LegalizeTypes.h revision 8c3c3020414fbac3bbf73626f373eba60c157c96
1//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#define DEBUG_TYPE "legalize-types"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/DenseSet.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26
27namespace llvm {
28
29//===----------------------------------------------------------------------===//
30/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31/// on it until only value types the target machine can handle are left.  This
32/// involves promoting small sizes to large sizes or splitting up large values
33/// into small values.
34///
35class VISIBILITY_HIDDEN DAGTypeLegalizer {
36  TargetLowering &TLI;
37  SelectionDAG &DAG;
38public:
39  // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40  // about the state of the node.  The enum has all the values.
41  enum NodeIdFlags {
42    /// ReadyToProcess - All operands have been processed, so this node is ready
43    /// to be handled.
44    ReadyToProcess = 0,
45
46    /// NewNode - This is a new node, not before seen, that was created in the
47    /// process of legalizing some other node.
48    NewNode = -1,
49
50    /// Unanalyzed - This node's ID needs to be set to the number of its
51    /// unprocessed operands.
52    Unanalyzed = -2,
53
54    /// Processed - This is a node that has already been processed.
55    Processed = -3
56
57    // 1+ - This is a node which has this many unprocessed operands.
58  };
59private:
60  enum LegalizeAction {
61    Legal,           // The target natively supports this type.
62    PromoteInteger,  // Replace this integer type with a larger one.
63    ExpandInteger,   // Split this integer type into two of half the size.
64    SoftenFloat,     // Convert this float type to a same size integer type.
65    ExpandFloat,     // Split this float type into two of half the size.
66    ScalarizeVector, // Replace this one-element vector with its element type.
67    SplitVector,     // This vector type should be split into smaller vectors.
68    WidenVector      // This vector type should be widened into larger vectors.
69  };
70
71  /// ValueTypeActions - This is a bitvector that contains two bits for each
72  /// simple value type, where the two bits correspond to the LegalizeAction
73  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
74  TargetLowering::ValueTypeActionImpl ValueTypeActions;
75
76  /// getTypeAction - Return how we should legalize values of this type, either
77  /// it is already legal, or we need to promote it to a larger integer type, or
78  /// we need to expand it into multiple registers of a smaller integer type, or
79  /// we need to split a vector type into smaller vector types, or we need to
80  /// convert it to a different type of the same size.
81  LegalizeAction getTypeAction(MVT VT) const {
82    switch (ValueTypeActions.getTypeAction(VT)) {
83    default:
84      assert(false && "Unknown legalize action!");
85    case TargetLowering::Legal:
86      return Legal;
87    case TargetLowering::Promote:
88      // Promote can mean
89      //   1) For integers, use a larger integer type (e.g. i8 -> i32).
90      //   2) For vectors, use a wider vector type (e.g. v3i32 -> v4i32).
91      if (!VT.isVector())
92        return PromoteInteger;
93      else
94        return WidenVector;
95    case TargetLowering::Expand:
96      // Expand can mean
97      // 1) split scalar in half, 2) convert a float to an integer,
98      // 3) scalarize a single-element vector, 4) split a vector in two.
99      if (!VT.isVector()) {
100        if (VT.isInteger())
101          return ExpandInteger;
102        else if (VT.getSizeInBits() ==
103                 TLI.getTypeToTransformTo(VT).getSizeInBits())
104          return SoftenFloat;
105        else
106          return ExpandFloat;
107      } else if (VT.getVectorNumElements() == 1) {
108        return ScalarizeVector;
109      } else {
110        return SplitVector;
111      }
112    }
113  }
114
115  /// isTypeLegal - Return true if this type is legal on this target.
116  bool isTypeLegal(MVT VT) const {
117    return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal;
118  }
119
120  /// IgnoreNodeResults - Pretend all of this node's results are legal.
121  bool IgnoreNodeResults(SDNode *N) const {
122    return N->getOpcode() == ISD::TargetConstant ||
123           IgnoredNodesResultsSet.count(N);
124  }
125
126  /// IgnoredNode - Set of nodes whose result don't need to be legal.
