LegalizeTypes.h revision 8d9c9b001d90b6c011bca4b595555ef9bdf4fb01
1//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#define DEBUG_TYPE "legalize-types"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25
26namespace llvm {
27
28//===----------------------------------------------------------------------===//
29/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
30/// on it until only value types the target machine can handle are left.  This
31/// involves promoting small sizes to large sizes or splitting up large values
32/// into small values.
33///
34class VISIBILITY_HIDDEN DAGTypeLegalizer {
35  TargetLowering &TLI;
36  SelectionDAG &DAG;
37public:
38  // NodeIDFlags - This pass uses the NodeID on the SDNodes to hold information
39  // about the state of the node.  The enum has all the values.
40  enum NodeIDFlags {
41    /// ReadyToProcess - All operands have been processed, so this node is ready
42    /// to be handled.
43    ReadyToProcess = 0,
44
45    /// NewNode - This is a new node that was created in the process of
46    /// legalizing some other node.
47    NewNode = -1,
48
49    /// Processed - This is a node that has already been processed.
50    Processed = -2
51
52    // 1+ - This is a node which has this many unlegalized operands.
53  };
54private:
55  enum LegalizeAction {
56    Legal,           // The target natively supports this type.
57    PromoteInteger,  // Replace this integer type with a larger one.
58    ExpandInteger,   // Split this integer type into two of half the size.
59    SoftenFloat,     // Convert this float type to a same size integer type.
60    ExpandFloat,     // Split this float type into two of half the size.
61    ScalarizeVector, // Replace this one-element vector with its element type.
62    SplitVector      // This vector type should be split into smaller vectors.
63  };
64
65  /// ValueTypeActions - This is a bitvector that contains two bits for each
66  /// simple value type, where the two bits correspond to the LegalizeAction
67  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
68  TargetLowering::ValueTypeActionImpl ValueTypeActions;
69
70  /// getTypeAction - Return how we should legalize values of this type, either
71  /// it is already legal, or we need to promote it to a larger integer type, or
72  /// we need to expand it into multiple registers of a smaller integer type, or
73  /// we need to split a vector type into smaller vector types, or we need to
74  /// convert it to a different type of the same size.
75  LegalizeAction getTypeAction(MVT VT) const {
76    switch (ValueTypeActions.getTypeAction(VT)) {
77    default:
78      assert(false && "Unknown legalize action!");
79    case TargetLowering::Legal:
80      return Legal;
81    case TargetLowering::Promote:
82      return PromoteInteger;
83    case TargetLowering::Expand:
84      // Expand can mean
85      // 1) split scalar in half, 2) convert a float to an integer,
86      // 3) scalarize a single-element vector, 4) split a vector in two.
87      if (!VT.isVector()) {
88        if (VT.isInteger())
89          return ExpandInteger;
90        else if (VT.getSizeInBits() ==
91                 TLI.getTypeToTransformTo(VT).getSizeInBits())
92          return SoftenFloat;
93        else
94          return ExpandFloat;
95      } else if (VT.getVectorNumElements() == 1) {
96        return ScalarizeVector;
97      } else {
98        return SplitVector;
99      }
100    }
101  }
102
103  /// isTypeLegal - Return true if this type is legal on this target.
104  bool isTypeLegal(MVT VT) const {
105    return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal;
106  }
107
108  /// IgnoreNodeResults - Pretend all of this node's results are legal.
109  bool IgnoreNodeResults(SDNode *N) const {
110    return N->getOpcode() == ISD::TargetConstant;
111  }
112
113  /// PromotedIntegers - For integer nodes that are below legal width, this map
114  /// indicates what promoted value to use.
115  DenseMap<SDValue, SDValue> PromotedIntegers;
116
117  /// ExpandedIntegers - For integer nodes that need to be expanded this map
118  /// indicates which operands are the expanded version of the input.
119  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
120
121  /// SoftenedFloats - For floating point nodes converted to integers of
122  /// the same size, this map indicates the converted value to use.
123  DenseMap<SDValue, SDValue> SoftenedFloats;
124
125  /// ExpandedFloats - For float nodes that need to be expanded this map
126  /// indicates which operands are the expanded version of the input.
