LegalizeTypes.h revision 927411b7ce0b7852fe4f392d8cd4faaa3881f852
1//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#define DEBUG_TYPE "legalize-types"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/DenseSet.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26
27namespace llvm {
28
29//===----------------------------------------------------------------------===//
30/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31/// on it until only value types the target machine can handle are left.  This
32/// involves promoting small sizes to large sizes or splitting up large values
33/// into small values.
34///
35class VISIBILITY_HIDDEN DAGTypeLegalizer {
36  TargetLowering &TLI;
37  SelectionDAG &DAG;
38public:
39  // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40  // about the state of the node.  The enum has all the values.
41  enum NodeIdFlags {
42    /// ReadyToProcess - All operands have been processed, so this node is ready
43    /// to be handled.
44    ReadyToProcess = 0,
45
46    /// NewNode - This is a new node, not before seen, that was created in the
47    /// process of legalizing some other node.
48    NewNode = -1,
49
50    /// Unanalyzed - This node's ID needs to be set to the number of its
51    /// unprocessed operands.
52    Unanalyzed = -2,
53
54    /// Processed - This is a node that has already been processed.
55    Processed = -3
56
57    // 1+ - This is a node which has this many unprocessed operands.
58  };
59private:
60  enum LegalizeAction {
61    Legal,           // The target natively supports this type.
62    PromoteInteger,  // Replace this integer type with a larger one.
63    ExpandInteger,   // Split this integer type into two of half the size.
64    SoftenFloat,     // Convert this float type to a same size integer type.
65    ExpandFloat,     // Split this float type into two of half the size.
66    ScalarizeVector, // Replace this one-element vector with its element type.
67    SplitVector,     // Split this vector type into two of half the size.
68    WidenVector      // This vector type should be widened into a larger vector.
69  };
70
71  /// ValueTypeActions - This is a bitvector that contains two bits for each
72  /// simple value type, where the two bits correspond to the LegalizeAction
73  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
74  TargetLowering::ValueTypeActionImpl ValueTypeActions;
75
76  /// getTypeAction - Return how we should legalize values of this type.
77  LegalizeAction getTypeAction(EVT VT) const {
78    switch (ValueTypeActions.getTypeAction(*DAG.getContext(), VT)) {
79    default:
80      assert(false && "Unknown legalize action!");
81    case TargetLowering::Legal:
82      return Legal;
83    case TargetLowering::Promote:
84      // Promote can mean
85      //   1) For integers, use a larger integer type (e.g. i8 -> i32).
86      //   2) For vectors, use a wider vector type (e.g. v3i32 -> v4i32).
87      if (!VT.isVector())
88        return PromoteInteger;
89      else
90        return WidenVector;
91    case TargetLowering::Expand:
92      // Expand can mean
93      // 1) split scalar in half, 2) convert a float to an integer,
94      // 3) scalarize a single-element vector, 4) split a vector in two.
95      if (!VT.isVector()) {
96        if (VT.isInteger())
97          return ExpandInteger;
98        else if (VT.getSizeInBits() ==
99                 TLI.getTypeToTransformTo(*DAG.getContext(), VT).getSizeInBits())
100          return SoftenFloat;
101        else
102          return ExpandFloat;
103      } else if (VT.getVectorNumElements() == 1) {
104        return ScalarizeVector;
105      } else {
106        return SplitVector;
107      }
108    }
109  }
110
111  /// isTypeLegal - Return true if this type is legal on this target.
112  bool isTypeLegal(EVT VT) const {
113    return (ValueTypeActions.getTypeAction(*DAG.getContext(), VT) ==
114            TargetLowering::Legal);
115  }
116
117  /// IgnoreNodeResults - Pretend all of this node's results are legal.
118  bool IgnoreNodeResults(SDNode *N) const {
119    return N->getOpcode() == ISD::TargetConstant;
120  }
121
122  /// PromotedIntegers - For integer nodes that are below legal width, this map
123  /// indicates what promoted value to use.
124  DenseMap<SDValue, SDValue> PromotedIntegers;
125
126  /// ExpandedIntegers - For integer nodes that need to be expanded this map
127  /// indicates which operands are the expanded version of the input.