127  DenseSet<SDNode*> IgnoredNodesResultsSet;
128
129  /// PromotedIntegers - For integer nodes that are below legal width, this map
130  /// indicates what promoted value to use.
131  DenseMap<SDValue, SDValue> PromotedIntegers;
132
133  /// ExpandedIntegers - For integer nodes that need to be expanded this map
134  /// indicates which operands are the expanded version of the input.
135  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
136
137  /// SoftenedFloats - For floating point nodes converted to integers of
138  /// the same size, this map indicates the converted value to use.
139  DenseMap<SDValue, SDValue> SoftenedFloats;
140
141  /// ExpandedFloats - For float nodes that need to be expanded this map
142  /// indicates which operands are the expanded version of the input.
143  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
144
145  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
146  /// scalar value of type 'ty' to use.
147  DenseMap<SDValue, SDValue> ScalarizedVectors;
148
149  /// SplitVectors - For nodes that need to be split this map indicates
150  /// which operands are the expanded version of the input.
151  DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
152
153  /// WidenVectors - For vector nodes that need to be widened, indicates
154  /// the widen value to use.
155  DenseMap<SDValue, SDValue> WidenedVectors;
156
157  /// ReplacedValues - For values that have been replaced with another,
158  /// indicates the replacement value to use.
159  DenseMap<SDValue, SDValue> ReplacedValues;
160
161  /// Worklist - This defines a worklist of nodes to process.  In order to be
162  /// pushed onto this worklist, all operands of a node must have already been
163  /// processed.
164  SmallVector<SDNode*, 128> Worklist;
165
166public:
167  explicit DAGTypeLegalizer(SelectionDAG &dag)
168    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
169    ValueTypeActions(TLI.getValueTypeActions()) {
170    assert(MVT::LAST_VALUETYPE <= 32 &&
171           "Too many value types for ValueTypeActions to hold!");
172  }
173
174  /// run - This is the main entry point for the type legalizer.  This does a
175  /// top-down traversal of the dag, legalizing types as it goes.  Returns
176  /// "true" if it made any changes.
177  bool run();
178
179  void NoteDeletion(SDNode *Old, SDNode *New) {
180    ExpungeNode(Old);
181    ExpungeNode(New);
182    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
183      ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
184  }
185
186private:
187  SDNode *AnalyzeNewNode(SDNode *N);
188  void AnalyzeNewValue(SDValue &Val);
189  void ExpungeNode(SDNode *N);
190  void PerformExpensiveChecks();
191  void RemapValue(SDValue &N);
192
193  // Common routines.
194  void ReplaceValueWith(SDValue From, SDValue To);
195
196  bool CustomLowerResults(SDNode *N, unsigned ResNo);
197
198  SDValue CreateStackStoreLoad(SDValue Op, MVT DestVT);
199  SDValue MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
200                      const SDValue *Ops, unsigned NumOps, bool isSigned);
201  SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
202
203  SDValue BitConvertToInteger(SDValue Op);
204  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
205  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
206  void SplitInteger(SDValue Op, MVT LoVT, MVT HiVT,
207                    SDValue &Lo, SDValue &Hi);
208
209  SDValue GetVectorElementPointer(SDValue VecPtr, MVT EltVT, SDValue Index);
210
211  void SetIgnoredNodeResult(SDNode* N);
212
213  //===--------------------------------------------------------------------===//
214  // Integer Promotion Support: LegalizeIntegerTypes.cpp
215  //===--------------------------------------------------------------------===//
216
217  /// GetPromotedInteger - Given a processed operand Op which was promoted to a
218  /// larger integer type, this returns the promoted value.  The low bits of the
219  /// promoted value corresponding to the original type are exactly equal to Op.
220  /// The extra bits contain rubbish, so the promoted value may need to be zero-
221  /// or sign-extended from the original type before it is usable (the helpers
222  /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
223  /// For example, if Op is an i16 and was promoted to an i32, then this method
224  /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
225  /// 16 bits of which contain rubbish.
