LegalizeTypes.h revision e50ac8f2f5743922862162859c658dfb3ca4ab14
1//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#define DEBUG_TYPE "legalize-types"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/DenseSet.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26
27namespace llvm {
28
29//===----------------------------------------------------------------------===//
30/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31/// on it until only value types the target machine can handle are left.  This
32/// involves promoting small sizes to large sizes or splitting up large values
33/// into small values.
34///
35class VISIBILITY_HIDDEN DAGTypeLegalizer {
36  TargetLowering &TLI;
37  SelectionDAG &DAG;
38public:
39  // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40  // about the state of the node.  The enum has all the values.
41  enum NodeIdFlags {
42    /// ReadyToProcess - All operands have been processed, so this node is ready
43    /// to be handled.
44    ReadyToProcess = 0,
45
46    /// NewNode - This is a new node, not before seen, that was created in the
47    /// process of legalizing some other node.
48    NewNode = -1,
49
50    /// Unanalyzed - This node's ID needs to be set to the number of its
51    /// unprocessed operands.
52    Unanalyzed = -2,
53
54    /// Processed - This is a node that has already been processed.
55    Processed = -3
56
57    // 1+ - This is a node which has this many unprocessed operands.
58  };
59private:
60  enum LegalizeAction {
61    Legal,           // The target natively supports this type.
62    PromoteInteger,  // Replace this integer type with a larger one.
63    ExpandInteger,   // Split this integer type into two of half the size.
64    SoftenFloat,     // Convert this float type to a same size integer type.
65    ExpandFloat,     // Split this float type into two of half the size.
66    ScalarizeVector, // Replace this one-element vector with its element type.
67    SplitVector,     // Split this vector type into two of half the size.
68    WidenVector      // This vector type should be widened into a larger vector.
69  };
70
71  /// ValueTypeActions - This is a bitvector that contains two bits for each
72  /// simple value type, where the two bits correspond to the LegalizeAction
73  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
74  TargetLowering::ValueTypeActionImpl ValueTypeActions;
75
76  /// getTypeAction - Return how we should legalize values of this type.
77  LegalizeAction getTypeAction(EVT VT) const {
78    switch (ValueTypeActions.getTypeAction(*DAG.getContext(), VT)) {
79    default:
80      assert(false && "Unknown legalize action!");
81    case TargetLowering::Legal:
82      return Legal;
83    case TargetLowering::Promote:
84      // Promote can mean
85      //   1) For integers, use a larger integer type (e.g. i8 -> i32).
86      //   2) For vectors, use a wider vector type (e.g. v3i32 -> v4i32).
87      if (!VT.isVector())
88        return PromoteInteger;
89      else
90        return WidenVector;
91    case TargetLowering::Expand:
92      // Expand can mean
93      // 1) split scalar in half, 2) convert a float to an integer,
94      // 3) scalarize a single-element vector, 4) split a vector in two.
95      if (!VT.isVector()) {
96        if (VT.isInteger())
97          return ExpandInteger;
98        else if (VT.getSizeInBits() ==
99                 TLI.getTypeToTransformTo(*DAG.getContext(), VT).getSizeInBits())
100          return SoftenFloat;
101        else
102          return ExpandFloat;
103      } else if (VT.getVectorNumElements() == 1) {
104        return ScalarizeVector;
105      } else {
106        return SplitVector;
107      }
108    }
109  }
110
111  /// isTypeLegal - Return true if this type is legal on this target.
112  bool isTypeLegal(EVT VT) const {
113    return (ValueTypeActions.getTypeAction(*DAG.getContext(), VT) ==
114            TargetLowering::Legal);
115  }
116
117  /// IgnoreNodeResults - Pretend all of this node's results are legal.
118  bool IgnoreNodeResults(SDNode *N) const {
119    return N->getOpcode() == ISD::TargetConstant;
120  }
121
122  /// PromotedIntegers - For integer nodes that are below legal width, this map
123  /// indicates what promoted value to use.
124  DenseMap<SDValue, SDValue> PromotedIntegers;
125
126  /// ExpandedIntegers - For integer nodes that need to be expanded this map
127  /// indicates which operands are the expanded version of the input.
