LegalizeTypes.h revision 871e55f9c2bfb591aa085405b67be46bc646dee5
1//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#define DEBUG_TYPE "legalize-types"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25
26namespace llvm {
27
28//===----------------------------------------------------------------------===//
29/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
30/// on it until only value types the target machine can handle are left.  This
31/// involves promoting small sizes to large sizes or splitting up large values
32/// into small values.
33///
34class VISIBILITY_HIDDEN DAGTypeLegalizer {
35  TargetLowering &TLI;
36  SelectionDAG &DAG;
37public:
38  // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
39  // about the state of the node.  The enum has all the values.
40  enum NodeIdFlags {
41    /// ReadyToProcess - All operands have been processed, so this node is ready
42    /// to be handled.
43    ReadyToProcess = 0,
44
45    /// NewNode - This is a new node, not before seen, that was created in the
46    /// process of legalizing some other node.
47    NewNode = -1,
48
49    /// Unanalyzed - This node's ID needs to be set to the number of its
50    /// unprocessed operands.
51    Unanalyzed = -2,
52
53    /// Processed - This is a node that has already been processed.
54    Processed = -3
55
56    // 1+ - This is a node which has this many unprocessed operands.
57  };
58private:
59  enum LegalizeAction {
60    Legal,           // The target natively supports this type.
61    PromoteInteger,  // Replace this integer type with a larger one.
62    ExpandInteger,   // Split this integer type into two of half the size.
63    SoftenFloat,     // Convert this float type to a same size integer type.
64    ExpandFloat,     // Split this float type into two of half the size.
65    ScalarizeVector, // Replace this one-element vector with its element type.
66    SplitVector      // This vector type should be split into smaller vectors.
67  };
68
69  /// ValueTypeActions - This is a bitvector that contains two bits for each
70  /// simple value type, where the two bits correspond to the LegalizeAction
71  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
72  TargetLowering::ValueTypeActionImpl ValueTypeActions;
73
74  /// getTypeAction - Return how we should legalize values of this type, either
75  /// it is already legal, or we need to promote it to a larger integer type, or
76  /// we need to expand it into multiple registers of a smaller integer type, or
77  /// we need to split a vector type into smaller vector types, or we need to
78  /// convert it to a different type of the same size.
79  LegalizeAction getTypeAction(MVT VT) const {
80    switch (ValueTypeActions.getTypeAction(VT)) {
81    default:
82      assert(false && "Unknown legalize action!");
83    case TargetLowering::Legal:
84      return Legal;
85    case TargetLowering::Promote:
86      // Promote can mean
87      //   1) For integers, use a larger integer type (e.g. i8 -> i32).
88      //   2) For vectors, use a wider vector type (e.g. v3i32 -> v4i32).
89      if (!VT.isVector())
90        return PromoteInteger;
91      else if (VT.getVectorNumElements() == 1)
92        return ScalarizeVector;
93      else
94        // TODO: move widen code to LegalizeTypes.
95        return SplitVector;
96    case TargetLowering::Expand:
97      // Expand can mean
98      // 1) split scalar in half, 2) convert a float to an integer,
99      // 3) scalarize a single-element vector, 4) split a vector in two.
100      if (!VT.isVector()) {
101        if (VT.isInteger())
102          return ExpandInteger;
103        else if (VT.getSizeInBits() ==
104                 TLI.getTypeToTransformTo(VT).getSizeInBits())
105          return SoftenFloat;
106        else
107          return ExpandFloat;
108      } else if (VT.getVectorNumElements() == 1) {
109        return ScalarizeVector;
110      } else {
111        return SplitVector;
112      }
113    }
114  }
115
116  /// isTypeLegal - Return true if this type is legal on this target.
117  bool isTypeLegal(MVT VT) const {
118    return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal;
119  }
120
121  /// IgnoreNodeResults - Pretend all of this node's results are legal.
122  bool IgnoreNodeResults(SDNode *N) const {
123    return N->getOpcode() == ISD::TargetConstant;
124  }
125
126  /// PromotedIntegers - For integer nodes that are below legal width, this map
127  /// indicates what promoted value to use.