127  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
128
129  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
130  /// scalar value of type 'ty' to use.
131  DenseMap<SDValue, SDValue> ScalarizedVectors;
132
133  /// SplitVectors - For nodes that need to be split this map indicates
134  /// which operands are the expanded version of the input.
135  DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
136
137  /// ReplacedNodes - For nodes that have been replaced with another,
138  /// indicates the replacement node to use.
139  DenseMap<SDValue, SDValue> ReplacedNodes;
140
141  /// Worklist - This defines a worklist of nodes to process.  In order to be
142  /// pushed onto this worklist, all operands of a node must have already been
143  /// processed.
144  SmallVector<SDNode*, 128> Worklist;
145
146public:
147  explicit DAGTypeLegalizer(SelectionDAG &dag)
148    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
149    ValueTypeActions(TLI.getValueTypeActions()) {
150    assert(MVT::LAST_VALUETYPE <= 32 &&
151           "Too many value types for ValueTypeActions to hold!");
152  }
153
154  void run();
155
156  /// ReanalyzeNode - Recompute the NodeID and correct processed operands
157  /// for the specified node, adding it to the worklist if ready.
158  SDNode *ReanalyzeNode(SDNode *N) {
159    N->setNodeId(NewNode);
160    return AnalyzeNewNode(N);
161  }
162
163  void NoteDeletion(SDNode *Old, SDNode *New) {
164    ExpungeNode(Old);
165    ExpungeNode(New);
166    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
167      ReplacedNodes[SDValue(Old, i)] = SDValue(New, i);
168  }
169
170private:
171  void AnalyzeNewNode(SDValue &Val);
172  SDNode *AnalyzeNewNode(SDNode *N);
173
174  void ReplaceValueWith(SDValue From, SDValue To);
175  void ReplaceNodeWith(SDNode *From, SDNode *To);
176
177  void RemapNode(SDValue &N);
178  void ExpungeNode(SDNode *N);
179
180  // Common routines.
181  SDValue CreateStackStoreLoad(SDValue Op, MVT DestVT);
182  SDValue MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
183                        const SDValue *Ops, unsigned NumOps, bool isSigned);
184
185  SDValue BitConvertToInteger(SDValue Op);
186  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
187  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
188  void SplitInteger(SDValue Op, MVT LoVT, MVT HiVT,
189                    SDValue &Lo, SDValue &Hi);
190
191  SDValue GetVectorElementPointer(SDValue VecPtr, MVT EltVT, SDValue Index);
192
193  //===--------------------------------------------------------------------===//
194  // Integer Promotion Support: LegalizeIntegerTypes.cpp
195  //===--------------------------------------------------------------------===//
196
197  SDValue GetPromotedInteger(SDValue Op) {
198    SDValue &PromotedOp = PromotedIntegers[Op];
199    RemapNode(PromotedOp);
200    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
201    return PromotedOp;
202  }
203  void SetPromotedInteger(SDValue Op, SDValue Result);
204
205  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
206  /// final size.
207  SDValue ZExtPromotedInteger(SDValue Op) {
208    MVT OldVT = Op.getValueType();
209    Op = GetPromotedInteger(Op);
210    return DAG.getZeroExtendInReg(Op, OldVT);
211  }
212
213  // Integer Result Promotion.
214  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
215  SDValue PromoteIntRes_AssertSext(SDNode *N);
216  SDValue PromoteIntRes_AssertZext(SDNode *N);
217  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
218  SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
219  SDValue PromoteIntRes_BIT_CONVERT(SDNode *N);
220  SDValue PromoteIntRes_BSWAP(SDNode *N);
221  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
222  SDValue PromoteIntRes_Constant(SDNode *N);
223  SDValue PromoteIntRes_CTLZ(SDNode *N);
224  SDValue PromoteIntRes_CTPOP(SDNode *N);
225  SDValue PromoteIntRes_CTTZ(SDNode *N);
226  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
227  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
228  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
229  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
230  SDValue PromoteIntRes_SDIV(SDNode *N);
231  SDValue PromoteIntRes_SELECT   (SDNode *N);
232  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
233  SDValue PromoteIntRes_SETCC(SDNode *N);
234  SDValue PromoteIntRes_SHL(SDNode *N);
235  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
236  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
237  SDValue PromoteIntRes_SRA(SDNode *N);
238  SDValue PromoteIntRes_SRL(SDNode *N);
239  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
240  SDValue PromoteIntRes_UDIV(SDNode *N);
241  SDValue PromoteIntRes_UNDEF(SDNode *N);
242  SDValue PromoteIntRes_VAARG(SDNode *N);
243
244  // Integer Operand Promotion.