128  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
129
130  /// SoftenedFloats - For floating point nodes converted to integers of
131  /// the same size, this map indicates the converted value to use.
132  DenseMap<SDValue, SDValue> SoftenedFloats;
133
134  /// ExpandedFloats - For float nodes that need to be expanded this map
135  /// indicates which operands are the expanded version of the input.
136  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
137
138  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
139  /// scalar value of type 'ty' to use.
140  DenseMap<SDValue, SDValue> ScalarizedVectors;
141
142  /// SplitVectors - For nodes that need to be split this map indicates
143  /// which operands are the expanded version of the input.
144  DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
145
146  /// WidenedVectors - For vector nodes that need to be widened, indicates
147  /// the widened value to use.
148  DenseMap<SDValue, SDValue> WidenedVectors;
149
150  /// ReplacedValues - For values that have been replaced with another,
151  /// indicates the replacement value to use.
152  DenseMap<SDValue, SDValue> ReplacedValues;
153
154  /// Worklist - This defines a worklist of nodes to process.  In order to be
155  /// pushed onto this worklist, all operands of a node must have already been
156  /// processed.
157  SmallVector<SDNode*, 128> Worklist;
158
159public:
160  explicit DAGTypeLegalizer(SelectionDAG &dag)
161    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
162    ValueTypeActions(TLI.getValueTypeActions()) {
163    assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
164           "Too many value types for ValueTypeActions to hold!");
165  }
166
167  /// run - This is the main entry point for the type legalizer.  This does a
168  /// top-down traversal of the dag, legalizing types as it goes.  Returns
169  /// "true" if it made any changes.
170  bool run();
171
172  void NoteDeletion(SDNode *Old, SDNode *New) {
173    ExpungeNode(Old);
174    ExpungeNode(New);
175    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
176      ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
177  }
178
179private:
180  SDNode *AnalyzeNewNode(SDNode *N);
181  void AnalyzeNewValue(SDValue &Val);
182  void ExpungeNode(SDNode *N);
183  void PerformExpensiveChecks();
184  void RemapValue(SDValue &N);
185
186  // Common routines.
187  SDValue BitConvertToInteger(SDValue Op);
188  SDValue BitConvertVectorToIntegerVector(SDValue Op);
189  SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
190  bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
191  SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
192  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
193  SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
194  SDValue MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
195                      const SDValue *Ops, unsigned NumOps, bool isSigned,
196                      DebugLoc dl);
197  SDValue PromoteTargetBoolean(SDValue Bool, EVT VT);
198  void ReplaceValueWith(SDValue From, SDValue To);
199  void ReplaceValueWithHelper(SDValue From, SDValue To);
200  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
201  void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
202                    SDValue &Lo, SDValue &Hi);
203
204  //===--------------------------------------------------------------------===//
205  // Integer Promotion Support: LegalizeIntegerTypes.cpp
206  //===--------------------------------------------------------------------===//
207
208  /// GetPromotedInteger - Given a processed operand Op which was promoted to a
209  /// larger integer type, this returns the promoted value.  The low bits of the
210  /// promoted value corresponding to the original type are exactly equal to Op.
211  /// The extra bits contain rubbish, so the promoted value may need to be zero-
212  /// or sign-extended from the original type before it is usable (the helpers
213  /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
214  /// For example, if Op is an i16 and was promoted to an i32, then this method
215  /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
216  /// 16 bits of which contain rubbish.
217  SDValue GetPromotedInteger(SDValue Op) {
218    SDValue &PromotedOp = PromotedIntegers[Op];
219    RemapValue(PromotedOp);
220    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
221    return PromotedOp;
222  }
223  void SetPromotedInteger(SDValue Op, SDValue Result);
224
225  /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
226  /// final size.
227  SDValue SExtPromotedInteger(SDValue Op) {
228    EVT OldVT = Op.getValueType();
229    DebugLoc dl = Op.getDebugLoc();
230    Op = GetPromotedInteger(Op);
231    return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
232                       DAG.getValueType(OldVT));
233  }
234
235  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
236  /// final size.
