LegalizeTypes.h revision b01fb4d9793bb62e48ca0d91be0c181fd3dd69b4
1//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#define DEBUG_TYPE "legalize-types"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/DenseSet.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26
27namespace llvm {
28
29//===----------------------------------------------------------------------===//
30/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31/// on it until only value types the target machine can handle are left.  This
32/// involves promoting small sizes to large sizes or splitting up large values
33/// into small values.
34///
35class VISIBILITY_HIDDEN DAGTypeLegalizer {
36  TargetLowering &TLI;
37  SelectionDAG &DAG;
38public:
39  // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40  // about the state of the node.  The enum has all the values.
41  enum NodeIdFlags {
42    /// ReadyToProcess - All operands have been processed, so this node is ready
43    /// to be handled.
44    ReadyToProcess = 0,
45
46    /// NewNode - This is a new node, not before seen, that was created in the
47    /// process of legalizing some other node.
48    NewNode = -1,
49
50    /// Unanalyzed - This node's ID needs to be set to the number of its
51    /// unprocessed operands.
52    Unanalyzed = -2,
53
54    /// Processed - This is a node that has already been processed.
55    Processed = -3
56
57    // 1+ - This is a node which has this many unprocessed operands.
58  };
59private:
60  enum LegalizeAction {
61    Legal,           // The target natively supports this type.
62    PromoteInteger,  // Replace this integer type with a larger one.
63    ExpandInteger,   // Split this integer type into two of half the size.
64    SoftenFloat,     // Convert this float type to a same size integer type.
65    ExpandFloat,     // Split this float type into two of half the size.
66    ScalarizeVector, // Replace this one-element vector with its element type.
67    SplitVector,     // This vector type should be split into smaller vectors.
68    WidenVector      // This vector type should be widened into a larger vector.
69  };
70
71  /// ValueTypeActions - This is a bitvector that contains two bits for each
72  /// simple value type, where the two bits correspond to the LegalizeAction
73  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
74  TargetLowering::ValueTypeActionImpl ValueTypeActions;
75
76  /// getTypeAction - Return how we should legalize values of this type.
77  LegalizeAction getTypeAction(MVT VT) const {
78    switch (ValueTypeActions.getTypeAction(VT)) {
79    default:
80      assert(false && "Unknown legalize action!");
81    case TargetLowering::Legal:
82      return Legal;
83    case TargetLowering::Promote:
84      // Promote can mean
85      //   1) For integers, use a larger integer type (e.g. i8 -> i32).
86      //   2) For vectors, use a wider vector type (e.g. v3i32 -> v4i32).
87      if (!VT.isVector())
88        return PromoteInteger;
89      else
90        return WidenVector;
91    case TargetLowering::Expand:
92      // Expand can mean
93      // 1) split scalar in half, 2) convert a float to an integer,
94      // 3) scalarize a single-element vector, 4) split a vector in two.
95      if (!VT.isVector()) {
96        if (VT.isInteger())
97          return ExpandInteger;
98        else if (VT.getSizeInBits() ==
99                 TLI.getTypeToTransformTo(VT).getSizeInBits())
100          return SoftenFloat;
101        else
102          return ExpandFloat;
103      } else if (VT.getVectorNumElements() == 1) {
104        return ScalarizeVector;
105      } else {
106        return SplitVector;
107      }
108    }
109  }
110
111  /// isTypeLegal - Return true if this type is legal on this target.
112  bool isTypeLegal(MVT VT) const {
113    return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal;
114  }
115
116  /// IgnoreNodeResults - Pretend all of this node's results are legal.
117  /// FIXME: Remove once PR2957 is done.
118  bool IgnoreNodeResults(SDNode *N) const {
119    return N->getOpcode() == ISD::TargetConstant ||
120           IgnoredNodesResultsSet.count(N);
121  }
122
123  /// IgnoredNode - Set of nodes whose result don't need to be legal.
124  /// FIXME: Remove once PR2957 is done.
125  DenseSet<SDNode*> IgnoredNodesResultsSet;
126
127  /// PromotedIntegers - For integer nodes that are below legal width, this map
128  /// indicates what promoted value to use.
