LegalizeTypes.h revision bff5d9cff3bbbb98a757451a8890ae71f189e82b
1//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#define DEBUG_TYPE "legalize-types"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25
26namespace llvm {
27
28//===----------------------------------------------------------------------===//
29/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
30/// on it until only value types the target machine can handle are left.  This
31/// involves promoting small sizes to large sizes or splitting up large values
32/// into small values.
33///
34class VISIBILITY_HIDDEN DAGTypeLegalizer {
35  TargetLowering &TLI;
36  SelectionDAG &DAG;
37public:
38  // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
39  // about the state of the node.  The enum has all the values.
40  enum NodeIdFlags {
41    /// ReadyToProcess - All operands have been processed, so this node is ready
42    /// to be handled.
43    ReadyToProcess = 0,
44
45    /// NewNode - This is a new node that was created in the process of
46    /// legalizing some other node.
47    NewNode = -1,
48
49    /// Processed - This is a node that has already been processed.
50    Processed = -2
51
52    // 1+ - This is a node which has this many unlegalized operands.
53  };
54private:
55  enum LegalizeAction {
56    Legal,           // The target natively supports this type.
57    PromoteInteger,  // Replace this integer type with a larger one.
58    ExpandInteger,   // Split this integer type into two of half the size.
59    SoftenFloat,     // Convert this float type to a same size integer type.
60    ExpandFloat,     // Split this float type into two of half the size.
61    ScalarizeVector, // Replace this one-element vector with its element type.
62    SplitVector      // This vector type should be split into smaller vectors.
63  };
64
65  /// ValueTypeActions - This is a bitvector that contains two bits for each
66  /// simple value type, where the two bits correspond to the LegalizeAction
67  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
68  TargetLowering::ValueTypeActionImpl ValueTypeActions;
69
70  /// getTypeAction - Return how we should legalize values of this type, either
71  /// it is already legal, or we need to promote it to a larger integer type, or
72  /// we need to expand it into multiple registers of a smaller integer type, or
73  /// we need to split a vector type into smaller vector types, or we need to
74  /// convert it to a different type of the same size.
75  LegalizeAction getTypeAction(MVT VT) const {
76    switch (ValueTypeActions.getTypeAction(VT)) {
77    default:
78      assert(false && "Unknown legalize action!");
79    case TargetLowering::Legal:
80      return Legal;
81    case TargetLowering::Promote:
82      // Promote can mean
83      //   1) For integers, use a larger integer type (e.g. i8 -> i32).
84      //   2) For vectors, use a wider vector type (e.g. v3i32 -> v4i32).
85      if (!VT.isVector())
86        return PromoteInteger;
87      else if (VT.getVectorNumElements() == 1)
88        return ScalarizeVector;
89      else
90        // TODO: move widen code to LegalizeTypes.
91        return SplitVector;
92    case TargetLowering::Expand:
93      // Expand can mean
94      // 1) split scalar in half, 2) convert a float to an integer,
95      // 3) scalarize a single-element vector, 4) split a vector in two.
96      if (!VT.isVector()) {
97        if (VT.isInteger())
98          return ExpandInteger;
99        else if (VT.getSizeInBits() ==
100                 TLI.getTypeToTransformTo(VT).getSizeInBits())
101          return SoftenFloat;
102        else
103          return ExpandFloat;
104      } else if (VT.getVectorNumElements() == 1) {
105        return ScalarizeVector;
106      } else {
107        return SplitVector;
108      }
109    }
110  }
111
112  /// isTypeLegal - Return true if this type is legal on this target.
113  bool isTypeLegal(MVT VT) const {
114    return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal;
115  }
116
117  /// IgnoreNodeResults - Pretend all of this node's results are legal.
118  bool IgnoreNodeResults(SDNode *N) const {
119    return N->getOpcode() == ISD::TargetConstant;
120  }
121
122  /// PromotedIntegers - For integer nodes that are below legal width, this map
123  /// indicates what promoted value to use.
124  DenseMap<SDValue, SDValue> PromotedIntegers;
125
126  /// ExpandedIntegers - For integer nodes that need to be expanded this map
127  /// indicates which operands are the expanded version of the input.
128  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
129
130  /// SoftenedFloats - For floating point nodes converted to integers of
131  /// the same size, this map indicates the converted value to use.