128  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
129
130  /// SoftenedFloats - For floating point nodes converted to integers of
131  /// the same size, this map indicates the converted value to use.
132  DenseMap<SDValue, SDValue> SoftenedFloats;
133
134  /// ExpandedFloats - For float nodes that need to be expanded this map
135  /// indicates which operands are the expanded version of the input.
136  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
137
138  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
139  /// scalar value of type 'ty' to use.
140  DenseMap<SDValue, SDValue> ScalarizedVectors;
141
142  /// SplitVectors - For nodes that need to be split this map indicates
143  /// which operands are the expanded version of the input.
144  DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
145
146  /// WidenedVectors - For vector nodes that need to be widened, indicates
147  /// the widened value to use.
148  DenseMap<SDValue, SDValue> WidenedVectors;
149
150  /// ReplacedValues - For values that have been replaced with another,
151  /// indicates the replacement value to use.
152  DenseMap<SDValue, SDValue> ReplacedValues;
153
154  /// Worklist - This defines a worklist of nodes to process.  In order to be
155  /// pushed onto this worklist, all operands of a node must have already been
156  /// processed.
157  SmallVector<SDNode*, 128> Worklist;
158
159public:
160  explicit DAGTypeLegalizer(SelectionDAG &dag)
161    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
162    ValueTypeActions(TLI.getValueTypeActions()) {
163    assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
164           "Too many value types for ValueTypeActions to hold!");
165  }
166
167  /// run - This is the main entry point for the type legalizer.  This does a
168  /// top-down traversal of the dag, legalizing types as it goes.  Returns
169  /// "true" if it made any changes.
170  bool run();
171
172  void NoteDeletion(SDNode *Old, SDNode *New) {
173    ExpungeNode(Old);
174    ExpungeNode(New);
175    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
176      ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
177  }
178
179private:
180  SDNode *AnalyzeNewNode(SDNode *N);
181  void AnalyzeNewValue(SDValue &Val);
182  void ExpungeNode(SDNode *N);
183  void PerformExpensiveChecks();
184  void RemapValue(SDValue &N);
185
186  // Common routines.
187  SDValue BitConvertToInteger(SDValue Op);
188  SDValue BitConvertVectorToIntegerVector(SDValue Op);
189  SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
190  bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
191  bool CustomWidenLowerNode(SDNode *N, EVT VT);
192  SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
193  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
194  SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
195  SDValue MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
196                      const SDValue *Ops, unsigned NumOps, bool isSigned,
197                      DebugLoc dl);
198  SDValue PromoteTargetBoolean(SDValue Bool, EVT VT);
199  void ReplaceValueWith(SDValue From, SDValue To);
200  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
201  void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
202                    SDValue &Lo, SDValue &Hi);
203
204  //===--------------------------------------------------------------------===//
205  // Integer Promotion Support: LegalizeIntegerTypes.cpp
206  //===--------------------------------------------------------------------===//
207
208  /// GetPromotedInteger - Given a processed operand Op which was promoted to a
209  /// larger integer type, this returns the promoted value.  The low bits of the
210  /// promoted value corresponding to the original type are exactly equal to Op.
211  /// The extra bits contain rubbish, so the promoted value may need to be zero-
212  /// or sign-extended from the original type before it is usable (the helpers
213  /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
214  /// For example, if Op is an i16 and was promoted to an i32, then this method
215  /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
216  /// 16 bits of which contain rubbish.
217  SDValue GetPromotedInteger(SDValue Op) {
218    SDValue &PromotedOp = PromotedIntegers[Op];
219    RemapValue(PromotedOp);
220    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
221    return PromotedOp;
222  }
223  void SetPromotedInteger(SDValue Op, SDValue Result);
224
225  /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
226  /// final size.
227  SDValue SExtPromotedInteger(SDValue Op) {
228    EVT OldVT = Op.getValueType();
229    DebugLoc dl = Op.getDebugLoc();
230    Op = GetPromotedInteger(Op);
231    return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
232                       DAG.getValueType(OldVT));
233  }
234
235  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
236  /// final size.
