LegalizeTypes.h revision 92e0834ac7d9ff2539706522ef521bd2319dc15f
1//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#define DEBUG_TYPE "legalize-types"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25
26namespace llvm {
27
28//===----------------------------------------------------------------------===//
29/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
30/// on it until only value types the target machine can handle are left.  This
31/// involves promoting small sizes to large sizes or splitting up large values
32/// into small values.
33///
34class VISIBILITY_HIDDEN DAGTypeLegalizer {
35  TargetLowering &TLI;
36  SelectionDAG &DAG;
37public:
38  // NodeIDFlags - This pass uses the NodeID on the SDNodes to hold information
39  // about the state of the node.  The enum has all the values.
40  enum NodeIDFlags {
41    /// ReadyToProcess - All operands have been processed, so this node is ready
42    /// to be handled.
43    ReadyToProcess = 0,
44
45    /// NewNode - This is a new node that was created in the process of
46    /// legalizing some other node.
47    NewNode = -1,
48
49    /// Processed - This is a node that has already been processed.
50    Processed = -2
51
52    // 1+ - This is a node which has this many unlegalized operands.
53  };
54private:
55  enum LegalizeAction {
56    Legal,           // The target natively supports this type.
57    PromoteInteger,  // Replace this integer type with a larger one.
58    ExpandInteger,   // Split this integer type into two of half the size.
59    SoftenFloat,     // Convert this float type to a same size integer type.
60    ExpandFloat,     // Split this float type into two of half the size.
61    ScalarizeVector, // Replace this one-element vector with its element type.
62    SplitVector      // This vector type should be split into smaller vectors.
63  };
64
65  /// ValueTypeActions - This is a bitvector that contains two bits for each
66  /// simple value type, where the two bits correspond to the LegalizeAction
67  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
68  TargetLowering::ValueTypeActionImpl ValueTypeActions;
69
70  /// getTypeAction - Return how we should legalize values of this type, either
71  /// it is already legal, or we need to promote it to a larger integer type, or
72  /// we need to expand it into multiple registers of a smaller integer type, or
73  /// we need to split a vector type into smaller vector types, or we need to
74  /// convert it to a different type of the same size.
75  LegalizeAction getTypeAction(MVT VT) const {
76    switch (ValueTypeActions.getTypeAction(VT)) {
77    default:
78      assert(false && "Unknown legalize action!");
79    case TargetLowering::Legal:
80      return Legal;
81    case TargetLowering::Promote:
82      return PromoteInteger;
83    case TargetLowering::Expand:
84      // Expand can mean
85      // 1) split scalar in half, 2) convert a float to an integer,
86      // 3) scalarize a single-element vector, 4) split a vector in two.
87      if (!VT.isVector()) {
88        if (VT.isInteger())
89          return ExpandInteger;
90        else if (VT.getSizeInBits() ==
91                 TLI.getTypeToTransformTo(VT).getSizeInBits())
92          return SoftenFloat;
93        else
94          return ExpandFloat;
95      } else if (VT.getVectorNumElements() == 1) {
96        return ScalarizeVector;
97      } else {
98        return SplitVector;
99      }
100    }
101  }
102
103  /// isTypeLegal - Return true if this type is legal on this target.
104  bool isTypeLegal(MVT VT) const {
105    return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal;
106  }
107
108  /// PromotedIntegers - For integer nodes that are below legal width, this map
109  /// indicates what promoted value to use.
110  DenseMap<SDOperand, SDOperand> PromotedIntegers;
111
112  /// ExpandedIntegers - For integer nodes that need to be expanded this map
113  /// indicates which operands are the expanded version of the input.
114  DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedIntegers;
115
116  /// SoftenedFloats - For floating point nodes converted to integers of
117  /// the same size, this map indicates the converted value to use.
118  DenseMap<SDOperand, SDOperand> SoftenedFloats;
119
120  /// ExpandedFloats - For float nodes that need to be expanded this map
121  /// indicates which operands are the expanded version of the input.
122  DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedFloats;
123
124  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
125  /// scalar value of type 'ty' to use.