226  SDValue GetPromotedInteger(SDValue Op) {
227    SDValue &PromotedOp = PromotedIntegers[Op];
228    RemapValue(PromotedOp);
229    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
230    return PromotedOp;
231  }
232  void SetPromotedInteger(SDValue Op, SDValue Result);
233
234  /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
235  /// final size.
236  SDValue SExtPromotedInteger(SDValue Op) {
237    MVT OldVT = Op.getValueType();
238    Op = GetPromotedInteger(Op);
239    return DAG.getNode(ISD::SIGN_EXTEND_INREG, Op.getValueType(), Op,
240                       DAG.getValueType(OldVT));
241  }
242
243  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
244  /// final size.
245  SDValue ZExtPromotedInteger(SDValue Op) {
246    MVT OldVT = Op.getValueType();
247    Op = GetPromotedInteger(Op);
248    return DAG.getZeroExtendInReg(Op, OldVT);
249  }
250
251  // Integer Result Promotion.
252  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
253  SDValue PromoteIntRes_AssertSext(SDNode *N);
254  SDValue PromoteIntRes_AssertZext(SDNode *N);
255  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
256  SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
257  SDValue PromoteIntRes_BIT_CONVERT(SDNode *N);
258  SDValue PromoteIntRes_BSWAP(SDNode *N);
259  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
260  SDValue PromoteIntRes_Constant(SDNode *N);
261  SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
262  SDValue PromoteIntRes_CTLZ(SDNode *N);
263  SDValue PromoteIntRes_CTPOP(SDNode *N);
264  SDValue PromoteIntRes_CTTZ(SDNode *N);
265  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
266  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
267  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
268  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
269  SDValue PromoteIntRes_Overflow(SDNode *N);
270  SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
271  SDValue PromoteIntRes_SDIV(SDNode *N);
272  SDValue PromoteIntRes_SELECT(SDNode *N);
273  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
274  SDValue PromoteIntRes_SETCC(SDNode *N);
275  SDValue PromoteIntRes_SHL(SDNode *N);
276  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
277  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
278  SDValue PromoteIntRes_SRA(SDNode *N);
279  SDValue PromoteIntRes_SRL(SDNode *N);
280  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
281  SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
282  SDValue PromoteIntRes_UDIV(SDNode *N);
283  SDValue PromoteIntRes_UNDEF(SDNode *N);
284  SDValue PromoteIntRes_VAARG(SDNode *N);
285  SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
286
287  // Integer Operand Promotion.
288  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
289  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
290  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
291  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
292  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
293  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
294  SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
295  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
296  SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
297  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
298  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
299  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
300  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
301  SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
302  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
303  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
304  SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
305  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
306
307  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
308
309  //===--------------------------------------------------------------------===//
310  // Integer Expansion Support: LegalizeIntegerTypes.cpp
311  //===--------------------------------------------------------------------===//
312
313  /// GetExpandedInteger - Given a processed operand Op which was expanded into
314  /// two integers of half the size, this returns the two halves.  The low bits
315  /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
316  /// For example, if Op is an i64 which was expanded into two i32's, then this
317  /// method returns the two i32's, with Lo being equal to the lower 32 bits of
318  /// Op, and Hi being equal to the upper 32 bits.
319  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
320  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
321
322  // Integer Result Expansion.
323  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
324  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
325  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
326  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
327  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
328  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
329  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
330  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
331  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
332  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
333  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
334  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
335  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
336  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
337  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
338
339  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
340  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
341  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
342  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
343  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
344  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
345  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
346  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
347  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
348  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
349  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
350
351  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
352                             SDValue &Lo, SDValue &Hi);
353  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
354
355  // Integer Operand Expansion.
356  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
357  SDValue ExpandIntOp_BIT_CONVERT(SDNode *N);
358  SDValue ExpandIntOp_BR_CC(SDNode *N);
359  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
360  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
361  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
362  SDValue ExpandIntOp_SETCC(SDNode *N);
363  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
364  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
365  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
366  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
367
368  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
369                                  ISD::CondCode &CCCode);
370
371  //===--------------------------------------------------------------------===//
372  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
373  //===--------------------------------------------------------------------===//
374
375  /// GetSoftenedFloat - Given a processed operand Op which was converted to an
376  /// integer of the same size, this returns the integer.  The integer contains
377  /// exactly the same bits as Op - only the type changed.  For example, if Op
378  /// is an f32 which was softened to an i32, then this method returns an i32,
379  /// the bits of which coincide with those of Op.