237  SDValue ZExtPromotedInteger(SDValue Op) {
238    EVT OldVT = Op.getValueType();
239    DebugLoc dl = Op.getDebugLoc();
240    Op = GetPromotedInteger(Op);
241    return DAG.getZeroExtendInReg(Op, dl, OldVT);
242  }
243
244  // Integer Result Promotion.
245  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
246  SDValue PromoteIntRes_AssertSext(SDNode *N);
247  SDValue PromoteIntRes_AssertZext(SDNode *N);
248  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
249  SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
250  SDValue PromoteIntRes_BIT_CONVERT(SDNode *N);
251  SDValue PromoteIntRes_BSWAP(SDNode *N);
252  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
253  SDValue PromoteIntRes_Constant(SDNode *N);
254  SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
255  SDValue PromoteIntRes_CTLZ(SDNode *N);
256  SDValue PromoteIntRes_CTPOP(SDNode *N);
257  SDValue PromoteIntRes_CTTZ(SDNode *N);
258  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
259  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
260  SDValue PromoteIntRes_FP32_TO_FP16(SDNode *N);
261  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
262  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
263  SDValue PromoteIntRes_Overflow(SDNode *N);
264  SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
265  SDValue PromoteIntRes_SDIV(SDNode *N);
266  SDValue PromoteIntRes_SELECT(SDNode *N);
267  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
268  SDValue PromoteIntRes_SETCC(SDNode *N);
269  SDValue PromoteIntRes_SHL(SDNode *N);
270  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
271  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
272  SDValue PromoteIntRes_SRA(SDNode *N);
273  SDValue PromoteIntRes_SRL(SDNode *N);
274  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
275  SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
276  SDValue PromoteIntRes_UDIV(SDNode *N);
277  SDValue PromoteIntRes_UNDEF(SDNode *N);
278  SDValue PromoteIntRes_VAARG(SDNode *N);
279  SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
280
281  // Integer Operand Promotion.
282  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
283  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
284  SDValue PromoteIntOp_BIT_CONVERT(SDNode *N);
285  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
286  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
287  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
288  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
289  SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
290  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
291  SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
292  SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
293  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
294  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
295  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
296  SDValue PromoteIntOp_Shift(SDNode *N);
297  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
298  SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
299  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
300  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
301  SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
302  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
303
304  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
305
306  //===--------------------------------------------------------------------===//
307  // Integer Expansion Support: LegalizeIntegerTypes.cpp
308  //===--------------------------------------------------------------------===//
309
310  /// GetExpandedInteger - Given a processed operand Op which was expanded into
311  /// two integers of half the size, this returns the two halves.  The low bits
312  /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
313  /// For example, if Op is an i64 which was expanded into two i32's, then this
314  /// method returns the two i32's, with Lo being equal to the lower 32 bits of
315  /// Op, and Hi being equal to the upper 32 bits.
316  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
317  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
318
319  // Integer Result Expansion.
320  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
321  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
322  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
323  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
324  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
325  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
326  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
327  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
328  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
329  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
330  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
331  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
332  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
333  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
334  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
335
336  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
337  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
338  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
339  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
340  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
341  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
342  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
343  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
344  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
345  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
346  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
347
348  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
349                             SDValue &Lo, SDValue &Hi);
350  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
351  bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
352
353  // Integer Operand Expansion.
354  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
355  SDValue ExpandIntOp_BIT_CONVERT(SDNode *N);
356  SDValue ExpandIntOp_BR_CC(SDNode *N);
357  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
358  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
359  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
360  SDValue ExpandIntOp_SETCC(SDNode *N);
361  SDValue ExpandIntOp_Shift(SDNode *N);
362  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
363  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
364  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
365  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
366  SDValue ExpandIntOp_RETURNADDR(SDNode *N);
367
368  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
369                                  ISD::CondCode &CCCode, DebugLoc dl);
370
371  //===--------------------------------------------------------------------===//
372  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
373  //===--------------------------------------------------------------------===//
374
375  /// GetSoftenedFloat - Given a processed operand Op which was converted to an
376  /// integer of the same size, this returns the integer.  The integer contains
377  /// exactly the same bits as Op - only the type changed.  For example, if Op
378  /// is an f32 which was softened to an i32, then this method returns an i32,
379  /// the bits of which coincide with those of Op.