126  DenseMap<SDOperand, SDOperand> ScalarizedVectors;
127
128  /// SplitVectors - For nodes that need to be split this map indicates
129  /// which operands are the expanded version of the input.
130  DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > SplitVectors;
131
132  /// ReplacedNodes - For nodes that have been replaced with another,
133  /// indicates the replacement node to use.
134  DenseMap<SDOperand, SDOperand> ReplacedNodes;
135
136  /// Worklist - This defines a worklist of nodes to process.  In order to be
137  /// pushed onto this worklist, all operands of a node must have already been
138  /// processed.
139  SmallVector<SDNode*, 128> Worklist;
140
141public:
142  explicit DAGTypeLegalizer(SelectionDAG &dag)
143    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
144    ValueTypeActions(TLI.getValueTypeActions()) {
145    assert(MVT::LAST_VALUETYPE <= 32 &&
146           "Too many value types for ValueTypeActions to hold!");
147  }
148
149  void run();
150
151  /// ReanalyzeNode - Recompute the NodeID and correct processed operands
152  /// for the specified node, adding it to the worklist if ready.
153  void ReanalyzeNode(SDNode *N) {
154    N->setNodeId(NewNode);
155    AnalyzeNewNode(N);
156  }
157
158  void NoteDeletion(SDNode *Old, SDNode *New) {
159    ExpungeNode(Old);
160    ExpungeNode(New);
161    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
162      ReplacedNodes[SDOperand(Old, i)] = SDOperand(New, i);
163  }
164
165private:
166  void AnalyzeNewNode(SDNode *&N);
167
168  void ReplaceValueWith(SDOperand From, SDOperand To);
169  void ReplaceNodeWith(SDNode *From, SDNode *To);
170
171  void RemapNode(SDOperand &N);
172  void ExpungeNode(SDNode *N);
173
174  // Common routines.
175  SDOperand CreateStackStoreLoad(SDOperand Op, MVT DestVT);
176  SDOperand MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
177                        const SDOperand *Ops, unsigned NumOps, bool isSigned);
178
179  SDOperand BitConvertToInteger(SDOperand Op);
180  SDOperand JoinIntegers(SDOperand Lo, SDOperand Hi);
181  void SplitInteger(SDOperand Op, SDOperand &Lo, SDOperand &Hi);
182  void SplitInteger(SDOperand Op, MVT LoVT, MVT HiVT,
183                    SDOperand &Lo, SDOperand &Hi);
184
185  SDOperand GetVectorElementPointer(SDOperand VecPtr, MVT EltVT,
186                                    SDOperand Index);
187
188  //===--------------------------------------------------------------------===//
189  // Integer Promotion Support: LegalizeIntegerTypes.cpp
190  //===--------------------------------------------------------------------===//
191
192  SDOperand GetPromotedInteger(SDOperand Op) {
193    SDOperand &PromotedOp = PromotedIntegers[Op];
194    RemapNode(PromotedOp);
195    assert(PromotedOp.Val && "Operand wasn't promoted?");
196    return PromotedOp;
197  }
198  void SetPromotedInteger(SDOperand Op, SDOperand Result);
199
200  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
201  /// final size.
202  SDOperand ZExtPromotedInteger(SDOperand Op) {
203    MVT OldVT = Op.getValueType();
204    Op = GetPromotedInteger(Op);
205    return DAG.getZeroExtendInReg(Op, OldVT);
206  }
207
208  // Integer Result Promotion.