132  DenseMap<SDValue, SDValue> SoftenedFloats;
133
134  /// ExpandedFloats - For float nodes that need to be expanded this map
135  /// indicates which operands are the expanded version of the input.
136  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
137
138  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
139  /// scalar value of type 'ty' to use.
140  DenseMap<SDValue, SDValue> ScalarizedVectors;
141
142  /// SplitVectors - For nodes that need to be split this map indicates
143  /// which operands are the expanded version of the input.
144  DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
145
146  /// ReplacedValues - For values that have been replaced with another,
147  /// indicates the replacement value to use.
148  DenseMap<SDValue, SDValue> ReplacedValues;
149
150  /// Worklist - This defines a worklist of nodes to process.  In order to be
151  /// pushed onto this worklist, all operands of a node must have already been
152  /// processed.
153  SmallVector<SDNode*, 128> Worklist;
154
155public:
156  explicit DAGTypeLegalizer(SelectionDAG &dag)
157    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
158    ValueTypeActions(TLI.getValueTypeActions()) {
159    assert(MVT::LAST_VALUETYPE <= 32 &&
160           "Too many value types for ValueTypeActions to hold!");
161  }
162
163  void run();
164
165  /// ReanalyzeNode - Recompute the NodeId and correct processed operands
166  /// for the specified node, adding it to the worklist if ready.
167  void ReanalyzeNode(SDNode *N) {
168    N->setNodeId(NewNode);
169    AnalyzeNewNode(N);
170    // The node may have changed but we don't care.
171  }
172
173  void NoteDeletion(SDNode *Old, SDNode *New) {
174    ExpungeNode(Old);
175    ExpungeNode(New);
176    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
177      ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
178  }
179
180private:
181  SDNode *AnalyzeNewNode(SDNode *N);
182  void AnalyzeNewValue(SDValue &Val);
183
184  void ReplaceValueWith(SDValue From, SDValue To);
185  void ReplaceNodeWith(SDNode *From, SDNode *To);
186
187  void RemapValue(SDValue &N);
188  void ExpungeNode(SDNode *N);
189
190  // Common routines.
191  SDValue CreateStackStoreLoad(SDValue Op, MVT DestVT);
192  SDValue MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
193                      const SDValue *Ops, unsigned NumOps, bool isSigned);
194  SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
195
196  SDValue BitConvertToInteger(SDValue Op);
197  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
198  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
199  void SplitInteger(SDValue Op, MVT LoVT, MVT HiVT,
200                    SDValue &Lo, SDValue &Hi);
201
202  SDValue GetVectorElementPointer(SDValue VecPtr, MVT EltVT, SDValue Index);
203
204  //===--------------------------------------------------------------------===//
205  // Integer Promotion Support: LegalizeIntegerTypes.cpp
206  //===--------------------------------------------------------------------===//
207
208  SDValue GetPromotedInteger(SDValue Op) {
209    SDValue &PromotedOp = PromotedIntegers[Op];
210    RemapValue(PromotedOp);
211    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
212    return PromotedOp;
213  }
214  void SetPromotedInteger(SDValue Op, SDValue Result);
215
216  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
217  /// final size.
218  SDValue ZExtPromotedInteger(SDValue Op) {
219    MVT OldVT = Op.getValueType();
220    Op = GetPromotedInteger(Op);
221    return DAG.getZeroExtendInReg(Op, OldVT);
222  }
223
224  // Integer Result Promotion.
225  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
226  SDValue PromoteIntRes_AssertSext(SDNode *N);
227  SDValue PromoteIntRes_AssertZext(SDNode *N);
228  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
229  SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
230  SDValue PromoteIntRes_BIT_CONVERT(SDNode *N);
231  SDValue PromoteIntRes_BSWAP(SDNode *N);
232  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
233  SDValue PromoteIntRes_Constant(SDNode *N);
234  SDValue PromoteIntRes_CTLZ(SDNode *N);
235  SDValue PromoteIntRes_CTPOP(SDNode *N);
236  SDValue PromoteIntRes_CTTZ(SDNode *N);
237  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
238  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
239  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
240  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
241  SDValue PromoteIntRes_SDIV(SDNode *N);
242  SDValue PromoteIntRes_SELECT   (SDNode *N);
243  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
244  SDValue PromoteIntRes_SETCC(SDNode *N);
245  SDValue PromoteIntRes_SHL(SDNode *N);
246  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
247  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
248  SDValue PromoteIntRes_SRA(SDNode *N);
249  SDValue PromoteIntRes_SRL(SDNode *N);
250  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
251  SDValue PromoteIntRes_UDIV(SDNode *N);
252  SDValue PromoteIntRes_UNDEF(SDNode *N);
253  SDValue PromoteIntRes_VAARG(SDNode *N);
254
255  // Integer Operand Promotion.