245  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
246  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
247  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
248  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
249  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
250  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
251  SDValue PromoteIntOp_FP_EXTEND(SDNode *N);
252  SDValue PromoteIntOp_FP_ROUND(SDNode *N);
253  SDValue PromoteIntOp_INT_TO_FP(SDNode *N);
254  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
255  SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
256  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
257  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
258  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
259  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
260  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
261  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
262  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
263
264  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
265
266  //===--------------------------------------------------------------------===//
267  // Integer Expansion Support: LegalizeIntegerTypes.cpp
268  //===--------------------------------------------------------------------===//
269
270  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
271  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
272
273  // Integer Result Expansion.
274  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
275  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
276  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
277  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
278  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
279  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
280  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
281  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
282  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
283  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
284  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
285  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
286  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
287  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
288  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
289
290  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
291  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
292  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
293  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
294  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
295  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
296  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
297  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
298  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
299  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
300  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
301
302  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
303                             SDValue &Lo, SDValue &Hi);
304  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
305
306  // Integer Operand Expansion.
307  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
308  SDValue ExpandIntOp_BIT_CONVERT(SDNode *N);
309  SDValue ExpandIntOp_BR_CC(SDNode *N);
310  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
311  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
312  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
313  SDValue ExpandIntOp_SETCC(SDNode *N);
314  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
315  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
316  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
317  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
318
319  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
320                                  ISD::CondCode &CCCode);
321
322  //===--------------------------------------------------------------------===//
323  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
324  //===--------------------------------------------------------------------===//
325
326  SDValue GetSoftenedFloat(SDValue Op) {
327    SDValue &SoftenedOp = SoftenedFloats[Op];
328    RemapNode(SoftenedOp);
329    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
330    return SoftenedOp;
331  }
332  void SetSoftenedFloat(SDValue Op, SDValue Result);
333
334  // Result Float to Integer Conversion.
335  void SoftenFloatResult(SDNode *N, unsigned OpNo);
336  SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N);
337  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
338  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
339  SDValue SoftenFloatRes_FABS(SDNode *N);
340  SDValue SoftenFloatRes_FADD(SDNode *N);
341  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
342  SDValue SoftenFloatRes_FDIV(SDNode *N);
343  SDValue SoftenFloatRes_FMUL(SDNode *N);
344  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
345  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
346  SDValue SoftenFloatRes_FPOWI(SDNode *N);
347  SDValue SoftenFloatRes_FSUB(SDNode *N);
348  SDValue SoftenFloatRes_LOAD(SDNode *N);
349  SDValue SoftenFloatRes_SELECT(SDNode *N);
350  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
351  SDValue SoftenFloatRes_SINT_TO_FP(SDNode *N);
352  SDValue SoftenFloatRes_UINT_TO_FP(SDNode *N);
353
354  // Operand Float to Integer Conversion.
355  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
356  SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N);
357  SDValue SoftenFloatOp_BR_CC(SDNode *N);
358  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
359  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
360  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
361  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
362  SDValue SoftenFloatOp_SETCC(SDNode *N);
363  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
364
365  void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
366                           ISD::CondCode &CCCode);
367
368  //===--------------------------------------------------------------------===//
369  // Float Expansion Support: LegalizeFloatTypes.cpp
370  //===--------------------------------------------------------------------===//
371
372  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
373  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
374
375  // Float Result Expansion.