209  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
210  SDOperand PromoteIntRes_BIT_CONVERT(SDNode *N);
211  SDOperand PromoteIntRes_BUILD_PAIR(SDNode *N);
212  SDOperand PromoteIntRes_Constant(SDNode *N);
213  SDOperand PromoteIntRes_CTLZ(SDNode *N);
214  SDOperand PromoteIntRes_CTPOP(SDNode *N);
215  SDOperand PromoteIntRes_CTTZ(SDNode *N);
216  SDOperand PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
217  SDOperand PromoteIntRes_FP_TO_XINT(SDNode *N);
218  SDOperand PromoteIntRes_INT_EXTEND(SDNode *N);
219  SDOperand PromoteIntRes_LOAD(LoadSDNode *N);
220  SDOperand PromoteIntRes_SDIV(SDNode *N);
221  SDOperand PromoteIntRes_SELECT   (SDNode *N);
222  SDOperand PromoteIntRes_SELECT_CC(SDNode *N);
223  SDOperand PromoteIntRes_SETCC(SDNode *N);
224  SDOperand PromoteIntRes_SHL(SDNode *N);
225  SDOperand PromoteIntRes_SimpleIntBinOp(SDNode *N);
226  SDOperand PromoteIntRes_SRA(SDNode *N);
227  SDOperand PromoteIntRes_SRL(SDNode *N);
228  SDOperand PromoteIntRes_TRUNCATE(SDNode *N);
229  SDOperand PromoteIntRes_UDIV(SDNode *N);
230  SDOperand PromoteIntRes_UNDEF(SDNode *N);
231  SDOperand PromoteIntRes_VAARG(SDNode *N);
232
233  // Integer Operand Promotion.
234  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
235  SDOperand PromoteIntOp_ANY_EXTEND(SDNode *N);
236  SDOperand PromoteIntOp_BUILD_PAIR(SDNode *N);
237  SDOperand PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
238  SDOperand PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
239  SDOperand PromoteIntOp_BUILD_VECTOR(SDNode *N);
240  SDOperand PromoteIntOp_FP_EXTEND(SDNode *N);
241  SDOperand PromoteIntOp_FP_ROUND(SDNode *N);
242  SDOperand PromoteIntOp_INT_TO_FP(SDNode *N);
243  SDOperand PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
244  SDOperand PromoteIntOp_MEMBARRIER(SDNode *N);
245  SDOperand PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
246  SDOperand PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
247  SDOperand PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
248  SDOperand PromoteIntOp_SIGN_EXTEND(SDNode *N);
249  SDOperand PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
250  SDOperand PromoteIntOp_TRUNCATE(SDNode *N);
251  SDOperand PromoteIntOp_ZERO_EXTEND(SDNode *N);
252
253  void PromoteSetCCOperands(SDOperand &LHS,SDOperand &RHS, ISD::CondCode Code);
254
255  //===--------------------------------------------------------------------===//
256  // Integer Expansion Support: LegalizeIntegerTypes.cpp
257  //===--------------------------------------------------------------------===//
258
259  void GetExpandedInteger(SDOperand Op, SDOperand &Lo, SDOperand &Hi);
260  void SetExpandedInteger(SDOperand Op, SDOperand Lo, SDOperand Hi);
261
262  // Integer Result Expansion.
263  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
264  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDOperand &Lo, SDOperand &Hi);
265  void ExpandIntRes_AssertZext        (SDNode *N, SDOperand &Lo, SDOperand &Hi);
266  void ExpandIntRes_Constant          (SDNode *N, SDOperand &Lo, SDOperand &Hi);
267  void ExpandIntRes_CTLZ              (SDNode *N, SDOperand &Lo, SDOperand &Hi);
268  void ExpandIntRes_CTPOP             (SDNode *N, SDOperand &Lo, SDOperand &Hi);
269  void ExpandIntRes_CTTZ              (SDNode *N, SDOperand &Lo, SDOperand &Hi);
270  void ExpandIntRes_LOAD          (LoadSDNode *N, SDOperand &Lo, SDOperand &Hi);
271  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDOperand &Lo, SDOperand &Hi);
272  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDOperand &Lo, SDOperand &Hi);
273  void ExpandIntRes_TRUNCATE          (SDNode *N, SDOperand &Lo, SDOperand &Hi);
274  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDOperand &Lo, SDOperand &Hi);
275  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDOperand &Lo, SDOperand &Hi);
276  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDOperand &Lo, SDOperand &Hi);
277
278  void ExpandIntRes_Logical           (SDNode *N, SDOperand &Lo, SDOperand &Hi);
279  void ExpandIntRes_ADDSUB            (SDNode *N, SDOperand &Lo, SDOperand &Hi);
280  void ExpandIntRes_ADDSUBC           (SDNode *N, SDOperand &Lo, SDOperand &Hi);
281  void ExpandIntRes_ADDSUBE           (SDNode *N, SDOperand &Lo, SDOperand &Hi);
282  void ExpandIntRes_BSWAP             (SDNode *N, SDOperand &Lo, SDOperand &Hi);
283  void ExpandIntRes_MUL               (SDNode *N, SDOperand &Lo, SDOperand &Hi);
284  void ExpandIntRes_SDIV              (SDNode *N, SDOperand &Lo, SDOperand &Hi);
285  void ExpandIntRes_SREM              (SDNode *N, SDOperand &Lo, SDOperand &Hi);
286  void ExpandIntRes_UDIV              (SDNode *N, SDOperand &Lo, SDOperand &Hi);
287  void ExpandIntRes_UREM              (SDNode *N, SDOperand &Lo, SDOperand &Hi);
288  void ExpandIntRes_Shift             (SDNode *N, SDOperand &Lo, SDOperand &Hi);
289
290  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
291                             SDOperand &Lo, SDOperand &Hi);
292  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDOperand &Lo, SDOperand &Hi);
293
294  // Integer Operand Expansion.