128  DenseMap<SDValue, SDValue> PromotedIntegers;
129
130  /// ExpandedIntegers - For integer nodes that need to be expanded this map
131  /// indicates which operands are the expanded version of the input.
132  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
133
134  /// SoftenedFloats - For floating point nodes converted to integers of
135  /// the same size, this map indicates the converted value to use.
136  DenseMap<SDValue, SDValue> SoftenedFloats;
137
138  /// ExpandedFloats - For float nodes that need to be expanded this map
139  /// indicates which operands are the expanded version of the input.
140  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
141
142  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
143  /// scalar value of type 'ty' to use.
144  DenseMap<SDValue, SDValue> ScalarizedVectors;
145
146  /// SplitVectors - For nodes that need to be split this map indicates
147  /// which operands are the expanded version of the input.
148  DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
149
150  /// ReplacedValues - For values that have been replaced with another,
151  /// indicates the replacement value to use.
152  DenseMap<SDValue, SDValue> ReplacedValues;
153
154  /// Worklist - This defines a worklist of nodes to process.  In order to be
155  /// pushed onto this worklist, all operands of a node must have already been
156  /// processed.
157  SmallVector<SDNode*, 128> Worklist;
158
159public:
160  explicit DAGTypeLegalizer(SelectionDAG &dag)
161    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
162    ValueTypeActions(TLI.getValueTypeActions()) {
163    assert(MVT::LAST_VALUETYPE <= 32 &&
164           "Too many value types for ValueTypeActions to hold!");
165  }
166
167  /// run - This is the main entry point for the type legalizer.  This does a
168  /// top-down traversal of the dag, legalizing types as it goes.  Returns
169  /// "true" if it made any changes.
170  bool run();
171
172  void NoteDeletion(SDNode *Old, SDNode *New) {
173    ExpungeNode(Old);
174    ExpungeNode(New);
175    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
176      ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
177  }
178
179private:
180  SDNode *AnalyzeNewNode(SDNode *N);
181  void AnalyzeNewValue(SDValue &Val);
182  void ExpungeNode(SDNode *N);
183  void PerformExpensiveChecks();
184  void RemapValue(SDValue &N);
185
186  // Common routines.
187  void ReplaceValueWith(SDValue From, SDValue To);
188
189  bool CustomLowerResults(SDNode *N, unsigned ResNo);
190
191  SDValue CreateStackStoreLoad(SDValue Op, MVT DestVT);
192  SDValue MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
193                      const SDValue *Ops, unsigned NumOps, bool isSigned);
194  SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
195
196  SDValue BitConvertToInteger(SDValue Op);
197  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
198  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
199  void SplitInteger(SDValue Op, MVT LoVT, MVT HiVT,
200                    SDValue &Lo, SDValue &Hi);
201
202  SDValue GetVectorElementPointer(SDValue VecPtr, MVT EltVT, SDValue Index);
203
204  //===--------------------------------------------------------------------===//
205  // Integer Promotion Support: LegalizeIntegerTypes.cpp
206  //===--------------------------------------------------------------------===//
207
208  /// GetPromotedInteger - Given a processed operand Op which was promoted to a
209  /// larger integer type, this returns the promoted value.  The low bits of the
210  /// promoted value corresponding to the original type are exactly equal to Op.
211  /// The extra bits contain rubbish, so the promoted value may need to be zero-
212  /// or sign-extended from the original type before it is usable (the helpers
213  /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
214  /// For example, if Op is an i16 and was promoted to an i32, then this method
215  /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
216  /// 16 bits of which contain rubbish.
217  SDValue GetPromotedInteger(SDValue Op) {
218    SDValue &PromotedOp = PromotedIntegers[Op];
219    RemapValue(PromotedOp);
220    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
221    return PromotedOp;
222  }
223  void SetPromotedInteger(SDValue Op, SDValue Result);
224
225  /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
226  /// final size.