380  SDValue GetSoftenedFloat(SDValue Op) {
381    SDValue &SoftenedOp = SoftenedFloats[Op];
382    RemapValue(SoftenedOp);
383    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
384    return SoftenedOp;
385  }
386  void SetSoftenedFloat(SDValue Op, SDValue Result);
387
388  // Result Float to Integer Conversion.
389  void SoftenFloatResult(SDNode *N, unsigned OpNo);
390  SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N);
391  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
392  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
393  SDValue SoftenFloatRes_FABS(SDNode *N);
394  SDValue SoftenFloatRes_FADD(SDNode *N);
395  SDValue SoftenFloatRes_FCEIL(SDNode *N);
396  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
397  SDValue SoftenFloatRes_FCOS(SDNode *N);
398  SDValue SoftenFloatRes_FDIV(SDNode *N);
399  SDValue SoftenFloatRes_FEXP(SDNode *N);
400  SDValue SoftenFloatRes_FEXP2(SDNode *N);
401  SDValue SoftenFloatRes_FFLOOR(SDNode *N);
402  SDValue SoftenFloatRes_FLOG(SDNode *N);
403  SDValue SoftenFloatRes_FLOG2(SDNode *N);
404  SDValue SoftenFloatRes_FLOG10(SDNode *N);
405  SDValue SoftenFloatRes_FMUL(SDNode *N);
406  SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
407  SDValue SoftenFloatRes_FNEG(SDNode *N);
408  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
409  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
410  SDValue SoftenFloatRes_FPOW(SDNode *N);
411  SDValue SoftenFloatRes_FPOWI(SDNode *N);
412  SDValue SoftenFloatRes_FRINT(SDNode *N);
413  SDValue SoftenFloatRes_FSIN(SDNode *N);
414  SDValue SoftenFloatRes_FSQRT(SDNode *N);
415  SDValue SoftenFloatRes_FSUB(SDNode *N);
416  SDValue SoftenFloatRes_FTRUNC(SDNode *N);
417  SDValue SoftenFloatRes_LOAD(SDNode *N);
418  SDValue SoftenFloatRes_SELECT(SDNode *N);
419  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
420  SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
421
422  // Operand Float to Integer Conversion.
423  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
424  SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N);
425  SDValue SoftenFloatOp_BR_CC(SDNode *N);
426  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
427  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
428  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
429  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
430  SDValue SoftenFloatOp_SETCC(SDNode *N);
431  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
432
433  void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
434                           ISD::CondCode &CCCode);
435
436  //===--------------------------------------------------------------------===//
437  // Float Expansion Support: LegalizeFloatTypes.cpp
438  //===--------------------------------------------------------------------===//
439
440  /// GetExpandedFloat - Given a processed operand Op which was expanded into
441  /// two floating point values of half the size, this returns the two halves.
442  /// The low bits of Op are exactly equal to the bits of Lo; the high bits
443  /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
444  /// into two f64's, then this method returns the two f64's, with Lo being
445  /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
446  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
447  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
448
449  // Float Result Expansion.
450  void ExpandFloatResult(SDNode *N, unsigned ResNo);
451  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
452  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
453  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
454  void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
455  void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
456  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
457  void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
458  void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
459  void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
460  void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
461  void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
462  void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
463  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
464  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
465  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
466  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
467  void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
468  void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
469  void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
470  void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
471  void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
472  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
473  void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
474  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
475  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
476
477  // Float Operand Expansion.