295  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
296  SDOperand ExpandIntOp_BIT_CONVERT(SDNode *N);
297  SDOperand ExpandIntOp_BR_CC(SDNode *N);
298  SDOperand ExpandIntOp_BUILD_VECTOR(SDNode *N);
299  SDOperand ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
300  SDOperand ExpandIntOp_SELECT_CC(SDNode *N);
301  SDOperand ExpandIntOp_SETCC(SDNode *N);
302  SDOperand ExpandIntOp_SINT_TO_FP(SDNode *N);
303  SDOperand ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
304  SDOperand ExpandIntOp_TRUNCATE(SDNode *N);
305  SDOperand ExpandIntOp_UINT_TO_FP(SDNode *N);
306
307  void IntegerExpandSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS,
308                                  ISD::CondCode &CCCode);
309
310  //===--------------------------------------------------------------------===//
311  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
312  //===--------------------------------------------------------------------===//
313
314  SDOperand GetSoftenedFloat(SDOperand Op) {
315    SDOperand &SoftenedOp = SoftenedFloats[Op];
316    RemapNode(SoftenedOp);
317    assert(SoftenedOp.Val && "Operand wasn't converted to integer?");
318    return SoftenedOp;
319  }
320  void SetSoftenedFloat(SDOperand Op, SDOperand Result);
321
322  // Result Float to Integer Conversion.
323  void SoftenFloatResult(SDNode *N, unsigned OpNo);
324  SDOperand SoftenFloatRes_BIT_CONVERT(SDNode *N);
325  SDOperand SoftenFloatRes_BUILD_PAIR(SDNode *N);
326  SDOperand SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
327  SDOperand SoftenFloatRes_FADD(SDNode *N);
328  SDOperand SoftenFloatRes_FCOPYSIGN(SDNode *N);
329  SDOperand SoftenFloatRes_FMUL(SDNode *N);
330  SDOperand SoftenFloatRes_FP_EXTEND(SDNode *N);
331  SDOperand SoftenFloatRes_FP_ROUND(SDNode *N);
332  SDOperand SoftenFloatRes_FPOWI(SDNode *N);
333  SDOperand SoftenFloatRes_FSUB(SDNode *N);
334  SDOperand SoftenFloatRes_LOAD(SDNode *N);
335  SDOperand SoftenFloatRes_SELECT(SDNode *N);
336  SDOperand SoftenFloatRes_SELECT_CC(SDNode *N);
337  SDOperand SoftenFloatRes_SINT_TO_FP(SDNode *N);
338  SDOperand SoftenFloatRes_UINT_TO_FP(SDNode *N);
339
340  // Operand Float to Integer Conversion.