256  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
257  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
258  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
259  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
260  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
261  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
262  SDValue PromoteIntOp_FP_EXTEND(SDNode *N);
263  SDValue PromoteIntOp_FP_ROUND(SDNode *N);
264  SDValue PromoteIntOp_INT_TO_FP(SDNode *N);
265  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
266  SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
267  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
268  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
269  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
270  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
271  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
272  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
273  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
274
275  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
276
277  //===--------------------------------------------------------------------===//
278  // Integer Expansion Support: LegalizeIntegerTypes.cpp
279  //===--------------------------------------------------------------------===//
280
281  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
282  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
283
284  // Integer Result Expansion.
285  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
286  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
287  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
288  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
289  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
290  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
291  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
292  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
293  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
294  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
295  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
296  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
297  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
298  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
299  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
300
301  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
302  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
303  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
304  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
305  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
306  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
307  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
308  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
309  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
310  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
311  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
312
313  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
314                             SDValue &Lo, SDValue &Hi);
315  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
316
317  // Integer Operand Expansion.
318  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
319  SDValue ExpandIntOp_BIT_CONVERT(SDNode *N);
320  SDValue ExpandIntOp_BR_CC(SDNode *N);
321  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
322  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
323  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
324  SDValue ExpandIntOp_SETCC(SDNode *N);
325  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
326  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
327  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
328  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
329
330  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
331                                  ISD::CondCode &CCCode);
332
333  //===--------------------------------------------------------------------===//
334  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
335  //===--------------------------------------------------------------------===//
336
337  SDValue GetSoftenedFloat(SDValue Op) {
338    SDValue &SoftenedOp = SoftenedFloats[Op];
339    RemapValue(SoftenedOp);
340    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
341    return SoftenedOp;
342  }
343  void SetSoftenedFloat(SDValue Op, SDValue Result);
344
345  // Result Float to Integer Conversion.
346  void SoftenFloatResult(SDNode *N, unsigned OpNo);
347  SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N);
348  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
349  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
350  SDValue SoftenFloatRes_FABS(SDNode *N);
351  SDValue SoftenFloatRes_FADD(SDNode *N);
352  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
353  SDValue SoftenFloatRes_FDIV(SDNode *N);
354  SDValue SoftenFloatRes_FMUL(SDNode *N);
355  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
356  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
357  SDValue SoftenFloatRes_FPOW(SDNode *N);
358  SDValue SoftenFloatRes_FPOWI(SDNode *N);
359  SDValue SoftenFloatRes_FSUB(SDNode *N);
360  SDValue SoftenFloatRes_LOAD(SDNode *N);
361  SDValue SoftenFloatRes_SELECT(SDNode *N);
362  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
363  SDValue SoftenFloatRes_SINT_TO_FP(SDNode *N);
364  SDValue SoftenFloatRes_UINT_TO_FP(SDNode *N);
365
366  // Operand Float to Integer Conversion.
367  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
368  SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N);
369  SDValue SoftenFloatOp_BR_CC(SDNode *N);
370  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
371  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
372  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
373  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
374  SDValue SoftenFloatOp_SETCC(SDNode *N);
375  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
376
377  void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
378                           ISD::CondCode &CCCode);
379
380  //===--------------------------------------------------------------------===//
381  // Float Expansion Support: LegalizeFloatTypes.cpp
382  //===--------------------------------------------------------------------===//
383
384  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
385  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
386
387  // Float Result Expansion.
388  void ExpandFloatResult(SDNode *N, unsigned ResNo);
389  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
390  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
391  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
392  void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
393  void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
394  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
395  void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
396  void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
397  void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
398  void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
399  void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
400  void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
401  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
402  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
403  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
404  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
405  void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
406  void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
407  void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
408  void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
409  void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
410  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
411  void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
412  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
413  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
414
415  // Float Operand Expansion.