478  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
479  SDValue ExpandFloatOp_BR_CC(SDNode *N);
480  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
481  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
482  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
483  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
484  SDValue ExpandFloatOp_SETCC(SDNode *N);
485  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
486
487  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
488                                ISD::CondCode &CCCode);
489
490  //===--------------------------------------------------------------------===//
491  // Scalarization Support: LegalizeVectorTypes.cpp
492  //===--------------------------------------------------------------------===//
493
494  /// GetScalarizedVector - Given a processed one-element vector Op which was
495  /// scalarized to its element type, this returns the element.  For example,
496  /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
497  SDValue GetScalarizedVector(SDValue Op) {
498    SDValue &ScalarizedOp = ScalarizedVectors[Op];
499    RemapValue(ScalarizedOp);
500    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
501    return ScalarizedOp;
502  }
503  void SetScalarizedVector(SDValue Op, SDValue Result);
504
505  // Vector Result Scalarization: <1 x ty> -> ty.
506  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
507  SDValue ScalarizeVecRes_BinOp(SDNode *N);
508  SDValue ScalarizeVecRes_ShiftOp(SDNode *N);
509  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
510
511  SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
512  SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
513  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
514  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
515  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
516  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
517  SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
518  SDValue ScalarizeVecRes_SELECT(SDNode *N);
519  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
520  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
521  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
522  SDValue ScalarizeVecRes_VSETCC(SDNode *N);
523
524  // Vector Operand Scalarization: <1 x ty> -> ty.
525  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
526  SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N);
527  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
528  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
529  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
530
531  //===--------------------------------------------------------------------===//
532  // Vector Splitting Support: LegalizeVectorTypes.cpp
533  //===--------------------------------------------------------------------===//
534
535  /// GetSplitVector - Given a processed vector Op which was split into smaller
536  /// vectors, this method returns the smaller vectors.  The first elements of
537  /// Op coincide with the elements of Lo; the remaining elements of Op coincide
538  /// with the elements of Hi: Op is what you would get by concatenating Lo and
539  /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
540  /// this method returns the two v4i32's, with Lo corresponding to the first 4
541  /// elements of Op, and Hi to the last 4 elements.
542  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
543  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
544
545  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
546  void SplitVectorResult(SDNode *N, unsigned OpNo);
547  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
548  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
549
550  void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
551  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
552  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
553  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
554  void SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo, SDValue &Hi);
555  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
556  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
557  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
558  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
559  void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
560  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
561  void SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo, SDValue &Hi);
562  void SplitVecRes_VSETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
563
564  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
565  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
566  SDValue SplitVecOp_UnaryOp(SDNode *N);
567
568  SDValue SplitVecOp_BIT_CONVERT(SDNode *N);
569  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
570  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
571  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
572  SDValue SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo);
573
574  //===--------------------------------------------------------------------===//
575  // Vector Widening Support: LegalizeVectorTypes.cpp
576  //===--------------------------------------------------------------------===//
577  SDValue GetWidenedVector(SDValue Op) {
578    SDValue &WidenedOp = WidenedVectors[Op];
579    RemapValue(WidenedOp);
580    assert(WidenedOp.getNode() && "Operand wasn't widened?");
581    return WidenedOp;
582  }
583  void SetWidenedVector(SDValue Op, SDValue Result);
584
585  // Widen Vector Result Promotion.
586  void WidenVectorResult(SDNode *N, unsigned ResNo);
587  SDValue WidenVecRes_BIT_CONVERT(SDNode* N);
588  SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
589  SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
590  SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
591  SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
592  SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
593  SDValue WidenVecRes_LOAD(SDNode* N);
594  SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
595  SDValue WidenVecRes_SELECT(SDNode* N);
596  SDValue WidenVecRes_SELECT_CC(SDNode* N);
597  SDValue WidenVecRes_UNDEF(SDNode *N);
598  SDValue WidenVecRes_VECTOR_SHUFFLE(SDNode *N);
599  SDValue WidenVecRes_VSETCC(SDNode* N);
600
601  SDValue WidenVecRes_Binary(SDNode *N);
602  SDValue WidenVecRes_Convert(SDNode *N);
603  SDValue WidenVecRes_Shift(SDNode *N);
604  SDValue WidenVecRes_Unary(SDNode *N);
605
606  // Widen Vector Operand.