341  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
342  SDOperand SoftenFloatOp_BIT_CONVERT(SDNode *N);
343  SDOperand SoftenFloatOp_BR_CC(SDNode *N);
344  SDOperand SoftenFloatOp_FP_TO_SINT(SDNode *N);
345  SDOperand SoftenFloatOp_FP_TO_UINT(SDNode *N);
346  SDOperand SoftenFloatOp_SELECT_CC(SDNode *N);
347  SDOperand SoftenFloatOp_SETCC(SDNode *N);
348  SDOperand SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
349
350  void SoftenSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS,
351                           ISD::CondCode &CCCode);
352
353  //===--------------------------------------------------------------------===//
354  // Float Expansion Support: LegalizeFloatTypes.cpp
355  //===--------------------------------------------------------------------===//
356
357  void GetExpandedFloat(SDOperand Op, SDOperand &Lo, SDOperand &Hi);
358  void SetExpandedFloat(SDOperand Op, SDOperand Lo, SDOperand Hi);
359
360  // Float Result Expansion.
361  void ExpandFloatResult(SDNode *N, unsigned ResNo);
362  void ExpandFloatRes_ConstantFP(SDNode *N, SDOperand &Lo, SDOperand &Hi);
363  void ExpandFloatRes_FADD      (SDNode *N, SDOperand &Lo, SDOperand &Hi);
364  void ExpandFloatRes_FDIV      (SDNode *N, SDOperand &Lo, SDOperand &Hi);
365  void ExpandFloatRes_FMUL      (SDNode *N, SDOperand &Lo, SDOperand &Hi);
366  void ExpandFloatRes_FSUB      (SDNode *N, SDOperand &Lo, SDOperand &Hi);
367  void ExpandFloatRes_LOAD      (SDNode *N, SDOperand &Lo, SDOperand &Hi);
368  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDOperand &Lo, SDOperand &Hi);
369
370  // Float Operand Expansion.
371  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
372  SDOperand ExpandFloatOp_BR_CC(SDNode *N);
373  SDOperand ExpandFloatOp_FP_ROUND(SDNode *N);
374  SDOperand ExpandFloatOp_FP_TO_SINT(SDNode *N);
375  SDOperand ExpandFloatOp_FP_TO_UINT(SDNode *N);
376  SDOperand ExpandFloatOp_SELECT_CC(SDNode *N);
377  SDOperand ExpandFloatOp_SETCC(SDNode *N);
378  SDOperand ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
379
380  void FloatExpandSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS,
381                                ISD::CondCode &CCCode);
382
383  //===--------------------------------------------------------------------===//
384  // Scalarization Support: LegalizeVectorTypes.cpp
385  //===--------------------------------------------------------------------===//
386
387  SDOperand GetScalarizedVector(SDOperand Op) {
388    SDOperand &ScalarizedOp = ScalarizedVectors[Op];
389    RemapNode(ScalarizedOp);
390    assert(ScalarizedOp.Val && "Operand wasn't scalarized?");
391    return ScalarizedOp;
392  }
393  void SetScalarizedVector(SDOperand Op, SDOperand Result);
394
395  // Vector Result Scalarization: <1 x ty> -> ty.
396  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
397  SDOperand ScalarizeVecRes_BinOp(SDNode *N);
398  SDOperand ScalarizeVecRes_UnaryOp(SDNode *N);
399
400  SDOperand ScalarizeVecRes_BIT_CONVERT(SDNode *N);
401  SDOperand ScalarizeVecRes_FPOWI(SDNode *N);
402  SDOperand ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
403  SDOperand ScalarizeVecRes_LOAD(LoadSDNode *N);
404  SDOperand ScalarizeVecRes_SELECT(SDNode *N);
405  SDOperand ScalarizeVecRes_UNDEF(SDNode *N);
406  SDOperand ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
407
408  // Vector Operand Scalarization: <1 x ty> -> ty.