416  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
417  SDValue ExpandFloatOp_BR_CC(SDNode *N);
418  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
419  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
420  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
421  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
422  SDValue ExpandFloatOp_SETCC(SDNode *N);
423  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
424
425  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
426                                ISD::CondCode &CCCode);
427
428  //===--------------------------------------------------------------------===//
429  // Scalarization Support: LegalizeVectorTypes.cpp
430  //===--------------------------------------------------------------------===//
431
432  SDValue GetScalarizedVector(SDValue Op) {
433    SDValue &ScalarizedOp = ScalarizedVectors[Op];
434    RemapValue(ScalarizedOp);
435    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
436    return ScalarizedOp;
437  }
438  void SetScalarizedVector(SDValue Op, SDValue Result);
439
440  // Vector Result Scalarization: <1 x ty> -> ty.
441  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
442  SDValue ScalarizeVecRes_BinOp(SDNode *N);
443  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
444
445  SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
446  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
447  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
448  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
449  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
450  SDValue ScalarizeVecRes_SELECT(SDNode *N);
451  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
452  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
453  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
454  SDValue ScalarizeVecRes_VSETCC(SDNode *N);
455
456  // Vector Operand Scalarization: <1 x ty> -> ty.
457  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
458  SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N);
459  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
460  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
461  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
462
463  //===--------------------------------------------------------------------===//
464  // Vector Splitting Support: LegalizeVectorTypes.cpp
465  //===--------------------------------------------------------------------===//
466
467  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
468  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
469
470  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
471  void SplitVectorResult(SDNode *N, unsigned OpNo);
472  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
473  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
474
475  void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
476  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
477  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
478  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
479  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
480  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
481  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
482  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
483  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
484  void SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo, SDValue &Hi);
485  void SplitVecRes_VSETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
486
487  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
488  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
489  SDValue SplitVecOp_UnaryOp(SDNode *N);
490
491  SDValue SplitVecOp_BIT_CONVERT(SDNode *N);
492  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
493  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
494  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
495  SDValue SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo);
496
497  //===--------------------------------------------------------------------===//
498  // Generic Splitting: LegalizeTypesGeneric.cpp
499  //===--------------------------------------------------------------------===//
500
501  // Legalization methods which only use that the illegal type is split into two
502  // not necessarily identical types.  As such they can be used for splitting
503  // vectors and expanding integers and floats.
504
505  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
506    if (Op.getValueType().isVector())
507      GetSplitVector(Op, Lo, Hi);
508    else if (Op.getValueType().isInteger())
509      GetExpandedInteger(Op, Lo, Hi);
510    else
511      GetExpandedFloat(Op, Lo, Hi);
512  }
513
514  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
515  /// which is split (or expanded) into two not necessarily identical pieces.
516  void GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT);
517
518  // Generic Result Splitting.
519  void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
520  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
521  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
522  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
523
524  //===--------------------------------------------------------------------===//
525  // Generic Expansion: LegalizeTypesGeneric.cpp
526  //===--------------------------------------------------------------------===//
527
528  // Legalization methods which only use that the illegal type is split into two
529  // identical types of half the size, and that the Lo/Hi part is stored first
530  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
531  // such they can be used for expanding integers and floats.
532
533  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
534    if (Op.getValueType().isInteger())
535      GetExpandedInteger(Op, Lo, Hi);
536    else
537      GetExpandedFloat(Op, Lo, Hi);
538  }
539
540  // Generic Result Expansion.
541  void ExpandRes_BIT_CONVERT       (SDNode *N, SDValue &Lo, SDValue &Hi);
542  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
543  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
544  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
545  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
546  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
547
548  // Generic Operand Expansion.
549  SDValue ExpandOp_BIT_CONVERT    (SDNode *N);
550  SDValue ExpandOp_BUILD_VECTOR   (SDNode *N);
551  SDValue ExpandOp_EXTRACT_ELEMENT(SDNode *N);
552  SDValue ExpandOp_NormalStore    (SDNode *N, unsigned OpNo);
553
554};
555
556} // end namespace llvm.
557
558#endif
559