129  DenseMap<SDValue, SDValue> PromotedIntegers;
130
131  /// ExpandedIntegers - For integer nodes that need to be expanded this map
132  /// indicates which operands are the expanded version of the input.
133  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
134
135  /// SoftenedFloats - For floating point nodes converted to integers of
136  /// the same size, this map indicates the converted value to use.
137  DenseMap<SDValue, SDValue> SoftenedFloats;
138
139  /// ExpandedFloats - For float nodes that need to be expanded this map
140  /// indicates which operands are the expanded version of the input.
141  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
142
143  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
144  /// scalar value of type 'ty' to use.
145  DenseMap<SDValue, SDValue> ScalarizedVectors;
146
147  /// SplitVectors - For nodes that need to be split this map indicates
148  /// which operands are the expanded version of the input.
149  DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
150
151  /// WidenedVectors - For vector nodes that need to be widened, indicates
152  /// the widened value to use.
153  DenseMap<SDValue, SDValue> WidenedVectors;
154
155  /// ReplacedValues - For values that have been replaced with another,
156  /// indicates the replacement value to use.
157  DenseMap<SDValue, SDValue> ReplacedValues;
158
159  /// Worklist - This defines a worklist of nodes to process.  In order to be
160  /// pushed onto this worklist, all operands of a node must have already been
161  /// processed.
162  SmallVector<SDNode*, 128> Worklist;
163
164public:
165  explicit DAGTypeLegalizer(SelectionDAG &dag)
166    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
167    ValueTypeActions(TLI.getValueTypeActions()) {
168    assert(MVT::LAST_VALUETYPE <= 32 &&
169           "Too many value types for ValueTypeActions to hold!");
170  }
171
172  /// run - This is the main entry point for the type legalizer.  This does a
173  /// top-down traversal of the dag, legalizing types as it goes.  Returns
174  /// "true" if it made any changes.
175  bool run();
176
177  void NoteDeletion(SDNode *Old, SDNode *New) {
178    ExpungeNode(Old);
179    ExpungeNode(New);
180    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
181      ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
182  }
183
184private:
185  SDNode *AnalyzeNewNode(SDNode *N);
186  void AnalyzeNewValue(SDValue &Val);
187  void ExpungeNode(SDNode *N);
188  void PerformExpensiveChecks();
189  void RemapValue(SDValue &N);
190
191  // Common routines.
192  SDValue BitConvertToInteger(SDValue Op);
193  SDValue CreateStackStoreLoad(SDValue Op, MVT DestVT);
194  bool CustomLowerResults(SDNode *N, unsigned ResNo, bool LegalizeResult);
195  SDValue GetVectorElementPointer(SDValue VecPtr, MVT EltVT, SDValue Index);
196  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
197  SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
198  SDValue MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
199                      const SDValue *Ops, unsigned NumOps, bool isSigned);
200  SDValue PromoteTargetBoolean(SDValue Bool, MVT VT);
201  void ReplaceValueWith(SDValue From, SDValue To);
202  void SetIgnoredNodeResult(SDNode* N);
203  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
204  void SplitInteger(SDValue Op, MVT LoVT, MVT HiVT,
205                    SDValue &Lo, SDValue &Hi);
206
207  //===--------------------------------------------------------------------===//
208  // Integer Promotion Support: LegalizeIntegerTypes.cpp
209  //===--------------------------------------------------------------------===//
210
211  /// GetPromotedInteger - Given a processed operand Op which was promoted to a
212  /// larger integer type, this returns the promoted value.  The low bits of the
213  /// promoted value corresponding to the original type are exactly equal to Op.
214  /// The extra bits contain rubbish, so the promoted value may need to be zero-
215  /// or sign-extended from the original type before it is usable (the helpers
216  /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
217  /// For example, if Op is an i16 and was promoted to an i32, then this method
218  /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
219  /// 16 bits of which contain rubbish.
220  SDValue GetPromotedInteger(SDValue Op) {
221    SDValue &PromotedOp = PromotedIntegers[Op];
222    RemapValue(PromotedOp);
223    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
224    return PromotedOp;
225  }
226  void SetPromotedInteger(SDValue Op, SDValue Result);
227
228  /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
229  /// final size.