227  SDValue SExtPromotedInteger(SDValue Op) {
228    MVT OldVT = Op.getValueType();
229    Op = GetPromotedInteger(Op);
230    return DAG.getNode(ISD::SIGN_EXTEND_INREG, Op.getValueType(), Op,
231                       DAG.getValueType(OldVT));
232  }
233
234  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
235  /// final size.
236  SDValue ZExtPromotedInteger(SDValue Op) {
237    MVT OldVT = Op.getValueType();
238    Op = GetPromotedInteger(Op);
239    return DAG.getZeroExtendInReg(Op, OldVT);
240  }
241
242  // Integer Result Promotion.
243  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
244  SDValue PromoteIntRes_AssertSext(SDNode *N);
245  SDValue PromoteIntRes_AssertZext(SDNode *N);
246  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
247  SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
248  SDValue PromoteIntRes_BIT_CONVERT(SDNode *N);
249  SDValue PromoteIntRes_BSWAP(SDNode *N);
250  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
251  SDValue PromoteIntRes_Constant(SDNode *N);
252  SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
253  SDValue PromoteIntRes_CTLZ(SDNode *N);
254  SDValue PromoteIntRes_CTPOP(SDNode *N);
255  SDValue PromoteIntRes_CTTZ(SDNode *N);
256  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
257  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
258  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
259  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
260  SDValue PromoteIntRes_SDIV(SDNode *N);
261  SDValue PromoteIntRes_SELECT(SDNode *N);
262  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
263  SDValue PromoteIntRes_SETCC(SDNode *N);
264  SDValue PromoteIntRes_SHL(SDNode *N);
265  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
266  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
267  SDValue PromoteIntRes_SRA(SDNode *N);
268  SDValue PromoteIntRes_SRL(SDNode *N);
269  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
270  SDValue PromoteIntRes_UDIV(SDNode *N);
271  SDValue PromoteIntRes_UNDEF(SDNode *N);
272  SDValue PromoteIntRes_VAARG(SDNode *N);
273  SDValue PromoteIntRes_XADDO(SDNode *N, unsigned ResNo);
274
275  // Integer Operand Promotion.
276  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
277  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
278  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
279  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
280  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
281  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
282  SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
283  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
284  SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
285  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
286  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
287  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
288  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
289  SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
290  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
291  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
292  SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
293  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
294
295  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
296
297  //===--------------------------------------------------------------------===//
298  // Integer Expansion Support: LegalizeIntegerTypes.cpp
299  //===--------------------------------------------------------------------===//
300
301  /// GetExpandedInteger - Given a processed operand Op which was expanded into
302  /// two integers of half the size, this returns the two halves.  The low bits
303  /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
304  /// For example, if Op is an i64 which was expanded into two i32's, then this
305  /// method returns the two i32's, with Lo being equal to the lower 32 bits of
306  /// Op, and Hi being equal to the upper 32 bits.
307  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
308  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
309
310  // Integer Result Expansion.
311  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
312  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
313  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
314  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
315  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
316  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
317  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
318  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
319  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
320  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
321  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
322  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
323  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
324  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
325  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
326
327  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
328  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
329  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
330  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
331  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
332  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
333  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
334  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
335  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
336  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
337  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
338
339  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
340                             SDValue &Lo, SDValue &Hi);
341  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
342
343  // Integer Operand Expansion.
344  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
345  SDValue ExpandIntOp_BIT_CONVERT(SDNode *N);
346  SDValue ExpandIntOp_BR_CC(SDNode *N);
347  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
348  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
349  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
350  SDValue ExpandIntOp_SETCC(SDNode *N);
351  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
352  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
353  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
354  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
355
356  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
357                                  ISD::CondCode &CCCode);
358
359  //===--------------------------------------------------------------------===//
360  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
361  //===--------------------------------------------------------------------===//
362
363  /// GetSoftenedFloat - Given a processed operand Op which was converted to an
364  /// integer of the same size, this returns the integer.  The integer contains
365  /// exactly the same bits as Op - only the type changed.  For example, if Op
366  /// is an f32 which was softened to an i32, then this method returns an i32,
367  /// the bits of which coincide with those of Op.