376  void ExpandFloatResult(SDNode *N, unsigned ResNo);
377  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
378  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
379  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
380  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
381  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
382  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
383  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
384  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
385  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
386  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
387
388  // Float Operand Expansion.
389  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
390  SDValue ExpandFloatOp_BR_CC(SDNode *N);
391  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
392  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
393  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
394  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
395  SDValue ExpandFloatOp_SETCC(SDNode *N);
396  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
397
398  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
399                                ISD::CondCode &CCCode);
400
401  //===--------------------------------------------------------------------===//
402  // Scalarization Support: LegalizeVectorTypes.cpp
403  //===--------------------------------------------------------------------===//
404
405  SDValue GetScalarizedVector(SDValue Op) {
406    SDValue &ScalarizedOp = ScalarizedVectors[Op];
407    RemapNode(ScalarizedOp);
408    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
409    return ScalarizedOp;
410  }
411  void SetScalarizedVector(SDValue Op, SDValue Result);
412
413  // Vector Result Scalarization: <1 x ty> -> ty.
414  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
415  SDValue ScalarizeVecRes_BinOp(SDNode *N);
416  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
417
418  SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
419  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
420  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
421  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
422  SDValue ScalarizeVecRes_SELECT(SDNode *N);
423  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
424  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
425  SDValue ScalarizeVecRes_VSETCC(SDNode *N);
426
427  // Vector Operand Scalarization: <1 x ty> -> ty.
428  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
429  SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N);
430  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
431  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
432
433  //===--------------------------------------------------------------------===//
434  // Vector Splitting Support: LegalizeVectorTypes.cpp
435  //===--------------------------------------------------------------------===//
436
437  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
438  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
439
440  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
441  void SplitVectorResult(SDNode *N, unsigned OpNo);
442  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
443  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
444
445  void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
446  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
447  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
448  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
449  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
450  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
451  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
452  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
453  void SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo, SDValue &Hi);
454  void SplitVecRes_VSETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
455
456  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
457  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
458
459  SDValue SplitVecOp_BIT_CONVERT(SDNode *N);
460  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
461  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
462  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
463  SDValue SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo);
464
465  //===--------------------------------------------------------------------===//
466  // Generic Splitting: LegalizeTypesGeneric.cpp
467  //===--------------------------------------------------------------------===//
468
469  // Legalization methods which only use that the illegal type is split into two
470  // not necessarily identical types.  As such they can be used for splitting
471  // vectors and expanding integers and floats.
472
473  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
474    if (Op.getValueType().isVector())
475      GetSplitVector(Op, Lo, Hi);
476    else if (Op.getValueType().isInteger())
477      GetExpandedInteger(Op, Lo, Hi);
478    else
479      GetExpandedFloat(Op, Lo, Hi);
480  }
481
482  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
483  /// which is split (or expanded) into two not necessarily identical pieces.
484  void GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT);
485
486  // Generic Result Splitting.
487  void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
488  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
489  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
490  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
491
492  //===--------------------------------------------------------------------===//
493  // Generic Expansion: LegalizeTypesGeneric.cpp
494  //===--------------------------------------------------------------------===//
495
496  // Legalization methods which only use that the illegal type is split into two
497  // identical types of half the size, and that the Lo/Hi part is stored first
498  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
499  // such they can be used for expanding integers and floats.
500
501  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
502    if (Op.getValueType().isInteger())
503      GetExpandedInteger(Op, Lo, Hi);
504    else
505      GetExpandedFloat(Op, Lo, Hi);
506  }
507
508  // Generic Result Expansion.
509  void ExpandRes_BIT_CONVERT       (SDNode *N, SDValue &Lo, SDValue &Hi);
510  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
511  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
512  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
513  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
514
515  // Generic Operand Expansion.
516  SDValue ExpandOp_BIT_CONVERT    (SDNode *N);
517  SDValue ExpandOp_BUILD_VECTOR   (SDNode *N);
518  SDValue ExpandOp_EXTRACT_ELEMENT(SDNode *N);
519  SDValue ExpandOp_NormalStore    (SDNode *N, unsigned OpNo);
520
521};
522
523} // end namespace llvm.
524
525#endif
526