230  SDValue SExtPromotedInteger(SDValue Op) {
231    MVT OldVT = Op.getValueType();
232    Op = GetPromotedInteger(Op);
233    return DAG.getNode(ISD::SIGN_EXTEND_INREG, Op.getValueType(), Op,
234                       DAG.getValueType(OldVT));
235  }
236
237  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
238  /// final size.
239  SDValue ZExtPromotedInteger(SDValue Op) {
240    MVT OldVT = Op.getValueType();
241    Op = GetPromotedInteger(Op);
242    return DAG.getZeroExtendInReg(Op, OldVT);
243  }
244
245  // Integer Result Promotion.
246  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
247  SDValue PromoteIntRes_AssertSext(SDNode *N);
248  SDValue PromoteIntRes_AssertZext(SDNode *N);
249  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
250  SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
251  SDValue PromoteIntRes_BIT_CONVERT(SDNode *N);
252  SDValue PromoteIntRes_BSWAP(SDNode *N);
253  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
254  SDValue PromoteIntRes_Constant(SDNode *N);
255  SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
256  SDValue PromoteIntRes_CTLZ(SDNode *N);
257  SDValue PromoteIntRes_CTPOP(SDNode *N);
258  SDValue PromoteIntRes_CTTZ(SDNode *N);
259  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
260  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
261  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
262  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
263  SDValue PromoteIntRes_Overflow(SDNode *N);
264  SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
265  SDValue PromoteIntRes_SDIV(SDNode *N);
266  SDValue PromoteIntRes_SELECT(SDNode *N);
267  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
268  SDValue PromoteIntRes_SETCC(SDNode *N);
269  SDValue PromoteIntRes_SHL(SDNode *N);
270  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
271  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
272  SDValue PromoteIntRes_SRA(SDNode *N);
273  SDValue PromoteIntRes_SRL(SDNode *N);
274  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
275  SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
276  SDValue PromoteIntRes_UDIV(SDNode *N);
277  SDValue PromoteIntRes_UNDEF(SDNode *N);
278  SDValue PromoteIntRes_VAARG(SDNode *N);
279  SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
280
281  // Integer Operand Promotion.
282  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
283  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
284  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
285  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
286  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
287  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
288  SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
289  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
290  SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
291  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
292  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
293  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
294  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
295  SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
296  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
297  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
298  SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
299  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
300
301  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
302
303  //===--------------------------------------------------------------------===//
304  // Integer Expansion Support: LegalizeIntegerTypes.cpp
305  //===--------------------------------------------------------------------===//
306
307  /// GetExpandedInteger - Given a processed operand Op which was expanded into
308  /// two integers of half the size, this returns the two halves.  The low bits
309  /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
310  /// For example, if Op is an i64 which was expanded into two i32's, then this
311  /// method returns the two i32's, with Lo being equal to the lower 32 bits of
312  /// Op, and Hi being equal to the upper 32 bits.
313  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
314  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
315
316  // Integer Result Expansion.
317  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
318  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
319  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
320  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
321  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
322  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
323  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
324  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
325  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
326  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
327  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
328  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
329  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
330  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
331  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
332
333  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
334  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
335  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
336  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
337  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
338  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
339  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
340  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
341  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
342  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
343  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
344
345  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
346                             SDValue &Lo, SDValue &Hi);
347  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
348
349  // Integer Operand Expansion.
350  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
351  SDValue ExpandIntOp_BIT_CONVERT(SDNode *N);
352  SDValue ExpandIntOp_BR_CC(SDNode *N);
353  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
354  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
355  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
356  SDValue ExpandIntOp_SETCC(SDNode *N);
357  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
358  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
359  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
360  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
361
362  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
363                                  ISD::CondCode &CCCode);
364
365  //===--------------------------------------------------------------------===//
366  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
367  //===--------------------------------------------------------------------===//
368
369  /// GetSoftenedFloat - Given a processed operand Op which was converted to an
370  /// integer of the same size, this returns the integer.  The integer contains
371  /// exactly the same bits as Op - only the type changed.  For example, if Op
372  /// is an f32 which was softened to an i32, then this method returns an i32,
373  /// the bits of which coincide with those of Op.