237  SDValue ZExtPromotedInteger(SDValue Op) {
238    EVT OldVT = Op.getValueType();
239    DebugLoc dl = Op.getDebugLoc();
240    Op = GetPromotedInteger(Op);
241    return DAG.getZeroExtendInReg(Op, dl, OldVT);
242  }
243
244  // Integer Result Promotion.
245  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
246  SDValue PromoteIntRes_AssertSext(SDNode *N);
247  SDValue PromoteIntRes_AssertZext(SDNode *N);
248  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
249  SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
250  SDValue PromoteIntRes_BIT_CONVERT(SDNode *N);
251  SDValue PromoteIntRes_BSWAP(SDNode *N);
252  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
253  SDValue PromoteIntRes_Constant(SDNode *N);
254  SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
255  SDValue PromoteIntRes_CTLZ(SDNode *N);
256  SDValue PromoteIntRes_CTPOP(SDNode *N);
257  SDValue PromoteIntRes_CTTZ(SDNode *N);
258  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
259  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
260  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
261  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
262  SDValue PromoteIntRes_Overflow(SDNode *N);
263  SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
264  SDValue PromoteIntRes_SDIV(SDNode *N);
265  SDValue PromoteIntRes_SELECT(SDNode *N);
266  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
267  SDValue PromoteIntRes_SETCC(SDNode *N);
268  SDValue PromoteIntRes_SHL(SDNode *N);
269  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
270  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
271  SDValue PromoteIntRes_SRA(SDNode *N);
272  SDValue PromoteIntRes_SRL(SDNode *N);
273  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
274  SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
275  SDValue PromoteIntRes_UDIV(SDNode *N);
276  SDValue PromoteIntRes_UNDEF(SDNode *N);
277  SDValue PromoteIntRes_VAARG(SDNode *N);
278  SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
279
280  // Integer Operand Promotion.
281  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
282  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
283  SDValue PromoteIntOp_BIT_CONVERT(SDNode *N);
284  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
285  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
286  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
287  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
288  SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
289  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
290  SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
291  SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
292  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
293  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
294  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
295  SDValue PromoteIntOp_Shift(SDNode *N);
296  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
297  SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
298  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
299  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
300  SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
301  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
302
303  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
304
305  //===--------------------------------------------------------------------===//
306  // Integer Expansion Support: LegalizeIntegerTypes.cpp
307  //===--------------------------------------------------------------------===//
308
309  /// GetExpandedInteger - Given a processed operand Op which was expanded into
310  /// two integers of half the size, this returns the two halves.  The low bits
311  /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
312  /// For example, if Op is an i64 which was expanded into two i32's, then this
313  /// method returns the two i32's, with Lo being equal to the lower 32 bits of
314  /// Op, and Hi being equal to the upper 32 bits.
315  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
316  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
317
318  // Integer Result Expansion.
319  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
320  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
321  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
322  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
323  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
324  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
325  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
326  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
327  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
328  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
329  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
330  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
331  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
332  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
333  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
334
335  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
336  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
337  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
338  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
339  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
340  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
341  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
342  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
343  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
344  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
345  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
346
347  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
348                             SDValue &Lo, SDValue &Hi);
349  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
350  bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
351
352  // Integer Operand Expansion.
353  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
354  SDValue ExpandIntOp_BIT_CONVERT(SDNode *N);
355  SDValue ExpandIntOp_BR_CC(SDNode *N);
356  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
357  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
358  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
359  SDValue ExpandIntOp_SETCC(SDNode *N);
360  SDValue ExpandIntOp_Shift(SDNode *N);
361  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
362  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
363  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
364  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
365
366  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
367                                  ISD::CondCode &CCCode, DebugLoc dl);
368
369  //===--------------------------------------------------------------------===//
370  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
371  //===--------------------------------------------------------------------===//
372
373  /// GetSoftenedFloat - Given a processed operand Op which was converted to an
374  /// integer of the same size, this returns the integer.  The integer contains
375  /// exactly the same bits as Op - only the type changed.  For example, if Op
376  /// is an f32 which was softened to an i32, then this method returns an i32,
377  /// the bits of which coincide with those of Op.