368  SDValue GetSoftenedFloat(SDValue Op) {
369    SDValue &SoftenedOp = SoftenedFloats[Op];
370    RemapValue(SoftenedOp);
371    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
372    return SoftenedOp;
373  }
374  void SetSoftenedFloat(SDValue Op, SDValue Result);
375
376  // Result Float to Integer Conversion.
377  void SoftenFloatResult(SDNode *N, unsigned OpNo);
378  SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N);
379  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
380  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
381  SDValue SoftenFloatRes_FABS(SDNode *N);
382  SDValue SoftenFloatRes_FADD(SDNode *N);
383  SDValue SoftenFloatRes_FCEIL(SDNode *N);
384  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
385  SDValue SoftenFloatRes_FCOS(SDNode *N);
386  SDValue SoftenFloatRes_FDIV(SDNode *N);
387  SDValue SoftenFloatRes_FEXP(SDNode *N);
388  SDValue SoftenFloatRes_FEXP2(SDNode *N);
389  SDValue SoftenFloatRes_FFLOOR(SDNode *N);
390  SDValue SoftenFloatRes_FLOG(SDNode *N);
391  SDValue SoftenFloatRes_FLOG2(SDNode *N);
392  SDValue SoftenFloatRes_FLOG10(SDNode *N);
393  SDValue SoftenFloatRes_FMUL(SDNode *N);
394  SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
395  SDValue SoftenFloatRes_FNEG(SDNode *N);
396  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
397  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
398  SDValue SoftenFloatRes_FPOW(SDNode *N);
399  SDValue SoftenFloatRes_FPOWI(SDNode *N);
400  SDValue SoftenFloatRes_FRINT(SDNode *N);
401  SDValue SoftenFloatRes_FSIN(SDNode *N);
402  SDValue SoftenFloatRes_FSQRT(SDNode *N);
403  SDValue SoftenFloatRes_FSUB(SDNode *N);
404  SDValue SoftenFloatRes_FTRUNC(SDNode *N);
405  SDValue SoftenFloatRes_LOAD(SDNode *N);
406  SDValue SoftenFloatRes_SELECT(SDNode *N);
407  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
408  SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
409
410  // Operand Float to Integer Conversion.
411  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
412  SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N);
413  SDValue SoftenFloatOp_BR_CC(SDNode *N);
414  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
415  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
416  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
417  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
418  SDValue SoftenFloatOp_SETCC(SDNode *N);
419  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
420
421  void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
422                           ISD::CondCode &CCCode);
423
424  //===--------------------------------------------------------------------===//
425  // Float Expansion Support: LegalizeFloatTypes.cpp
426  //===--------------------------------------------------------------------===//
427
428  /// GetExpandedFloat - Given a processed operand Op which was expanded into
429  /// two floating point values of half the size, this returns the two halves.
430  /// The low bits of Op are exactly equal to the bits of Lo; the high bits
431  /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
432  /// into two f64's, then this method returns the two f64's, with Lo being
433  /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
434  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
435  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
436
437  // Float Result Expansion.
438  void ExpandFloatResult(SDNode *N, unsigned ResNo);
439  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
440  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
441  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
442  void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
443  void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
444  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
445  void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
446  void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
447  void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
448  void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
449  void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
450  void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
451  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
452  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
453  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
454  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
455  void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
456  void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
457  void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
458  void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
459  void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
460  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
461  void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
462  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
463  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
464
465  // Float Operand Expansion.
466  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
467  SDValue ExpandFloatOp_BR_CC(SDNode *N);
468  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
469  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
470  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
471  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
472  SDValue ExpandFloatOp_SETCC(SDNode *N);
473  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
474
475  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
476                                ISD::CondCode &CCCode);
477
478  //===--------------------------------------------------------------------===//
479  // Scalarization Support: LegalizeVectorTypes.cpp
480  //===--------------------------------------------------------------------===//
481
482  /// GetScalarizedVector - Given a processed one-element vector Op which was
483  /// scalarized to its element type, this returns the element.  For example,
484  /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
485  SDValue GetScalarizedVector(SDValue Op) {
486    SDValue &ScalarizedOp = ScalarizedVectors[Op];
487    RemapValue(ScalarizedOp);
488    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
489    return ScalarizedOp;
490  }
491  void SetScalarizedVector(SDValue Op, SDValue Result);
492
493  // Vector Result Scalarization: <1 x ty> -> ty.