374  SDValue GetSoftenedFloat(SDValue Op) {
375    SDValue &SoftenedOp = SoftenedFloats[Op];
376    RemapValue(SoftenedOp);
377    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
378    return SoftenedOp;
379  }
380  void SetSoftenedFloat(SDValue Op, SDValue Result);
381
382  // Result Float to Integer Conversion.
383  void SoftenFloatResult(SDNode *N, unsigned OpNo);
384  SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N);
385  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
386  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
387  SDValue SoftenFloatRes_FABS(SDNode *N);
388  SDValue SoftenFloatRes_FADD(SDNode *N);
389  SDValue SoftenFloatRes_FCEIL(SDNode *N);
390  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
391  SDValue SoftenFloatRes_FCOS(SDNode *N);
392  SDValue SoftenFloatRes_FDIV(SDNode *N);
393  SDValue SoftenFloatRes_FEXP(SDNode *N);
394  SDValue SoftenFloatRes_FEXP2(SDNode *N);
395  SDValue SoftenFloatRes_FFLOOR(SDNode *N);
396  SDValue SoftenFloatRes_FLOG(SDNode *N);
397  SDValue SoftenFloatRes_FLOG2(SDNode *N);
398  SDValue SoftenFloatRes_FLOG10(SDNode *N);
399  SDValue SoftenFloatRes_FMUL(SDNode *N);
400  SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
401  SDValue SoftenFloatRes_FNEG(SDNode *N);
402  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
403  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
404  SDValue SoftenFloatRes_FPOW(SDNode *N);
405  SDValue SoftenFloatRes_FPOWI(SDNode *N);
406  SDValue SoftenFloatRes_FRINT(SDNode *N);
407  SDValue SoftenFloatRes_FSIN(SDNode *N);
408  SDValue SoftenFloatRes_FSQRT(SDNode *N);
409  SDValue SoftenFloatRes_FSUB(SDNode *N);
410  SDValue SoftenFloatRes_FTRUNC(SDNode *N);
411  SDValue SoftenFloatRes_LOAD(SDNode *N);
412  SDValue SoftenFloatRes_SELECT(SDNode *N);
413  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
414  SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
415
416  // Operand Float to Integer Conversion.
417  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
418  SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N);
419  SDValue SoftenFloatOp_BR_CC(SDNode *N);
420  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
421  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
422  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
423  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
424  SDValue SoftenFloatOp_SETCC(SDNode *N);
425  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
426
427  void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
428                           ISD::CondCode &CCCode);
429
430  //===--------------------------------------------------------------------===//
431  // Float Expansion Support: LegalizeFloatTypes.cpp
432  //===--------------------------------------------------------------------===//
433
434  /// GetExpandedFloat - Given a processed operand Op which was expanded into
435  /// two floating point values of half the size, this returns the two halves.
436  /// The low bits of Op are exactly equal to the bits of Lo; the high bits
437  /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
438  /// into two f64's, then this method returns the two f64's, with Lo being
439  /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
440  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
441  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
442
443  // Float Result Expansion.
444  void ExpandFloatResult(SDNode *N, unsigned ResNo);
445  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
446  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
447  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
448  void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
449  void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
450  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
451  void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
452  void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
453  void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
454  void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
455  void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
456  void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
457  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
458  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
459  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
460  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
461  void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
462  void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
463  void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
464  void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
465  void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
466  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
467  void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
468  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
469  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
470
471  // Float Operand Expansion.
472  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
473  SDValue ExpandFloatOp_BR_CC(SDNode *N);
474  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
475  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
476  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
477  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
478  SDValue ExpandFloatOp_SETCC(SDNode *N);
479  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
480
481  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
482                                ISD::CondCode &CCCode);
483
484  //===--------------------------------------------------------------------===//
485  // Scalarization Support: LegalizeVectorTypes.cpp
486  //===--------------------------------------------------------------------===//
487
488  /// GetScalarizedVector - Given a processed one-element vector Op which was
489  /// scalarized to its element type, this returns the element.  For example,
490  /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
491  SDValue GetScalarizedVector(SDValue Op) {
492    SDValue &ScalarizedOp = ScalarizedVectors[Op];
493    RemapValue(ScalarizedOp);
494    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
495    return ScalarizedOp;
496  }
497  void SetScalarizedVector(SDValue Op, SDValue Result);
498
499  // Vector Result Scalarization: <1 x ty> -> ty.