378  SDValue GetSoftenedFloat(SDValue Op) {
379    SDValue &SoftenedOp = SoftenedFloats[Op];
380    RemapValue(SoftenedOp);
381    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
382    return SoftenedOp;
383  }
384  void SetSoftenedFloat(SDValue Op, SDValue Result);
385
386  // Result Float to Integer Conversion.
387  void SoftenFloatResult(SDNode *N, unsigned OpNo);
388  SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N);
389  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
390  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
391  SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
392  SDValue SoftenFloatRes_FABS(SDNode *N);
393  SDValue SoftenFloatRes_FADD(SDNode *N);
394  SDValue SoftenFloatRes_FCEIL(SDNode *N);
395  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
396  SDValue SoftenFloatRes_FCOS(SDNode *N);
397  SDValue SoftenFloatRes_FDIV(SDNode *N);
398  SDValue SoftenFloatRes_FEXP(SDNode *N);
399  SDValue SoftenFloatRes_FEXP2(SDNode *N);
400  SDValue SoftenFloatRes_FFLOOR(SDNode *N);
401  SDValue SoftenFloatRes_FLOG(SDNode *N);
402  SDValue SoftenFloatRes_FLOG2(SDNode *N);
403  SDValue SoftenFloatRes_FLOG10(SDNode *N);
404  SDValue SoftenFloatRes_FMUL(SDNode *N);
405  SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
406  SDValue SoftenFloatRes_FNEG(SDNode *N);
407  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
408  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
409  SDValue SoftenFloatRes_FPOW(SDNode *N);
410  SDValue SoftenFloatRes_FPOWI(SDNode *N);
411  SDValue SoftenFloatRes_FREM(SDNode *N);
412  SDValue SoftenFloatRes_FRINT(SDNode *N);
413  SDValue SoftenFloatRes_FSIN(SDNode *N);
414  SDValue SoftenFloatRes_FSQRT(SDNode *N);
415  SDValue SoftenFloatRes_FSUB(SDNode *N);
416  SDValue SoftenFloatRes_FTRUNC(SDNode *N);
417  SDValue SoftenFloatRes_LOAD(SDNode *N);
418  SDValue SoftenFloatRes_SELECT(SDNode *N);
419  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
420  SDValue SoftenFloatRes_UNDEF(SDNode *N);
421  SDValue SoftenFloatRes_VAARG(SDNode *N);
422  SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
423
424  // Operand Float to Integer Conversion.
425  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
426  SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N);
427  SDValue SoftenFloatOp_BR_CC(SDNode *N);
428  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
429  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
430  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
431  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
432  SDValue SoftenFloatOp_SETCC(SDNode *N);
433  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
434
435  void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
436                           ISD::CondCode &CCCode, DebugLoc dl);
437
438  //===--------------------------------------------------------------------===//
439  // Float Expansion Support: LegalizeFloatTypes.cpp
440  //===--------------------------------------------------------------------===//
441
442  /// GetExpandedFloat - Given a processed operand Op which was expanded into
443  /// two floating point values of half the size, this returns the two halves.
444  /// The low bits of Op are exactly equal to the bits of Lo; the high bits
445  /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
446  /// into two f64's, then this method returns the two f64's, with Lo being
447  /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
448  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
449  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
450
451  // Float Result Expansion.
452  void ExpandFloatResult(SDNode *N, unsigned ResNo);
453  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
454  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
455  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
456  void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
457  void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
458  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
459  void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
460  void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
461  void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
462  void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
463  void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
464  void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
465  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
466  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
467  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
468  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
469  void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
470  void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
471  void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
472  void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
473  void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
474  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
475  void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
476  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
477  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
478
479  // Float Operand Expansion.
480  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
481  SDValue ExpandFloatOp_BR_CC(SDNode *N);
482  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
483  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
484  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
485  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
486  SDValue ExpandFloatOp_SETCC(SDNode *N);
487  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
488
489  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
490                                ISD::CondCode &CCCode, DebugLoc dl);
491
492  //===--------------------------------------------------------------------===//
493  // Scalarization Support: LegalizeVectorTypes.cpp
494  //===--------------------------------------------------------------------===//
495
496  /// GetScalarizedVector - Given a processed one-element vector Op which was
497  /// scalarized to its element type, this returns the element.  For example,
498  /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
499  SDValue GetScalarizedVector(SDValue Op) {
500    SDValue &ScalarizedOp = ScalarizedVectors[Op];
501    RemapValue(ScalarizedOp);
502    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
503    return ScalarizedOp;
504  }
505  void SetScalarizedVector(SDValue Op, SDValue Result);
506
507  // Vector Result Scalarization: <1 x ty> -> ty.