409  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
410  SDOperand ScalarizeVecOp_BIT_CONVERT(SDNode *N);
411  SDOperand ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
412  SDOperand ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
413
414  //===--------------------------------------------------------------------===//
415  // Vector Splitting Support: LegalizeVectorTypes.cpp
416  //===--------------------------------------------------------------------===//
417
418  void GetSplitVector(SDOperand Op, SDOperand &Lo, SDOperand &Hi);
419  void SetSplitVector(SDOperand Op, SDOperand Lo, SDOperand Hi);
420
421  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
422  void SplitVectorResult(SDNode *N, unsigned OpNo);
423
424  void SplitVecRes_UNDEF(SDNode *N, SDOperand &Lo, SDOperand &Hi);
425  void SplitVecRes_LOAD(LoadSDNode *N, SDOperand &Lo, SDOperand &Hi);
426  void SplitVecRes_BUILD_PAIR(SDNode *N, SDOperand &Lo, SDOperand &Hi);
427  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDOperand &Lo, SDOperand &Hi);
428  void SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDOperand &Lo, SDOperand &Hi);
429
430  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDOperand &Lo, SDOperand &Hi);
431  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDOperand &Lo, SDOperand &Hi);
432  void SplitVecRes_BIT_CONVERT(SDNode *N, SDOperand &Lo, SDOperand &Hi);
433  void SplitVecRes_UnOp(SDNode *N, SDOperand &Lo, SDOperand &Hi);
434  void SplitVecRes_BinOp(SDNode *N, SDOperand &Lo, SDOperand &Hi);
435  void SplitVecRes_FPOWI(SDNode *N, SDOperand &Lo, SDOperand &Hi);
436
437  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
438  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
439
440  SDOperand SplitVecOp_BIT_CONVERT(SDNode *N);
441  SDOperand SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
442  SDOperand SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
443  SDOperand SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
444  SDOperand SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo);
445
446  //===--------------------------------------------------------------------===//
447  // Generic Splitting: LegalizeTypesGeneric.cpp
448  //===--------------------------------------------------------------------===//
449
450  // Legalization methods which only use that the illegal type is split into two
451  // not necessarily identical types.  As such they can be used for splitting
452  // vectors and expanding integers and floats.
453
454  void GetSplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) {
455    if (Op.getValueType().isVector())
456      GetSplitVector(Op, Lo, Hi);
457    else if (Op.getValueType().isInteger())
458      GetExpandedInteger(Op, Lo, Hi);
459    else
460      GetExpandedFloat(Op, Lo, Hi);
461  }
462
463  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
464  /// which is split (or expanded) into two not necessarily identical pieces.
465  void GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT);
466
467  // Generic Result Splitting.
468  void SplitRes_MERGE_VALUES(SDNode *N, SDOperand &Lo, SDOperand &Hi);
469  void SplitRes_SELECT      (SDNode *N, SDOperand &Lo, SDOperand &Hi);
470  void SplitRes_SELECT_CC   (SDNode *N, SDOperand &Lo, SDOperand &Hi);
471  void SplitRes_UNDEF       (SDNode *N, SDOperand &Lo, SDOperand &Hi);
472
473  //===--------------------------------------------------------------------===//
474  // Generic Expansion: LegalizeTypesGeneric.cpp
475  //===--------------------------------------------------------------------===//
476
477  // Legalization methods which only use that the illegal type is split into two
478  // identical types of half the size, and that the Lo/Hi part is stored first
479  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
480  // such they can be used for expanding integers and floats.
481
482  void GetExpandedOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) {
483    if (Op.getValueType().isInteger())
484      GetExpandedInteger(Op, Lo, Hi);
485    else
486      GetExpandedFloat(Op, Lo, Hi);
487  }
488
489  // Generic Result Expansion.
490  void ExpandRes_BIT_CONVERT       (SDNode *N, SDOperand &Lo, SDOperand &Hi);
491  void ExpandRes_BUILD_PAIR        (SDNode *N, SDOperand &Lo, SDOperand &Hi);
492  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDOperand &Lo, SDOperand &Hi);
493  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDOperand &Lo, SDOperand &Hi);
494  void ExpandRes_NormalLoad        (SDNode *N, SDOperand &Lo, SDOperand &Hi);
495
496  // Generic Operand Expansion.
497  SDOperand ExpandOp_BIT_CONVERT    (SDNode *N);
498  SDOperand ExpandOp_BUILD_VECTOR   (SDNode *N);
499  SDOperand ExpandOp_EXTRACT_ELEMENT(SDNode *N);
500  SDOperand ExpandOp_NormalStore    (SDNode *N, unsigned OpNo);
501
502};
503
504} // end namespace llvm.
505
506#endif
507