500  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
501  SDValue ScalarizeVecRes_BinOp(SDNode *N);
502  SDValue ScalarizeVecRes_ShiftOp(SDNode *N);
503  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
504
505  SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
506  SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
507  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
508  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
509  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
510  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
511  SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
512  SDValue ScalarizeVecRes_SELECT(SDNode *N);
513  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
514  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
515  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
516  SDValue ScalarizeVecRes_VSETCC(SDNode *N);
517
518  // Vector Operand Scalarization: <1 x ty> -> ty.
519  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
520  SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N);
521  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
522  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
523  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
524
525  //===--------------------------------------------------------------------===//
526  // Vector Splitting Support: LegalizeVectorTypes.cpp
527  //===--------------------------------------------------------------------===//
528
529  /// GetSplitVector - Given a processed vector Op which was split into smaller
530  /// vectors, this method returns the smaller vectors.  The first elements of
531  /// Op coincide with the elements of Lo; the remaining elements of Op coincide
532  /// with the elements of Hi: Op is what you would get by concatenating Lo and
533  /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
534  /// this method returns the two v4i32's, with Lo corresponding to the first 4
535  /// elements of Op, and Hi to the last 4 elements.
536  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
537  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
538
539  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
540  void SplitVectorResult(SDNode *N, unsigned OpNo);
541  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
542  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
543
544  void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
545  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
546  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
547  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
548  void SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo, SDValue &Hi);
549  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
550  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
551  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
552  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
553  void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
554  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
555  void SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo, SDValue &Hi);
556  void SplitVecRes_VSETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
557
558  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
559  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
560  SDValue SplitVecOp_UnaryOp(SDNode *N);
561
562  SDValue SplitVecOp_BIT_CONVERT(SDNode *N);
563  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
564  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
565  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
566  SDValue SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo);
567
568  //===--------------------------------------------------------------------===//
569  // Vector Widening Support: LegalizeVectorTypes.cpp
570  //===--------------------------------------------------------------------===//
571
572  /// GetWidenedVector - Given a processed vector Op which was widened into a
573  /// larger vector, this method returns the larger vector.  The elements of
574  /// the returned vector consist of the elements of Op followed by elements
575  /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
576  /// v4i32, then this method returns a v4i32 for which the first two elements
577  /// are the same as those of Op, while the last two elements contain rubbish.
578  SDValue GetWidenedVector(SDValue Op) {
579    SDValue &WidenedOp = WidenedVectors[Op];
580    RemapValue(WidenedOp);
581    assert(WidenedOp.getNode() && "Operand wasn't widened?");
582    return WidenedOp;
583  }
584  void SetWidenedVector(SDValue Op, SDValue Result);
585
586  // Widen Vector Result Promotion.
587  void WidenVectorResult(SDNode *N, unsigned ResNo);
588  SDValue WidenVecRes_BIT_CONVERT(SDNode* N);
589  SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
590  SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
591  SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
592  SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
593  SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
594  SDValue WidenVecRes_LOAD(SDNode* N);
595  SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
596  SDValue WidenVecRes_SELECT(SDNode* N);
597  SDValue WidenVecRes_SELECT_CC(SDNode* N);
598  SDValue WidenVecRes_UNDEF(SDNode *N);
599  SDValue WidenVecRes_VECTOR_SHUFFLE(SDNode *N);
600  SDValue WidenVecRes_VSETCC(SDNode* N);
601
602  SDValue WidenVecRes_Binary(SDNode *N);
603  SDValue WidenVecRes_Convert(SDNode *N);
604  SDValue WidenVecRes_Shift(SDNode *N);
605  SDValue WidenVecRes_Unary(SDNode *N);
606
607  // Widen Vector Operand.