380  SDValue GetSoftenedFloat(SDValue Op) {
381    SDValue &SoftenedOp = SoftenedFloats[Op];
382    RemapValue(SoftenedOp);
383    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
384    return SoftenedOp;
385  }
386  void SetSoftenedFloat(SDValue Op, SDValue Result);
387
388  // Result Float to Integer Conversion.
389  void SoftenFloatResult(SDNode *N, unsigned OpNo);
390  SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N);
391  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
392  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
393  SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
394  SDValue SoftenFloatRes_FABS(SDNode *N);
395  SDValue SoftenFloatRes_FADD(SDNode *N);
396  SDValue SoftenFloatRes_FCEIL(SDNode *N);
397  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
398  SDValue SoftenFloatRes_FCOS(SDNode *N);
399  SDValue SoftenFloatRes_FDIV(SDNode *N);
400  SDValue SoftenFloatRes_FEXP(SDNode *N);
401  SDValue SoftenFloatRes_FEXP2(SDNode *N);
402  SDValue SoftenFloatRes_FFLOOR(SDNode *N);
403  SDValue SoftenFloatRes_FLOG(SDNode *N);
404  SDValue SoftenFloatRes_FLOG2(SDNode *N);
405  SDValue SoftenFloatRes_FLOG10(SDNode *N);
406  SDValue SoftenFloatRes_FMUL(SDNode *N);
407  SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
408  SDValue SoftenFloatRes_FNEG(SDNode *N);
409  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
410  SDValue SoftenFloatRes_FP16_TO_FP32(SDNode *N);
411  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
412  SDValue SoftenFloatRes_FPOW(SDNode *N);
413  SDValue SoftenFloatRes_FPOWI(SDNode *N);
414  SDValue SoftenFloatRes_FREM(SDNode *N);
415  SDValue SoftenFloatRes_FRINT(SDNode *N);
416  SDValue SoftenFloatRes_FSIN(SDNode *N);
417  SDValue SoftenFloatRes_FSQRT(SDNode *N);
418  SDValue SoftenFloatRes_FSUB(SDNode *N);
419  SDValue SoftenFloatRes_FTRUNC(SDNode *N);
420  SDValue SoftenFloatRes_LOAD(SDNode *N);
421  SDValue SoftenFloatRes_SELECT(SDNode *N);
422  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
423  SDValue SoftenFloatRes_UNDEF(SDNode *N);
424  SDValue SoftenFloatRes_VAARG(SDNode *N);
425  SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
426
427  // Operand Float to Integer Conversion.
428  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
429  SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N);
430  SDValue SoftenFloatOp_BR_CC(SDNode *N);
431  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
432  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
433  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
434  SDValue SoftenFloatOp_FP32_TO_FP16(SDNode *N);
435  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
436  SDValue SoftenFloatOp_SETCC(SDNode *N);
437  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
438
439  void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
440                           ISD::CondCode &CCCode, DebugLoc dl);
441
442  //===--------------------------------------------------------------------===//
443  // Float Expansion Support: LegalizeFloatTypes.cpp
444  //===--------------------------------------------------------------------===//
445
446  /// GetExpandedFloat - Given a processed operand Op which was expanded into
447  /// two floating point values of half the size, this returns the two halves.
448  /// The low bits of Op are exactly equal to the bits of Lo; the high bits
449  /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
450  /// into two f64's, then this method returns the two f64's, with Lo being
451  /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
452  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
453  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
454
455  // Float Result Expansion.
456  void ExpandFloatResult(SDNode *N, unsigned ResNo);
457  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
458  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
459  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
460  void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
461  void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
462  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
463  void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
464  void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
465  void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
466  void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
467  void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
468  void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
469  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
470  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
471  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
472  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
473  void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
474  void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
475  void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
476  void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
477  void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
478  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
479  void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
480  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
481  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
482
483  // Float Operand Expansion.