508  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
509  SDValue ScalarizeVecRes_BinOp(SDNode *N);
510  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
511
512  SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
513  SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
514  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
515  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
516  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
517  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
518  SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
519  SDValue ScalarizeVecRes_SELECT(SDNode *N);
520  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
521  SDValue ScalarizeVecRes_SETCC(SDNode *N);
522  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
523  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
524  SDValue ScalarizeVecRes_VSETCC(SDNode *N);
525
526  // Vector Operand Scalarization: <1 x ty> -> ty.
527  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
528  SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N);
529  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
530  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
531  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
532
533  //===--------------------------------------------------------------------===//
534  // Vector Splitting Support: LegalizeVectorTypes.cpp
535  //===--------------------------------------------------------------------===//
536
537  /// GetSplitVector - Given a processed vector Op which was split into vectors
538  /// of half the size, this method returns the halves.  The first elements of
539  /// Op coincide with the elements of Lo; the remaining elements of Op coincide
540  /// with the elements of Hi: Op is what you would get by concatenating Lo and
541  /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
542  /// this method returns the two v4i32's, with Lo corresponding to the first 4
543  /// elements of Op, and Hi to the last 4 elements.
544  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
545  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
546
547  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
548  void SplitVectorResult(SDNode *N, unsigned OpNo);
549  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
550  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
551
552  void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
553  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
554  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
555  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
556  void SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo, SDValue &Hi);
557  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
558  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
559  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
560  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
561  void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
562  void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
563  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
564  void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
565                                  SDValue &Hi);
566
567  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
568  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
569  SDValue SplitVecOp_UnaryOp(SDNode *N);
570
571  SDValue SplitVecOp_BIT_CONVERT(SDNode *N);
572  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
573  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
574  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
575
576  //===--------------------------------------------------------------------===//
577  // Vector Widening Support: LegalizeVectorTypes.cpp
578  //===--------------------------------------------------------------------===//
579
580  /// GetWidenedVector - Given a processed vector Op which was widened into a
581  /// larger vector, this method returns the larger vector.  The elements of
582  /// the returned vector consist of the elements of Op followed by elements
583  /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
584  /// v4i32, then this method returns a v4i32 for which the first two elements
585  /// are the same as those of Op, while the last two elements contain rubbish.
586  SDValue GetWidenedVector(SDValue Op) {
587    SDValue &WidenedOp = WidenedVectors[Op];
588    RemapValue(WidenedOp);
589    assert(WidenedOp.getNode() && "Operand wasn't widened?");
590    return WidenedOp;
591  }
592  void SetWidenedVector(SDValue Op, SDValue Result);
593
594  // Widen Vector Result Promotion.
595  void WidenVectorResult(SDNode *N, unsigned ResNo);
596  SDValue WidenVecRes_BIT_CONVERT(SDNode* N);
597  SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
598  SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
599  SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
600  SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
601  SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
602  SDValue WidenVecRes_LOAD(SDNode* N);
603  SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
604  SDValue WidenVecRes_SELECT(SDNode* N);
605  SDValue WidenVecRes_SELECT_CC(SDNode* N);
606  SDValue WidenVecRes_UNDEF(SDNode *N);
607  SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
608  SDValue WidenVecRes_VSETCC(SDNode* N);
609
610  SDValue WidenVecRes_Binary(SDNode *N);
611  SDValue WidenVecRes_Convert(SDNode *N);
612  SDValue WidenVecRes_Shift(SDNode *N);
613  SDValue WidenVecRes_Unary(SDNode *N);
614
615  // Widen Vector Operand.