608  bool WidenVectorOperand(SDNode *N, unsigned ResNo);
609  SDValue WidenVecOp_BIT_CONVERT(SDNode *N);
610  SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
611  SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
612  SDValue WidenVecOp_STORE(SDNode* N);
613
614  SDValue WidenVecOp_Convert(SDNode *N);
615
616  //===--------------------------------------------------------------------===//
617  // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
618  //===--------------------------------------------------------------------===//
619
620  /// Helper genWidenVectorLoads - Helper function to generate a set of
621  /// loads to load a vector with a resulting wider type. It takes
622  ///   ExtType: Extension type
623  ///   LdChain: list of chains for the load we have generated.
624  ///   Chain:   incoming chain for the ld vector.
625  ///   BasePtr: base pointer to load from.
626  ///   SV:         memory disambiguation source value.
627  ///   SVOffset:   memory disambiugation offset.
628  ///   Alignment:  alignment of the memory.
629  ///   isVolatile: volatile load.
630  ///   LdWidth:    width of memory that we want to load.
631  ///   ResType:    the wider result result type for the resulting vector.
632  SDValue GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain, SDValue Chain,
633                              SDValue BasePtr, const Value *SV,
634                              int SVOffset, unsigned Alignment,
635                              bool isVolatile, unsigned LdWidth,
636                              MVT ResType);
637
638  /// Helper genWidenVectorStores - Helper function to generate a set of
639  /// stores to store a widen vector into non widen memory
640  /// It takes
641  ///   StChain: list of chains for the stores we have generated
642  ///   Chain:   incoming chain for the ld vector
643  ///   BasePtr: base pointer to load from
644  ///   SV:      memory disambiguation source value
645  ///   SVOffset:   memory disambiugation offset
646  ///   Alignment:  alignment of the memory
647  ///   isVolatile: volatile lod
648  ///   ValOp:   value to store
649  ///   StWidth: width of memory that we want to store
650  void GenWidenVectorStores(SmallVector<SDValue, 16>& StChain, SDValue Chain,
651                            SDValue BasePtr, const Value *SV,
652                            int SVOffset, unsigned Alignment,
653                            bool isVolatile, SDValue ValOp,
654                            unsigned StWidth);
655
656  /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
657  /// input vector must have the same element type as NVT.
658  SDValue ModifyToType(SDValue InOp, MVT WidenVT);
659
660
661  //===--------------------------------------------------------------------===//
662  // Generic Splitting: LegalizeTypesGeneric.cpp
663  //===--------------------------------------------------------------------===//
664
665  // Legalization methods which only use that the illegal type is split into two
666  // not necessarily identical types.  As such they can be used for splitting
667  // vectors and expanding integers and floats.
668
669  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
670    if (Op.getValueType().isVector())
671      GetSplitVector(Op, Lo, Hi);
672    else if (Op.getValueType().isInteger())
673      GetExpandedInteger(Op, Lo, Hi);
674    else
675      GetExpandedFloat(Op, Lo, Hi);
676  }
677
678  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
679  /// which is split (or expanded) into two not necessarily identical pieces.
680  void GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT);
681
682  // Generic Result Splitting.
683  void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
684  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
685  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
686  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
687
688  //===--------------------------------------------------------------------===//
689  // Generic Expansion: LegalizeTypesGeneric.cpp
690  //===--------------------------------------------------------------------===//
691
692  // Legalization methods which only use that the illegal type is split into two
693  // identical types of half the size, and that the Lo/Hi part is stored first
694  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
695  // such they can be used for expanding integers and floats.
696
697  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
698    if (Op.getValueType().isInteger())
699      GetExpandedInteger(Op, Lo, Hi);
700    else
701      GetExpandedFloat(Op, Lo, Hi);
702  }
703
704  // Generic Result Expansion.
705  void ExpandRes_BIT_CONVERT       (SDNode *N, SDValue &Lo, SDValue &Hi);
706  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
707  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
708  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
709  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
710  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
711
712  // Generic Operand Expansion.
713  SDValue ExpandOp_BIT_CONVERT      (SDNode *N);
714  SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
715  SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
716  SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
717  SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
718  SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
719};
720
721} // end namespace llvm.
722
723#endif
724