WidenVecRes_SELECT_CC(SDNode* N);
595  SDValue WidenVecRes_SETCC(SDNode* N);
596  SDValue WidenVecRes_UNDEF(SDNode *N);
597  SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
598  SDValue WidenVecRes_VSETCC(SDNode* N);
599
600  SDValue WidenVecRes_Binary(SDNode *N);
601  SDValue WidenVecRes_Convert(SDNode *N);
602  SDValue WidenVecRes_POWI(SDNode *N);
603  SDValue WidenVecRes_Shift(SDNode *N);
604  SDValue WidenVecRes_Unary(SDNode *N);
605  SDValue WidenVecRes_InregOp(SDNode *N);
606
607  // Widen Vector Operand.
608  bool WidenVectorOperand(SDNode *N, unsigned ResNo);
609  SDValue WidenVecOp_BITCAST(SDNode *N);
610  SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
611  SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
612  SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
613  SDValue WidenVecOp_STORE(SDNode* N);
614
615  SDValue WidenVecOp_Convert(SDNode *N);
616
617  //===--------------------------------------------------------------------===//
618  // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
619  //===--------------------------------------------------------------------===//
620
621  /// Helper GenWidenVectorLoads - Helper function to generate a set of
622  /// loads to load a vector with a resulting wider type. It takes
623  ///   LdChain: list of chains for the load to be generated.
624  ///   Ld:      load to widen
625  SDValue GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
626                              LoadSDNode *LD);
627
628  /// GenWidenVectorExtLoads - Helper function to generate a set of extension
629  /// loads to load a ector with a resulting wider type.  It takes
630  ///   LdChain: list of chains for the load to be generated.
631  ///   Ld:      load to widen
632  ///   ExtType: extension element type
633  SDValue GenWidenVectorExtLoads(SmallVector<SDValue, 16>& LdChain,
634                                 LoadSDNode *LD, ISD::LoadExtType ExtType);
635
636  /// Helper genWidenVectorStores - Helper function to generate a set of
637  /// stores to store a widen vector into non widen memory
638  ///   StChain: list of chains for the stores we have generated
639  ///   ST:      store of a widen value
640  void GenWidenVectorStores(SmallVector<SDValue, 16>& StChain, StoreSDNode *ST);
641
642  /// Helper genWidenVectorTruncStores - Helper function to generate a set of
643  /// stores to store a truncate widen vector into non widen memory
644  ///   StChain: list of chains for the stores we have generated
645  ///   ST:      store of a widen value
646  void GenWidenVectorTruncStores(SmallVector<SDValue, 16>& StChain,
647                                 StoreSDNode *ST);
648
649  /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
650  /// input vector must have the same element type as NVT.
651  SDValue ModifyToType(SDValue InOp, EVT WidenVT);
652
653
654  //===--------------------------------------------------------------------===//
655  // Generic Splitting: LegalizeTypesGeneric.cpp
656  //===--------------------------------------------------------------------===//
657
658  // Legalization methods which only use that the illegal type is split into two
659  // not necessarily identical types.  As such they can be used for splitting
660  // vectors and expanding integers and floats.
661
662  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
663    if (Op.getValueType().isVector())
664      GetSplitVector(Op, Lo, Hi);
665    else if (Op.getValueType().isInteger())
666      GetExpandedInteger(Op, Lo, Hi);
667    else
668      GetExpandedFloat(Op, Lo, Hi);
669  }
670
671  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
672  /// which is split (or expanded) into two not necessarily identical pieces.
673  void GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT);
674
675  /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
676  /// high parts of the given value.
677  void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
678
679  // Generic Result Splitting.
680  void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
681  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
682  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
683  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
684
685  //===--------------------------------------------------------------------===//
686  // Generic Expansion: LegalizeTypesGeneric.cpp
687  //===--------------------------------------------------------------------===//
688
689  // Legalization methods which only use that the illegal type is split into two
690  // identical types of half the size, and that the Lo/Hi part is stored first
691  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
692  // such they can be used for expanding integers and floats.
693
694  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
695    if (Op.getValueType().isInteger())
696      GetExpandedInteger(Op, Lo, Hi);
697    else
698      GetExpandedFloat(Op, Lo, Hi);
699  }
700
701  // Generic Result Expansion.
702  void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
703  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
704  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
705  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
706  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
707  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
708
709  // Generic Operand Expansion.
710  SDValue ExpandOp_BITCAST          (SDNode *N);
711  SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
712  SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
713  SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
714  SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
715  SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
716};
717
718} // end namespace llvm.
719
720#endif
721