607  bool WidenVectorOperand(SDNode *N, unsigned ResNo);
608  SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
609  SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
610  SDValue WidenVecOp_STORE(SDNode* N);
611
612  SDValue WidenVecOp_Convert(SDNode *N);
613
614  //===--------------------------------------------------------------------===//
615  // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
616  //===--------------------------------------------------------------------===//
617
618  /// Helper genWidenVectorLoads - Helper function to generate a set of
619  /// loads to load a vector with a resulting wider type. It takes
620  ///   ExtType: Extension type
621  ///   LdChain: list of chains for the load we have generated.
622  ///   Chain:   incoming chain for the ld vector.
623  ///   BasePtr: base pointer to load from.
624  ///   SV:         memory disambiguation source value.
625  ///   SVOffset:   memory disambiugation offset.
626  ///   Alignment:  alignment of the memory.
627  ///   isVolatile: volatile load.
628  ///   LdWidth:    width of memory that we want to load.
629  ///   ResType:    the wider result result type for the resulting vector.
630  SDValue GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain, SDValue Chain,
631                              SDValue BasePtr, const Value *SV,
632                              int SVOffset, unsigned Alignment,
633                              bool isVolatile, unsigned LdWidth,
634                              MVT ResType);
635
636  /// Helper genWidenVectorStores - Helper function to generate a set of
637  /// stores to store a widen vector into non widen memory
638  /// It takes
639  ///   StChain: list of chains for the stores we have generated
640  ///   Chain:   incoming chain for the ld vector
641  ///   BasePtr: base pointer to load from
642  ///   SV:      memory disambiguation source value
643  ///   SVOffset:   memory disambiugation offset
644  ///   Alignment:  alignment of the memory
645  ///   isVolatile: volatile lod
646  ///   ValOp:   value to store
647  ///   StWidth: width of memory that we want to store
648  void GenWidenVectorStores(SmallVector<SDValue, 16>& StChain, SDValue Chain,
649                            SDValue BasePtr, const Value *SV,
650                            int SVOffset, unsigned Alignment,
651                            bool isVolatile, SDValue ValOp,
652                            unsigned StWidth);
653
654  /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
655  /// input vector must have the same element type as NVT.
656  SDValue ModifyToType(SDValue InOp, MVT WidenVT);
657
658
659  //===--------------------------------------------------------------------===//
660  // Generic Splitting: LegalizeTypesGeneric.cpp
661  //===--------------------------------------------------------------------===//
662
663  // Legalization methods which only use that the illegal type is split into two
664  // not necessarily identical types.  As such they can be used for splitting
665  // vectors and expanding integers and floats.
666
667  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
668    if (Op.getValueType().isVector())
669      GetSplitVector(Op, Lo, Hi);
670    else if (Op.getValueType().isInteger())
671      GetExpandedInteger(Op, Lo, Hi);
672    else
673      GetExpandedFloat(Op, Lo, Hi);
674  }
675
676  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
677  /// which is split (or expanded) into two not necessarily identical pieces.
678  void GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT);
679
680  // Generic Result Splitting.
681  void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
682  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
683  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
684  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
685
686  //===--------------------------------------------------------------------===//
687  // Generic Expansion: LegalizeTypesGeneric.cpp
688  //===--------------------------------------------------------------------===//
689
690  // Legalization methods which only use that the illegal type is split into two
691  // identical types of half the size, and that the Lo/Hi part is stored first
692  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
693  // such they can be used for expanding integers and floats.
694
695  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
696    if (Op.getValueType().isInteger())
697      GetExpandedInteger(Op, Lo, Hi);
698    else
699      GetExpandedFloat(Op, Lo, Hi);
700  }
701
702  // Generic Result Expansion.
703  void ExpandRes_BIT_CONVERT       (SDNode *N, SDValue &Lo, SDValue &Hi);
704  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
705  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
706  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
707  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
708  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
709
710  // Generic Operand Expansion.
711  SDValue ExpandOp_BIT_CONVERT      (SDNode *N);
712  SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
713  SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
714  SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
715  SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
716  SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
717};
718
719} // end namespace llvm.
720
721#endif
722