494  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
495  SDValue ScalarizeVecRes_BinOp(SDNode *N);
496  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
497
498  SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
499  SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
500  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
501  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
502  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
503  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
504  SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
505  SDValue ScalarizeVecRes_SELECT(SDNode *N);
506  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
507  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
508  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
509  SDValue ScalarizeVecRes_VSETCC(SDNode *N);
510
511  // Vector Operand Scalarization: <1 x ty> -> ty.
512  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
513  SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N);
514  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
515  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
516  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
517
518  //===--------------------------------------------------------------------===//
519  // Vector Splitting Support: LegalizeVectorTypes.cpp
520  //===--------------------------------------------------------------------===//
521
522  /// GetSplitVector - Given a processed vector Op which was split into smaller
523  /// vectors, this method returns the smaller vectors.  The first elements of
524  /// Op coincide with the elements of Lo; the remaining elements of Op coincide
525  /// with the elements of Hi: Op is what you would get by concatenating Lo and
526  /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
527  /// this method returns the two v4i32's, with Lo corresponding to the first 4
528  /// elements of Op, and Hi to the last 4 elements.
529  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
530  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
531
532  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
533  void SplitVectorResult(SDNode *N, unsigned OpNo);
534  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
535  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
536
537  void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
538  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
539  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
540  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
541  void SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo, SDValue &Hi);
542  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
543  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
544  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
545  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
546  void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
547  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
548  void SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo, SDValue &Hi);
549  void SplitVecRes_VSETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
550
551  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
552  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
553  SDValue SplitVecOp_UnaryOp(SDNode *N);
554
555  SDValue SplitVecOp_BIT_CONVERT(SDNode *N);
556  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
557  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
558  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
559  SDValue SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo);
560
561  //===--------------------------------------------------------------------===//
562  // Generic Splitting: LegalizeTypesGeneric.cpp
563  //===--------------------------------------------------------------------===//
564
565  // Legalization methods which only use that the illegal type is split into two
566  // not necessarily identical types.  As such they can be used for splitting
567  // vectors and expanding integers and floats.
568
569  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
570    if (Op.getValueType().isVector())
571      GetSplitVector(Op, Lo, Hi);
572    else if (Op.getValueType().isInteger())
573      GetExpandedInteger(Op, Lo, Hi);
574    else
575      GetExpandedFloat(Op, Lo, Hi);
576  }
577
578  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
579  /// which is split (or expanded) into two not necessarily identical pieces.
580  void GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT);
581
582  // Generic Result Splitting.
583  void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
584  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
585  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
586  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
587
588  //===--------------------------------------------------------------------===//
589  // Generic Expansion: LegalizeTypesGeneric.cpp
590  //===--------------------------------------------------------------------===//
591
592  // Legalization methods which only use that the illegal type is split into two
593  // identical types of half the size, and that the Lo/Hi part is stored first
594  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
595  // such they can be used for expanding integers and floats.
596
597  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
598    if (Op.getValueType().isInteger())
599      GetExpandedInteger(Op, Lo, Hi);
600    else
601      GetExpandedFloat(Op, Lo, Hi);
602  }
603
604  // Generic Result Expansion.
605  void ExpandRes_BIT_CONVERT       (SDNode *N, SDValue &Lo, SDValue &Hi);
606  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
607  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
608  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
609  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
610  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
611
612  // Generic Operand Expansion.
613  SDValue ExpandOp_BIT_CONVERT    (SDNode *N);
614  SDValue ExpandOp_BUILD_VECTOR   (SDNode *N);
615  SDValue ExpandOp_EXTRACT_ELEMENT(SDNode *N);
616  SDValue ExpandOp_NormalStore    (SDNode *N, unsigned OpNo);
617
618};
619
620} // end namespace llvm.
621
622#endif
623