484  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
485  SDValue ExpandFloatOp_BR_CC(SDNode *N);
486  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
487  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
488  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
489  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
490  SDValue ExpandFloatOp_SETCC(SDNode *N);
491  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
492
493  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
494                                ISD::CondCode &CCCode, DebugLoc dl);
495
496  //===--------------------------------------------------------------------===//
497  // Scalarization Support: LegalizeVectorTypes.cpp
498  //===--------------------------------------------------------------------===//
499
500  /// GetScalarizedVector - Given a processed one-element vector Op which was
501  /// scalarized to its element type, this returns the element.  For example,
502  /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
503  SDValue GetScalarizedVector(SDValue Op) {
504    SDValue &ScalarizedOp = ScalarizedVectors[Op];
505    RemapValue(ScalarizedOp);
506    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
507    return ScalarizedOp;
508  }
509  void SetScalarizedVector(SDValue Op, SDValue Result);
510
511  // Vector Result Scalarization: <1 x ty> -> ty.
512  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
513  SDValue ScalarizeVecRes_BinOp(SDNode *N);
514  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
515  SDValue ScalarizeVecRes_InregOp(SDNode *N);
516
517  SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
518  SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
519  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
520  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
521  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
522  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
523  SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
524  SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N);
525  SDValue ScalarizeVecRes_SELECT(SDNode *N);
526  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
527  SDValue ScalarizeVecRes_SETCC(SDNode *N);
528  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
529  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
530  SDValue ScalarizeVecRes_VSETCC(SDNode *N);
531
532  // Vector Operand Scalarization: <1 x ty> -> ty.
533  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
534  SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N);
535  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
536  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
537  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
538
539  //===--------------------------------------------------------------------===//
540  // Vector Splitting Support: LegalizeVectorTypes.cpp
541  //===--------------------------------------------------------------------===//
542
543  /// GetSplitVector - Given a processed vector Op which was split into vectors
544  /// of half the size, this method returns the halves.  The first elements of
545  /// Op coincide with the elements of Lo; the remaining elements of Op coincide
546  /// with the elements of Hi: Op is what you would get by concatenating Lo and
547  /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
548  /// this method returns the two v4i32's, with Lo corresponding to the first 4
549  /// elements of Op, and Hi to the last 4 elements.
550  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
551  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
552
553  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
554  void SplitVectorResult(SDNode *N, unsigned OpNo);
555  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
556  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
557  void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
558
559  void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
560  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
561  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
562  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
563  void SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo, SDValue &Hi);
564  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
565  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
566  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
567  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
568  void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
569  void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
570  void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
571  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
572  void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
573                                  SDValue &Hi);
574
575  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
576  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
577  SDValue SplitVecOp_UnaryOp(SDNode *N);
578
579  SDValue SplitVecOp_BIT_CONVERT(SDNode *N);
580  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
581  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
582  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
583
584  //===--------------------------------------------------------------------===//
585  // Vector Widening Support: LegalizeVectorTypes.cpp
586  //===--------------------------------------------------------------------===//
587
588  /// GetWidenedVector - Given a processed vector Op which was widened into a
589  /// larger vector, this method returns the larger vector.  The elements of
590  /// the returned vector consist of the elements of Op followed by elements
591  /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
592  /// v4i32, then this method returns a v4i32 for which the first two elements
593  /// are the same as those of Op, while the last two elements contain rubbish.
594  SDValue GetWidenedVector(SDValue Op) {
595    SDValue &WidenedOp = WidenedVectors[Op];
596    RemapValue(WidenedOp);
597    assert(WidenedOp.getNode() && "Operand wasn't widened?");
598    return WidenedOp;
599  }
600  void SetWidenedVector(SDValue Op, SDValue Result);
601
602  // Widen Vector Result Promotion.
603  void WidenVectorResult(SDNode *N, unsigned ResNo);
604  SDValue WidenVecRes_BIT_CONVERT(SDNode* N);
605  SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
606  SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
607  SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
608  SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
609  SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
610  SDValue WidenVecRes_LOAD(SDNode* N);
611  SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
612  SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N);
613  SDValue WidenVecRes_SELECT(SDNode* N);
614  SDValue WidenVecRes_SELECT_CC(SDNode* N);
615  SDValue WidenVecRes_SETCC(SDNode* N);
616  SDValue WidenVecRes_UNDEF(SDNode *N);
617  SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
618  SDValue WidenVecRes_VSETCC(SDNode* N);
619
620  SDValue WidenVecRes_Binary(SDNode *N);
621  SDValue WidenVecRes_Convert(SDNode *N);
622  SDValue WidenVecRes_Shift(SDNode *N);
623  SDValue WidenVecRes_Unary(SDNode *N);
624  SDValue WidenVecRes_InregOp(SDNode *N);
625
626  // Widen Vector Operand.