616  bool WidenVectorOperand(SDNode *N, unsigned ResNo);
617  SDValue WidenVecOp_BIT_CONVERT(SDNode *N);
618  SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
619  SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
620  SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
621  SDValue WidenVecOp_STORE(SDNode* N);
622
623  SDValue WidenVecOp_Convert(SDNode *N);
624
625  //===--------------------------------------------------------------------===//
626  // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
627  //===--------------------------------------------------------------------===//
628
629  /// Helper genWidenVectorLoads - Helper function to generate a set of
630  /// loads to load a vector with a resulting wider type. It takes
631  ///   ExtType: Extension type
632  ///   LdChain: list of chains for the load we have generated.
633  ///   Chain:   incoming chain for the ld vector.
634  ///   BasePtr: base pointer to load from.
635  ///   SV:         memory disambiguation source value.
636  ///   SVOffset:   memory disambiugation offset.
637  ///   Alignment:  alignment of the memory.
638  ///   isVolatile: volatile load.
639  ///   LdWidth:    width of memory that we want to load.
640  ///   ResType:    the wider result result type for the resulting vector.
641  ///   dl:         DebugLoc to be applied to new nodes
642  SDValue GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain, SDValue Chain,
643                              SDValue BasePtr, const Value *SV,
644                              int SVOffset, unsigned Alignment,
645                              bool isVolatile, unsigned LdWidth,
646                              EVT ResType, DebugLoc dl);
647
648  /// Helper genWidenVectorStores - Helper function to generate a set of
649  /// stores to store a widen vector into non widen memory
650  /// It takes
651  ///   StChain: list of chains for the stores we have generated
652  ///   Chain:   incoming chain for the ld vector
653  ///   BasePtr: base pointer to load from
654  ///   SV:      memory disambiguation source value
655  ///   SVOffset:   memory disambiugation offset
656  ///   Alignment:  alignment of the memory
657  ///   isVolatile: volatile lod
658  ///   ValOp:   value to store
659  ///   StWidth: width of memory that we want to store
660  ///   dl:         DebugLoc to be applied to new nodes
661  void GenWidenVectorStores(SmallVector<SDValue, 16>& StChain, SDValue Chain,
662                            SDValue BasePtr, const Value *SV,
663                            int SVOffset, unsigned Alignment,
664                            bool isVolatile, SDValue ValOp,
665                            unsigned StWidth, DebugLoc dl);
666
667  /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
668  /// input vector must have the same element type as NVT.
669  SDValue ModifyToType(SDValue InOp, EVT WidenVT);
670
671
672  //===--------------------------------------------------------------------===//
673  // Generic Splitting: LegalizeTypesGeneric.cpp
674  //===--------------------------------------------------------------------===//
675
676  // Legalization methods which only use that the illegal type is split into two
677  // not necessarily identical types.  As such they can be used for splitting
678  // vectors and expanding integers and floats.
679
680  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
681    if (Op.getValueType().isVector())
682      GetSplitVector(Op, Lo, Hi);
683    else if (Op.getValueType().isInteger())
684      GetExpandedInteger(Op, Lo, Hi);
685    else
686      GetExpandedFloat(Op, Lo, Hi);
687  }
688
689  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
690  /// which is split (or expanded) into two not necessarily identical pieces.
691  void GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT);
692
693  /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
694  /// high parts of the given value.
695  void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
696
697  // Generic Result Splitting.
698  void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
699  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
700  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
701  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
702
703  //===--------------------------------------------------------------------===//
704  // Generic Expansion: LegalizeTypesGeneric.cpp
705  //===--------------------------------------------------------------------===//
706
707  // Legalization methods which only use that the illegal type is split into two
708  // identical types of half the size, and that the Lo/Hi part is stored first
709  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
710  // such they can be used for expanding integers and floats.
711
712  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
713    if (Op.getValueType().isInteger())
714      GetExpandedInteger(Op, Lo, Hi);
715    else
716      GetExpandedFloat(Op, Lo, Hi);
717  }
718
719  // Generic Result Expansion.
720  void ExpandRes_BIT_CONVERT       (SDNode *N, SDValue &Lo, SDValue &Hi);
721  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
722  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
723  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
724  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
725  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
726
727  // Generic Operand Expansion.
728  SDValue ExpandOp_BIT_CONVERT      (SDNode *N);
729  SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
730  SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
731  SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
732  SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
733  SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
734};
735
736} // end namespace llvm.
737
738#endif
739