627  bool WidenVectorOperand(SDNode *N, unsigned ResNo);
628  SDValue WidenVecOp_BIT_CONVERT(SDNode *N);
629  SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
630  SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
631  SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
632  SDValue WidenVecOp_STORE(SDNode* N);
633
634  SDValue WidenVecOp_Convert(SDNode *N);
635
636  //===--------------------------------------------------------------------===//
637  // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
638  //===--------------------------------------------------------------------===//
639
640  /// Helper GenWidenVectorLoads - Helper function to generate a set of
641  /// loads to load a vector with a resulting wider type. It takes
642  ///   LdChain: list of chains for the load to be generated.
643  ///   Ld:      load to widen
644  SDValue GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
645                              LoadSDNode *LD);
646
647  /// GenWidenVectorExtLoads - Helper function to generate a set of extension
648  /// loads to load a ector with a resulting wider type.  It takes
649  ///   LdChain: list of chains for the load to be generated.
650  ///   Ld:      load to widen
651  ///   ExtType: extension element type
652  SDValue GenWidenVectorExtLoads(SmallVector<SDValue, 16>& LdChain,
653                                 LoadSDNode *LD, ISD::LoadExtType ExtType);
654
655  /// Helper genWidenVectorStores - Helper function to generate a set of
656  /// stores to store a widen vector into non widen memory
657  ///   StChain: list of chains for the stores we have generated
658  ///   ST:      store of a widen value
659  void GenWidenVectorStores(SmallVector<SDValue, 16>& StChain, StoreSDNode *ST);
660
661  /// Helper genWidenVectorTruncStores - Helper function to generate a set of
662  /// stores to store a truncate widen vector into non widen memory
663  ///   StChain: list of chains for the stores we have generated
664  ///   ST:      store of a widen value
665  void GenWidenVectorTruncStores(SmallVector<SDValue, 16>& StChain,
666                                 StoreSDNode *ST);
667
668  /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
669  /// input vector must have the same element type as NVT.
670  SDValue ModifyToType(SDValue InOp, EVT WidenVT);
671
672
673  //===--------------------------------------------------------------------===//
674  // Generic Splitting: LegalizeTypesGeneric.cpp
675  //===--------------------------------------------------------------------===//
676
677  // Legalization methods which only use that the illegal type is split into two
678  // not necessarily identical types.  As such they can be used for splitting
679  // vectors and expanding integers and floats.
680
681  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
682    if (Op.getValueType().isVector())
683      GetSplitVector(Op, Lo, Hi);
684    else if (Op.getValueType().isInteger())
685      GetExpandedInteger(Op, Lo, Hi);
686    else
687      GetExpandedFloat(Op, Lo, Hi);
688  }
689
690  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
691  /// which is split (or expanded) into two not necessarily identical pieces.
692  void GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT);
693
694  /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
695  /// high parts of the given value.
696  void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
697
698  // Generic Result Splitting.
699  void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
700  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
701  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
702  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
703
704  //===--------------------------------------------------------------------===//
705  // Generic Expansion: LegalizeTypesGeneric.cpp
706  //===--------------------------------------------------------------------===//
707
708  // Legalization methods which only use that the illegal type is split into two
709  // identical types of half the size, and that the Lo/Hi part is stored first
710  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
711  // such they can be used for expanding integers and floats.
712
713  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
714    if (Op.getValueType().isInteger())
715      GetExpandedInteger(Op, Lo, Hi);
716    else
717      GetExpandedFloat(Op, Lo, Hi);
718  }
719
720  // Generic Result Expansion.
721  void ExpandRes_BIT_CONVERT       (SDNode *N, SDValue &Lo, SDValue &Hi);
722  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
723  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
724  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
725  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
726  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
727
728  // Generic Operand Expansion.
729  SDValue ExpandOp_BIT_CONVERT      (SDNode *N);
730  SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
731  SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
732  SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
733  SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
734  SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
735};
736
737} // end namespace llvm.
738
739#endif
740